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a b s t r a c t 

In a global dynamic analysis, the coexisting attractors and their basins are the main tools to understand 

the system behavior and safety. However, both basins and attractors can be drastically influenced by un- 

certainties. The aim of this work is to illustrate a methodology for the global dynamic analysis of nonde- 

terministic dynamical systems with competing attractors. Accordingly, analytical and numerical tools for 

calculation of nondeterministic global structures, namely attractors and basins, are proposed. First, based 

on the definition of the Perron-Frobenius, Koopman and Foias linear operators, a global dynamic descrip- 

tion through phase-space operators is presented for both deterministic and nondeterministic cases. In 

this context, the stochastic basins of attraction and attractors’ distributions replace the usual basin and 

attractor concepts. Then, numerical implementation of these concepts is accomplished via an adaptative 

phase-space discretization strategy based on the classical Ulam method. Sample results of the methodol- 

ogy are presented for a canonical dynamical system. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and 

Applied Mechanics. 
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Various sampling-based methods have been developed for the 

nalysis of stochastic differential equations. Han and Kloeden 

1] presented the theory of random ordinary differential equations 

nd their relation to Itô stochastic differential equations and de- 

eloped numerical methods for their solutions. They highlighted 

mportant applications, with a focus on dynamical behavior of bio- 

ogical systems. It is observed that the consideration of noise rep- 

esents a major difficulty in uncertainty analysis. As probability 

istributions evolve with time, fixed-point distributions and basin 

oundaries can change due to uncertainty. Lasota and Mackey 

2] studied a variety of mathematical systems generating densities 

ocusing on several aspects of stochastic dynamics. They showed 

hat the evolution of such systems is governed by transfer op- 

rators of Markov type and thus linear, positive, and mass con- 

erving. Ulam [3] suggested that these transfer operators could be 

iscretized and distributions approximated by histograms, defin- 

ng what today is known as the Ulam method. Guder and Kreuzer 

4] showed that the Ulam method is equivalent to the well-known 

eneralized cell-mapping developed by Hsu [5] . 
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The Hsu cell-mapping theory [5] constitutes the base for sev- 

ral further developments. Hsu and Chiu developed the hybrid cell- 

apping approach [6] for the analysis of systems with stochas- 

ic and parametric uncertainties. Later, Sun and Hsu [7] applied 

he generalized cell mapping method to nonlinear random vibra- 

ion based upon a short-time Gaussian approximation, showing 

omputational advantages over Monte Carlo simulations. Han and 

oworkers extended the short-time Gaussian approximation to pe- 

iodically driven systems [8] . Recently Yue et al. [9] proposed a 

ew compatible cell mapping method and developed new algo- 

ithms for refining the phase-space to study the global attractors 

f nonlinear stochastic systems. A dynamical system under Pois- 

on white noise excitation was studied to demonstrate the effec- 

iveness of the proposed method for the probabilistic response 

nalysis. Yue et al. [10] proposed a new conception of compos- 

te cell coordinate systems designed with two distinct scales of 

ell spaces. Global bifurcations, such as crisis and metamorpho- 

is, of the Rayleigh–Duffing oscillator were studied to demonstrate 

he efficiency of this method. Comparison between the transfer 

robability distributions obtained by Yue et al. [11] and the gen- 

ralized committor functions introduced by Lindner and Hellmann 
ty of Theoretical and Applied Mechanics. This is an open access article under the 
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t  
12] shows several similarities. The latter describes how the vol- 

me of the generalized basin evolves with time. 

Global analysis of dynamical systems, especially those in ap- 

lied mechanics, rely on Poincare’s geometric tools, such as tra- 

ectories, attractors, and their basins and invariant manifolds. 

owever, there are difficulties in handling real uncertain sys- 

ems. An efficient tool explored in recent years has been the use 

f the Perron-Frobenius, Koopman, and Foias operators: infinite- 

imensional, linear operators capable of capturing the full nonlin- 

ar dynamics. The use of these operators together with the Ulam 

ethod, a method to compute finite-dimensional approximations 

f these infinite-dimensional operators, has shown to be an effi- 

ient tool in nonlinear dynamics [13] . Klus et al. [14] stated that 

nformation on dynamical systems can be obtained by analyzing 

he eigenvalues and eigenfunctions of the Perron-Frobenius opera- 

or and its dual, the Koopman operator, associated with a dynam- 

cal system. They also compared different numerical approxima- 

ions of these operators. Dellnitz et al. [15] developed a subdivision 

trategy with box-covering to compute stable and unstable mani- 

olds, as well as global attractors. The algorithm for the numeri- 

al approximation of invariant sets was implemented in the soft- 

are package GAIO (Global Analysis of Invariant Objects) [16] . Fur- 

her advances comprised the analysis of dynamical systems with 

arameter uncertainty [17] , invariant sets of infinite-dimensional 

ynamical systems [18] , and a set-oriented path-following method 

or the computation of parameter-dependent attractors [19] . Koltai 

nd coworkers developed an approach for the computation of the 

omain of attraction of asymptotically stable continuous-time au- 

onomous [20] and nonautonomous systems [21] based on a set- 

riented approximation of the original dynamical system by a 

arkov jump process. Finally, Klus et al. [22] , in a review paper, 

resented several methods to approximate transfer operators and 

heir eigenvalues, eigenfunctions, and eigenmodes, based on trans- 

er operator theory. 

Predicting the systems’ response can be challenging in systems 

ith highly intertwining basins or fractal boundaries, even in de- 

erministic systems. In such cases, uncertainty is expected to in- 

rease complexity and induce global changes in a system, leading 

o new dynamic phenomena such as jumping between the com- 

eting attractors and global bifurcations as basins’ merging and 

asins’ instability. 

Schenk-Hoppé [23] and Sharma [24] studied the effect of load 

oise on the bifurcations of the Duffing-van der Pol oscillator. 

ater, Xu et al. [25] and He et al. [26] investigated the global be-

avior of the stochastic bifurcations in Duffing and Duffing–Van 

er Pol oscillators using the generalized cell mapping method. 

owever, basins obtained by the generalized cell mapping [27] fol- 

owed the same procedure as in the deterministic case. Thus, the 

asin definition lacks a proper stochastic description. Agarwal et al. 

28] investigated the influence of noise on the frequency responses 

f softening Duffing oscillators through experimental–numerical 

nalyses, observing the shift in jump locations and showed how 

oise can destroy the hysteresis observed in the response of a non- 

inear oscillator without noise. The global dynamics of Duffing-type 

scillators with noise was studied by Cui et al. [29] , Agarwal et al.

30] , and Cilenti and Balachandran [31] . Still, they used a determin- 

stic view for basins of attraction. Orlando et al. [32] and Silva and 

onçalves [33] investigated the effect of noise on the dynamic in- 

egrity of Helmholtz-type oscillators. However, a proper definition 

f integrity measures for uncertain systems is still an open issue. 

This paper proposes tools for the determination of nondeter- 

inistic attractors and basins. A global dynamic description in 

erms of the Perron-Frobenius, Koopman, and Foias phase-space 

perators is presented for both deterministic and nondeterministic 

ases. For the numerical implementation of these concepts, which 

s a crucial point to apply theoretical results to practical exam- 
2

les, adaptative strategies within the set-oriented approach of the 

lam method [13] are used. The definition of basins of attraction 

y Lindner and Hellmann [12] is considered since it is also based 

n the transfer operators’ theory. A hierarchical discretization of 

he phase-space is employed, refining basins’ boundaries and at- 

ractors’ distributions, which is a key-point in limiting the com- 

utational cost. These tools are applied to a specific example to 

emonstrate the efficiency of the proposed methodologies in ex- 

loring the global behavior of noisy systems. 

It is pointed out that, also due to length constraints, this work 

as to be considered a “methodological” contribution, with the 

ain objective of presenting the operator concept and illustrat- 

ng it with a simple example. Applying the approach to real cases 

f practical interest, checking all its properties and performances 

arefully, using dynamical integrity concepts and tools to assess 

afety [34] , and extending to the case of uncertain parameters, is 

eft for future and already planned works [35] . 

In a global dynamic analysis, the coexisting attractors and their 

asins are the main tools to understand the system behavior and 

afety. Here, instead of an algorithmic-based description, such as 

rid of starts, Monte Carlo, simple and generalized cell-mappings, 

tc. [36] , a phase-space operator description is proposed for both 

eterministic and stochastic cases. 

The major issue caused by nondeterminism is that the two 

ain global structures, attractors and basins, must be redefined. 

he pushforward definition of attractors, that is, set of states to- 

ards which a system evolves as time increases, is usually con- 

idered for deterministic systems. However, this definition is not 

pplicable for nondeterministic systems since attractors are not 

niquely located in phase-space. The alternative is to address how 

ttractors are distributed over the phase-space. This interpreta- 

ion is the most natural under the flow-operator analysis, where 

symptotic convergence towards the attractor is understood in a 

istribution sense. An attractor’s distribution is, generally, a posi- 

ive L 1 function, such as Dirac deltas for fixed points of determin- 

stic systems or complex structures for chaotic or nondeterminis- 

ic attractors. These functions give information on the attractor’s 

ensity for each point in phase-space, and their integral gives the 

robability of the attractor being inside the domain of integration. 

Informally, the basin of attraction is the set of all initial con- 

itions in phase-space that converge to a particular attractor. The 

asin definition in the nondeterministic case is much more in- 

olved. According to Ochs [37] , basins become random sets, de- 

endent on the random space sample. Another definition is given 

y Lindner and Hellmann [12] , where basins of attraction are func- 

ions g over the phase-space whose assign a probability to each set 

f initial conditions x of converging to/remaining in an attractor, 

p to a mean time-horizon. Therefore, basins are time-dependent 

ith this definition, which is suitable for stochastic systems. Fi- 

ally, both definitions converge to the classical definition of deter- 

inistic systems and can be unified in a general formulation. 

In the deterministic case, the linear Perron-Frobenius operator 

s considered to obtain attractors’ distribution, while the Koop- 

an operator is considered to obtain the basins of attraction. In 

he stochastic case, the linear Foias operator is considered to ob- 

ain the attractors’ distributions, and the mean Koopman operator 

s considered to obtain the basins of attraction. A description of 

hese operators can be found in Lasota and Mackey [2] , who ap- 

lied them to the analysis of nonlinear dynamical systems. 

The operator methodology is implemented by adopting the 

lam method, where the phase-space is discretized into k dis- 

oint cells, with a time- t transfer matrix approximation of Perron- 

robenius, Foias, and Koopman operators. Although intuitive and 

elatively simple to implement, the Ulam method inserts artificial 

due to the discretization) diffusion over the phase-space, blurring 

he basins’ boundaries [ 12 , 20 , 21 ]. This can lead to wrong results
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Fig. 1. Evolution of a distribution f under the Perron-Frobenius operator P t . 
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n complex dynamical systems with fractal basin boundaries, since 

ncertain dynamical systems exhibit a natural diffusion. The rem- 

dy is to refine the phase-space. However, this increases the com- 

utational cost significantly, with possible unimportant regions be- 

ng refined as well. Thus, adaptative/localized refinement strategies 

re attractive to mitigate the artificial diffusion to acceptable levels 

nd are computationally advantageous when compared to the total 

efinement of the phase-space [ 38 , 39 ]. 

Following Refs. [ 2 , 14 ], the definitions of flux operators in the

hase-space for deterministic and stochastic cases are presented 

enceforth. 

First, the deterministic case is considered. Given dynamical sys- 

em ( X , B , T , ϕ t ) , where X is a phase-space, B is a σ -algebra over

 , T is time, and ϕ t is the flow, there is another dynamical system

ver the space L 1 (X ) , namely the space of distributions f over X , 

 t : L 
1 ( X ) → L 1 ( X ) , 

 

B 

P t [ f ] d x = 

∫ 
ϕ −1 

t B 

f d x, ∀ B ∈ B , 
(1) 

here the function ϕ 

−1 
t B is the preimage of the set B ∈ B given

he dynamics ϕ t , and P t is known as the Perron-Frobenius oper- 

tor. Stationary solutions f of Eq. (1) are such that P t [ f ] = f, and

hey specify how attractors are localized in the phase-space [2] . For 

xample, fixed points, periodic orbits, and limit-cycle attractors are 

escribed by Dirac distributions δC (. ) supported on a phase-space 

et C ∈ B such that 
 

A 

δC ( x ) d x = 

{
0 , C �⊂ A, 

1 , C ⊆ A. 
(2) 

The Perron-Frobenius operator is linear, positive 

 f ≥ 0 ⇔ P t f ≥ 0 ) , and non-expansive ( ‖ P t f ‖ L 1 = ‖ f‖ L 1 ) , be- 

ng also a Markov operator [2] . Its adjoint (dual) is the Koopman 

perator K t , which defines a dynamical system in L ∞ (X ) , the

pace of observables g over X , 

 t : L 
∞ ( X ) → L ∞ ( X ) , 

 t [ g ] = g ( ϕ t x ) . 
(3) 

tationary solutions of Eq. (3) are given by K t [ g] = g, governing the

asins of attraction distributions over the phase-space [12] . 

The Perron-Frobenius operator P t and the Koopman operator K t 

an be understood as a transport of distributions and observables 

nder the flow ϕ t , respectively. Given an initial distribution f 0 in 

he phase-space, P t transports it through the dynamics to a new 

istribution f t , as depicted in Fig. 1 . If an initial observable g 0 in

he phase-space is considered, K t drives it through the dynamics 

o a new observable g t , as depicted in Fig. 2 . 

The Perron-Frobenius and Koopman operator are related 

hrough a dual property, 〈 P t f, g 〉 = 〈 f, K t g 〉 , which is expanded as

2] 
 

X 

gP t [ f ] d x = 

∫ 
X 

K t [ g ] f d x, 

 f ∈ L 1 ( X ) , g ∈ L ∞ ( X ) . 

(4) 
s

3 
The Foias operator is the global operator in the mean sense for 

tochastic systems [2] . Its construction starts from the definition of 

he indicator function of a set B ∈ B , 

d B ( x ) = 

{
0 , x / ∈ B, 

1 , x ∈ B, 
(5) 

hich has the following property for any dynamic system, 

d B ( ϕ t x ) = id ϕ −1 
t B ( x ) , (6) 

llowing rewriting Eq. (1) as 
 

B 

P t [ f ] d x = 

∫ 
X 

id B ( ϕ t x ) f d x . (7) 

The flow ϕ t (ω) depends on a probability space ( �, F , P ω ) for 

andom dynamical systems. By taking the mean of Eq. (7) in 

 �, F , P ω ) , one obtains 

 

{ 

∫ 
B 

P t [ f ] d x 

} 

= 

∫ 
�

{ 

∫ 
X 

id B [ ϕ t ( ω ) x ] f d x 

} 

P ω ( d ω ) , (8) 

nd, by changing the order of integration, the Foias operator is ob- 

ained, 
 

B 

F t [ f ] d x = 

∫ 
X 

{ 

∫ 
�

id B [ ϕ t ( ω ) x ] P ω ( d ω ) 

} 

f d x . (9) 

The notation can be further simplified. Considering the subset 

f the probability space �x (B ) for which the dynamical system is 

n B under the flow ϕ t (ω) [17] , 

x ( B ) = { ω ∈ � : ϕ t ( ω ) x ∈ B } , (10) 

he final Foias operator is written as 

 t : L 
1 ( X ) → L 1 ( X ) , 

 

B 

F t [ f ] d x = 

∫ 
X 

{∫ 
�x ( B ) 

P ω ( d ω ) 

}
f d x. 

(11) 

The Foias operator F t is a mean flux of distributions f over the 

hase-space X given the probability space ( �, F , P ω ) . That is, it 

overns the mean evolution of distributions f according to the un- 

erlying random dynamical system ϕ t (ω) . Finally, the adjoint op- 

rator is obtained by setting 

 t : L 
∞ ( X ) → L ∞ ( X ) , 

 t [ g ] = 

∫ 
�

g ( ϕ t ( ω ) x ) P ω ( d ω ) , 
(12) 

hich is a mean Koopman operator over the probability space 

 �, F , P ω ) . By inspection of expressions (11) and (12), a duality re- 

ation is identified, 
 

X 

gF t [ f ] d x = 

∫ 
X 

K t [ g ] f d x, 

 f ∈ L 1 ( X ) , g ∈ L ∞ ( X ) . 

(13) 

The discretization of transfer operators P t and F t is given by 

he Ulam method [23] , equivalent to the generalized cell-mapping 

4] . Let B = { b 1 , b 2 , . . . , b k } be a disjoint partition of the phase-

pace X into k sets. Additionally, consider the subspace � ⊂ L 1 (X ) 
h 



Kaio C. B. Benedetti, P.B. Gonçalves, S. Lenci et al. Theoretical and Applied Mechanics Letters 13 (2023) 100419 

Fig. 2. Evolution of an observable g under the Koopman operator K t . 
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1

panned by the normalized indicator functions of B , i.e., with ba- 

is { 1 1 , 1 2 , . . . , 1 k } , where 1 i = id b i 
/ m ( b i ) , m ( b i ) is the measure in

 and h is the characteristic size of the partition. With these defi- 

itions, a projection operator Q h is defined such that a distribution 

f ∈ L 1 (X ) is projected onto the subspace �h , that is, 

 h : L 
1 ( X ) → �h , 

 h f = 

k ∑ 

i =1 

1 i 

∫ 
b i 

f d x. 

(14) 

It is easy to check that Q h 1 i = 1 i , for all 1 ≤ i ≤ k . A projected

istribution over �h is generically denominated as Q h f = f h . Fol- 

owing Ref. [40] , the projection of P t is defined from the composi- 

ion of Q h and P t over a distribution f ∈ L 1 (X ) . The resulting pro-

ected operator is Q h P t = P h , that is, 

 h : �h → �h , 

f h P h = 

k ∑ 

i, j=1 

f i p ij 1 j , 
(15) 

here f i and p i j are 

f i = 

∫ 
b i 

f d x, 

p ij = 

m 

(
b i ∩ ϕ 

−1 
t b j 

)
m ( b i ) 

. 

(16) 

The elements p i j constitute a row-stochastic matrix, while f i are 

lements of a row-vector with sum equal to one. We say that the 

ontinuous operator P t has a matrix representation p i j ∈ [ 0 ; 1 ] 
k ×k 

f its projection P h ∈ �h × �h [12] . Similarly, the continuous distri- 

ution f has a vector representation f i ∈ [ 0 ; 1 ] 
k 

of its projection 

f h ∈ �h . Therefore, the continuous transport of distributions un- 

er the Perron-Frobenius operator P t [ f ] , Eq. (16) , is represented by

 row-vector matrix multiplication f i p i j . Finally, the vector repre- 

entation f i ∈ [ 0 ; 1 ] 
k 

of stationary distributions is a solution of the 

xed-space eigenvalue problem 

f i p i j = f i δi j , (17) 

here δi j is the Kronecker delta. It corresponds to the classical at- 

ractor definition, as stated in the previous section. 

In turn, considering the same subspace of normalized indicator 

unctions �h ⊂ L 1 (X ) and the projection operator Q h : L 
1 (X ) → �h ,

he projected Foias operator Q h F t = F h is 

 h : �h → �h , 

f h F h = 

k ∑ 

i, j=1 

f i p 
s 
ij 1 j , 

(18) 
4

here f i and p s 
i j 

are 

f i = 

∫ 
b i 

f d x, 

p s ij = 

1 

m ( b i ) 

∫ 
b i 

{∫ 
�x ( b j ) 

P ω ( d ω ) 

}
d x, 

x 

(
b j 

)
= 

{
ω ∈ � : ϕ t ( ω ) x ∈ b j 

}
. 

(19) 

nd the fixed-space eigenvalue problem is 

f i p 
s 
i j = f i δi j . (20) 

Given that the Foias operator governs the mean flow of random 

ynamical systems, Eq. (18) approximates it. Discretized mean dis- 

ributions also evolve according to it. 

The matrix representation of the projected Koopman operators 

 h for both deterministic and stochastic cases is given by the trans- 

ose of p s 
i j 

, calculated according to Eqs. (16) or (19) , respectively. 

 h encodes the basin of attraction in its fixed space, that is, the 

ase K h g h = g h is a basin of an attractor. This relation in matrix

epresentation is given by the left-multiplication p s 
i j 

g j = g i , whereas 

he attractor space in matrix representation is given by the right- 

ultiplication f i p 
s 
i j 

= f j . 

The Hénon map with added noise is considered for application 

f the preceding formulation. It is described by 

 n +1 = 1 − μx 2 n + y n + σξn , 

 n +1 = Jx n + σρn , 
(21) 

here x n , y n are state variables, μ, J are control parameters, σ is 

he noise amplitude, and ξn , ρn are noise sources. This system can 

resent complex behavior depending on the parameter choice, as 

emonstrated in Ref. [41] . For ( μ, J ) = ( 1 , −0 . 9 ) , this system dis-

lays a period 1 and a period 3 attractor. 

The proposed formulation is used together with an adapta- 

ive phase-space refinement procedure developed in Refs. [ 38 , 39 ]. 

he adaptative refinement allows the correct identification of 

asins’ boundaries and attractors’ densities, necessary to under- 

tand the effects of noise on the global dynamics. The phase- 

pace is taken as the plane X = [ −1 , 1 . 5 ] × [ −1 . 5 , 1 ] , initially sub-

ivided into 2 10 disjoint sets (cells). Then, attractors’ distributions 

nd basins’ boundaries are subdivided up to 8 times, 4 in each di- 

ension. The cell structure is organized as a binary tree, similar to 

revious developments [16] . 

Figure 3 presents the results for the deterministic case, while 

igs. 4 and 5 present the results for stochastic cases. Complex basin 

tructures are observed, with the period 3 attractor’s star-shaped 

asin surrounding the period 1 attractor’s basin, for both determin- 

stic and stochastic cases, Fig. 3 a, 3 b, 4 a, 4 b, 5 a, and 5 b, while an

scape region surrounds both basins, Figs. 3 c, 4 c, and 5 c. The color

ars from black to yellow or white to black define the probability 

f convergence to a depicted attractor or escape, given as solution 

f 

δi j − ( 1 − ε ) p s i j 

]
g j ( ε ) = ε id A , (22) 

or each attractor or escape cell A for a distant time-horizon 1 /ε = 

0 8 [12] . It is expected that, in the deterministic case, g j converges 
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Fig. 3. Hénon global dynamics for μ = 1, J = -0.9, σ = 0 (deterministic). Color bars: basins of attraction. 

Fig. 4. Hénon global dynamics for μ = 1, J = -0.9, σ = 0.004 (stochastic). Color bars: attractors’ densities and stochastic basins of attraction. 

Fig. 5. Hénon global dynamics for μ = 1, J = -0.9, σ = 0.006 (stochastic). Color bars: attractors’ densities and stochastic basins of attraction. 
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o

i

o a step function over the basin for ε = 0 and infinity resolu-

ion. For stochastic cases, the boundaries are time-dependent and 

lurred for large noise values. The attractors’ distributions for the 

eterministic case converge to Dirac distributions, here marked as 

ed dots. More general distributions represent the stochastic cases, 

epicted through the color bar from blue to red, spreading over 

he phase-space. This diffusion of both basins and attractors is a 

onsequence of the noise inclusion [39] . The last stochastic case, 

ig. 5 with σ = 0.006, demonstrates a degeneration of the basins 

or large noise values. The basins no longer have regions with 100% 

ertainty of convergence, evolving to any of the two attractors with 

 given probability. It is worth noting that the vanishing escape 

robability of the deterministic case persists in the whole stochas- 

ic regime because no escape tongues enter the two attractors’ de- 

erministic region, Fig. 3 a and 3 b. Attractors’ distributions are also 

ffected, spreading over larger regions in phase-space. 

An operator methodology for the global analysis of stochastic 

ynamical systems has been proposed and illustrated with a sim- 

le example. The classical Ulam method was modified to accom- 

odate random dynamical systems. When applied to such sys- 

ems, the modified method results in a discretization of the Foias 

ransfer operator, which governs the flow map in the mean sense. 

he discretization scheme is the most natural method within the 

ncertainty framework, having already been applied to many ran- 
5 
om dynamical systems. Finally, a Hénon map with two attractors, 

 period 1 and a period 3, and an escape solution, has been dealt 

ith as an example. Three cases have been studied, one deter- 

inistic and two stochastic, revealing the complex basin structure. 

he noise causes diffusion of both attractors’ densities and basins’ 

oundaries. Large noise amplitudes break the separation between 

he two attractors, with basins no longer presenting regions with 

00% of certainty of convergence to a given attractor. 

Future developments will focus on a real case of practical inter- 

st, using dynamical integrity concepts and extending to the case 

f uncertain parameters [35] . 
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