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Deep Optimization of Parametric IIR Filters for
Audio Equalization

Giovanni Pepe, Leonardo Gabrielli, Stefano Squartini, Carlo Tripodi, and Nicolò Strozzi

Abstract—his paper describes a novel Deep Learning method
for the design of IIR parametric filters for automatic multipoint
audio equalization, that is the task of improving the sound
quality of a listening environment at multiple listening points
employing multiple loudspeakers. The filters are designed to
approximate the inverse of the RIR and achieve almost flat
magnitude response.his paper describes a novel Deep Learning
method for the design of IIR parametric filters for automatic
multipoint audio equalization, that is the task of improving the
sound quality of a listening environment at multiple listening
points employing multiple loudspeakers. The filters are designed
to approximate the inverse of the RIR and achieve almost flat
magnitude response.T A simple and effective neural architecture,
named BiasNet, is proposed to determine the IIR equalizer
parameters. This novel architecture is conceived for optimization
and, as such, is able to produce optimal IIR equalizer parameters
at its output, after training, with no input required. In absence of
input, the presence of learnable non-zero bias terms ensures that
the network works properly. An output scaling method is used to
obtain accurate tuning of the IIR filters center frequency, quality
factor and gain. All layers involved in the proposed method are
shown to be differentiable, allowing backpropagation to optimize
the network weights and achieve, after a number of training
iterations, the optimal output according to a given RIR. The
parameters are optimized with respect to a loss function based on
a spectral distance between the measured and desired magnitude
response, and a regularization term is used to keep the same
microphone-loudspeaker energy balance after equalization. Two
experimental scenarios are employed, a room and a car cabin,
with several loudspeakers. The performance of the proposed
method improves over the baseline techniques and achieves an
almost flat band at a lower computational cost.

Index Terms—Deep Learning, Optimization, Audio Equaliza-
tion, Machine Learning, IIR Filtering, Parametric Equalizer,
Inverse Filtering

I. INTRODUCTION

PARAMETRIC equalizers are among the most used equal-
izers in audio and acoustics, thanks to the few parameters

to control: center frequency, gain and quality factor [1],
which boost or cut the spectrum. Such equalizers are usually
composed of Infinite Impulse Response (IIR) filters, which
are themselves formed by a cascade of Second Order Sections
(SOS’s), designed according to some constraints, such as a
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unitary gain at Direct Current (DC) and Nyquist frequency
[2].

Audio equalization improves sound quality in listening
environments, such as rooms, halls, car’s cabins and so on [3],
[4]. The in-car sound scene is changing in the last years [5],
improving acoustic insulation and absorption and, thanks to
hybrid and electric engines, leading to an interior sound quieter
than the combustion vehicles [6]. Therefore, audio equalization
for automotive applications has greater opportunity to improve
the user experience inside the cars cabin. Audio enhancement
in the automotive industry is generally done using Digital
Signal Processing (DSP) systems [7], which have gotten
cheaper and better performing in recent years.

Machine learning techniques, however, offer an alternative
approach with respect to standard approaches and they are
progressively adopted in audio equalization. Early works em-
ploying neural networks to invert a room response, can be
found e.g. in [8], while recent end-to-end approaches have
been proposed in [9]. Completely neural-based algorithms,
however, require a dedicated hardware to run in real-time. Cur-
rently, embedded Tensor Processing Units (TPU) are getting
commercially available as embedded devices, paving the way
for the implementation of neural audio processing techniques
in many application scenarios.

On the other hand, DSP chips are by far more convenient
and energy-efficient for usage in audio equalization in sce-
narios such as the automotive one. For this reason, machine
learning techniques may be used for the offline design of linear
filters and then implemented in real time on a DSP chip. In
the literature, several IIR filter design techniques are present
[10], e.g., in [11], Prony’s method [12] is used for warped
IIR-type filter design to directly optimize filter coefficients.
Other techniques are linear programming [13], non-linear
optimization methods [14], [15] and evolutionary algorithms
[16]. These are gradient-free algorithms [17], and among them,
Particle Swarm Optimization (PSO) [18] and Gravitational
Search Algorithm (GSA) [19] are the most widely used.

Recent works started employing neural networks for the
design of IIR filters and parametric equalizers, mainly fol-
lowing the idea of Differentiable Digital Signal Processing
(DDSP) layers [20]. These layers can backpropagate the error
and are, thus, amenable for integration in a machine learning
framework. In [21], [22], the filters are designed using state-
of-the-art backpropagation algorithms have been presented,
removing the convex optimization constraints imposed by
different algorithms such as the least-squares approach which
is widely used in classic adaptive filter theory. Another work
which adopts the DDSP approach is introduced in [23], where
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a neural network is trained to estimate the equalizing filter
coefficients from a desired frequency response. Earlier works
dealing with backpropagation for the design of IIR and Finite
Impulse Response (FIR) filters are described in [24], [25].
Finally, the works in [26], [27] deal with the correction of
octave and third-octave graphic equalizers gain, in order to
reduce the error introduced by the interaction of neighboring
filters, and achieve an accurate prediction of the equalizer
gains with a feedforward neural network.

A. Scope of the work

Current filter design approaches based on the backpropaga-
tion of the error address the system identification problem [21],
[22] or frequency response matching [23]. Our work presents
two main differences with respect to the above techniques: the
goal and the method.

Our goal is to design filters for room equalization, therefore
the neural network does not have a reference frequency
response to directly match. This task is challenging as the
network must find suitable filter coefficients to approximate
the room inverse response. Furthermore, we aim to obtain a
room equalization not only in the Single-Input Single-Output
(SISO) case, but also for any number of sound sources and
listening points (Multiple-Input Multiple-Output or MIMO),
which arguably makes the task more challenging. We assume
that the test environment is static, enabling an offline filter
design. Factors that may change the Room Impulse Responses
(RIRs) over time (such as changes in the environment geome-
try, listener positions, temperature change, etc.) may impair the
performance, and must be addressed using other techniques,
such as adaptive filtering [28], [29], not covered in this paper.
Our technique is not suitable for online adaptive equalization
due to the computing time required for the filter design, but it
is very useful in the pre-tuning phase, which always plays an
important role in equalization of real acoustic environments.

As for the method, we employ neural networks with an
unconventional approach, that we will refer to as Deep
Optimization (DO), owing the name from the use of the
neural network as an non-convex optimization algorithm. This
approach stems from our previous works in equalizing filter
design [30], [31]. However, here it is investigated in more
detail and implemented in a simpler and more efficient way.

In our previous works, we first tackled room equalization
filter design using evolutionary algorithms in [30], where FIR
filters were designed in an automotive MIMO scenario. In [31],
we largely improved the audio equalization performance by
exploiting neural networks and outperforming the traditional
Frequency Deconvolution (FD) method [32] by several orders
of magnitude. This new filter design method opened several
research questions related to network design that we are trying
to address here. Furthermore, the design of FIR filters has
some downsides: they have a high computational cost, and
cannot be hand-tuned, which is an often desired feature, since
listeners may require a personalized audio experience. To
overcome this, IIR equalizers can be used. These provide a
lower computational cost and the possibility of hand tuning
after the automatic filter design is completed. Automatic IIR

parametric equalizers were first discussed in [33], where the
Direct Search Method (DSM), a recursive technique, is used
to optimize the parameters. The Rosenbrock method was
presented in [34], where it was used to equalize an LCD TV
speaker. We applied both methods to the room equalization
problem in [35], and compared to GSA. The GSA algorithm
gave superior performance, but still far from that obtained by
the deep neural design of FIR filters proposed in [31]. For
this reason, deep neural techniques are worth investigating for
the design of an IIR equalizer for room equalization that can
match the performance previously obtained with FIR filters.

The present work is organized as follows: in Section II
we introduce the MIMO room equalization problem in for-
mal terms and IIR parametric filters transfer functions and
coefficients design. In Section III we propose a novel neural
network architecture for the design of IIR equalizers for room
equalization, along with a novel scaling method and loss
function. In Section IV we introduce two alternative neural
architectures and two baseline techniques for comparison pur-
poses. In Sections V and VI, we introduce two experimental
setups and their results, respectively. Finally, Section VIII
concludes the paper.

II. PROBLEM STATEMENT

As previously stated, our main goal is to achieve MIMO
room equalization with a parametric IIR equalizer, which is
composed of a cascade of N second order digital IIR filters
of the biquad type, i.e. SOS’s. Parametric filters can be of
the peaking or shelving type [36]. The former introduces a
gain V0 at a specific frequency fc. The gain around fc goes
to 1 with a slope depending on the quality factor Q. The
shelving filter, instead, introduces a flat gain starting from
or up to a specific frequency. In this work, we restrict our
attention to peaking filters to avoid unnecessary equalization
at the extremes of the hearing range. Their coefficients are
computed according to a closed form expression with its three
free parameters. In our work, additionally, we include another
free parameter, a channel gain Vs, one for each audio channel,
i.e. sound source. Each equalizer can be expressed as a product
of rational functions in the Z-domain (the individual SOS’s
transfer functions), i.e.:

Gs(z) = Vs

N∏
κ=1

b0,s,κ + b1,s,κz
−1 + b2,s,κz

−2

a0,s,κ + a1,s,κz−1 + a2,s,κz−2
(1)

where Gs(z) is the transfer function of a parametric IIR filter
of the s-th speaker, κ is the index of κ-th SOS, N is the
number of SOS’s and Vs is the channel gain in linear scale.

The coefficients are calculated according to the type of filter
(boost or cut) as described in Table I. A parametric IIR filter
composed of three SOSs is shown in Fig. 1 as an example.

One of the advantages of optimizing the peaking filter
parameters, rather than directly design its b, a coefficients, is
that the Q, center frequency and gain of each SOS can be
easily constrained in the optimization problem. As we shall
see later, e.g., the center frequency of each SOS is constrained
in a given range, to avoid excessive overlap with neighboring
filters. Similarly Q and gain are bounded to avoid excessive
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resonance and ringing or too deep notches. Our previous
approach [35] would not make it possible to express these
constraints explicitly.

Overall, the MIMO room equalization system is composed
of M listening points and S sound sources. Each sound
source has an associated IIR equalizer, composed of N SOS’s.
Clearly, the SISO case can be regarded as a special case with
S = 1,M = 1. The measured signal at the m-th listening
position is

ym(n) =

S∑
s=1

x(n) ∗ gs(n) ∗ hs,m(n), (2)

where gs(n) is the impulse response of the s-th equalizer,
hs,m(n) is the impulse response between the m-th point and
the s-th source and x(n) is an audio input signal.

The objective of an automatic room equalizer using para-
metric IIR filters is to determine the equalizer parameters
fc, Q, V0 for each SOS and Vs for each speaker to achieve a
flat (or any other desired) frequency response at the listening
points. This can be seen as an optimization problem, as
discussed in the following section.
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Fig. 1: Example of a parametric IIR filter composed of three
SOS’s. The center frequencies are: 1 kHz, 5 kHz and 12 kHz.

III. PROPOSED METHOD

As described in Section I-A, in this work we propose a novel
and simpler neural network architecture for the design of room
equalization IIR parametric filters. As demonstrated in [37],
deep neural networks can solve non-convex problems through
the minimization of a cost function. The design of equalizing
filters can be formalized as such. This involves employing the
neural network in a different way with respect to common clas-
sification and regression problems. The proposed approach is
depicted in Fig. 2: the neural network initially computes filter
coefficients based on random initial values of the weights. The
coefficients are used, in conjunction with the room impulse
responses to predict the frequency response obtained at one or
more listening points. This is used to calculate the error with
respect to the desired frequency response according to a given
loss function. The error is then backpropagated to optimize
the network weights in order to iteratively produce a more
accurate frequency response with respect to the desired one.

In [31], we employed a convolutional neural network for
FIR filter design for audio equalization. This, however, re-
quires substantial computing power if the number of neu-
rons in the convolutional layers is large. Their number is

Fig. 2: Overview of Deep Optimization for room equalization.
The algorithm consists of a forward pass (top) to predict
equalizer parameters and the backpropagation of the error
(bottom) to optimize the performance iteratively. The red
boxes perform the backward flow of the partial derivatives of
the operations performed by the blue boxes. Once the optimal
filters parameters have been computed, these are stored into
the audio equalizers g1(n) ... gS(n) and used for real-time
signal processing in the target room.

constrained by the size of the input. In absence of prior
works, the neural network employed in [31] was fed with
a three-dimensional input tensor containing the RIRs. This
however, was shown to be not necessary for the network:
any input of the same dimensions and size filled with non-
zero values would achieve similar results. More specifically,
a tensor of 1s would lead to slightly inferior results, while
changing the input with random values at each iteration would
result in a slow convergence of the network. Our experiments,
discussed as part of this paper, allow concluding that the
network does not require any informative content at its input.
The only information that is required to perform an effective
equalization is the knowledge of the room acoustic response in
terms of RIR, used in the simulation stage. Building on these
observations, in this work we propose BiasNet, an efficient
neural network for optimization which avoids the need of
convolutional input layers, as described in Section V and VI
and in Table II.

As described previously, the architecture must be also
designed to cope with IIR filters. In the FIR design task,
the neural network directly computes the filters coefficients.
This strategy is not suitable for IIR filters, since recursive
filter poles are subject to stability and quantization issues
[35]. We choose to estimate the parameters of a parametric
IIR equalizer, then compute the IIR coefficients according to
the closed form equations of Table I. The output layer of the
network is, thus, composed of (3×N)× S + S neurons. As
an additional novelty, the parameters are then denormalized
by using linear interpolation in their defined range. However,
to avoid overlapping filters and reduce the center frequency
prediction error of each SOS, we propose a constrained scaling
method of the center frequency parameter pfc,κ ∈ [−1, 1],
which is related to the center frequency of the κ-th SOS as
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TABLE I
Coefficients calculated according to the boost or cut filter [36].

IIR Coefficients Boost (V0s,κ ≥ 1) Cut (0 < V0s,κ < 1)

bs,κ,0
1+

V0,s,κ
Qs,κ

·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)
2

1+1/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2
1+ 1

Qs,κ
·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)

2

1+V0,s,κ/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

bs,κ,1
2·tan(π·fcs,κ/fs)

2−1

1+1/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2
2·tan(π·fcs,κ/fs)

2−1

1+V0,s,κ/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

bs,κ,2
1−

V0,s,κ
Qs,κ

·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)
2

1+1/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2
2·tan(π·fcs,κ/fs)

2−1

1+V0,s,κ/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

as,κ,0 1 1

as,κ,1
2·tan(π·fcs,κ/fs)

2−1

1+1/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2
2·tan(π·fcs,κ/fs)

2−1

1+V0,s,κ/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

as,κ,2
1− 1

Qs,κ
·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)

2

1+1/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2
1−

V0,s,κ
Qs,κ

·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)
2

1+V0,s,κ/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

follows:

fc =
fc,max − fc,min

2
· pfc,κ +

fc,max + fc,min
2

(3)

where fc,max and fc,min are the maximum and minimum
allowed values for the center frequency. These values can be
devised, e.g., according to third-octave bands, or any other
subdivision of the audio range. This subdivision constrains the
number of SOS’s to the number of frequency bands, avoiding
the overlap of the filters operative bandwidth which, in turn,
may result in excessive gains for some bands. Furthermore,
mapping the range [−1, 1] to a narrow portion of the spectrum
reduces the prediction error of the fc. The other parameters
are denormalized mapping [−1, 1] to their full range which can
be defined according to the application. Gains are designed by
the network on a dB scale and are then converted into linear
values when computing the IIR biquad equations of Table I.
From now on, dB scale gains will be denoted as V0,dB , Vs,dB
to avoid confusion with their linear counterparts V0, Vs.

After computing the IIR filters, these are used to simulate
the frequency response at the desired listening positions em-
ploying the related impulse responses. With respect to [22],
instead of using convolution in time we compute the product
in the frequency domain [38] due to its reduced computational
cost. This optimization is important to reduce the overall
computing time, as the optimization process involves a large
number of iterations.

The frequency response of the numerator and the denomi-
nator of a SOS is given by:

Bs,κ(k) = F [bs,κ(z)] = b0s,κ + b1s,κe
− j2πkN + b2s,κe

− j2π2k
N

(4)
As,κ(k) = F [as,κ(z)] = a0s,κ + a1s,κe

− j2πkN + a2s,κe
− j2π2k

N

(5)
The equalized frequency response H̃s,m(k) between the s-

th speaker and the m-th microphone is given by:

H̃s,m(k) = Hs,m(k) · Vs
K∏
κ=1

Bs,κ(k)

As,κ(k)
(6)

where Hs,m(k) is the frequency response achieved from the
RIR by the discrete Fourier transform (DFT).

All the operations described above (scaling method, closed-
form IIR coefficients computing, DFT filtering, etc.) must be

differentiable in order to be employed in a neural network
setting and to allow error backpropagation [20]. This will be
discussed in Section III-C.

A. BiasNet

Within the DO scenario, our neural network can be seen
as a unidirectional graph of nonlinear computations. If the
input is fixed and only the network weights can change, then
convergence is only determined by the update of the network
weights, and is sufficiently fast as we shall see later. As shown
in [31], if the activation functions satisfy the relation f(0) = 0
(i.e. no bias term is applied), an input tensor with 0s will not
produce any output, as the result of the computations will
be, similarly, 0s. This prevents the network to work properly.
Therefore, some energy must be injected into the system. We
do so by taking advantage of the bias terms of the input
layer. These are learnable parameters, therefore, they will be
updated during the optimization procedure. The vector of input
neurons’ bias terms b0 can be seen, i.e., as the optimal input
vector for the given problem. The proposed architecture is
called BiasNet, and consists of a feedforward network with
no input but a learnable bias term, as shown in Fig. 3.

The advantage of using this architecture, with respect to
the convolutional neural networks used previously, lies in: (a)
the absence of inputs, which avoids useless tweaking of the
input size and content; and (b) the low number of network
parameters to be learned, which influences the convergence
speed, as we shall see later.

B. Loss function

The cost function has a salient role in the optimization
process since it computes the error and thus drives the network
weights update procedure. The loss used in this work is a
combination of a spectral loss L1, and a multichannel energy
regularization term L2:

L = γ1 · L1 + γ2 · L2 (7)

with γ1 = 1 and γ2 = log2(S) + log2(M) being weights.
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Fig. 3: BiasNet overview: the network provides parameters
p that are denormalized and used of the filter design. The
filters are transformed in the frequency domain, then frequency
convolution is performed to compute the equalized response,
that is compared with the desired response to compute the loss
value. This is used in backpropagation to learn the optimal
network weights and input bias terms.

The loss function L1 is given by the Euclidean distance
(`2-norm) between the simulated magnitude response and the
desired magnitude response |Hdes(k)|:

L1 =

M∑
m=1

√∑
k

(|H̃m(k)| − |Hdes(k)|)2 (8)

where: H̃m(k) is the discrete Fourier transform of the equal-
ized impulse response at the m-th microphone h̃m(n).

The regularization term L2 is required when S > 1 to
keep the original energy balance between a reference speaker
and each other speaker, avoiding unwanted change in spatial
perception. The term is defined as:

L2 =

M∑
m=1

√√√√ S∑
s=1

(r̂s,m − rs,m)2 (9)

where rs,m and r̃s,m are the ratio between the energy of
a reference speaker and the s-th speaker before and after
equalization, respectively.

C. Differentiating the DSP operations

The backpropagation of the error is done by computing the
gradient of the loss function with respect to the network layers
and operators, therefore these must be differentiable. As done
in other works [22], [39], in this section we show that the
analytical expressions of the gradients for the proposed method
are computable and can be easily derived, making our solution
viable. The results of the partial derivatives are reported for the
sake of completeness, however, most Deep Learning software
frameworks can automatically compute these derivatives if the
implementation of the forward methods uses the operators
provided by the framework, for which derivatives have been
already developed, therefore for a practical application none
of these must be implemented manually.

In our case, the backpropagation is performed using the
partial derivative of the loss function with respect to the control
parameters ∂L/∂fc, ∂L/∂Q, ∂L/∂V0,dB and ∂L/∂Vs,dB .
The partial derivatives are calculated as the product of cas-
caded local ones. While these are well known for all the

typical neural network layers used in this work, for the
sake of completeness, we need to develop the mathematical
expressions of the partial derivatives of all the DSP operations
that allow to simulate the equalized RIRs, i.e.: those in Table
I, Eq. 6 and so on.

In order to obtain the partial derivative of the loss function
with respect to the control parameters, we first need to
calculate the partial derivative of the loss function with respect
to a generic filtered impulse response:

∂L

∂h̃s,m
=

∂L

∂L1
· ∂L1

∂h̃s,m
+

∂L

∂L2
· ∂L2

∂h̃s,m
(10)

where, from Eq. (7), ∂L
∂L1

= γ1 and ∂L
∂L2

= γ2.

The partial derivative ∂L1/∂h̃s,m(n) is given by the product
of:

∂L1

∂h̃s,m(n)
=

∂L1

∂h̃m(n)
· ∂h̃m(n)

∂h̃s,m(n)
. (11)

Knowing that at one listening point h̃m(n) =
∑S
s=1 h̃s,m(n),

we can state that ∂h̃m(n)

∂h̃s,m(n)
= 1, thus ∂L1

∂h̃s,m(n)
= ∂L1

∂h̃m(n)
.

Since the filtered room response is computed in the frequency
domain we expand Eq. 8 and use Wirtinger calculus [39] to
get:

∂L1

∂h̃m(n)
=
N−1∑
k=0

[
|H̃m(k)| − |Hd,m(k)|√∑
k(|H̃m(k)| − |Hd,m(k)|)2

· Re[H̃m(k)]

|H̃m(k)|
· cos(2π

N
kn)

]

−
N−1∑
k=0

[
|H̃m(k)| − |Hd,m(k)|√∑
k(|H̃m(k)| − |Hd,m(k)|)2

· Im[H̃m(k)]

|H̃m(k)|
· sin(

2π

N
kn)

]
(12)

To calculate the local derivative of h̃s,m(n) with respect
to a generic control parameter p, we first use the Wirtinger
calculus [39] to determine the local derivative:

∂h̃s,m(n)

∂H̃s,m(k)
=

N−1∑
n=0

cos
(

2π
kn

N

)
+ sin

(
2π
kn

N

)
(13)

The partial derivative of the magnitude response with re-
spect to the channel gain ∂H̃s,m(k)

∂Vs,dB
is:

∂H̃s,m(k)
∂Vs,dB

= Hs,m(k) · log(10)·10
Vs,dB/20

20

∏K
j=1

Bs,j(k)
As,j(k)

(14)
For the other parameters, we first calculate the partial

derivative of ∂H̃s,m(k)
∂Bs,κ(k)

and ∂H̃s,m(k)
∂As,κ(k)

:

∂H̃s,m(k)
∂Bs,κ(k)

= Hs,m(k) · Vs · 1
As,κ(k)

∏K
j=1,j 6=κ

Bs,j(k)
As,j(k)

(15)

∂H̃s,m(k)
∂As,κ(k)

= −Hs,m(k) · Vs · Bs,κ(k)A2
s,κ(k)

∏K
j=1,j 6=κ

Bs,j(k)
As,j(k)

(16)
The partial derivative of h̃s,m with respect to a generic

parameter ps,κ is calculated exploiting the conversion from
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time to frequency and from frequency to time using again the
Wirtinger calculus:

∂h̃s,m
∂ps,κ

=

(
N−1∑
n=0

cos
(

2π
kn

N

)
+

N−1∑
n=0

sin
(

2π
kn

N

))
·

[
∂b0s,κ
∂ps,κ

·
N−1∑
k=0

∂H̃s,m(k)

Re(Bs,m(k))
+

∂b1s,κ
∂ps,κ

·
(N−1∑
k=0

∂H̃s,m(k)

Re(Bs,m(k))
cos
(

2π
k

N

)
−
N−1∑
k=0

∂H̃s,m(k)

Im(Bs,m(k))
sin
(

2π
k

N

))
+

∂b2s,κ
∂ps,κ

·
(N−1∑
k=0

∂H̃s,m(k)

Re(Bs,m(k))
cos
(

2π
2k

N

)
−
N−1∑
k=0

∂H̃s,m(k)

Im(Bs,m(k))
sin
(

2π
2k

N

))
+

∂a1s,κ
∂ps,κ

·
(N−1∑
k=0

∂H̃s,m(k)

Re(As,m(k))
cos
(

2π
k

N

)
−
N−1∑
k=0

∂H̃s,m(k)

Im(As,m(k))
sin
(

2π
k

N

))
+

∂a2s,κ
∂ps,κ

·
(N−1∑
k=0

∂H̃s,m(k)

Re(As,m(k))
cos
(

2π
2k

N

)
−
N−1∑
k=0

∂H̃s,m(k)

Im(As,m(k))
sin
(

2π
2k

N

))]
(17)

where, through Wirtinger calculus, we have that: ∂B(k)
∂b0,κ

=
∂A(k)
∂a0,κ

= 1 and ∂B(k)
∂b1,κ

= ∂B(k)
∂b2,κ

= ∂A(k)
∂a1,κ

= ∂A(k)
∂a2,κ

=

cos(2π k
N )− sin(2π k

N ).
The local derivative of the IIR filter coefficients with respect

to the parameters fc, V0,dB and Q can be calculated through
the partial derivatives of the equations in Table I. For example,
the local derivative of the coefficient bs,κ,0 with respect to fcs,κ
for the Boost filter is:

∂bs,κ,0
∂fcs,κ

=

π·
(

1
Qs,κ

− 10
Vs,κ,dB/20

Qs,κ

)
·
(
tan2(π

fcs,κ
fs

)−1
)
· 1

cos2(π
fcs,κ
fs

)

fs·
(

1
Qs,κ

tan(π
fcs,κ
fs

)+tan2(π
fcs,κ
fs

)+1

)2

(18)
Finally, the derivative of the scaling method step is:

∂q

∂p
=
qmax − qmin

2
(19)

where p is the normalized parameter, q is any of the equalizer
parameters (denormalized), i.e. fc, Q, V0,dB , Vs,dB and the
terms qmax, qmin denote its range. We note that for fc the
range is different for each SOS (see Eq. (3)), while the other
parameters have identical ranges for each SOS.

The local derivative with respect to the regularization term
is given by the cascade of the following local derivatives:

∂L2

∂h̃s,m(n)
=

∂L2

∂r̂s,m
· ∂r̂s,m
∂ε̂s,m

· ∂ε̂s,m

∂h̃s,m(n)
(20)

where:
∂L2

∂r̂s,m
=

r̂s,m − rs,m√∑S
s=1(r̂s,m − rs,m)2

, (21)

∂r̂s,m
∂ε̂s,m

= − ε̂1,m
ε̂2s,m

, (22)

∂ε̂s,m

∂h̃s,m(n)
= 2 · h̃s,m(n). (23)

D. Direct Optimization

It is worth mentioning that the flexibility of the neural
network allows to shrink the network down to one single layer.
In this case, the algorithm reduces to the direct optimization of
the filter parameters by means of a simple update rule. Indeed,

with one layer only, during backpropagation, the parameter p
is updated as:

p(n+ 1) = p(n)− φ∂L
∂p

(24)

the parameter p is the output of the activation function with
the bias term as input, thus:

p(n+ 1) = f(b0(n+ 1)) = f(b0(n))− φ∂L
∂p

(25)

where φ is the learning rate. In the experimental section we
will test a configuration of the BiasNet (#4, see Table II)
with one layer only, and a version of the same configuration
(#4L) with linear activation function. The latter shows how the
direct optimization performs in absence of any of the features
mutuated from neural networks.

IV. COMPARATIVE METHODS

To conduct a thorough analysis of the proposed method,
we compare it to several additional techniques that can be
employed for the room equalization task. We propose two
DO techniques, both based on convolutional neural networks,
an evolutionary IIR filter design method based on the Direct
Search Method [33] and the well-known Frequency Deconvo-
lution method for the design of FIR filters [32].

A. Alternative Deep Optimization Networks

In addition to BiasNet, other DO architectures are proposed
based on similar principles. The first is a regular CNN, as
in our previous work [31]. This network has been adapted to
the design of IIR filters as described with BiasNet, i.e. by
generating the IIR parameters fc, Q, V0,dB , Vs,dB and using
the scaling method rule described in Eq. (3). The network
employs a fixed input, the RIR tensor, as done in our previous
work.

The second network is a CNN with variable input. The idea
stems from the same observations drawn in describing the
BiasNet, i.e. that of a network adapting its input, in addition
to its weights. At the first iteration we use the RIR as input
tensor, however, at each next iteration the network is fed with
the equalized RIR. This network, therefore, establishes an
input-output feedback, since the equalized response generated
at the j-th iteration is fed as input at iteration (j + 1). In
the following, we shall call this architecture Convolutional
Feedback Network (CFN).

The rationale for testing the CNN is verifying how well
it performs for the new task, after adapting its output layers
for the IIR equalizer parameters design, and assessing the
computational cost and performance gain of the proposed
BiasNet architecture. The CFN, on the other hand, provides
an alternative approach to input optimization, that is worth
investigating in terms of performance. Similarly to BiasNet it
is able to learn an optimal input, however it uses a different
strategy and a larger number of parameters.
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B. Direct Search Method

The Direct Search Method is a heuristic technique that
is used for optimization problems [40]. This method is a
derivative-free optimization algorithm and can work with
no constraints. As will be described below, this technique
is simple to implement and has been used to solve many
optimization problems [41].

The authors in [33] implemented the Direct Search Method
for an IIR parametric equalizer. This heuristic algorithm is
described as in [34]: a random variation Γ in the range −γ ≤
Γ ≥ γ is added to a generic parameter vector c:

ĉi = ci · (1 + Γ) (26)

If the new parameters achieve a better cost function, they are
kept, otherwise they are rejected and another random variation
Γ is performed. The process continues until the demands have
been met. For our case, c is composed of the parameters of
the IIR filters fc, Q, V0,dB , Vs,dB .

C. Frequency Deconvolution

This method is based on deconvolution in the frequency
domain to estimate a room inverse that is optimal in the
Least Squares sense [32], i.e. the cost function is convex. The
optimal filters G(k) are computed in the frequency domain
by:

G(k) = [HH(k)H(k) + βFDI]−1HH(k)D(k) (27)

where I is the identity matrix, H is the Hermitian operator,
H(k) is the transfer function matrix of the impulse responses,
D(k) is the target frequency responses matrix and βFD is a
regularization term that avoids extreme peaks in the inverse
filters. The inverse FFT and then a circular shift of K are
computed, where K is the Fast Fourier Transform (FFT) size,
to achieve the filters in the time-domain. Conducting decon-
volution in the frequency domain speeds up the computation,
by taking advantage of the FFT algorithm.

This method is generally taken as a reference baseline
for FIR equalization of a room impulse response and its
solution is regarded as optimal. It must be noted that the
solution is such only in the Least Squares sense, therefore
by posing the problem in non-convex terms, as is done with
our proposed method, other solutions may exist that solve the
room equalization problem with similar or superior spectral
flatness.

V. EXPERIMENTS

To validate the proposed method, we perform experiments
with two scenarios: a regular room and a car cabin. The first
scenario is a rectangular room of dimension 4.0× 5.5× 3.0 m
and composed of 8 speakers circularly placed around two
seats, as shown in Fig. 4. The left seat is fitted with two
omnidirectional microphones simulating the listener’s ears.
The loudspeakers are mid-woofers with a frequency range
between 100 Hz and 15 kHz. Impulse responses were measured
using the exponential sine sweep method [42] with a sampling

Fig. 4: Top view of the room showing the placement of the
speakers and microphones.

S1

S7

S3

S6

S2 S4
S5

D

Fig. 5: Top view of the car’s cabin showing the placement
of the speakers and the microphones. D corresponds to the
mannequin head with microphones mounted in the ears.

frequency of 48 kHz, using a RME Madiface audio interface,
and a Dante-equipped amplification system.

The second scenario is a car cabin, an Alfa Romeo Giulia,
the same used for our previous works. Impulse responses were
measured using the sine sweep method [42] and measuring
them using Aurora plug-in [43] and a Kemar 45BA mannequin
placed on the driver’s seat. The sampling frequency equals
28.8 kHz and then oversampled to 48 kHz.

The two scenarios exhibit different characteristics. The room
employs only one type of loudspeakers arranged in a regular
pattern. These cover slightly more than two decades of the
audio range and the maximum excursion between minima and
maxima in the unequalized frequency responses never exceed
∼ 15 dB. On the contrary, the car is fitted with loudspeakers of
different size and bandwidth, arranged in a irregular fashion.
Furthermore, the car material absorption coefficient varies
largely. This results in a large excursion of the frequency
response (>20 dB) and a wider range to equalize, covering
almost three decades. The car cabin is, therefore, a more
challenging scenario.

Preliminary experiments were, thus, conducted in the room,
to gather more insights on the described equalization tech-
niques, to compare the DO methods discussed above and find
suitable hyperparameters. More specifically, we conducted a
hyperparameters search in the MIMO case and kept the best
architecture for all subsequent experiments. The experiments



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 8

include SISO, MIMO and multiple-input single-output (MISO)
cases for the room environment. After discussing these results
we turn our attention to the car cabin scenario, using all its
speakers and microphones (7×2 MIMO scenario). The desired
frequency response |Hdes| for our work is a 0 dB flat band in
the range 100 Hz-14 kHz for the room scenario, and 20 Hz-
14 kHz for the car scenario.

Both optimization and evaluation are conducted using a
third-octave band averaging for the frequency responses. This
choice is motivated by the human ear resolution which is not
very sensitive to narrow dips and notches. The number of
SOS’s (and, similarly, the bands used during scaling method
of the fc parameter) is equal to the number of third-octave
bands within the speaker’s operating frequency range. This
choice avoids the overlapping of filters: if they cancel or
concur to the same objective there is a waste of computational
resources. This makes for 22 SOS’s for each speaker in the
room scenario, and from 21 to 29 in the cabin scenario.
Moreover, each SOS’s is composed of three parameters (fc,
Q and V0) plus the overall gain (Vs), one per speaker. Thus,
the number of parameters to optimize is 536 and 529 for the
room and car cabin scenario, respectively. The ranges of the
other parameters, identical for all SOS’s, are: Qmin = 0.05,
Qmax = 5.0, V0,min,dB = −10 dB, V0,max,dB = 10 dB,
Vs,min,dB = −20 dB, Vs,max,dB = 20 dB.

Regarding the FD, we searched for the best regularization
term βFD following the strategy used in [31] and found that
a constant βFD = 10−4 works well for all the experiments.
Finally, for the DSM we set γ = 0.01.

The performance is evaluated using the averaged Mean
Square Error (MSE) and the standard deviation (σ) [31] in
the third-octave band and within the desired frequency range:

MSE =
1

M

M∑
m=1

(∑ωh
ω=ωl

(
|H̃m,1/3(ω)| − |Hdes,1/3(ω)|

)2
ωh − ωl

)
(28)

The average standard deviation σ is calculated as:

σ =
1

M

M∑
m=1

σm (29)

where σm is the standard deviation of m-th microphone:

σm =

√√√√ 1

ωh − ωl + 1

ωh∑
ω=ωl

(10 · log10|H̃m,1/3(ω)| −D)2

(30)

D =
1

ωh − ωl + 1

ωh∑
ω=ωl

(10 · log10|H̃m,1/3(ω)|) (31)

In addition, an online companion page with binaural audio
renderings of the equalized and non-equalized audio is pro-
vided1.

Before performing the optimization, pre-processing is per-
formed. To achieve the peaks of the impulsive responses at the
same time instant, the delay of each speaker is automatically

1https://gitlab.com/a3labPapers/CompanionFiles/-/tree/master/TASLP-
Multipoint Audio Equalization Parametric IIR Filter.

determined by finding the instant in which its direct sound
reaches the reference microphone. Then we determine the
offset gain to be added in the optimization, so as to normalize
the output frequency responses to 0 dB, by calculating the av-
erage one-third octave band difference between the frequency
response and the desired frequency response on the reference
microphone.

The number and dimension of the layers of a neural network
impact significantly the performance. Therefore, a preliminary
random hyperparameter search has been conducted to find a
suitable network architectures that have been, thus, retained
for all the experiments. In that regard, the BiasNet has two
main configuration dimensions: the number of layers and
their size, while the CFN and the CNN have more degrees
of freedom: the convolutional layer number, horizontal and
vertical size and pooling, the fully connected layer number and
size. The activation function used in the network was found to
be a less sensitive parameter. We adopted the sine activation
function, which was recently proposed in [44] and shows to be
well suited for optimization as it avoids local minima during
network optimization. This activation function, behaves well
for backpropagation as its derivatives do not vanish.

We tested 30 BiasNet configurations varying the number
of layers from 1 to 10 and the number of neurons from 16 to
4096. In Table II the configurations that have obtained the best
performance in preliminary tests are presented. For the CNN
and CFN we tested 1 or 2 convolutional layers: the number
of kernels equals 25 in the case of 1 convolutional layer, 48
and 24 or 100 and 10 in the case of 2 layers, respectively. The
dimension of the kernel for the first and second convolutional
layer equals M× 1 and 1 × S, respectively. The number of
hidden layers varied from 1 to 4, with the number of neurons
ranging from 32 to 1024.

In all the experiments the Adam optimizer [45], was
employed using a learning rate of 10−4, and parameters
β1 = 0.9, β2 = 0.999. The number of iterations was set to
10,000 and the weights and bias have been initialized with a
uniform distribution.

Deep optimization methods were implemented in Python us-
ing Tensorflow2 2.0.0, while DSM and FD were implemented
in Matlab. The experiments were performed using a machine
with an Intel i7 processor, 32 GB of RAM and an Nvidia Titan
GPU with 12 GB of dedicated RAM.

VI. RESULTS

A. Neural Architectures Comparison

We first consider the three neural networks (BiasNet, CFN
and CNN) for equalization in the room scenario. We conduct
experiments to find the best network hyperparameters, giving
priority to the MIMO case. The same networks will be tested
for SISO and MISO cases without a further hyperparameters
search, for the sake of conciseness. Results are reported in
Table II. As can be seen, many architectures in the test
provide similar performance (MSE ∼ 10−5), however the
difference in the number of trainable parameters is extremely

2www.tensorflow.org
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TABLE II
Preliminary test comparing several neural networks in the
MIMO configuration for the room scenario. The number of
neurons for each hidden layer is shown in round brackets in

the Layers column.

Architecture MSE Layers No. Learnable
Parameters

BiasNet #26 1.18 · 10−5 (1024, 512, 256, 128) 758,784
BiasNet #5 1.19 · 10−5 (256) 137,728
BiasNet #9 1.29 · 10−5 (128) 68,864

CFN 1.38 · 10−5 best CFN3 4,673,390
BiasNet #7 1.46 · 10−5 (256, 256, 256) 268,800

CNN 1.66 · 10−5 same as [31] 2,369,390

BiasNet #25 1.68 · 10−4 (16,32,64,128,256,512,
256,128,64,32,16) 357,792

BiasNet #8 4.24 · 10−4 (64) 34,432
BiasNet #10 6.36 · 10−4 (32) 17,216
BiasNet #4L 3.80 · 10−1 out only (with bias) 536

BiasNet #4 9.56 · 10−1 out only (with bias) 536
No EQ 0.377 - -

large. Taking the CNN as a reference, the best CFN achieves
slightly better performance at the cost of an order of magnitude
more parameters. On the other hand, the BiasNet excels in
the test with a significantly lower number of parameters.
Configuration #5, has only 17,664 trainable parameters, but
achieves almost identical performance as configuration #26
which is 40 times larger to train. However, there is a critical
number of trainable parameters under which the performance
decreases: configuration #9 is similar to #26, besides having
half the neurons in its only layer, but closely follows the
performance of #26. On the contrary, progressively halving
the neurons of the only layer (see configurations #8 and #10)
makes the performance fall. The worst case is achieved with
configuration #4 and #4L, i.e. with direct optimization, with
an equalization performance which is orders of magnitude
inferior to the best networks. In these preliminary tests we
also considered the `∞-norm as a replacement for the `2-norm
in the computation of the L1 loss term, however, the results
achieved with that loss were lower than those seen in Table
II. The best result was MSE = 1.1 · 10−2, σ = 0.38.

Although several networks obtain almost identical perfor-
mance in terms of performance, it is worth considering the
optimization time achieved by networks with very different
number of trainable parameters. The optimization time de-
pends on two factors: the number of iterations to reach a target
goal and the time required by each iteration. The latter, in our
case, mostly depends on: (a) the time required for computing
of the neural network graph and its backpropagation; (b)
the time required for computing the filter coefficients, and
simulating the room. When neural networks run on a GPU, the
latter can be quite expensive, especially for the MIMO case,
and adds a fixed cost that is not negligible, constraining the
overall optimization time to be of the order of several minutes,
with the current hardware and software implementation. For
this reason, it is worth aiming at a reduction of the number
of iterations to reach a desired goal (a target MSE or

3Note: the CFN was the best among all the tested CFN and is composed
of 2 convolutional layer of 100 and 10 kernels, respectively, 3 dense layers
of 64 neurons each.

0 2000 4000 6000 8000 10000
iterations

10-2

10-1

100

101

102

#26
#7
#5

Fig. 6: Minimization of the loss function for configurations
#26 (blue line), #7 (red line), #5 (green line) for MIMO
equalization in the room scenario. The optimization speedup is
directly related to the number of trainable parameters. It must
be noted that a lower loss does not mean a lower result as the
loss includes the regularization term and is computed as the
root of squares, while the MSE is computed as the average of
squared terms.

a substantial stop in the loss descent). We trace the loss
descent during optimization, plotted in Fig. 6. As we can see,
with BiasNet, the number of parameters directly relates to a
speedup of the optimization process.

For the reasons outlined above among the tested networks
we select the first in Table II, that provides the best perfor-
mance and fast optimization times.

B. Room Scenario

This section describes results for SISO, MISO and MIMO
equalization in the room scenario, considering the BiasNet and
the other comparative methods. The SISO results are presented
in Table III, showing that the neural approach achieves better
results than the baseline techniques by one or more orders of
magnitude, without the need for refining the neural network
size and hyperparameters. It is worth noting that the DSM
is unable to improve much on the non-equalized case given
the same number of iterations of the DO approach. The FD
approach achieves excellent performance, however its (convex)
optimum does not coincide with the (non-convex) optimal
solution found by the BiasNet, which is superior. Furthermore,
the computational cost of a 8192-th order FIR filter is very
high. Other methods have been considered and are reported
here, for the sake of completeness. Prony’s method allows
the optimization of IIR filters coefficients [11]. To the best
of our knowledge, it has not been extended to the MIMO
case, therefore we conducted tests in the SISO case only.
Another method that was proposed for the SISO case is the
neural end-to-end equalization from Ramı̀rez et al. [9]. Prony’s
method obtains MSE = 1.38 · 10−1 and σ = 1.65 with the
same number of SOS used for our method. Ramı̀rez’s method
obtains MSE = 1.29 · 10−1 and σ = 1.52.

MISO results are presented in Table IV. In this table we
report the results at the listening point used for optimization
(right microphone), as well as the average of the MSE
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TABLE III
Results for SISO equalization, room scenario.

Method MSE σ

BiasNet 1.32 · 10−5 1.58 · 10−2

FD8192 2.08 · 10−4 5.54 · 10−2

FD1024 9.74 · 10−3 4.36 · 10−1

DSM 3.43 · 10−2 9.92 · 10−1

No EQ 3.80 · 10−1 1.69

TABLE IV
Results for MISO equalization, room scenario evaluated at the
listening point used during optimization (Right Mic) and both

microphones (L+R Mic).

Method
Right Mic L+R Mic

MSE σ MSE σ

BiasNet 8.95 · 10−6 1.26 · 10−2 5.53 · 10−2 8.04 · 10−1

DSM 1.87 · 10−2 6.98 · 10−1 8.76 · 10−2 1.42
FD1024 5.26 · 10−2 3.55 · 10−1 1.63 · 10−1 9.05 · 10−1

FD8192 4.88 · 10−6 9.58 · 10−3 1.30 · 10−1 9.52 · 10−1

No EQ 3.92 · 10−1 1.91 3.77 · 10−1 1.99

calculated at both listening positions. As can be seen, the
performance obtained in the former case is extremely high,
showing that an increase in the number of loudspeakers
improves the equalization performance with respect to the
SISO case. However, considering only one listening position
for optimization provides a solution that does not work well
for the other listening position, therefore the performance of
the best methods in the table drops by at least 4 orders of
magnitude when evaluating the performance at both micro-
phones. It is worth noting that in this case the FD1024 method
is inferior to the IIR filters provided by DSM, while the FD8192

slightly improves over the proposed method. However, the
solution found by FD8192 suffers a more sever degradation
of performance when the error is computed at both listening
positions.

Finally, Table V shows that the proposed method scores
optimally. All methods fail to achieve results as good as those
computed for the MISO case (right microphone), since the
computed solution must fit two listening positions. This is
expected, since increasing the number of microphones M
increases the complexity of the problem.

As an example of the frequency response that these method
achieve, we show some of the magnitude responses in Fig. 8.
The difference between the unequalized response (red line)
and the equalized response (blue line) is evident. While the
unequalized spectrum exhibits an excursion of more than
10 dB, the equalized response is flat in the frequency range
covered by the loudspeakers (vertical dashed lines).

As discussed previously, the equalization process should
provide the desired spectral profile without altering the energy
provided by the individual speakers. Fig. 7 shows that the
energy of each speaker is preserved before and after the
equalization process.

TABLE V
Results for MIMO equalization, room scenario.

Method MSE σ

BiasNet 1.18 · 10−5 1.40 · 10−2

DSM 2.54 · 10−2 7.18 · 10−1

FD1024 4.57 · 10−2 4.36 · 10−1

FD8192 1.38 · 10−5 1.57 · 10−2

No EQ 3.77 · 10−1 1.99

1 2 3 4 5 6 7 8
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(a)

1 2 3 4 5 6 7
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(b)

Fig. 7: Bar graph of energy ratio after (r̂) and before r the
optimization for the room scenario (a) and the car scenario (b).
Speakers 5 and 6 in (b) are woofer and subwoofer, therefore
have larger energy.

C. Car Scenario

Results for the car cabin scenario are reported in Table VI.
Since the car provides a more challenging scenario, the MSE
are higher than that of the room and the DSM fails to provide
a decent equalization performance. The FD method does not
match the performance achieved by the proposed method,
which as in the previous experiments obtains the best results.

In Fig. 9 one third octave band frequency responses are
presented: at high frequencies the amplitude responses are
flat, both for the overlapping of the loudspeakers frequency
responses and because the network optimizes in this range
only two loudspeakers out of the seven installed in the car.
At low frequencies the network has not been able to optimize
as well as at high frequencies, indeed it presents a maximum
deviation of 5 dB around 40 Hz.

This scenario makes a more challenging testbed for our
method: the loudspeakers are not arranged in a regular pattern,
their frequency ranges are different and the internal cabin
volume is irregular. Despite these difficulties, the equalization

TABLE VI
Results for MIMO equalization, car cabin scenario.

Method MSE σ

BiasNet 5.74 · 10−3 1.83 · 10−1

DSM 3.62 2.76
FD1024 4.22 · 10−2 8.15 · 10−1

FD8192 1.84 · 10−2 5.02 · 10−1

No Eq 13.47 3.16
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Fig. 8: One-third octave band magnitude response of (a) left and (b) right microphone in the room scenario. Green line is the
unequalized frequency response, the blue line is the equalized one when the proposed method is used to optimized Parametric
IIR filters, red line is the equalized frequency response when FIR filters optimized with the FD are used and the black dotted
lines refer to the minimum and maximum frequency to be equalized.
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Fig. 9: One-third octave band magnitude response of the measured signal at the reference microphones: (a) left and (b) right
microphone in the car’s cabin scenario. Green line is the unequalized frequency response, the blue line is the equalized one
when the proposed method is used to optimized Parametric IIR filters, red line is the equalized frequency response when
FIR filters optimized with the FD are used and the black dotted lines refer to the minimum and maximum frequency to be
equalized.

is superior to the FD method, which is usually considered the
optimal method for room equalization, and the energy of the
loudspeakers signals is preserved.

VII. REMARKS

Our experiments show that the proposed method is compa-
rable or slightly better than the FD8192 method in terms of
performance, however, the computational cost and the phase
properties of the two differ.

A. Computational Cost
The computational cost of each of the S equalizers is 16383

floating point operations per sample in the FD8192 case. The

IIR equalizers are composed of 22 SOS’s in the room scenario
and 29 SOS’s in the car scenario, totalling 198 and 261
operations per sample respectively, which means a reduction
of the cost of nearly two orders of magnitude. The cost grows
further with an increase of the loudspeakers, e.g. in the MIMO
room scenario the proposed method requires 1584 operations
against 131064 operations for the FD8192.

Clearly, it must be remarked that the FD method allows
to design shorter filters. With FIR filters of order 1024 the
performance is significantly lower but still acceptable, yielding
an improvement of approximately one order of magnitude
with respect to the non equalized case. However, the number
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(a) Left microphone (b) Right microphone

Fig. 10: One-third octave band magnitude response of the measured signal at the reference microphones: (a) left and (b) right
microphone in the room scenario. The green line is the equalized magnitude response depicted in Fig. 8 which is computed
by filtering a discrete-time impulse and transforming to the time domain. The blue line is simulated using white noise as
input, while the red line is measured in the real scenario using white noise. Please note: the magnitude range is only 2 dB to
emphasize the small differences.

of operations per filter is still significantly larger than the
proposed method (2047 operations per sample).

B. Real-World Validation

The evaluations provided above are referred to a simulated
room, employing the RIRs. However, it is worth validating the
experiments in the real scenario, to assess whether the simu-
lations are accurate enough and the results are reproducible in
a real environment.

The IIR filters designed for the room scenario in the
MIMO case are taken to the real room and applied for
equalization. More specifically, we load the designed IIR filters
on a Simulink4 patch to preprocess the signal and feed the
loudspeakers. The hardware setup is the same as described
in Section V. We measure the frequency response of the
environment by reproducing white noise and compare these
to the simulated magnitude responses obtained above. These
are shown in Fig. 10, where the red line is the measured one
and the green line is the ideal one (obtained by filtering a
discrete-time impulse sequence). The observed deviation is at
most 2 dB, but is inherent to the use of white noise as the
input signal. Indeed, by computing the magnitude response
of the room using white noise in the simulated computer
environment, we obtain similarly random deviations from the
flat band (blue line). Therefore we can conclude that the IIR
filters designed in the simulated environment are suitable for
the real scenario.

VIII. CONCLUSIONS

In this paper, we described an IIR parametric equalizer
design for automatic room equalization at multiple listening
points, exploiting a Deep Optimization method based on a
spectral loss function and a regularization term which avoids
energy unbalance between the speakers. The error is backprop-
agated to update the neural network weights. We also intro-
duced BiasNet, a novel neural network architecture specifically

4https://www.mathworks.com/products/simulink.html

designed for Deep Optimization that requires no input. Its
behavior is compared to other neural network architectures.
We also compared BiasNet with other two baseline techniques,
one based on FIR filters for frequency deconvolution and
another based on a iterative approach for IIR filter design.
Compared to the baseline techniques, our method achieves
better performance at a remarkably lower computational cost.
We also tested the designed IIR filters in a real scenario,
showing almost no difference to the simulated one.

The proposed method works offline and assumes a linear
environment, therefore other factors, such as the movement of
the listening positions are not considered. Adaptive filtering
techniques could be introduced to provide online equalization
starting from the filters obtained with the proposed approach.
In the future we plan to perform subjective tests to assess the
validity of the approach and devise other metrics based on
psychoacoustics, for the optimization.

Further studies will address the use of end-to-end deep
learning techniques for audio equalization, with an analysis
of the real-time factor on an embedded system with tensor
processing units (TPU) and general purpose processors. An-
other aspect worth investigating is the subjective response to
these equalization systems, which will be done by conducting
listening tests.
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