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ABSTRACT Internet of Things (IoT) aims to connect the real world made up of devices, sensors and
actuators to the virtual world of Internet in order to interconnect devices with each other generating
information from the gathered data. Devices, in general, have limited computational power and limited
storage capacity. Cloud Computing (CC) has virtually unlimited capacity in terms of storage and computing
power, and is based on sharing resources. Therefore, the integration between IoT and CC seems to be one of
the most promising solutions. In fact, many of the biggest companies that offer Cloud Services are focusing
on the IoT world to offer services also in this direction to their users. In this paper we compare the three
main Cloud Platforms (Amazon Web Services, Google Cloud Platform and Microsoft Azure) regarding
to the services made available for the IoT. After describing the typical architecture of an IoT application,
we map the Cloud-IoT Platforms services with this architecture analyzing the key points for each platform.
At the same time, in order to conduct a comparative analysis of performance, we focus on a service made
available by all platforms (MQTT middleware) building the reference scenarios and the metrics to be taken
into account. Finally, we provide an overview of platform costs based on different loads. The aim is not
to declare a winner, but to provide a useful tool to developers to make an informed choice of a platform
depending on the use case.

INDEX TERMS AWS, Azure, Cloud Computing, Cloud-IoT, Google Cloud Platform, Internet of
Things, MQTT.

I. INTRODUCTION
Internet of Things (IoT) is an Internet-based paradigm that
includes several interconnected technologies for the informa-
tion exchange between devices, generally small ‘‘things’’ of
the real world, that can be identified and monitored through
the Internet. IoT applications must take into account different
factors depending on the application context. Data produced
by things must be processed, interpreted, stored and each
implementation choice is important for the success of an
application, such as choosing the best Data BaseManagement
Systems (DBMS) for storing the sensed data [1]. Things
are widely distributed and they usually have limited storage
capacity and processing, with problems concerning reliabil-
ity, performance, security and privacy. Similar problems that
have been found in Mobile Computing (e.g storage, band-
width, scalability) [2]. These limits lead to an integration with
Cloud Computing (CC) [3], which has virtually unlimited
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capacity in terms of storage and computing power, and is
based on sharing resources and maximizing them. CC is a
model that allows access to a set of shared and configurable
computing resources (e.g. networks, servers, storage struc-
tures, applications) offered as services. These resources can
be quickly requested, managed and used in a pay-as-you-
go model, so the user pays for the amount of effective use
of a resource. CC is also location independent, allowing the
user’s access to cloud services from any location and with any
device through the internet connection.

In literature, the focus on CC and IoT and their integration
is growing:
• Botta etal. [4], [5] have demonstrated the effective com-
plementarity of IoT and CC in terms of communication,
storage and computation [5].

• The need for integration of Cloud and IoT is presented
in [6]. The authors assert that the Cloud will act as
intermediate layer between the applications and the
things, concealing all the functionality and complexities
required for processing.
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• The study in [7] shows how Cloud-Assisted Remote
Sensing (CARS) enables distributed sensory data col-
lection, global resource and data sharing, remote and
real-time data access, elastic resource provisioning and
scaling, and pay-as-you-go pricing models, underlining
potentials for enabling the so-called Internet of Every-
thing (IoE).

• The paper [8] mainly focuses on a common approach to
integrate the IoT and CC under the name of CloudThings
architecture and examine an IoT-enabled smart home
scenario to analyze the IoT application requirements.

• A solution for merging IoT and Cloud is proposed by
Nastic et al. [9]. They argue that system designers and
operations managers face numerous challenges to real-
ize IoT Cloud systems in practice, due to the com-
plexity and diversity of their requirements in terms of
IoT resources consumption, customization and runtime
governance.

• Liu et al. [10] propose a data-centric IoT framework that
takes advantages of the Azure public Cloud to realize
a centralized IoT management service, extending their
previous work [11], where they present a remote mon-
itoring and management solution, that is specific to a
plant wall system, based on Cloud and IoT.

• As described in 2013 by Gubbi et al. [12] IoT anc CC
can converge. They present a Cloud centric vision for
worldwide implementation of IoT and a Cloud imple-
mentation using Aneka, which is based on interaction of
private and public Clouds.

On the global market the first IoT platforms integrated
with CC start being developed, in parallel with studies on
IoT-Cloud native platforms.
• The paper [13] presents a survey that identifies several
service domains IoT Cloud platforms should deal with.

• In [14] the authors propose a framework for evalu-
ating the IoT platforms from the perspective of how
widely they cover the potential needs of the application
providers, and their results suggests how none of the
platforms today offers comprehensive support.

• Pflanzner and Kertész in [15] introduce a taxonomy of
IoT application properties and investigate 23 IoT Cloud
use cases performing a detailed classification of them in
a survey.

IoT devices produce a large amount of data that must
be transmitted for processing. Traditional CC architectures
may not meet requirements in terms of latency and real-time
decision-making approach. Therefore, according to recent
studies [16], Fog Computing could be a solution.
• Fog Computing provides computation, storage and net-
working at the edge of the IoT network, between devices
and Cloud data centres. [17].

• Bonomi et al. [18] define characteristics of Fog Com-
puting and demonstrate the role of Fog in the IoT, high-
lighting how Fog nodes provide localization, enabling
low latency and context awareness, and how the Cloud
provides global centralization.

• Al-khafajiy et al. in [19] focus on the resource manage-
ment and monitoring and how to balance the Fog load
in order to avoid delays for real-time systems and to not
get the QoS levels worse.

• In [20] authors present the improved previous frame-
work with optimal management of resources as far as
job allocation in an Healthcare scenario.

It is possible to consider Fog Computing as a connection
point between devices and the Cloud, in fact all thementioned
studies agree on the central role of the Cloud. Different Fog
nodes flow the data to the Cloud. Therefore, studying the
performance of a Cloud platform, it is also useful to make
weighted decisions on when and how to offload the Fog
nodes.

As reported in [21], with the increasing use of the
Cloud, depicting the performance of Cloud services become
a priority. Many different performance tests that could be
performed.
• In [22] authors discuss the evaluation of different
Infrastructure as a Service (IaaS) Cloud systems, using
micro-benchmarks.

• Shukla et al. [23] propose RIoTBench, a real-time IoT
benchmark suite used to evaluate Distributed Stream
Processing System for IoT applications hosted in Cloud
data centers.

• CloudHarmony [24] offers a large collection of bench-
marks and users are able to build their own set of bench-
marks and reports. This solution can compare Cloud
Providers and services, e.g. compute engine, storage,
DNS, CDN, but not IoT related services.

According to our best knowledge, there are no studies that
compare a typical architecture of an IoT application with
the related services that a selection of Cloud-IoT platforms
makes available. There are also no studies comparing the
performance of the selected platforms on the basis of the IoT
services made available.

There are hundreds of IoT platforms available from a range
of vendors. Some platforms are highly specialized, other are
focused on providing only a subset of the functions that
might be required for an IoT system. According to ‘‘The
IoT Developer Survey 2018’’ [25] drawn up by the Eclipse
IoT Working Group, in collaboration with the Agile-IoT
H2020 Project, IEEE, and the Open Mobile Alliance (now
OMA SpecWorks), the main general-purpose end-to-end
Cloud-IoT platforms that currently have the leadership on the
global market are Amazon Web Service (AWS), Microsoft
Azure and the Google Cloud Platform. Our analysis will
focus on the comparison of these Cloud platforms regarding
the services they make available for the IoT.

In order to conduct a complete comparative performance
analysis of the three selected platforms, it is necessary to
construct a typical scenario of an IoT application. In the
meantime, the breadth of the application fields (e.g. smart-
home, smart-traffic, industrial applications, e-health) and
consequent diversity of the involved services, would make
the study limited to the concerned sector. Selected Cloud
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platforms are all based on a common architecture for IoT
services. After a safe connection to the Cloud, devices send
their sensed data (directly or through a gateway) to the Cloud.
The same devices (as well as other applications or other
devices) receive messages resulting from any elaboration
on the Cloud. Selected platforms are all based on a pub-
lish/subscribe mechanism [26], a message-oriented middle-
ware that allows a distributed, asynchronous, and loosely
coupled communication between messages producers and
consumers.

All three selected platforms support the MQTT proto-
col. There are several studies in literature that make a qual-
itative comparison between the MQTT protocol and other
protocols applied in IoT, [12], [27]–[30], underlining how
MQTT could be one of the most suitable protocol for IoT
solutions. Other studies compare MQTT performance with
other protocols such as HTTP [31], REST [32], AMQP [33],
COAP [34] o DDS [35]. In all these studies MQTT obtains
the best results in term of end-to-end delay and bandwidth
consumption. TheMQTT protocol is based on amessage bro-
ker that has an intermediary role between publishing clients’
messages and receiving subscribers’ messages. The broker
uses a topic based system (hierarchical strings) in order to
send and receive messages. To receive messages on topic of
interest, clients subscribe to that topic.

The main objectives of this study are:
• identify the key elements of a typical architecture of an
IoT solution in the Cloud;

• map the services offered by the three platforms accord-
ing to this architecture;

• identify comparison metrics;
• conduct a comparative analysis building same scenarios
and implementing them on the three platforms, in such
a way as to have results based on these metrics.

The rest of this paper is organized as follows: in Section II
we present the typical architectures of an IoT solution and a
cloud-based solution, and we identify the metrics for com-
parison, focusing on one of the services provided, discussing
the creation of scenarios for analysis and implementation
choices; in Section III we conduct the analysis of the three
platforms according to a reference architecture; we focus on
the performance results obtained from the simulations and on
their analysis and finally we analyze the pricing tiers of the
platforms; conclusions and future developments of our work
are illustrated in Section IV.

II. MATERIALS AND METHODS
The objective of the work is to conduct two parallel analysis
on the services provided by Cloud Platforms for IoT. On the
one hand an analysis on the key points of the platforms, on the
other a performance analysis of platform service times and
related costs.

A. ARCHITECTURES
1) IoT ARCHITECTURE
The increasing number [36] of heterogeneous connected and
interconnected objects make the need for a flexible layered

FIGURE 1. IoT architectures: (a) 3 layers and (b) 5 layers.

architecture. Even if there is no reference model, the basic
models in literature [37] are a 3 or 5 layer architecture [38],
[39]. The 3 layer architecture in Fig.1a consist of the Appli-
cation, the Network and the Perception Layer. The 5 layer
shown in Fig.1b add more abstraction introducing a Middle-
ware layer between the Network and the Application, and a
Business layer at the top.

The perception layer includes sensors and actuators to
perform different functionalities. Data generated by this layer
is sent through the network layer, that includes technolo-
gies such as RFID, 3G, GSM, UMTS, WiFi, Bluetooth Low
Energy, infrared, ZigBee, etc, to the Middleware layer. This
layer processes received data, makes decisions, and delivers
the required services to the Application layer. Finally the
business layer manages the overall IoT system activities and
services, and supports decision-making processes based on
data.

2) CLOUD-IoT ARCHITECTURE
The Cloud Standards Customer Council [40] created a
standard reference architecture for large-scale IoT systems
that utilize CC. The ‘‘Cloud Customer Architecture for
IoT (CCAIoT)’’ [41] covers an end-to-end solution ranging
from the users of IoT devices to the enterprises managing
the devices [42]. The core components of the architecture
depicted in Fig.2 across five domains: User Layer, Prox-
imity Network, Public Network, Provider Cloud, and Enter-
prise Network. User Layer contains IoT users and their
end user applications. It is independent of any specific
network domain. The Proximity Network domain has
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FIGURE 2. Elements of IoT solutions. (Source: Cloud standards customer
council, Cloud customer architecture for IoT, 2016).

networking capabilities. Devices (including sensor/actuator,
firmware and management agent) and the physical entity are
part of the Proximity Network domain. The Public Network
interconnects the devices of different proximity networks
through a wide area network, typically the Internet. It also
contains Edge Service, that allows the safe flow of data from
the Internet into the Provider Cloud. The Provider Cloud
captures data from devices or other data source and pro-
vides core IoT applications and associated services (storage,
analytics, visualization). It includes components for device
management (provisioning, remote administration, software
updating, remote control). The insights generated by the
Provider Cloud are used by user and enterprise application in
the Enterprise Network domain. IoT governance and security
subsystems span all elements of the architecture. The secu-
rity system has to consider identity and access management
(IAM), data protection, security monitoring, analysis and
response.

The Cloud components of IoT architecture are in a
three-tier pattern according to Industrial Internet Consortium
Reference Architecture [43] as depicted in Fig.3. This archi-
tecture comprises edge, platform and enterprise layers. The
edge tier includes Proximity and Public Networks of the
reference architecture where data is collected from devices
and transmitted to devices. A device can either communicate
directly, or through an intermediate gateway, with the Cloud.
The field-gateway has the role of protocol translation [44] and
may be able to perform local storage, filtering and processing
actions on received data before sending it to the Cloud [45].
The platform tier is the Provider Cloud. It receives, processes,
and analyzes data flows both in flight and at rest from the edge
tier and provides API management and visualization. It also
provides the capability to initiate control commands from the
Enterprise Network to the Public Network. The enterprise tier
implements domain-specific applications, decision support
systems and provides interfaces to end-users. It receives data
flows from the edge and platform tier and also issues control
commands to the platform tier and edge tier.

FIGURE 3. High level cloud-IoT 3-tier architecture.

3) CLOUD-IoT PLATFORMS
According to the previous depicted architecture, Cloud-IoT
platforms provide middleware to connect and manage hard-
ware devices and the data collected by them. IoT solutions
in the Cloud require secure, bidirectional communication
between devices and a solution back end. An IoT application
involves many heterogeneous IoT devices, with sensors that
produce and send data or events through a network. They can
be used to generate insights (e.g. data processing and ana-
lytics). In the rest of this section we investigate the platform
tier and the enterprise tier of the Cloud-IoT architecture and
we map components and functionalities in each tier with the
selected Cloud Platforms.

The keys that we consider to perform the analysis are:
• Device management. Managing IoT hardware devices
is one of the core functions of an IoT platform.
It includes provisioning of new devices, monitoring and
maintenance of operating devices. IoT platforms have to
provide features for managing device registration, con-
figuration, over-the-air updates, and asset management,
including the ability to list and search connected devices
and to query and manage device metadata.

• Data communication protocols. In order to enable the
remote management of devices and data transmis-
sion, a secure and reliable communication between
IoT devices, gateways, and cloud-based apps and ser-
vices is essential. In literature [46] these communi-
cation types for IoT environment are usually referred
as ‘‘Device-to-Device (D2D)’’, ‘‘Device-to-Application
(D2A)’’, ‘‘Device-to-Gateway (D2G)’’ and ‘‘Device-to-
Cloud (D2C)’’. Some data can be stored and processed
locally (e.g. field gateway in the WSN), as well as
some of the data collected from sensors and other IoT
devices need to be delivered to cloud services for further
processing. IoT platforms incorporate message broker
services to enable devices and gateways to send and
receive messages with low latency and at scale. Message
broker services use standard communication protocols
likeMQTT [47], CoAP [48], or XMPP [49], and support
web sockets.

• Rules. Once data is ingested to the IoT back-end,
the flow of data processing may vary, depending on
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scenarios and applications. Regardless, IoT platforms
may offer a rules engine with conditions used to trigger
actions.

• Data storage. Data generated by IoT devices need to
be stored in order to be accessed by further processing.
Data is usually split in hot and cold data stores [50].
Hot data stores need to be accessed with high frequency
and low latency, whereas cold data stores are accessed
infrequently generally with high latency and with lower
storage costs still preserving historical data.

• Integration. IoT platforms provide integration with other
platforms, devices, web services, tools, and applications
through SDKs and APIs.

• Security. This includes securing devices and network
communication in addition to implementing Cloud and
application-level security.

• Costs. In a general Cloud environment all services are
offered in a pay-as-you-go model, in such a way that
users pay only the real use of a service/resource.We con-
sider only the cost of the IoT core solution, without con-
sidering other connected services, such as storage or data
analysis.

Finding the right combination of the aforementioned capa-
bilities and the use case is the basis for designing an IoT
solution based on CC. For example in a Smart City scenario
information in terms of privacy and data loss are not as impor-
tant as in a healthcare domain [51]. According to [5] Smart
City is a fragmented scenario where common challenges
are related to reliability, scale and timeliness, whereas in a
healthcare IoT solution data security and privacy by users are
the main challenges [52]. Device management and analytics
capabilities would be much more important for an industrial
and cultural heritage [53] IoT application. They can involve
thousands of sensors to monitor different parameters inside
the same environment. Next sections investigate services
offered by the three platforms and finally we summarize them
in Table 2.

B. PERFORMANCE METRICS AND SCENARIOS
In order to achieve messages reliability, MQTT supports
three QoS levels [54]. In QoS level 0 a message is delivered
at most once and no confirmation of reception is required.
In QoS level 1, every message is delivered at least once and
an acknowledgement of message reception is required. QoS
level 2 uses a four-way handshakemechanism for the delivery
of a message exactly once. The Cloud platforms included in
this study ensure support only for QoS level 0 and 1, not for
QoS level 2.

The aim of this study is to measure the performance of
the access point to Cloud services for IoT: message broker
in AWS IoT-Core, Microsoft Azure IoT Hub and the MQTT
Bridge of the Google’s Cloud IoT-Core. As reported in a
recent survey [46], the messaging technology has the greatest
usage in IoT applications, and the time is one of the most
important evaluation factors. Therefore, in order to com-
pare MQTT performance we first consider the end-to-end

delay, that is the time elapsed between producing and sending
a message by a publisher client and receiving that message
by a subscriber client or application. Nevertheless end-to-end
delay is affected by factors, such as transmission time, prop-
agation time, procession and queuing time [55]. These con-
ditions are not always stable during the tests run at different
times. Therefore, what we consider is only the cloud-broker’s
service time in different conditions, which we illustrate in the
construction of the scenarios in Sec.II-B2. We also analyze
the cost of the involved services, extending a recent work by
Kalmar and Kertesz [56] where an investigation of different
IoT Cloud service providers pricing models is conducted.
They construct 2 scenarios and perform the costs estimation.
In this work we conduct a comparative analysis with a vari-
able number of devices (and consequently a changing number
of messages) connected to the platforms.

The following subsection illustrates the method used to
calculate the service time of the broker on Cloud platforms.

1) CLOUD SERVICE TIME
Consider a simple case with only one publisher client, P1 and
one subscriber client S1, that are MQTT clients of the same
MQTT broker in a Cloud Platform. The experiment flow is
shown in Fig.4: P1 publishes a message with QoS level 1 at
time t0 with the timestamp t0. At t1 the message arrives at the
broker, that answers to P1 with an acknowledge (PUBACK);
this PUBACK arrives at time t4 to P1. In the meanwhile the
broker sends the message at time t2 to S1 and S1 receives the
message at t3. The broker service time is given by (1)

Tc = t2 − t1 (1)

All three platforms provide to users a log system that can be
analyzed to obtain this value. Our aim is to obtain Tc without
the use of platforms logs. It would be possible to implement
a rule in the Cloud that adds new fields to the incoming
message with the timestamps t1 and t2, but this choice is not
practicable because this operation would add significant and
not easily quantifiable delays, negatively affecting the final
result. Furthermore, it is not possible to compare client times
with platform times unless using synchronization algorithms.
In addition, in order to guarantee efficiency and scalability,
the platforms provide a connection endpoint, but the actual
location of the endpoint is obviously different over time,
making synchronization highly expensive in terms of compu-
tation. Therefore we implement the simulated clients in the
same physical machine, so as to avoid any synchronization
problem between hosts. Starting from algorithms of the Net-
work Time Protocol [57] it is possible to calculate the Round
Trip Delay by (2)

RTD = (t3 − t0)− (t2 − t1) (2)

The Round Trip Time on the publisher is calculated by
using (3)

RTTp = t4 − t0 (3)
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FIGURE 4. Experiment flow. Publisher sends a message to the broker and
the broker forwards it to the subscriber.

where t0 is the time when P1 publish the QoS level 1 message
and t4 when the PUBACK sent by broker comes back to P1.
Since the clients reside in the same machine we can hypothe-
size that the One Way Delays are symmetric, so the searched
value Tc is simply given by (4)

Tc = t2 − t1 = t3 − t4 (4)

In order to verify that these assumptions are not too sim-
plified, with consequent inconsistency of subsequent results,
a validation of the data is carried out by simulations to be
compared with the logs obtained from a platform. We exam-
ine the AWS platform that provides the CloudWatch ser-
vice [58] for log analysis. After creating a policy in the
IoT-Core that allows communication between the two ser-
vices, it is possible to analyze the generated log, a JSON file
with the following format:
{“timestamp”: “2019-08-19 10:54:07.180”,
“logLevel”: “INFO”,
“traceId”: “xxxxxxxx-xxxx-xxxx-xxxx-xx”,
“accountId”: “0123456789”,
“status”: “Success”,
“eventType”: “Publish-In”,
“protocol”: “MQTT”,
“topicName”: “/path/to/topic”,
“clientId”: “cliendId”,
“principalId”: “principalIdentification”,
“sourceIp”: “xxx.xxx.xxx.xxx”,
“sourcePort”: 01234 }

The eventType field has the value ‘‘Publish-in’’ when a
message arrives at the broker and the value ‘‘Publish-out’’
when the broker sends it to a subscriber client. The value
we are looking for is the difference between the timestamp
fields of the two JSON files. We write a python application
that simulates a publisher and a subscriber client: a client
publishes a message with an Identification number and writes

the instant t4 in a text file. The subscriber client does the same
operation when it receives the message in the instant t3.
We conduct 100 tests in 23 different simulations and for

each simulation we compute the Mean and the Standard
Deviation, both from Amazon’s Log and from text files
obtained from tests, that we analyze to verify the value of the
assumptions.

Starting from a base case with one client publishing one
message per second (mps) on a topic which has one sub-
scriber client, we send 1000 messages and we track the
obtained results. The sending frequency has increased from
1 mps to 1000 mps, and then the number of publisher and
subscriber clients has changed to 5 and 10 (always maintain-
ing 1:1 ratio), resulting in an increase of up to 10000 mps.
TheMean values and Standard Deviations obtained, as shown
in Table 1, are very close for each case and in all cases the
probability distributions follow identical trends. Therefore,
it is possible to state that the errors obtained by the simpli-
fications adopted are negligible for the final evaluation.

2) SCENARIOS
In order to analyze the performance in terms of processing
time of the platforms’ Cloud Gateway, we consider differ-
ent scenarios with different loads. Loads refer to different
dimensions, such as number of publisher clients, number
of subscriber clients, number of messages exchanged, size
of messages, rate of messages published or consumed. We
made the following assumptions for scenarios construction:
fixed size of the message payload equal to 150 bytes and
number of topics equal to the number of publishers (i.e.
each client publishes messages on its own reserved topic).
In addition, each client, both publisher and subscriber, works
by creating its own connection to the Cloud gateway. In this
way connections are not shared by multiple clients, in order
to simulate different connected devices (or applications).

We consider 3 cases, increasing the loads for each case,
in such a way as to be able to analyze both the service time of
the broker for each platform, and the reliability of the limits
imposed by the platforms themselves.

For all platforms we sign free accounts, that introduce
some limitations, especially with regard to the Microsoft
platform. Indeed, as reported in [59], the free-tier for Azure
IoT Hub allows the creation of a single unit, resulting in
a limit of 100 connections/sec accepted and a maximum
of 8000 messages/day.
• Point to Point: in this scenario the number of publisher
clients is equal to the number of subscriber clients, each
of which is listening on a single topic. The load is
increased in two different ways: keeping the rate of mes-
sages sent by publishers fixed to 10 mps and increasing
the number of clients (between 1 and 600), or keeping
the number of clients fixed (100 publisher clients and
100 subscriber), varying the frequency of sending mes-
sages (between 1 mps and 10 mps per client).

• Fan in: in this scenario, more clients publish messages
(each on their own topic) and a subscriber client is
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TABLE 1. Mean and standard deviation of cloud service time obtained from AWS log and from simulations. Times are in ms.

listening, using the wildcard #, on all topics. The loads
are changed by acting on the number of publisher clients
connected with a message sending rate equal to 10 mps
per client.

• Fan out: in this scenario, also called broadcasting, a pub-
lisher client publishes messages on a topic, where multi-
ple subscribers are subscribed. In this scenario, the cases
are simulated keeping the sending message rate fixed at
10 mps and increasing the number of clients subscribed.

III. RESULTS
A. ARCHITECTURE
1) AWS IoT CORE
The architecture of the AWS IoTCore is represented in Fig. 5.
Devices report their state by publishing messages on MQTT
topics, that have a hierarchical name in order to identify the
device. The message is sent to the AWS IoT MQTTMessage
Broker, which sends it to all clients subscribed to that topic.
Each device has a shadow object (a virtual representation of
the device) that is used to store and retrieve state information
in a JSON document divided into a last reported state and
a desired state. An application can send a request with the
current state of the device or with a change in its state. When
the message arrives to the broker, the Rules Engine provides
message processing and integration with other AWS services.
• Device management. AWS IoT Device Management is
the service of the AWS IoT platform that allows orga-
nization, monitoring, and management of IoT devices.

FIGURE 5. AWS IoT Core architecture and integration.

It allows devices to register in bulk and to organize
them into groups, attaching them to access policies.
AWS IoT provides a registry to manage things, stored
as JSON data. Interaction with registry is possible with
the AWS IoT console or the AWS Command Line Inter-
face. Furthermore, the platform provides Device SDKs
for Android, iOS, Java, JavaScript, C++, Python, and
Embedded C that include open-source libraries.

• Data communication protocols. Communication to and
from AWS IoT Core is allowed by a publish/subscribe
message broker service. The message broker supports
MQTT to publish and subscribe, and HTTPS only to
publish, both through IPv4 and IPv6. The implementa-
tion of the message broker is based on MQTT v.3.1.1,
but it does not support QoS 2, and it does not allow
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the connection of two or more clients with the same
client ID simultaneously. All topics that start with $ are
reserved topics, utilized for device shadow operations
(e.g. get or update state). The broker supports connec-
tions with the HTTP protocol by the use of REST API.

• Rules and analytics. The platform uses rules in order to
interact with other AWS services. Rules are composed
by a trigger written in a SQL-like syntax and one or more
actions activated.

• Data storage. Data ingested to the AWS IoT Core
is required to be stored. AWS IoT Core offers the
direct connection with Amazon DynamoDB (NoSQL
database) and AWS S3 (Simple Storage Service), a scal-
able storage in the AWS Cloud.

• Integration. In order to create and interact with
devices AWS IoT provides a Command Line Inter-
face (CLI), AWS IoT API to build applications using
HTTP or HTTPS requests and Device SDKs. AWS
offers services for the collection and the processing of
data records: Amazon Kinesis Data Stream to real-time
process of streaming data, AWS Lambda to execute
serverless code, Amazon Simple Notification Service to
send or receive notifications, andAmazon SimpleQueue
Service to store data in a queue.

• Security. Devices must have credentials to access the
message broker and all traffic must be encrypted by
Transport Layer Security (TLS). Platform support as
identity principals for authentication X.509 certificates,
typically used by AWS IoT devices, Identity Access
Management (IAM) users, groups and role, Feder-
ated identities used by web and desktop applications,
and Amazon Cognito identities, in general used by
mobile applications, that allow the use of other identity
providers.

• Costs. AWS bills separately for usage of Connectivity,
Messaging, Device Shadow usage (device state storage),
Registry usage (device metadata storage), and Rules
Engine usage (message transformation and routing), all
based on the region selected.

2) MICROSOFT AZURE FOR IoT
Microsoft Azure for IoT provides two paths: a PaaS solution
named Azure IoT solutions accelerator, and a SaaS solution
named Azure IoT Central. Both solutions utilize Azure IoT
Hub as Cloud gateway to securely accept data and provide
device management capabilities. The Hub is natively inte-
grated with other Azure cloud services and it allows secure
bi-directional communication between devices and applica-
tions. The Azure for IoT architecture is depicted in Fig. 6,
according to the 3 layer Cloud-IoT architecture. The message
sent by an authenticated device arrives to the Hub, that has
built-in message routing functionalities in order to send the
message to one or more endpoint of other services. Devices
have a virtual representation in the Cloud called twin device,
stored as a JSON document which contains desired properties

FIGURE 6. Azure solution architecture and integration.

(set by an application and read by the device) and reported
properties (set by the device and read by an application).
• Device management. Microsoft Azure IoT Hub Device
Provisioning Service is a service that enables just-in-
time provisioning of devices to an IoT hub, without
requiring human intervention. Devices contact the provi-
sioning service endpoint passing their identifying infor-
mation. The service registers the device with an IoT
Hub and populates the desired twin device state. Fur-
thermore, Azure provides device SDKs that can be used
on devices or gateways to simplify the connectivity to
Azure IoT Hub. SDKs are available for .NET, C, Java,
Node.js, Python and iOS.

• Data communication protocols. In addition to the IoT
Hub, the platform offers the Event Hub Service to per-
mit communication with the Cloud. Both services are
designed for data ingestion on a massive scale, but the
IoT Hub includes more specific features for IoT context,
such as bi-directional communication to and from the
Cloud and device-level identity. Azure IoTHub provides
support for the AMQP 1.0 with optional WebSocket
support,MQTT 3.1.1, and native HTTP 1.1 over TLS
protocols. QoS 2 delivery assurance of MQTT is sup-
ported, but not recommended due to the high impact
on latency and availability of the entire system. The
platform also offers the IoT Protocol Gateway to enable
other protocol adaptation for the IoT Hub.

• Rules. Azure IoT Hub exposes its functionality by the
use of endpoints. In order to route messages from device
to these endpoints, Azure uses rules written in an SQL-
like syntax evaluated on the message headers and body.

• Data storage. Regarding data storage, according to the
previous section, Azure offers services for hot and cold
storage. In the hot path, data has to be available with
lower latency than the data in a cold storage. Azure ser-
vices for hot storage are Azure Cosmos DB as NoSQL
database, and Azure SQL DB as relational SQL DBMS.
Services for cold storage are Azure Blob Storage (a file
storage database) and Azure Data Lake, a distributed
data store. Azure offers also Time Series Insight that
provides analytics, storage and aggregation services.

• Integration. IoT Hub is natively connected with other
Azure services: Azure App Service, a managed plat-
form to build web and mobile apps, Notifications Hub,
in order to send push notifications, and PowerBI, to cre-
ate dashboards.

• Security. There are three primary areas to be consid-
ered regarding security: device, connection and cloud
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FIGURE 7. Google cloud IoT core architecture and integration.

security. The Azure Hub Identity Registry provides
secure storage of device identities and each security key;
all connections have to be initiated by the device to the
Hub, not vice versa, and use TLS authentication with
X.509 certificate; Azure Active Directory is used for
user authentication and authorization for cloud access.

• Costs. Azure’s costs management is based on two levels
of service. In each level we find three tiers. Every tier
has a daily message limit after which you will experi-
ence throttling. The consumption of IoT Hub units is
measured on a daily basis, and the billing is generated
on a monthly basis. Customers are billed based on the
number of IoT Hub units that have been consumed
during the month.

3) GOOGLE CLOUD IoT CORE
Google solution for IoT is Google IoT Core. The main com-
ponents are the device manager and the protocol bridge. The
device manager has the role of registering devices with the
service, whereas the two protocols bridge (HTTP/MQTT)
are used by devices in order to connect and send data to the
Cloud. According to the Google Cloud Platform architecture
depicted in Fig. 7, devices send data to the Google IoT Core
that is directly connected with Google Cloud Pub/Sub; it
is an enterprise message-oriented middleware to the Cloud
and it provides a message ingestion service. Messages are
then delivered to a pipeline service, the Google Cloud Data
Flow, that processes data and sends it to other cloud services,
depending on the IoT project use case. Devices are repre-
sented by an ID and identified by a full resource name. It is
possible to define custommetadata for a device, a state which
is sent to the Cloud and a configuration, which is sent from
the Cloud to the device. As a difference from the previous
platforms, in Google solution information can be an arbitrary
user-defined blob of data.
• Device management. The IoT Core Device Manager
provides the service for managing devices. It includes
registration, authentication and authorization processes.
With the device manager it is possible to create and
configure registries and devices within them. The device
registry is configured with one or more Cloud Pub/Sub
topics to which telemetry events are published for
all devices in that registry. A device is defined with
metadata, it sends telemetry messages and receives

configurations, user-defined blob of data sent from the
Cloud.

• Data communication protocols. The platform supports
MQTT and HTTP for managing devices and commu-
nications. By the use of MQTT, devices send pub-
lish requests to a specific topic, whereas using HTTP,
devices do not maintain a connection to the platform,
and they send requests and receive responses. Regarding
MQTT’s Quality of Service, the MQTT Bridge supports
QoS 0 and 1.

• Rules. In order to manage data arriving at the Cloud,
the platform uses the concept of pipelines offered in
the Google Cloud Data Flow: it allows to transform,
aggregate, enrich and move data to other services. It is
also possible to operate on each published event individ-
ually by the Google Cloud Functions, that can be used to
filter invalid data, trigger alarms, or invoke other APIs.

• Data storage. Devices send different types of data, from
their state (normally in a structured way), to telemetry
data, and unstructured blobs of data (e.g. video streams).
In the case of structured data that identify the status of
a device, the storage takes place directly in the service
provided by the IoT Core. Telemetry data arrives with
high frequency and it has to be available in a low latency
and high performance way: the platform offers Cloud
Datastore and Cloud BigQuery as NoSQL databases,
and Cloud BigTable as a fully managed data warehouse
with SQL interface. The Cloud Storage is used to archive
data used infrequently and for unstructured data.

• Integration. The platform provides the Google Cloud
SDKwhich contains a command line tool called gcloud.
Operations are also possible by the Console and by
the use of APIs client library for C#, Java, NodeJS,
GO, PHP, Python and Ruby. The Iot Core is natively
integrated with Google’s big data and machine learning
analysis services such as Cloud ML, Data Studio and
DataLab.

• Security. The IoT Core offers per-device public/private
key authentication using JSON Web Tokens [60] and
supports for RSA or Elliptic Curve algorithms to ver-
ify signatures. Concerning communications security,
the TLS 1.2 protocol, using root certificate authorities,
is required for MQTT connections. Google Cloud Iden-
tity and Access Management (IAM) allows to control,
authenticate and authorize the Cloud IoT Core API
access.

• Costs. The IoT Core prices are calculated on the volume
of data used in a month, over 250 MB, in three different
levels and considering a minimum size of 1024 bytes for
each message (for messages less than 1024 bytes, a cost
of 1024 bytes will be applied). All other services utilized
in a solution will be billed separately.

B. PERFORMANCE ANALYSIS
We have simulated all clients as static on a machine with
the following features: Intel Xeon X5650 (x2) CPU, 12 MB
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TABLE 2. Cloud platforms services.

cache, 2.66 GHz, 16 GB RAM with Ubuntu 18.04.1 LTS.
The clients have been implemented in GoLang, a language
developed by Google, whose approach to concurrency differs
from the classic use of threads and shared memory. Concur-
rency is an intrinsic part of the Go programming language
and is managed using Goroutine and Channels. Goroutine
are functions or methods that are performed concurrently
with other functions or methods in the same address space,
so access to shared memory must be synchronized. They are
not real threads, but light-weight threads managed entirely
by the Go runtime. Channels are the pipes that connect
concurrent Goroutine. A tool has been developed that takes
the following parameters from the command line: the MQTT
broker endpoint (scheme://endpoint-url:port), the scenario to
be simulated, the number of clients, the number of messages,
the interval in ms between messages, the size of each mes-
sage, the publisher and subscriber QoS, eventual username
and password for the connection. In the case of connection
to the Google Cloud Platform’s IoT Core, each client must
provide a JSONWeb Token (JWT) for authentication.We use

the Paho Go Client Library [61], which allows connection to
an MQTT broker via TCP, TLS or WebSocket.

The tool creates as many Goroutines as the clients param-
eter depending on the scenario considered (e.g. in scenario
A #clients publisher and #clients subscriber, in the case B
#clients publisher and only one subscriber). Routines wait
for each client to be safely connected and authenticate to
the broker, and consequently start to publish messages in
their own topic. At the same time subscribers are listening
to that topic. Publisher clients keep track of the PUBACK
timestamp received by the broker (thanks to QoS level 1) in
an array which index is the message identifier contained in
the payload. In the same way, subscribers perform the same
operation, keeping track of the reception timestamp. At the
end of the Goroutine, the values are sent to the main routine,
which saves the values of each publisher and subscriber client
in a bi-dimensional array. The obtained matrices are passed to
a function that writes in a MySql database every single per-
formed measurement and the parameters of the simulation.
Cloud services performance may vary over time. Therefore,
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FIGURE 8. Point-to-point scenario - Cloud service times in relation to mps sent by clients. In (a) each client sends 10 mps and we change the
number of clients from 1 to 600; in (b) a fixed number of clients (100) sends messages from 1 mps to 15 mps.

we conduct 42 different measurements for each simulation
(i.e. 2/day in different times of day for 3 weeks). Subse-
quently a function computes the Mean Value of the Cloud
Service Time for each simulation and its standard deviation
and write results to the database. Finally a MatLab function
connects to the database and plots the obtained results.

1) POINT-TO-POINT
As reported in Sec. II-B2, Azure imposes limitations on the
number of accepted connections per second in the free-tier
and maximum number of messages per day accepted, as well
as a maximum number of device to cloud messages equal
to 100 per second. Therefore the choice was to separate the
results obtained from this platform from the others. Simula-
tions will be repeated in the future using a pay tier.

In this scenario, the Amazon and Google platforms have a
similar and uniform behavior in terms of broker service time
in relation to the number of messages published per second.
In Fig. 8a the number of messages per second on the abscissa
is obtained by increasing the sending messages rate with
only one client connected up to the value of 100 mps, and
subsequently keeping the sending frequency of each client
fixed at 10 mps and increasing the number of connected
clients between 1 and 600. Google IoT-Core responds faster
than the other platforms for almost all simulated mps values,
except for values between 150 and 750 mps, range during
which Amazon provides better performance. Azure, even for
load conditions that can be compared to the others, has an
average service time much higher than its competitors, equal
to 180ms ± 20ms. Platforms do not seem to be particularly
affected by increases in load. The limits declared by the
platforms are respected, in particular the number of accepted
connections per second per account and the number of mes-
sages per second accepted by the broker for connection.

In Fig. 8b the load to the broker has been increased only
acting on the sending rate and fixing the number of clients
to 100. In this case the platform brokers behavior is even
more uniform compared to the previous case, showing no
significant changes in terms of service time. In this case,
however, it is Amazon’s platform to achieve slightly better
average performance, remaining at 27ms± 0.3ms.

In order to make a description of the distributions of per-
formed simulations, box plots are shown in Fig.9 - 10 - 11.

FIGURE 9. Boxplot of AWS results.

FIGURE 10. Boxplot of GCP results.

It is interesting to note how the results of Azure (Fig. 11)
follow more symmetrical distributions than the other plat-
forms, and how the values are more concentrated around
the median. The distributions of the simulations obtained on
AWS and GCP are positive asymmetries, therefore with a
greater dispersion for higher values. Finally, note the total
absence of outliers for the distributions of AWS and GCP,
minimally present in Azure distributions.

2) FAN-IN
In this type of scenario, where each client publishes on its
own topic while a single subscriber is subscribed by wildcard
to all the topics, it is interesting to evaluate the message loss,
i.e. the number of messages that have not been delivered to
subscriber. Note that the Google and Microsoft platforms do
not allow direct subscription via wildcard, but they allow
forwarding of all messages to an additional service: Google
allows registration of all virtual devices in a registry, which
has a topic associated in the PubSub service [62]. Each device
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FIGURE 11. Boxplot of azure results.

FIGURE 12. Message loss vs mps obtained with an increasing number of
clients and fixed 10 mps/client in fan-in scenario.

sends its telemetry messages to its MQTT topic and the
platform forwards them to PubSub. A client application then
simulates the connection to this service and to the topic of the
registry, thus allowing to perfectly simulate the considered
scenario. Azure allows native integration of the IoT Hub
with one or more default endpoints, and also in this case
a client is connected to that endpoint to receive forwarded
messages. Therefore results depicted in Fig. 12 concern the
message loss only for Amazon by connecting directly to the
MQTT broker and subscribing to all topics. The broker is
able to forward all messages to the subscriber up to the limit
of 400 mps (40 connected clients each sending 10 mps);
significant losses begin to occur with 70 connected clients
(5%) with an exponential trend up to about 810 mps, and
then stabilize on 42% for a load of 1000 mps. These values
can be useful for developers and solution architects to make
a possible partition of the topic and connected subscriber
clients, in order to avoid significant losses of published mes-
sages. In order to make the same analysis on this scenario,
we use a further service on AWS that allows forwarding
all messages from a topic to AWS SNS [63], by creating
a rule in the Rules Engine. Also with regard to Azure the
reasoning was the same: creation of a rule that allows the
forwarding of messages addressed to all topics of the devices
towards the message bus [64]. The subscriber client, for all
platforms, listens to the channel on which these messages are
forwarded and counts the actual delivery. In this case, for all
platforms, all messages were delivered in each load condi-
tion considered. Service Cloud Times were then calculated
using the procedure illustrated in Sec. II-B1, obtaining the
service time of the broker added to the service time of the

FIGURE 13. Fan-in scenario - Cloud service time vs mps sent by clients
with 10 mps/client and from 1 to 600 connected clients.

following message bus. In this case too, these results can be
useful to the specialists of Cloud-IoT solutions for the most
correct choice based on the application needs. Simulations
in Fig. 13 shows that the service time trend is similar to that
found in the point-to-point scenario, up to 3000 mps. After
this value, Google and Amazon platforms have an important
growth in recorded time. However, analyzing the logs made
available by the platforms, the time to forward messages
from the broker to the following service does not have such
significant variations; these delays are attributable to the
subscriber client who fails to send the PUBACK messages
to the broker, thus reaching the so-called value of ‘‘Maximum
inbound/outbound unacknowledged QoS 1 publish requests’’
(due to the limitations imposed by the platforms themselves),
thus delaying the forwarding. As regards Azure, the results
are the same for the point-to-point scenario shown in Fig. 11,
showing that they are in no way influenced by the different
type of scenario.

3) FAN-OUT
The workload in this scenario is generated by a single pro-
ducer publishing 10 messages per second in a single topic.
An increasing number of clients is subscribed to that topic.
We analyze the Cloud Service Time as depicted in Sec. II-
B1 in function of the fan-out factor (i.e. number of subscriber
clients). In this scenario we have the result shown in Fig.14
where we can see how GCP has lower Cloud Service Time
than both AWS and Azure for a fan-out factor over 15.
Before this value AWS has the lowest values. Azure’s Hub
IoT forwards messages 15X slower than the other platforms,
yet having (as in previous scenarios) a lower gap between
outliers. Indeed, for a fan-out factor equal to one the Cloud
Service Time is 26.479 ms, 24.991 ms and 160.567 ms, and
for 300 subscribers the difference is 26.7%, 68.1% and 7.1%
respectively for GCP, AWS and Azure.

C. COSTS
In this Section, according to each platform’s documentation,
we analyze costs in function of different work loads. Each
platform has a different approach in terms of billing:

1) In Amazon Web Services IoT Core connectivity,
messaging and shadow devices (device status stor-
age), registry (device metadata storage), and rules
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FIGURE 14. Fan-out scenario - Cloud service times vs fan-out factor (from
1 to 300 subscribers client).

TABLE 3. Azure IoT Hub prizes (in $).

TABLE 4. Google IoT core prizes (in $).

engine (message transformation and routing) are billed
separately. Different costs are applied according to
region/zone. Messages are measured in increments
of 5 kB. For EU London zone:
• Connectivity is metered in 1 minute increments
and is based on the total time devices are connected
to AWS IoT Core: $0.096 (per million minutes of
connection);

FIGURE 15. Costs in function of increasing number of devices.

• Messaging is metered by the number of messages
transmitted between devices and AWS IoT Core:
$1.20 when the monthly message volume is up to
1 billion messages, $0.96 for the next 4 billion
messages, $0.84 over 5 billion messages.

2) Azure IoT Hub offers two tiers, basic and standard,
that differ in the number of features they support.
The standard tier of IoT Hub enables all features for
any IoT solutions that want to make use of the bi-
directional communication capabilities, whereas the
basic tier enables a subset of the features and is intended
for IoT solutions that only need uni-directional com-
munication from devices to the Cloud. Prizes for each
level in the two tiers are summarized in Table 3.

3) The Google IoT Core prices are calculated on the vol-
ume of data used in a month and there is no charge
for creating, reading, updating and deleting devices.
Messages below 1024 bytes are counted as 1024 bytes,
whereas for larger messages the actual size is billed.
Prizes are reported in Table 4.

In order to conduct an analysis of changes in cost, we con-
sider a scenario where devices send one message per minute
of 1kB. Devices are continuously connected to the plat-
forms. Fig. 15 shows the number of devices connected on
the abscissa and on the ordinate the monthly cost in dollars
(the volume of monthly traffic exchanged with each platform
is easily obtained by multiplying the number of devices per

TABLE 5. Platform prizes (in $) according to number of connected devices.
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1440messages/day per 30 days per kB).We use a logarithmic
scale for a better visualization.

We analyze costs evolution varying the number of con-
nected devices between 1 and 500000 (from 1440 to 720 mil-
lions of messages per day, from 1.40 MB to 687 GB per day
in terms of data size). Table 5 shows the costs of the platforms
in reference to some ranges of devices obtained from the
analysis of the graph. We highlight for each range the lowest
cost.

IV. CONCLUSION
The growing attention of the main Cloud platforms to the
IoT world is nowadays evident. With this study we wanted
to highlight the characteristics of each platform, through a
mapping of services with a reference architecture, so as to
have a broader view of all these services that are made avail-
able. Each platform provides a Cloud access point through
which physical devices can connect in a secure and private
way. After an authorized connection, devices can start to send
their data to the Cloud: the most used protocol is MQTT. The
tests we conducted did not try to reach the maximummessage
throughput. In fact, regarding the performance we measured
the service time of the message broker, in different load
conditions and in three different scenarios. At the same time,
by increasing the load in each scenario and keeping in mind
the use of free tiers for each platform, we were also able to
verify the limitations imposed by the providers. Results show
how the platforms, although with different service times,
answer in a uniform way, thus guaranteeing predictable per-
formance levels that comply with the specifications indicated
in the documentation. The final analysis made on the costs
of the platforms according to different types of load, allows
the reader to have a further element of comparison to make
the choice. In fact, the work does not want one platform to
be preferred over another, but tries to provide the developer
with elements to make an informed choice. In the future the
same study will be carried out on the different paid levels that
the platforms make available, in order to have no limitations
on the number of devices or number of messages. In this
study we used a fixed message size and we tested the MQTT
protocol. We will study the behavior of platforms with differ-
ent packets size and under different communication protocols
(e.g. HTTP or AMQP). The focal point of each platform
is the full integration with other services available (storage,
AI, Machine Learning, etc); the performance analysis carried
out had the purpose of measuring the time of the message
broker. It would be interesting to carry out the same analysis
on all the services involved in a complete IoT application,
creating a common scenario to be tested on the three plat-
forms. In fact, in applications where response time is a critical
element, analyzing the time of each service can be interesting
to understand where and how recover even milliseconds that
can be fundamental. At the same time exploring the solutions
that the platforms make available for Fog Computing (e.g.
AWS Greengrass) could be an interesting extension of this
work.
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