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Enhanced trajectory tracking using optimally combined
feedforward plant inversion and feedforward closed loop

inversion

Leopoldo Jetto, Valentina Orsini

Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Ancona,
Italy, (L.Jetto@univpm.it,vorsini@univpm.it).

Abstract

This paper focuses on the problem of determining the most appropriate Two
Degrees of Freedom (2DoF) control architecture, when the FeedForward (FF)
action is the result of a stable model inversion procedure. The purpose is to
define a control scheme with enhanced tracking performance even in the case of
non minimum phase MIMO plant affected by polytopic uncertainty and with a
possible non hyperbolic internal dynamics. The new proposed 2DoF architecture
is given by an optimal balance of the control actions produced by FeedForward
Plant Inversion (FFPI) and FeedForward Closed Loop Inversion (FFCLI). This
new architecture is referred to as FeedForward Optimally Balanced Inversion
(FFOBI). Robustness with respect to polytopic uncertainty is obtained using
a min-max optimization approach. Numerical results show that the FFOBI
improves the tracking of both FFPI and FFCLI.

Keywords: Output tracking, 2DoF control, model inversion, parametric uncer-

tainty.

1. Introduction

The well established theoretical framework of model inversion [1]-[11] pro-
vides a powerful tool to define 2DoF control schemes based on a FeedForward
(FF) inverting control action. This allows overcoming many limitations of clas-
sical 1DoF control schemes.

For practical applications to output tracking problems, the most widely used
2DoF control architectures based on inverse control can be classified into two
main categories: FeedForward Plant Inversion (FFPI) (see e.g. [12] -[18]), and
FeedForward Closed Loop Inversion (FFCLI) (see e.g. [19]-[22]). In the FFPI
methods the FF control is obtained through a plant model inversion procedure,
in the FFCLI the FF input is obtained inverting the closed-loop system. With
reference to some SISO plants, the performances of the two architectures are
discussed and compared in [23]-[27]. These papers evidence that the achievable
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tracking accuracy of both control schemes depend on the specific application
and on the amount of uncertainty affecting the plant. As each of the two
architectures has advantages over the other, it would be very useful to define
a more general 2DoF control architecture optimally combining the FFPI and
FFCLI control actions independently of the particular application. This problem
can not be solved with the guidelines stated in the above papers because they
refer to some specific applications and their qualitative nature makes it difficult
any generalization.

In the case of exact model inversion of linear continuous-time SISO plants,
the equivalence of FFPI and FFCLI control schemes has been recently proved in
[28]. However, exact model inversion methods require an infinite pre-actuation
interval, therefore, in practical applications they are replaced by approximate
inversion methods (see e.g. the above cited references [13]–[27] and references
therein).

The problem considered in this paper is precisely to define a systematic ap-
proximate inversion method for MIMO plants to obtain an FF control law such
that: i) it is always given by an optimal combination of the FFPI and FFCLI
control actions independently of the particular application, ii) it is robust with
respect to polytopic uncertainties affecting the MIMO plant to be controlled.
To the best of the authors’ knowledge this is still an open problem.

The proposed approach is based on some theoretical results concerning the
notion of pseudo-inversion and B-splines input parametrization [6], [29]-[32].
The results of these references are here extended to deal with a robust, gen-
eralized inversion problem involving the simultaneous pseudo-inversion of two
different polytopic control schemes. A further relevant novelty of the present
contribution is a more convenient formulation of the optimization problem lead-
ing to a numerically simplified on-line solution procedure. A short simplified
version of this contribution has been presented in [33].

The design of the FFOBI architecture proposed in this paper can be sum-
marized in the two following steps.
Step 1). Given an LTI, continuous-time, polytopic plant Σp, an LTI dynamic
output feedback controller is designed to guarantee the robust stability of the
closed-loop system Σf . The controller is also endowed with an internal model
of the steady-state component of the desired output yd(t) to be tracked.
Step 2). Σf is forced by two inputs r1(t) and r2(t) affinely depending on the
outputs s1(t) and s2(t) of two feedforward input estimators IE1 and IE2 simul-
taneously operating according to the FFCLI and FFPI schemes respectively.
The two signals s1(t) and s2(t) are searched in the linear space generated by
B-spline basis functions of a fixed degree and are computed so that the corre-
sponding r1(t) and r2(t) solve a ”worst-case” optimization problem.
Remark 1. It is here stressed that the purpose of the paper is not designing the
FB controller (Step 1). Rather, the paper is focused on the design of the optimal
FF control action (Step 2). 4
Parametrizing s1(t) and s2(t) as B-splines involves significant advantages: B-
spline functions are continuously differentiable universal approximators which
admit a parsimonious parametric representation and belong to the convex hull
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defined by the relative control points [34]. These properties significantly reduce
the number of parameters (the control points) with respect to the quadratic
cost functional is minimized. They also allow the minimization procedure to be
formulated as a robust least square estimation problem where both the design
matrix and observations are not exactly known due to plant uncertainty. The
resulting optimal feedforward action is given by the optimal balance of the two
contributions produced by FFPI and FFCLI control scheme because the esti-
mated control points univocally define the corresponding B-splines and hence
the corresponding r1(t) and r2(t). The weights of the two contributions are
given by the 2-norms of the estimated B-splines. During the transient period,
the optimal inputs are applied to Σf according to a Receding Horizon Control
(RHC) to improve robustness with respect to parametric uncertainties.

The paper is organized in the following way. Some mathematical prelimi-
naries are recalled in Section 2. The FFOBI control architecture and problem
statement are given in Section 3. The problem solution is reported in Sections
4 and 5. The numerical example of Section 6 shows the application of the pro-
posed method to a robust trajectory tracking problem for the same Bell 205
Helicopter considered in [35].

2. Mathematical Background

2.1. B-spline functions [34]

A scalar B-spline time function is defined as a linear combination of B-splines
basis functions and control points:

s(t) =
∑̀
i=1

ciBi,d(t), t ∈ [t̂1, t̂`+d+1] ⊆ IR, (1)

where the ci’s are real numbers representing the control points of s(t), the integer
d is the degree of the B-spline, the (t̂i)

`+d+1
i=1 are the non decreasing knot points

and the Bi,d(t) are the B-spline basis functions which can be computed by the
Cox-de Boor recursion formula, [34]. An equivalent representation of s(t) in (1)
is

s(t) = Bd(t)c, t ∈ [t̂1, t̂`+d+1] ⊆ IR, (2)

where c
4
= [c1, · · · , c`]T and Bd(t)

4
= [B1,d(t), · · · , B`,d(t)].

Convex hull property. Any value assumed by s(t), ∀t ∈ [t̂j , t̂j+1], j > d, lies
in the convex hull of its d+ 1 control points cj−d, · · · , cj . 4

For a q-component vector s(t) = [s1(t), · · · , sq(t)]T , a compact B-spline rep-
resentation can be used

s(t) = B̄d(t)c̄, t ∈ [t̂1, t̂`+d+1], (3)

where c̄
4
=
[
c1
T , · · · , cqT

]T
and B̄d(t)

4
= diag [Bd(t), · · · ,Bd(t)]. Each ci

4
=

[ci,1, · · · , ci,`]T , i = 1, · · · , q, is defined as in (2). The dimensions of c̄ are
(q`× 1). The dimensions of the block diagonal matrix B̄d(t) are (q × q`).
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Remark 2. From (2) it is apparent that, once the degree d and the knot points
t̂i have been fixed, the scalar B spline function s(t), t ∈ [t̂1, t̂`+d+1], is completely
determined by the corresponding vector c of ` control points. 4

2.2. The robust least squares problem [36]

Given an overdetermined set of linear equations Df ≈ g, with D ∈ IRr×m,
g ∈ IRr, subject to unknown but bounded errors: ‖δD‖s ≤ ρ and ‖δg‖s ≤ ξ,

the robust least squares estimate f̂ ∈ IRm is the value of f minimizing

min
f

max
‖δD‖s≤ρ, ‖δg‖s≤ξ

‖(D + δD)f − (g + δg)‖, (4)

where ‖ · ‖s denotes the spectral norm.
As shown in ([36], p. 206), problem (4) is equivalent to minimizing a sum of
Euclidean norms

min
f
‖Df − g‖+ ρ‖f‖+ ξ (5)

Possible constraints on f of the kind

f ≤ f ≤ f̄ (6)

can be taken into account by imposing all the scalar linear inequalities deriving
from the above vector constraint.

3. The FFOBI control scheme and problem statement

y(t)yd(t) u(t)

-
+ +

-

Σf

𝐼𝐸1
+

r2(t)

xc(t) 				K𝑐Σc

𝑥3p(t)

				K𝑝

Σ𝑝

Σ𝑜

Σ𝑝
𝒔1(t) µ1Iq

+

+

yd(t)

𝐼𝐸2
𝒔2(t)

µ2Im

r1(t)

𝑥3f(t)

Figure 1: The FFOBI control scheme
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The new 2DoF control scheme proposed in this paper is shown in Fig. 1
where, without any loss of generality, a unitary feedback is assumed. The two
blocks IE1 and IE2 are two feedforward input estimators operating according
to the FFCLI and FFPI schemes respectively. The inputs of both feedforward
filters are the desired output yd(t) to be tracked and the estimated state x̂f (t) of
Σf . The outputs of IE1 and IE2 are the two B-splines s1(t) ∈ IRq and s2(t) ∈
IRm respectively. The two scalars µ1 and µ2 are two binary variables. The
FFOBI control scheme optimally combining the FFCLI and FFPI architectures
corresponds to µ1 = µ2 = 1. If µ1 = 1 and µ2 = 0, then r1(t) = yd(t) + s1(t)
and r2(t) = 0, so that the FFCLI is obtained, while µ1 = 0 and µ2 = 1 give
r1(t) = yd(t) and r2(t) = s2(t), so that the FFPI is obtained. For µ1 = µ2 = 0,
the 2DoF control scheme reduces to the usual 1DoF feedback control scheme
with no feedforward action.

The block Σf is the feedback connection of a (possibly non-minimum phase
and/or with non hyperbolic internal dynamics) LTI polytopic plant Σp with an
LTI robustly stabilizing dynamic output feedback controller. The plant Σp ≡
(Cp, Ap(α), Bp) is given by

ẋp(t) = Ap(α)xp(t) +Bpu(t), u(t) ∈ IRm, (7)

y(t) = Cpxp(t), y(t) ∈ IRq, (8)

where: xp(t) ∈ IRnp , Ap(α) ∈ A 4= co{Api , · · · , Apl} = {Ap(α) =
∑l
i=1 αiApi},

and the vector α = [α1, · · · , αl]T belongs to the unit simplex Λl defined as

Λl = {α :
∑l
i=1 αi = 1, αi ≥ 0}.

The following assumptions on Σp are made:
A1): Σp is robustly stabilizable by an LTI dynamic output controller;
A2) let the steady state component ỹd(t) of the desired output trajectory yd(t)
be generated as the free output response of an LTI unstable system Σy, then
for no α ∈ Λl, Σp has a transmission zero coinciding with an eigenvalue of the
dynamical matrix of Σy.

The dynamic output feedback controller includes the internal model Σc of
the steady state component of the desired output trajectory yd(t), whose state-
space has the form ẋc(t) = Acxc(t) +Bc(r1(t)− y(t)) (xc(t) ∈ IRnc) for suitably
defined Ac and Bc [37], and a full state observer Σo of the form

˙̂xp(t) = Āpx̂p(t) +Bpu(t) + L(y(t)− Cp x̂p(t)), (9)

where: Āp
4
= (

∑l
i=1Api)/l is the assumed nominal dynamical matrix of the

plant.
The input u(t) ∈ IRm forcing the polytopic plant Σp is given by

u(t) = −Kpx̂p(t) +Kcxc(t) + r2(t). (10)

The state space (Cf , Af (α), Bf ) of the closed loop system Σf with xf (t)
4
=

[xTp (t), xTc (t), x̂Tp (t)]T ∈ IRn, n
4
= 2np + nc and r(t)

4
= [rT1 (t), rT2 (t)]T ∈ IRq+m
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is

ẋf (t) =

 Ap(α) BpKc −BpKp

−BcCp Ac 0
LCp BpKc Āp − LCp −BpKp

xf (t)

+

 0 Bp
Bc 0
0 Bp

 r(t) (11)

y(t) =
[
Cp 0 0

]
xf (t) (12)

where, analogously to Ap(α), also Af (α) ∈ Af
4
= co{Afi , · · · , Afl}.

By the way xf (t) and r(t) are defined, u(t) can be rewritten as

u(t) =
[
0 Kc −Kp

]
xf (t) +

[
0 I

]
r(t). (13)

The existence of matrices Kc, K and L such that Σf is internally asymptot-
ically stable ∀Af (α) ∈ Af , is guaranteed by assumption A1. These matrices
can be computed by any existing robust stabilizing technique. This problem is
not discussed here because the focus of the paper is on computing an optimally
balanced feedforward control action r(t). The presence of the internal model Σc
and A2 guarantees robust exact asymptotic tracking even with no feedforward
action [37]. Hence, the problem of determining an optimally combined feedfor-
ward action can be limited to a sufficiently long but finite interval over which
steady-state is practically attained. This drastically reduces the computational
burden of the numerical procedure for the minimization of the cost functional
(see Section 5).

For this reason the following signals are partitioned in a transient and steady
state component as follows:

yd(t) =

 yd,t(t) t ∈ [ 0, ty )
4
= Ty

ỹd(t) t ≥ ty
yd,t(t

−
y ) = ỹd(ty)

(14)

where yd,t(t) and ỹd(t) are smooth functions denoting the transient and steady
state components of yd(t), respectively, Ty is the time interval over which yd,t(t)
is required to converge towards ỹd(t).

Analogously:

si(t) =

 si,t(t), t ∈ [ 0, tr )
4
= Tr

s̃i(t), t ≥ tr,
si,t(t

−
r ) = s̃i(tr)

i = 1, 2 (15)

r(t) =


rt(t)

4
=

[
yd(t) + µ1s1,t(t)

µ2s2,t(t)

]
, t ∈ [ 0, tr )

4
= Tr

r̃(t)
4
=

[
ỹd(t) + µ1s̃1(t)

µ2s̃2(t)

]
, t ≥ tr

rt(t
−
r ) = r̃(tr)

(16)
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The time instant tr has to be sufficiently large to guarantee that rt(t
−
r ) =

r̃(tr) (namely si,t(t
−
r ) = s̃i(tr), i = 1, 2) and the actual output y(t) under the

action of rt(t) has almost achieved the steady-state trajectory. A way to fix a
lower bound on tr is: tr ≥ ts, where ts is the settling time relative to the output

of the nominal Σ̄f
4
= (Cf , Āf , Bf ) forced by r(t) = [yTd (t) 0T ]T . Like Āp, also

Āf is chosen as the centroid of Af : Āf
4
=

∑l
i=1 Afi

l .
Definition. The optimal combination of FFPI and FFCLI is the one giving a
minimum 2-norm predicted transient tracking error.

By the above definition, the problem of optimally balancing FFPI and FF-
CLI can be restated as the following equivalent Robust Almost Exact Output
Tracking Problem.

(RAEOTP) Let Σf ≡ (Cf , Af (α), Bf ) be a robustly asymptotically stable
closed loop system described by (11), (12) with unknown initial state xf (0).
Given a desired yd(t) defined as in (14), it is required to find a feedforward
control input r(t) defined as in (16) satisfying the following conditions ∀Af (α) ∈
Af :
Transient conditions: i) rt(t) is converging to r̃(tr) over Tr, ii) rt(t) is the result
of an RHC strategy applied to the minimization of a suitably defined ”worst
case” quadratic cost functional of the predicted transient tracking error (see
(17)-(19) of Section 4.2)
Steady-state condition: r̃(t) yields a steady-state tracking error asymptotically
converging to zero.
Boundedness condition: r(t) is uniformly bounded for any uniformly bounded
yd(t).

4. Computation of r(t)

In accordance with definition (16), this step is performed through a separate
computation of the steady state r̃(t) and transient rt(t) components of r(t).

4.1. Computation of r̃(t)

As Σf is robustly asymptotically stable, then, by A2, the steady-state condi-
tion is automatically satisfied endowing the dynamic output feedback controller
with the internal model of ỹd(t) [37]. Recalling the assumption of a unitary
feedback, it is enough to choose s̃1(t) = s̃2(t) = 0, for t ≥ tr, which, by (16),
implies r̃(t) = [ỹTd (t) 0T ]T .

4.2. Computation of rt(t)

In the following, the explicit dependence on α of the predicted output and
tracking error will be omitted for simplicity of notation.
The robust optimization problem is numerically solved imposing to r1,t(t) =
yd(t) + µ1s1,t(t) and r2,t(t) = µ2s2,t(t) the structure deriving from the assump-
tion of modeling the transient components of s1(t) and s2(t) respectively as
B-spline functions given by (3). The parameter vector defining rt(t) is com-
puted as the solution of the constrained optimization problem defined beneath.
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Let T ′r
4
= [0, tr+tw) be partitioned as T ′r =

⋃nr−1
k=0 Tk, where Tk

4
= [tk, tk+tw),

k = 0, 1, · · · , nr − 1, with tk
4
= k∆ and ∆

4
= tr

nr
are disjoint sub-intervals such

that: t0 = 0, tnr = nr∆ = tr. According to the RHC strategy, tw = w∆, denotes
the length of the moving window Tk, for a fixed w ∈Z+. The transient rt(t) is
determined from the minimization of the following ”worst case” quadratic cost
functional for any fixed k = 0, 1, · · · , nr − 1:

max
α∈Λl

Jk,α
4
= max

α∈Λl

w−1∑
i=1

eT (tk+i|tk)Q(tk)e(tk+i|tk), (17)

where

e(tk+i|tk)
4
= yd(tk+i)− y(tk+i|tk), (18)

with

y(tk+i|tk)
4
= Cfe

Af (α)(tk+i−tk)x̂f (tk)

+

∫ tk+i

tk

Cfe
Af (α)(tk+i−τ)Bfrt(τ)dτ, (19)

is the predicted tracking error at time tk+i based on the state estimate x̂f (tk).
By definition of rt(t) and according to (3) one has

rt(t) =

[
µ1B̄d1(t) 0

0 µ2B̄d2(t)

] [
c̄1
c̄2

]
+

[
yd(t)

0

]
4
= B̃(t)c̃ + yd(t) (20)

where the integer d1 (d2) indicates the degree of the scalar B spline functions
composing rt,1(t) ∈ IRq (rt,2(t) ∈ IRm). The dimensions of c̃ are (q`1 +m`2)×1.

The dimensions of the block diagonal matrix B̃(t) are (q +m)× (q`1 +m`2).
By (19),(20) and setting c̃ = c̃k, e(tk+i|tk) results to be given by

e(tk+i|tk) = yd(tk+i)− CfeAf (α)(tk+i−tk)x̂f (tk)

−
∫ tk+i

tk

Cfe
Af (α)(tk+i−τ)Bf B̃(τ)dτ c̃k

−
∫ tk+i

tk

Cfe
Af (α)(tk+i−τ)Bfyd(τ)dτ (21)

The input function rt(t), t ∈ Tr, affinely dependent on s1,t(t) and s2,t(t), is
robustly estimated minimizing the worst case error due to the parametric un-
certainty. More precisely rt(t), t ∈ Tr, is obtained solving the following sequence
of nr Min-Max Constrained Optimization Problems (MMCOP)

MMCOP: min
c̃k

max
α∈Λl

Jk,α, k = 0, · · · , nr − 1, (22)

subject to c̃k,min ≤ c̃k ≤ c̃k,max. (23)
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At k = 0 (t0 = 0), the MMCOP is solved with reference to a J0,α, which, by (17),
is defined over [t0, t0+tw) = [0, tw) and the corresponding minimizing c̃0 defines
rt(t) over the same interval. According to the RHC strategy only the restriction
of rt(t) to T0 = [t0, t1) is applied to Σf . Analogously, for k = 1, (t1 = ∆), the
minimizing c̃1 gives rt(t), t ∈ [t1, t1 + tw) but only rt(t), t ∈ T1 = [t1, t2) is
applied. The iterative procedure stops at k = nr − 1.

Over each moving window [tk, tk+ tw), the constraints (23) on c̃k are chosen
so as to impose the convergence of s1,t(t) and s2,t(t) to the respective null steady
state components within Tr according to (15). Consequently the convergence of
rt(t) towards r̃(t) is guaranteed. This assures the continuity of r(t).

5. Robust estimation of rt(t)

This section shows how the MMCOP stated in Section 4 can be reformulated
as a robust least square problem. The starting point is to rewrite the closed

loop dynamical matrix Af (α) as Af (α)
4
= Āf + δAf (α), α ∈ Λl where Āf is the

nominal plant. Using the matrix identity e(A+E)t = eAt+
∫ t

0
eA(t−s)Ee(A+E)sds

and replacing A and E with Āf and δAf (α) respectively, one has

e(Āf+δAf (α))t = eĀf t +

∫ t

0

eĀf (t−s)δAf (α)eAf (α)sds (24)

Then for any fixed k = 0, 1, · · ·nr − 1, exploiting (24), the predicted e(tk+i|tk)
given by (21), can be rewritten as

e(tk+i|tk) = yd(tk+i)− CfeĀf (tk+i−tk)x̂f (tk)

− Cf

[∫ tk+i−tk

0

eĀf (tk+i−tk−s)δAf (α)eAf (α)sds

]
x̂f (tk)

−
∫ tk+i

tk

Cfe
Āf (tk+i−τ)Bf B̃(τ)dτ c̃k

−
∫ tk+i

tk

Cf

[∫ tk+i−τ

0

eĀf (tk+i−τ−s)δAf (α)eAf (α)sds

]
Bf B̃(τ)dτ c̃k

−
∫ tk+i

tk

Cfe
Āf (tk+i−τ)Bfyd(τ)dτ

−
∫ tk+i

tk

Cf

[∫ tk+i−τ

0

eĀf (tk+i−τ−s)δAf (α)eAf (α)sds

]
Bfyd(τ)dτ

or, equivalently,

e(tk+i|tk) = (b(tk+i|tk) + δb(tk+i|tk))− (D(tk+i|tk) + δD(tk+i|tk)fk (25)

where

b(tk+i|tk) = yd(tk+i)− CfeĀf (tk+i−tk)x̂f (tk)

−
∫ tk+i

tk

Cfe
Āf (tk+i−τ)Bfyd(τ)dτ (26)
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D(tk+i|tk) =

∫ tk+i

tk

Cfe
Āf (tk+i−τ)Bf B̃(τ)dτ (27)

δb(tk+i|tk) = −Cf
[∫ tk+i−tk

0

eĀf (tk+i−tk−s)δAf (α)eAf (α)sds

]
x̂f (tk)

−
∫ tk+i

tk

Cf

[∫ tk+i−τ

0

eĀf (tk+i−τ−s)δAf (α)eAf (α)sds

]
Bfyd(τ)dτ(28)

δD(tk+i|tk) =

∫ tk+i

tk

Cf

[∫ tk+i−τ

0

eĀf (tk+i−τ−s)δAf (α)eAf (α)sds

]
Bf B̃(τ)dτ(29)

fk = c̃k (30)

Define the following vectors and matrices

ek
4
= [eT (tk+1|tk), · · · , eT (tk+(w−1)|tk)]T

bk
4
= [bT (tk+1|tk), · · · , bT (tk+(w−1)|tk)]T

δbk
4
= [δbT (tk+1|tk), · · · , δbT (tk+(w−1)|tk)]T (31)

Dk
4
= [DT (tk+1|tk), · · · , DT (tk+(w−1)|tk)]T

δDk
4
= [δDT (tk+1|tk), · · · , δDT (tk+(w−1)|tk)]T (32)

Q
k

4
= diag[Q(tk), · · · , Q(tk)],

from the above definitions, it is evident that only δbk and δDk are depending
on α. This dependence is now explicitly reintroduced to better clarify the for-
mulation of the MMCOP as a robust least square problem.
Exploiting the above defined vectors and matrices, equations (26)-(30) can be
expressed in the compact form

ek(α) = (bk + δbk(α))− (Dk + δDk(α))fk,

and, for each k = 0, · · · , nr − 1, functional Jk,α in (22) can be written as

Jk,α = e′k(α)
T
e′k(α), where e′k(α)

4
= Q1/2

k
ek(α). Also defining b′k + δb′k(α)

4
=

Q1/2

k
(bk + δbk(α)) and D′k + δD′k(α)

4
= Q1/2

k
(Dk + δDk(α)), it is evident that

each MMCOP is equivalent to the constrained minimization of the squared 2-
norm of the worst-case weighted residual e′k(α). Hence the sequence of the nr
MMCOP (22), (23) is equivalent to solve the following sequence of Constrained
Robust Least Square Problems (CRLSP).

min
fk

max
‖δD′

k(α)‖s≤ρk ‖δb′k(α))‖s≤ξk

‖(D′k + δD′k(α))fk − (b′k + δb′k(α))‖, (33)

subject to fk,min ≤ fk ≤ fk,max, k = 0, 1, · · · , nr − 1 (34)
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where: (33) is of the kind (4) and (34) is of the kind (6).
Theorem . Under Assumptions A1 and A2, the feedforward input r(t) of Σf
resulting from the solution of the CRLSP (33), (34), and from the above RHC
strategy, solves the RAEOTP.
Proof of Theorem
Transient condition: i) the convergence of rt(t) to rt(t

−
r ) = r̃(tr) follows from

(16) taking into account the convex hull property of B-splines and the conver-
gence to zero of the control points c̃k over Tr; ii) the transient rt(t) is the result
of an RHC strategy applied to the minimization of the sequence of nr ”worst
case” quadratic cost functionals (17). This requires the solution of the nr MM-
COP (22), (23), that is equivalent to solve the nr CRLSP (33), (34).
Steady-state condition As Σf is robustly asymptotically stable and the con-
troller contains an internal model of ỹd(t), then assumption A2 guarantees
exact asymptotic tracking.
Boundedness condition For any uniformly bounded yd(t), the uniform bound-
edness of r(t) follows from (16) and from the uniform boundedness of the two
B-splines si(t), i = 1, 2. 4

Remark 3 Equations (11)-(13) define the state space representation of a
linear dynamic feedback system forced by r(t) and whose output is the dynamic
output feedback signal u(t). By (20) and (30), r(t) is affinely depending on the
new decision variables vector fk = c̃k, with respect to which the cost functional
Jk,α is minimized. Hence the MMCOP is here solved using a feedback prediction.
This is useful to reduce the conservativeness of open loop Min-Max approach
without using computationally demanding techniques (see e.g [38] -[41]). 4

5.1. A numerically simplified procedure for the solution of the CRLSP (33)
(34)

According to Section 2.2, the sequence of CRLSP (33)-(34) can be formulated
as

min
fk
‖D′k fk − b

′
k‖+ ρk‖fk‖+ ξk (35)

subject to fk,min ≤ fk ≤ fk,max, k = 0, 1, · · · , nr − 1 (36)

By (35), (36), the numerical calculation of ρk and ξk can be greatly simplified
taking into account the following:

1 As the term ξk of (35) is independent of fk, it cannot be minimized.
Hence it can be removed from the objective function. This implies that
in (35) only the upper bound ρk on ‖δD′k(α)‖s needs to be determined at
each k. Moreover, removing ξk also avoids computing the term δb′k(α) =

Q1/2

k
δbk(α). The calculation of this term would require the numerically

involved computation of the r.h.s. of (28) for i = 1, · · · , w − 1. As the
term (28) depends on x̂f (tk), its calculation would necessarily involve an
onerous on line computational burden.

2 The way the B-spline basis functions are defined by the Cox de Boor
formula [34], implies that B̃(τ) = B̃(τ + tw), ∀τ ∈ [tk, tk + tw), k =
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0, 1, · · · , nr − 1. Hence, by (29) and (32) and recalling that δD′k(α) =

Q1/2

k
δDk(α) one has that ρk

4
= ρ, ∀k = 0, 1, · · · , nr − 1.

3 By point 2, the calculation of ρ can be entirely executed off-line performing
a gridding on the parameter vector α ∈ Λl.

6. Numerical results

The robust trajectory tracking problem considered in this section is a more
involved version of the stabilization problem considered in [35]. The linearized
model (37) is the unstable, non minimum phase with near non hyperbolic in-
ternal dynamics system considered in [35]. It represents an aircraft trimmed at
a nominal 5◦ pitch attitude, with a mid-range weight, a mid-position center of
gravity and operating in-ground effect at near sea level. The model is described
by

ẋp(t) = Apxp(t) +Bpu(t), y(t) = Cpxp(t) (37)

where

xp =



U
W
Q
V
P
R
θ
χ


=



forward velocity
vertical velocity

pitch rate
lateral velocity

roll rate
yaw rate

pitch attitude
roll attitude


, y =


U
W
V
R



u =


δC
δB
δA
δP

 =


collective

longitudinal cyclic
lateral cyclic

tail rotor collective


The vectors y(t) ∈ IRq, u(t) ∈ IRm, q = m = 4, represent the controlled and
manipulated variables respectively. Like [35], the state vector xp(t) ∈ IRn,
n = 8, is assumed to be measurable. The entries of Ap and of Bp (not reported
for brevity) can be found in [35], matrix Cp directly follows by the way y(t) is
defined.
With respect to [35], a polytopic dynamical matrix Ap(α) is here assumed. The
dynamical matrix Ap reported in [35] is considered the nominal matrix Āp of
Ap(α).

The three elements ai,i, i = 2, 3, 5 of Ap(α), have been here assumed to
belong to the intervals [āi− εai,i , āi + εai,i ], i = 2, 3, 5, centered on the nominal
value āi where: ā2 = −0.39, ā3 = −0.19 and ā5 = −0.57. Three possible uncer-

tainty scenarios are considered S1 = (ε
(1)
a2,2 , ε

(1)
a3,3 , ε

(1)
a5,5) = (0.39, 0.19, 0.57), S2 =

(ε
(2)
a2,2 , ε

(2)
a3,3 , ε

(2)
a5,5) = (0.29, 0.09, 0.43),S3 = (ε

(3)
a2,2 , ε

(3)
a3,3 , ε

(3)
a5,5) = (0.15, 0.05, 0.22).
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For any Sv, v = 1, 2, 3, the respective uncertain open loop plant Ap(α) belongs

to the polytopic set A 4= {Ap(α) =
∑l
i=1 αiApi , α ∈ Λl} with l = 8.

As in [35], the forward velocity and the yaw rate are to be kept at zero
∀t ∈ IR+, while the desired behavior of W and V is the smooth function con-
verging to the constant value 0.2 in the interval Ty = [0, ty) = [0, 13), as shown
in Figure 2. Unlike [35], the unnecessity of a pre-actuation in the proposed
approach allowed us to freely assign the desired profiles without requiring them
to be null over an initial sufficiently long time interval.
The first step is the design of a robustly stabilizing feedback controller. As the
state is assumed to be measurable, the observer Σo is not necessary. This directly
implies that the control input u(t) is given by u(t) = −Kpxp(t)+Kcxc(t)+r2(t).
The gain matrices Kp and Kc defining a robustly stabilizing controller for S1

(a fortiori for S2, S3 ) have been computed imposing the following eigenvalues
[−0.7± 0.73i, −2± 1.5i, −5, −5.5, −4.95, −3, −2.8, −2.24, −0.61, −0.33] to

the nominal closed loop dynamical matrix Āf =

[
Āp 0
−BcCp Ac

]
−
[
Bp
0

] [
Kp −Kc

]
.

For the given Σp ≡ (Cp, Ap(α), Bp), it is easy to verify that the system matrix[
sI −Ap(α) Bp
−Cp 0

]
has rank n + q = 12 at s = 0, ∀α ∈ Λl. This implies the

fulfillment of A2 and, as a consequence, guarantees an exact steady-state track-
ing, provided endowing the stabilizing controller with the internal model Σc of
the external reference [37]. As ỹd(t) ∈ IRq, q = 4, then the internal model Σc of
constant signals is defined by Ac = 0q×q = 04×4 and Bc = Iq×q = I4×4.
The second step is to compute the input r(t) solving the RAEOT problem.

According to Section 4.1 one has r̃(t) =
[
ỹTd (t) 0Tm

]T
, ∀t ≥ tr where: 0` de-

notes the column vector of ` null elements and tr = ts = 25 is chosen. Both

the transient components s1,t(t) ∈ IRq, and s2,t(t) ∈ IRm, defining rt(t)
4
=[

yd(t) + µ1s1,t(t)
µ2s2,t(t)

]
have been modeled as two B spline functions vectors with

d1 = d2 = 1 (order of the B-spline function) and `1 = `2 = 4 (number
of control points defining the B-spline function over each moving window of
length tw). Fig. 2 evidences a desired yd,t(t), t ∈ Ty, given by two fast but
smooth transitions between two set points. The time interval of each transition
is ttr = 2 and the value tw = ttr = 2 is chosen. By (20) it directly follows

that c̃
4
=

[
c̄1

c̄2

]
∈ IRq`1+m`2=32, B̄d1(t) has dimensions q × q`1 and B̄d2(t) has

dimensions m×m`2.
As tr = 30 and tw = 2 one has T ′r = [0, 32) and choosing nr = 300 one has
∆ = 0.1 and w = 20.

The vector fk
4
= c̃k defining rt(t) over each moving prediction horizon

[tk, tk + tw) = [tk, tk+w), k = 0, · · · , nr − 1 = 299, is iteratively estimated
solving the sequence of nr CRLSP (33),(34), using the software Yalmip [42].
All the weight matrices Q(tk) are set equal to the identity matrix. A large
interval [fk,min, fk,max] is initially chosen to allow rt(t) to freely vary at the be-
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ginning of the transition period 0 ≤ k ≤ ky
4
=

ty
∆ . For k > ky, fk,min and fk,max

(namely s1,t(t) and s2,t(t)) converge to zero in such a way that rt(t)→ r̃(tr) for
t→ tr. A general rule to fix the vectors fk,max, and fk,min, k = 0, 1, · · · , nr − 1,

is: fk,max = |fk,min| =

{
f I1 0 ≤ k ≤ ky

fe−β(k−ky) I1 ky ≤ k ≤ nr − 1
where I1 denotes a

column vector of (q`1 + m`2) elements equal to 1. In this case f = 5, β = 0.4
and ky = 130 are set.

With reference to each Si, i = 1, 2, 3, three simulations relative to FFCLI,
FFPI and FFOBI control schemes have been performed starting from null initial
conditions and choosing: α ∈ Λ8 with α5 = 1 and αl = 0, l 6= 5.

Tables 1-3 report the 2-norm of the tracking error e(t)
4
= yd(t) − y(t), the 2-

norms of s1,t(t) and s2,t(t) over Tr = [0, 30) and the value of ρ relative to each
scenario Si, i=1,2,3. The same tables show that in all the three considered sce-
narios the FFOBI control scheme outperforms both FFCLI and FFPI because it
provides the minimum 2-norm of the transient tracking error. This is produced
by an optimal combination of FFCLI and FFPI, whose weights are given by the
2-norm of the B-splines s1,t(t) and s2,t(t) respectively.
It is also noticed that FFCLI gives better tracking performance with respect to
FFPI. This is in accordance with the simulations reported in [23], [26].
A measure of the improvement provided by the FFOBI has been calculated as
the percentage of reduction of ‖e‖2 with respect to FFCLI and FFPI. These
percentages, denoted by POBI/CLI and POBI/PI , are reported in Table 4. Fig-
ures 2, 3 and 4 ( relative to S1, S2 and S3 respectively) show the behavior of

the controlled output y(t)
4
= [U(t) W (t) V (t) R(t)]T produced by the FFOBI,

FFCLI and FFPI schemes respectively.

Table 1: Scenario 1: The 2-norm of the tracking error e(t) and the 2-norms of s1,t(t) and
s2,t(t), over Tr = [0, 30).

(ε
(1)
a2,2 , ε

(1)
a3,3 , ε

(1)
a5,5) = (0.39, 0.19, 0.57), ρ = 0.1002

‖e(t)‖2 ‖s1,t(t)‖2 ‖s2,t(t)‖2
FFOBI 0.8204 12.7564 5.5891
FFCLI 1.0376 14.0837 0
FFPI 4.7380 0 29.2785

Table 2: Scenario 2: The 2-norm of the tracking error e(t) and the 2-norms of s1,t(t) and
s2,t(t), over Tr = [0, 30).

(ε
(2)
a2,2 , ε

(2)
a3,3 , ε

(2)
a5,5) = (0.29, 0.09, 0.43), ρ = 0.0685

‖e(t)‖2 ‖s1,t(t)‖2 ‖s2,t(t)‖2
FFOBI 0.6758 13.9686 7.2225
FFCLI 0.7950 16.2166 0
FFPI 3.6100 0 60.0232
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Table 3: Scenario 3: The 2-norm of the tracking error e(t) and the 2-norms of s1,t(t) and
s2,t(t), over Tr = [0, 30).

(ε
(3)
a2,2 , ε

(3)
a3,3 , ε

(3)
a5,5) = (0.15, 0.05, 0.22), ρ = 0.0221

‖e(t)‖2 ‖s1,t(t)‖2 ‖s2,t(t)‖2
FFOBI 0.3434 12.4889 6.5979
FFCLI 0.3861 13.1025 0
FFPI 3.6731 0 57.0717

Table 4: The percentage of reduction of ‖e‖2 provided by FFOBI with respect to FFCLI and
FFPI in the three scenarios.

POBI/CLI POBI/PI
Scenario 1 20.93 % 82.68%
Scenario 2 14.99 % 81.28%
Scenario 3 11.05 % 90.65%

7. Conclusions

In the context of approximated model inversion based control, a new and
more general 2DoF control architecture has been proposed here. It consists of
an optimally weighted combination of FFPI and FFCLI control schemes. The
numerical results confirmed that the best tracking performance is given by the
FFOBI configuration.
The three main appealing features of the proposed approach can be summa-
rized as: 1) generality of application, 2) robustness with respect to parametric
uncertainties, 3) a numerically simplified procedure for the solution of min-max
optimization problems (33), (34). The first one makes the method amenable to
be applied in a large and diversified class of control problems. The second one
provides an answer to the long standing problem concerning the application of
inversion based feedforward control in the case of uncertain plants. The third
greatly reduces the numerical complexity of the overall RHC strategy.
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Figure 2: Scenario 1: The trajectories of yd(t)
4
= [Ud(t) Wd(t) Vd(t) Rd(t)]

T (black dashed

lines) and of the controlled output y(t)
4
= [U(t) W (t) V (t) R(t)]T produced by FFOBI (black

lines), FFCLI (blue lines) and FFPI (red lines) schemes respectively.

0 10 20 30
-0.1

-0.05

0

0.05

0.1 U (FFOBI)

U (FFCLI)

U (FFPI)

U
d

0 10 20 30
0

0.5

1

1.5
W (FFOBI)

W (FFCLI)

W(FFPI)

W
d

0 10 20 30
0

0.5

1

1.5
V (FFOBI)

V (FFCLI)

V (FFPI)

V
d

0 10 20 30
-0.15

-0.1

-0.05

0

0.05

0.1

0.15
R (FFOBI)

R (FFCLI)

R (FFPI)

R
d

Figure 3: Scenario 2: The trajectories of yd(t)
4
= [Ud(t) Wd(t) Vd(t) Rd(t)]

T (black dashed

lines) and of the controlled output y(t)
4
= [U(t) W (t) V (t) R(t)]T produced by FFOBI (black

lines), FFCLI (blue lines) and FFPI (red lines) schemes respectively.
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Figure 4: Scenario 3: The trajectories of yd(t)
4
= [Ud(t) Wd(t) Vd(t) Rd(t)]

T (black dashed

lines) and of the controlled output y(t)
4
= [U(t) W (t) V (t) R(t)]T produced by FFOBI (black

lines), FFCLI (blue lines) and FFPI (red lines) schemes respectively.
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