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Abstract: Strawberry is the most cultivated berry fruit globally and it is really appreciated by
consumers because of its characteristics, mainly bioactive compounds with antioxidant properties.
During the breeding process, it is important to assess the quality characteristics of the fruits for a
better selection of the material, but the conventional approaches involve long and destructive lab
techniques. Near infrared spectroscopy (NIR) could be considered a valid alternative for speeding up
the breeding process and is not destructive. In this study, a total of 216 strawberry fruits belonging to
four different cultivars have been collected and analyzed with conventional lab analysis and NIR
spectroscopy. In detail, soluble solid content, acidity, vitamin C, anthocyanin, and phenolic acid have
been determined. Partial least squares discriminant analysis (PLS-DA) models have been developed
to classify strawberry fruits belonging to the four genotypes according to their quality and nutritional
properties. NIR spectroscopy could be considered a valid non-destructive phenotyping method for
monitoring the nutritional parameters of the fruit and ensuring the fruit quality, speeding up the
breeding program.

Keywords: phenotyping; breeding; classification; PLS-DA; data fusion; non-destructive

1. Introduction

Strawberries are one of the most widely cultivated berry fruit globally, with an annual
production of 13.3 million tons in an area spanning 522,527 hectares [1]. The expectations
of consumers regarding their health are closely tied to the inherent characteristics of
strawberries, particularly the presence of bioactive compounds that have a positive impact
on overall wellbeing. Numerous epidemiological studies have consistently demonstrated
that a diet rich in fruits and vegetables is often associated with a reduced risk of various
chronic ailments, including obesity, infections, cancer, and cardiovascular and neurological
diseases [2,3]. In the realm of fruits, berries, including strawberries, play a significant role
due to their high phytochemical content [4–6]. Extensive scientific research has confirmed
that strawberries contain bioactive substances with potent antioxidant properties, such as
ascorbic acid, polyphenolic compounds (ellagic acid and ferulic acid), as well as various
flavonoids (such as anthocyanins, catechins, and phenolic acids). These compounds have
nutraceutical effects, meaning they offer beneficial and protective properties for the human
body [7–9].

Conventional approaches for assessing the quality characteristics of fruits typically
involve destructive methods. While these methods provide clear and reliable information,
they have limitations in terms of analyzing many products due to the time and cost
involved. Destructive techniques are generally applied to a representative sample rather
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than the entire production batch. Numerous studies have described destructive methods
for measuring these parameters. For instance, sweetness is commonly evaluated using
a manual or automatic refractometer, which determines the soluble solids content (SSC)
expressed in Brix units [7,10]. The measurement of bioactive compounds like vitamins and
polyphenols often involves techniques such as mass spectrometry, gas chromatography,
and liquid chromatography [11]. In recent years, there has been growing interest among
researchers in non-destructive and rapid analytical technologies, particularly those based
on optical properties [11–13]. These alternative approaches aim to overcome the limitations
of destructive methods and enable real-time evaluation and analysis of a broader range of
samples, requiring minimal sample preparation [14]. Nondestructive methods usually take
less time, are not harmful (no need for solvents or reactants) and have the additional benefit
of not changing the fruit qualities during measurement. The immediate advantage is that
such methods may be used to grade each fruit and vegetable according to their quality
before being sold. Grading individual items is crucial for satisfying customer expectations
since fruit and vegetable quality parameters exhibit a high degree of inherent variability.
Since ancient times, color and size grading by visual examination has been used to both
exclude items that would not satisfy the minimum standards for quality and to increase
consistency. Over time, this assessment has been mechanized, and producers, cooperatives,
and packing facilities all around the world are now utilizing high-speed grading lines
that use sensors for exterior quality parameters including color, size, and appearance.
New and intriguing marketing opportunities for horticultural goods have emerged with
the development of nondestructive ways to quantify internal quality qualities, such as
textural, nutritional properties or flavor, provided, of course, that the traits they measure are
comparable to their human analogs. To improve post-harvest procedures, nondestructive
methods are also highly helpful for creating models of how quality characteristics change
during post-harvest storage. The inter-fruit variability and the time impact may be clearly
distinguished since the same fruit can be watched throughout time. This significantly
enhances the estimate of the kinetic parameters [15].

In recent years, several optical methodologies have succeed in assessing quality param-
eters like firmness, acidity, and soluble solids [16–20]. One particularly valuable alternative
is near-infrared spectroscopy (NIR), which utilizes the infrared region of the electromagnetic
spectrum to non-destructively examine the chemical and physical properties of samples.
Spectroscopic techniques generate datasets containing vast amounts of data and infor-
mation, which can effectively be analyzed using multivariate data analysis techniques or
chemometrics. In particular, chemometrics help in managing common spectroscopic effects
like peak shifts, scattering, interfering signals and baseline shifts [21]. The combination
(fusion) of outputs from different instrumental techniques has gained great interest since it
has the potential to increase the performance of categorization or prediction of food speci-
fications in comparison to utilizing a single analytical approach. Although encouraging
findings have been found in the authenticity and quality evaluation of food and drink,
combining data from various methodologies is not simple and is an important task for
chemometricians [22].

Recent studies have been conducted to assess the sensory and nutritional quality of
strawberries using near-infrared spectroscopy. Our research group has a good experience
on the use of NIR spectroscopy for the evaluation of strawberry fruits quality: in [16], NIR
spectroscopy has been used to evaluate the possibility of developing good PLS models for
the prediction of SSC, titratable acidity, firmness, and color. Good results were obtained
only for firmness and SSC parameters, while the models obtained for the prediction of
color and titratable acidity were not acceptable for screening quality control. In [20], sound
and infected (by B. cinerea spores) strawberry fruits were analyzed by NIR spectroscopy.
The aim of the study was to demonstrate that there was a high correlation between SSC
and B. cinerea susceptibility and investigate the possibility of early detection of B. cinerea.
Furthermore, the developed PLS regression model for the prediction of SSC content also
confirmed the results of our previous study. NIR spectroscopy has also been used by other
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authors for predicting internal quality and discriminating among strawberry fruits from
different production systems [23]. Instead, Andersen et al. used Raman spectroscopy to
assess the chemical composition of strawberries. The total soluble solid content, fructose,
glucose, sum of sugars, citric acid and sum of acids was predicted [24]. Other authors have
evaluated the possibility of using NIR and ultraviolet-visible (UV-VIS) spectroscopy for
predicting the number of days under storage of strawberry samples and as consequence
their shelf-life [25]. The quality characteristics and consumer acceptability of strawberries
were also evaluated by [26]. Quality depends on the ripening stages of the strawberry and
pelargodinin-3-glucoside is the main anthocyanin that changes during postharvest distri-
bution. Hyperspectral imaging technology (HSI), in the range of VIS-NIR and shortwave
infrared (SWIR) light, was used to assess its content according to two types of harvest
maturity. However, these studies typically suffer from limitations such as a small number
of selected fruits, which can diminish the accuracy of the predictive models developed [27].
Furthermore, only a few strawberry cultivars are usually tested, sometimes even just one,
and they often involve different sample treatments (e.g., varying pesticide treatments,
cultivation systems, and post-harvest storage conditions). Additionally, multiple quality
parameters are simultaneously considered [23,28,29]. It is to be noted that the mentioned
studies have used regression algorithms for the prediction of the parameters of interest of
strawberry samples.

To the best of our knowledge, the use of classification algorithms in the literature is
mainly used for qualitative characteristics but it was never used as a phenotyping tool
for the rapid assessment of the global nutritional and qualitative aspects of strawberry
cultivars. The great novelty of this study is related to the application of NIR as a non-
destructive tool for the evaluation of strawberry nutritional quality, and the use of data
fusion techniques to determine the feasibility of developing good classification model for
assessing the quality of strawberry fruits. To this aim, important qualitative characteristics
of four strawberry genotypes, including soluble solids, vitamin C, anthocyanins, and
phenolic acids content, have been assessed by using traditional destructive methods. Partial
least squares discriminant analysis (PLS-DA) has been used to develop a model that could
classify the four selected genotypes according to the quality and nutritional parameters. The
introduction of non-destructive phenotyping methods enables the monitoring of quality
parameters, ensures fruit quality prior to sale, and facilitates the development of predictive
models to expedite the selection process.

2. Materials and Methods
2.1. Plant Material and Experimental Plan

The assessment of qualitative parameters was conducted on four different strawberry
cultivars: “Cristina”, “Romina”, “Sibilla”, and “Silvia”. These strawberries were grown
in the 2019–2020 season at the Didactic and Experimental Farm Center for Agricultural
Research “P. Rosati” in Agugliano, Italy (coordinates: 43◦320′ N–13◦220′ E). The cultivation
method followed the typical practices of the Marche Region. Cold-stored “A” type plants
were used, and they were planted in open fields at the end of July. Each genotype consisted
of a total of 32 plants. A selection of 27 fruits was made from each genotype, which were
then sent to the laboratory for analysis. The fruits were collected in two separate harvests,
resulting in a total of 54 fruits per genotype. Non-destructive NIR spectroscopy was used
to analyze each fresh fruit individually. Subsequently, the fruits were frozen individually
and analyzed after a few days to determine their soluble solids content, titratable acidity,
vitamin C content, anthocyanin content, and phenolic acids content.

2.2. Soluble Solids Content Analysis

A digital refractometer (Palette PR101, Atago, Tokyo, Japan) with automatic tempera-
ture compensation was used to measure the soluble solids content (SSC) of each fruit. The
frozen fruits were individually thawed before this analysis, which had been conducted
after they had been examined by NIR. A few drops of the juice were then applied to the
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refractometer slide after they were squeezed to remove the juice. Each fruit ◦Brix value was
measured twice [16].

2.3. Titratable Acidity Analysis

The automatic titrator HI 84532 Fruit Juice Titratable Acidity (Hanna Instruments,
Woonsocket, RI, USA) was used to quantify the titratable acidity (TA). A plastic beaker
was filled with 5 mL of the previously acquired juice and 45 mL of ultrapure water. The
manufacturer-supplied titrating solution was used by the equipment to automatically
titrate this solution until pH 8 was reached. Citric acid percentage (% citric acid) is used to
measure acidity [30].

2.4. Methanolic Extraction

The fruit extracts were prepared following the method described by Diamanti et al. [31].
Initially, 2 g of fruits were homogenized using an Ultraturrax T25 homogenizer (Janke and
Kunkel, IKA Labortechnik, Staufen, Denmark) in 4 mL of methanol. The homogenization
process was carried out for 30 min in a dark environment. Afterward, the suspension was
subjected to centrifugation at 4500 rpm for 10 min at a temperature of 4 ◦C. The resulting
supernatant was collected, while the pellet containing the fruit remnants was subjected to a
second extraction. For the second extraction, another 4 mL of methanol was added to the
pellet, and the procedure was repeated. The second supernatant obtained was combined
with the first supernatant. The combined supernatants were then immediately injected into
the High-Performance Liquid Chromatography (HPLC) system for further analysis.

2.5. Vitamin C Extraction

To extract Vitamin C from the fruits, an ultrasound-assisted extraction method was
employed, following the protocol described by Tulipani et al. [32]. The extraction process
involved the use of an ultrasound bath (Bioblock/ELMA 88155, Stuttgart, Germany),
which generates ultrasound waves within a water-filled tank using high-frequency electric
current provided by a generator. This method enhances the dissolution of solutes in
specific solvents, thereby expediting the extraction process. For the analysis, 1 g of frozen
strawberries was homogenized with a 4 mL portion of the extraction buffer solution, which
contained 5% metaphosphoric acid and 1 mM DTPA. The homogenization was carried
out for 5 min using sonication. Subsequently, the mixture underwent centrifugation at
4000 rpm for 10 min at a temperature of 4 ◦C. The resulting supernatants from each sample
were then filtered using a 0.45 µm pore size filter and transferred to a vial for further
analysis on an HPLC system.

2.6. Determination of Vitamin C Content

The method by Helsper et al. [33] outlined for measuring vitamin C content was used.
The extraction process was followed by HPLC examination of the extracts. The HPLC
system included a Jasco PU-2089 plus controller, a Jasco UV-2070 plus ultraviolet (UV)
detector, set at an absorbance of 260 nm, and a Jasco AS-4050 autosampler, all from Jasco
in Easton, Maryland, in the United States. A Phenomenex 4.0 × 3.0 mm C18 ODS guard
column (Phenomenex, Torrance, CA, USA) was utilized to protect the Ascentis Express
C18 150 × 4.6 mm HPLC column (Supelco, Bellefonte, PA, USA). The gradient program
used two mobile phases, A (50 mM phosphate buffer, pH 3.2) and B (acetonitrile), with A
present at 100% for the first 6 min, 50% for the next 2 min, and 100% for the remaining time.
The amount of vitamin C in strawberries was measured using a calibration curve created
by executing standard vitamin C concentrations. The results were represented as mg of
vitamin C per 100 g of fresh weight (FW).

2.7. Determination of Phenolic Acid Content

In accordance with the procedures outlined by Schieber et al. [34] and Fredericks
et al. [35], the analysis of phenolic acids was carried out. A Jasco PU-2089 plus controller, a
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Jasco UV-2070 plus ultraviolet (UV) detector, and a Jasco AS-4050 autosampler made up
the HPLC system used for the analysis. Jasco is based in Easton, Maryland. The column
used was an Aqua Luna C18 250 4.6 mm (Phenomenex, Torrance, CA, USA) protected by a
Phenomenex 4.0 3.0 mm C18 ODS guard column (Phenomenex, Torrance, CA, USA). The
HPLC UV detector was set at a wavelength of 320 nm. Two mobile phases made up the
gradient program: A (2% acetic acid) and B (1:50:49 acetic acid, acetonitrile, and water).
The gradient program began with 55% A and 45% B for 50 min, then 100% B for 10 min,
and finally a decline to 10% B until the completion of the run. Calibration curves were
built using external standards of chlorogenic acid, caffeic acid, and ellagic acid for the
quantification of phenolic acid concentration. The results were reported in milligrams (mg)
of phenolic acids per 100 g of fresh-weight strawberries (mg/100 g FW).

2.8. Determination of Anthocyanin Content

The method described by Fredericks et al. [35] was used to analyze the anthocyanin
content. A Jasco PU-2089 plus controller, a Jasco UV-2070 plus ultraviolet (UV) detector,
and a Jasco AS-4050 autosampler made up the HPLC system utilized for the analysis. Jasco
is based in Easton, Maryland, in the United States. The chemicals were separated on a
Phenomenex Aqua Luna C18 (2) reverse-phase column (250 4.6 mm) with 5 µm particle
size. For column protection, a Phenomenex 4.0 mm × 3.0 mm C18 ODS guard column was
used. A wavelength of 520 nm was used to monitor the chemicals. Two mobile phases—A
(formic acid, acetonitrile, and water in a ratio of 10:3:87) and B (formic acid, acetonitrile,
and water in a ratio of 10:50:40)—made up the gradient program. The gradient program
started at 75% A for 10 min, dropped to 69% A for 5 min, then 60% A for another 5 min,
and finally resumed at 50% A for 10 min. Finally, 90% A for 16 min brought the session to a
close. Calibration curves for the determination of anthocyanin content were created using
cyanidin-3-glucoside, pelargonidin-3-glucoside, and pelargonidin-3-rutinoside as external
standards. The results were expressed as milligrams (mg) per 100 g of fresh strawberries.

2.9. NIR Analysis

In this work, the analysis was carried out using a Fourier Transform (FT) NIR spec-
trophotometer (FT-NIR mod. Nicolet iS10, Thermo Scientific™, Waltham, MA, USA),
equipped with an integrative sphere (Smart NIR Integrating Sphere, Thermo Scientific™,
Waltham, MA, USA). The spectra were collected in the 10,000 to 4000 cm−1 region of the
near-infrared spectrum. To minimize the moisture content in the instrument throughout the
assessment and lower the variability of the spectral analysis, the analysis was conducted
utilizing a constant flow of nitrogen. Each spectrum was captured with an average of
32 scans at 4 cm−1 resolution, yielding 1557 absorbance data. To reflect the whole elec-
tromagnetic signal and minimize variations caused by the environment rather than the
sample, the background spectrum was examined hourly.

As soon as the fruit was harvested and before it was frozen, it was examined twice.
The fruit was spun 180 degrees for the second measurement after the initial measure-
ment was made at a position along its equator. The final dataset consists of 216 samples
(432 observations × 1557 wavenumbers).

2.10. ANOVA

To assess whether there were statistically significant differences among the cultivars
for the various qualitative parameters (SSC, TA, vitamin C, anthocyanins, and phenolic
acids content), one-way analysis of variance (ANOVA) was conducted at a confidence level
of 95%. After performing the ANOVA, Tukey’s post hoc test was applied to determine
significant differences among the groups. This post hoc test compares all possible pairs of
means to identify which groups differ from each other. Differences with a p-value less than
0.05 were considered statistically significant. The post hoc test is based on the studentized
range distribution and is commonly used for multiple pairwise comparisons following an
ANOVA analysis.
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2.11. Multivariate Data Analysis

As a first step, principal component analysis (PCA) was used as explorative method for
reducing the dimensionality of the dataset and investigating correlations between variables
and similarities between samples [36]. PCA was computed separately on the two different
datasets, i.e., the lab analysis data (D-Lab) with size 432 × 5 and the NIR spectral data
(D-NIR) with size 432 × 1557. Before model computation, missing data were removed
from D-Lab dataset and consequently some entries/samples were also deleted from D-
NIR dataset. The resulting dataset consists of 394 observations × 1557 wavenumbers
(197 samples). The presence of missing data is due to physical and experimental issues
that happened during the fruit analyses (low amount of fruit for the analysis of all the
parameters, problems during the extraction/analyses of samples in the laboratory, the
impossibility of repeating the missing analyses in this single-fruit study).

In order to eliminate unwanted physical phenomena from the D-NIR dataset, several
preprocessing techniques were used, including Standard Normal Variate (SNV), Multi-
plicative Scatter Correction (MSC), first and second derivative spectra (Savitzky-Golay
filter [37] with 9 or 13 smoothing points window and 2nd order polynomial degree), and
a combination of the previous ones [21]. Finally, before any analysis, the spectra were
always mean centered. Additionally, only the range between 9000 and 4000 cm−1 was
included in the analysis to weed out variables that had too much noise and did not provide
useful data. Prior to data analysis, the D-Lab dataset’s raw data were solely autoscaled.
For each cultivar, confidence ellipses that used the mean score values as the center and
the standard deviation of each variability direction as the radius were also computed to
provide a clearer picture. Finally, loadings were examined to find the substances connected
to sample separation in the PCA space.

Both low-level and mid-level data fusion approaches were adopted for the joint
analysis of strawberry samples using the NIR data and lab analysis information. In the low-
level strategy the fusion consists of concatenating column-wise the pretreated datasets and
then analyzing the resulting dataset as one, having as many rows as the samples analyzed
and several columns as the sum of the spectral wavenumbers and D-Lab columns. This new
dataset consisted of variables with different measuring scales, so in order to compensate
the variability of the different analytical techniques it was additionally normalized [22].
Block-scaling was used to prevent one block from being dominant over the other (data
blocks are dimensionally unbalanced). It works by equalizing variance, so each block has
variance equal to one, but it preserves the variance between variables inside each block.
At last, mean centering was applied. Instead in the mid-level strategy, fusion occurs by
concatenating features extracted from the different blocks. In this study the fused dataset
(D-fused) was assembled by using five PCA scores from D-Lab and five PCA scores from
D-NIR. To avoid different magnitudes between data blocks, autoscaling was used as data
preprocessing for the fused data set.

Then, classification models were calculated both on the spectral and fused data sets.
Partial least squares-discriminant analysis (PLS-DA) was used as a classification technique.
It is based on partial least squares (PLS) algorithm and works by evaluating the relationship
between a dummy matrix (or vector) reporting the class membership information as de-
pendent Y block and an independent (spectral) matrix (X) [38,39]. In our study, strawberry
fruits were divided into different categories based on the results (similarities/dissimilarities)
of the PCA study and codification was 1/0 (belonging/not belonging to the category). Uti-
lizing venetian blind-cross validation (5 segments) and an outside test set, all classification
models were verified. Using the duplex approach, the dataset was divided into training
and test sets [40]. For both the calibration and validation sets, our technique ensures a
representative spanning of the entire data variability. We further verified by performing an
exploratory data analysis that both sets fully cover the variability domain.

The ROC (receiver operating characteristic) curve was employed as an evaluation tool
to assess the effectiveness of the generated model and its capacity to categorize unclassified
samples. The ROC curve, which measures how well a model can distinguish between
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classes, is a probability curve. The true positive rate (TPR) and false positive rate (FPR) are
represented on the y-axis of the ROC curve, which is a graph. The true positive rate (TPR)
and False Positive Rate (FPR) are represented on the y-axis and x-axis, respectively, of the
ROC curve.

It shows the performance of a classification model at all classification thresholds and
defying a threshold limit on the y variable when a binary classification system is used to
drive the decision. An excellent model has ROC near to the 1 which means good ability
to recognize the samples belonging to the class and to reject the samples not belonging to
the class.

Matlab (ver. R2022a, The MathWorks, Natick, MA, USA) and in-house functions based
on existing algorithms were used for all data analysis.

3. Results and Discussion

This section is articulated in four parts. In the first one, the univariate ANOVA results
are reported. In the second part a description of exploratory analysis results is presented
for the separate datasets, namely, D-Lab and D-NIR datasets. In the third part, the fused
dataset is considered, and the application of the mid-level approach is described in detail.
In the last part the related classification models are reported.

3.1. ANOVA Results

The evaluation of SSC and TA revealed significant differences among the studied
genotypes. For the first parameter, the cultivar “Sibilla” showed the highest SSC in fruits,
with a value of 7.66 ◦Brix, followed by “Cristina” with 7.38 ◦Brix, which appeared to
be significantly similar (Figure 1a). Then, “Romina” with 6.15 ◦Brix and “Silvia” with
4.83 ◦Brix which showed a significantly lower fruit sugar content. Regarding fruit TA, the
higher value was registered again by “Sibilla” with 0.75%, like “Cristina” (0.68%). Also
in this case, the lower values were registered by fruits of “Silvia” (0.65%) and “Romina”
(0.48%), which resulted significantly lower than all the other cultivars (Figure 1b).

Figure 1. (a) Results of fruit soluble solids content (SSC) and (b) titratable acidity (TA) for the
4 studied cultivars. Data are expressed as means± standard error. Different lowercase letters indicate
significant differences for p < 0.05 (Tukey test).

3.1.1. Vitamin C

HPLC analysis of fruit vitamin C content divided the genotypes in two main groups,
according to the amount of this compound: “Romina” and “Sibilla” showed similar and
significantly higher content of vitamin C (31.84 and 31.33 mg/100 g, respectively) than
“Silvia” and “Cristina” (15.64 and 14.31 mg/100 g, respectively) (Figure 2).
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Figure 2. Results of fruit vitamin C content for the 4 studied cultivars. Data are expressed as means
± standard error. Different lowercase letters indicate significant differences at p < 0.05 (Tukey test).

3.1.2. Anthocyanin and Phenolic Acids

The main compounds belonging to the class of polyphenols that were analyzed in this
study were anthocyanin and the phenolic acids. The HPLC analysis highlighted different
trends for the two classes of compounds. Regarding anthocyanins, “Romina” significantly
showed the highest fruit content with 93.81 mg/100 g, followed by “Silvia” (61 mg/100 g),
“Sibilla” (48.98 mg/100 g), and “Cristina” (38.98 mg/100 g), which showed a similar result
(Figure 3). For the phenolic acids content, fruits of “Sibilla” and “Silvia” showed signifi-
cantly higher content (31.35 mg/100 g and 29.17 mg/100 g, respectively), while “Romina”
and “Cristina” fruits registered similar values (21.03 mg/100 g and 19.16 mg/100 g, respec-
tively), but significantly lower than the other two cultivars (Figure 3).

Figure 3. Results of fruit anthocyanins (ACY) and phenolic acids (PHEN. AC.) content for the four
studied cultivars. Data are expressed as means ± standard error. Different lowercase letters indicate
significant differences for ACY at p < 0.05 (Tukey test). Different uppercase letters indicate significant
differences for PHEN. AC. at p < 0.05 (Tukey test).
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3.2. Spectra

Figure 4a reports the average raw spectra of the four cultivars considered in this
study. In general, the absorbance spectra of the four cultivars were relatively similar and
featureless, except for three major and broad absorption bands highlighted with dotted lines
in the figure. The most deviating cultivar seems to be “Silvia”, while “Romina” was the
cultivar with highest peak at 6860 cm−1 and “Sibilla” was the cultivar with lowest peak at
5188 cm−1. It is important to take into consideration that water constitutes about 80–90% of
fruit and vegetables; consequently, the influence of water absorbance is very high [41] with
broad bands having centers at approximately 970, 1200, 1450, 1950, and 2250 nm [42]. The
second major component is carbohydrates. In general, NIR absorption bands are relatively
broad and overlapping, and the assignment of the raw spectra is usually complex, beyond
noting features related to water. What allows the use of NIRS over infrared spectroscopy is
the development of chemometrics, which permitted the extraction of relevant data out of
the spectra [43].

Figure 4. (a) Average raw spectra of the four cultivars with important wavenumbers marked with
dotted lines and (b) average pretreated spectra of the four cultivars using first derivative (Savitzky–
Golay filter, 21 smoothing points, 2nd polynomial order). The most important wavenumbers are
marked with red dots.

In fact, peak resolution could significantly improve with the use of spectral pretreat-
ment. For this reason, spectra have been pretreated using a first derivative (Savitzky–Golay
filter with 9 smoothing points window and second order polynomial degree) to reduce
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random noise (Figure 4b). Even if the absorption peaks are sharper and the pretreatment
allows to better highlight the spectral differences, the interpretation of first derivative
spectra is more difficult than of the raw spectra. In fact, a peak of maximum absorbance on
the original spectra corresponds to zero in the 1st derivative [44], as a consequence zero
points corresponding to peak in the raw spectra were selected in Figure 4b. The band at
5188 cm−1 (3) is related to the OH bonds and is higher for Cristina and Silvia cultivars than
for Sibilla and Romina [42,45]. The band at 6860 cm−1 (2) is higher for Silvia and Romina
and is assigned to O-H and C-H combinations, related to qualitative parameters, such as
the soluble solids content or the titratable acidity [45]. Lastly, the peak at 8580 cm−1 (1) is
in the region of the second overtone of CH.

3.3. Principal Component Analysis

PCA was computed both on D-NIR and D-lab datasets separately. D-NIR data were
pretreated using a first derivative (Savitzky–Golay filter with nine smoothing points win-
dow and second order polynomial degree) to reduce random noise. The first 3 PCs account
for 93.26% of the total variance and the results are reported in Figure 5. It is not possible
to see a clear separation among the four cultivars. A partial trend of separation was only
observed between “Cristina” and “Silvia” (negative PC2 scores) vs. “Romina” and “Sibilla”
(positive PC2 scores) on the scores plot of the PC1, PC2, and PC3 (data not shown). To deter-
mine the most significant wavenumbers responsible for this separation trend, the associated
loading plot was examined. The band at 6850 cm−1 is related to the OH combination of
water [41,45], as was previously noted in our earlier study [20], while the band at 5180 cm−1

is connected to the overtone of CH and OH bonds [46]. Since fruit and vegetables include
between 80 and 90 percent water and O-H water bands dominate the NIR spectrum [41],
carbohydrates defined by CH bonds make up the second main component.

Figure 5. PCA score plot of PC1 vs. PC2 computed on D-NIR dataset (a) with standard error ellipses
for each cultivar (b). PCA loading plot of the two first PCs (c).

D-Lab data were autoscaled before PCA computation and the results are reported in
Figure 6. All 5 PCs retain part of the total variance, in detail PC1 = 26.4%, PC2 = 22.3%,
PC3 = 19.7%, PC4 = 18.4%, and PC5 = 13.3%. As for D-NIR dataset, the four cultivars
slightly overlap, and a partial trend of separation can only be observed on scores plot
of PC2 vs. PC3. “Sibilla” and “Romina” cultivars are in the positive part of PC2 while
“Silvia” and “Cristina” in the negative part. This trend is clearer by looking at Figure 6c
which reports the standard error ellipses for each cultivar. The results are in line with
our findings, particularly regarding the vitamin C content (ANOVA results Section 3.1).
By the investigation of the loadings, it can be observed that vitamin C, anthocyanin and
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phenolic acids are mainly related to PC2; phenolic acid and anthocyanin are also described
by (positive or negative, respectively) PC3 and SSC; and acidity contents by PC1.

Figure 6. PCA score plots of PC1 vs. PC2 (a) and PC2 vs. PC3 (b) computed on D-Lab dataset.
(c) PCA score plot of PC2 vs. PC3 with standard error ellipses for each cultivar. (d) PCA loading plot
of the three first PCs.

3.4. Low- and Mid-Level Data Fusion

Since the two datasets are of different magnitude (size of datasets) the mid-level
approach was preferred for partially overcoming the possible predominance of one data
source over the other. In any case (for sake of clarity) the results of the low-level approach
based on simple concatenation and scaling of the variables of different nature are reported
in Figure S1 of the supplementary material. As for D-NIR and D-LAB PCAs, the four
strawberry cultivars partly overlap, and it is only possible to observe a partial trend of
separation on PC2 and PC3 (Figure S1a,b). PC2 mainly distinguishes “Sibilla” and “Romina”
cultivars from “Silvia” and “Cristina” cultivars. Inspecting the corresponding loading plots
(Figure S1c) it can be observed that vitamin C, SSC, and acidity contents are the main
responsible for such separation. The contributing spectral regions in the NIR loading
plot (Figure S1d) have been associated with the presence of strawberry sugars and OH
bonds [41,46,47].

In the mid-level strategy, the first five scores values of PCA computed on D-NIR and
D-Lab datasets have been merged into a unique new block of variables. This is a key step
since the way in which the different variables are concatenated, normalized, and scaled
can affect the results. The main parameter to consider is the method to be used for feature
extraction and the related number of features to retain. The type of scaling to apply is less
critical than in low-level data fusion, because of the data reduction [48].

We are aware that we are considering five PCs in a dataset of size 394 × 5 but the
explained variance for each PCs from one to five is, respectively, 26.4, 22.3, 19.7, 18.4, and
13.3%. Therefore, we deemed not overestimating the model retaining all five PCs. For
D-NIR PCA, the same number of PCs were selected and they cumulated 95.12% of the total
variance. Selecting the same number of PCs for the two datasets, the respective data blocks
had the same weight in the multi-block array, now suitable for further data processing.
In the low-level strategy the loadings (P) of the model derive from the concatenated D-
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Lab and D-NIR datasets and, consequently, their interpretation is rather easy. They were
computed through the PCA relation X = T * PT + E where X was the concatenated datasets,
T were the scores, and E the residuals. Instead, in the mid-level strategy the contribution
of the original variables (lab analysis and spectral variables) in determining the final PCs
was unknown and could be computed with the formula: O = PT * F where F was the
column-wise concatenation of the individual loadings obtained in the two separated PCA
and PT were the loadings obtained from PCA performed into the merged scores matrices
(D-fused dataset). Transforming back the loading block-wise allowed us to investigate the
relation of the loadings of the final PCA with the original variables. In this way, it was
possible to understand which variables (i.e., lab analysis or spectral variables) were most
involved in the separation of strawberry samples in the PCA space [49–51].

The results on fused data are presented in Figure 7. The fused and autoscaled data
showed a clustering of the four cultivars similar to the one observed for D-Lab PCA and
D-NIR PCA, as reported in Figures 5 and 6. The PC1 vs. PC2 score plot separates the
samples of “Sibilla” and “Romina” from “Silvia” and “Cristina” along the first principal
component (Figure 7a). To our knowledge the former group has higher SSC and acidity
contents with respect to the second (see Section 3.1). Much more interesting is the distri-
bution of the samples in the score plot of PC2 vs. PC3 (Figure 7b). In fact, “Romina” and
“Cristina” are in the bottom right part of the score plot (negative PC3 values and positive
PC2 values), while “Silvia” and “Sibilla” are in the positive part of PC3. Thanks to the
reconstruction of loadings of the D-Lab original variables, it is possible to visualize that this
samples pattern is mainly attributed to quality and nutritional parameters (Figure 7a,b).
As also confirmed by the ANOVA results, “Cristina” is the cultivar with lower nutritional
parameters (vitamin C, anthocyanins, and phenolic acids), preceded by “Romina” charac-
terized by good anthocyanin and vitamin C contents. “Silvia” and “Sibilla” have similar
nutritional characteristics, with the former rich in vitamin C and phenolic acids and the
latter characterized by higher SSC and acidity contents. Figure 7c reports the loadings plot
of the three first PCs from the mid-level data fusion (D-fused).

Figure 7. (a) PCA score plot of PC1 vs. PC2 computed on D-fused dataset with standard error ellipses
for each cultivar and D-Lab loading reconstructed. (b) PCA score plot of PC2 vs. PC3 on D-fused
dataset with standard error ellipses for each cultivar and D-Lab loading reconstructed. (c) PCA
loading plot of the three first PCs.
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3.5. Classification Models

Classification models were developed both on the spectral dataset (D-NIR) and on
the D-fused dataset. Each sample was averaged across the two NIR replicates before
computation. The two datasets were split into training and test sets of 137 and 60 samples,
respectively. PLS-DA models have also been developed on the single D-NIR dataset to
confirm the superior characterization achieved by data fusion observed by PCA results.

As shown by the PCA score plots (see Sections 3.3 and 3.4), “Romina” and “Sibilla”
cultivars have similar characteristics in all three different PCA approaches tested, mainly
related to SSC and acidity content. “Cristina” and “Silvia” cultivars are on the opposite
side of the PCA score plots, with “Silvia” characterized as the cultivar with the highest
acidity content and “Cristina” the poorest in nutritional parameters. For these reasons,
we have decided to develop three different PLS-DA models for classifying: (i) “Romina”
and “Sibilla” from “Silvia” and “Cristina” cultivars (MODE 1); (ii) “Silvia” from the other
cultivars (MODE 2) and (iii) “Cristina” from the other cultivars (MODE 3). Please note that
we have also developed a multiclass PLS-DA model for classifying all cultivars simultane-
ously without obtaining any good results (the percentage of correctly classified samples is
37.0%, 55.9%, 53.9%, and 48.0% for “Romina”, “Sibilla”, “Silvia”, and “Cristina” cultivars,
respectively). This is probably related to similarity in the spectral characteristics between
some cultivars (e.g., “Romina” and “Sibilla”) making it difficult to develop a classification
model able to recognize them. In any case, it is important to consider that the classification
model will be used as phenotyping tool in the breeding process where it is helpful to have
rapid information about qualitative and nutritional characteristics more than recognize one
cultivar from all the another.

The results obtained, which are reported in Table 1, according to the classification
criterion described in Section 2.11, show records for each dataset the data preprocessing,
the model dimensionality (assessed by cross-validation), and classification performance
(assessed by ROC curve). In detail, sensitivity (or true positive rate—TPR), specificity
(true negative rate—TNR), and the misclassification error were used as a measure of the
classification performance of the PLS-DA models. The results showed that classification
models can discriminate the strawberries of “Cristina” and “Silvia” from “Sibilla” and
“Romina” cultivars both using the fused dataset or only the spectral data. Sensitivity values
(TPR) suggest that the model developed with the spectral data can correctly classify the
samples (95.4% for training set and 100.0% for test set) and the specificity values (TNR)
indicate that the same model can reject the samples of the other class (93.1% for training
set and 100.0% for test set). With regard to the fused dataset, less LVs are needed in the
development of MODE 1 model obtaining similar results. In detail, the misclassification
error in cross-validation decreases from 5.8% to 4.4% while in validation it increases from
0.0% to 6.7%. This could be simply related to the dimensionality of the test set and to the
fruit variability withing each cultivar. The latter can increase the error in classification as
quality is more fruit specific than cultivar specific.

Table 1. Classification results obtained by NIR spectral dataset and D-fused dataset. LVs: latent
variables; TNR: true negative rate; TPR: true positive rate.

Model Cross-Validation Validation

9der1 LVs TNR TPR Error LVs TNR TPR Error

MODE 1 5 93.1 95.4 5.8 5 100.0 100.0 0.0
MODE 2 2 3.1 100.0 22.6 2 89.5 65.9 26.7
MODE 3 2 0.0 100.0 24.1 2 75.0 70.5 28.3

D-fused

MODE 1 3 97.1 94.0 4.4 3 88.9 97.0 6.7
MODE 2 2 17.6 98.1 21.9 2 82.4 88.4 13.3
MODE 3 2 33.3 100.0 16.1 2 87.5 88.6 11.7
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Both MODE 2 and MODE 3 developed on the D-NIR dataset have higher classification
errors demonstrating that the models are not able to recognize only “Silvia” or “Cristina”
cultivars, respectively. This is mainly due to the TNR values, so it is related to the ability
of the models in correctly classifying “Silvia” or “Cristina” samples in the class. In fact,
despite the high number of samples collected and analyzed, the dataset needs to be further
increased especially for better covering all the variability domain of the different cultivars.
For this study a total number of 51 and 49 strawberries have been collected for “Silvia” and
“Cristina”, respectively. The possibility of combining the information from the different
instruments by using data fusion strategy was also investigated for MODE 2 and MODE 3.
The results are promising. The misclassification error is in general lower than 20% apart
from the cross-validation phase of the PLS-DA model for the classification of “Silvia”
cultivar (21.9%). More specifically, the error in validation of MODE 2 decreases from 26.7%
to 13.3%, while for MODE 3 it decreases from 28.3% to 11.7%. So, the models could be used
for quality control applications. In general, it is worth applying data fusion approaches
because the features’ reduction step (for this study we have used PCA) removes part
of the non-informative variance from the blocks. As a result, when data fusion is used
for classification (or regression), often they provide better classification (or prediction)
than using the separate datasets. These results are consistent with the fact that the global
scores plot of D-fused dataset show a better separation among the different cultivars both
according to acidity and SSC contents (PC1 vs. PC2) and to the nutritional parameters
(PC2 vs. PC3).

Even if the D-fused showed an increased separation trend, it is important to consider
that the advantage of performing the classification directly on the spectral data is the speed
and cost of the analysis. In fact, near-infrared spectroscopy could be a valid solution for
getting economic and fast information about the taste and nutritional quality, helping in
speeding up the breeding process according to consumer behavior acceptance [52]. Before
using D-fused dataset for modelling we have to consider how many lab measurements
could be afforded/performed in addition to NIR to retrieve the cultivar information.

Figure 8 illustrates the scores scatter plot for the first two latent variables of the PLS-
DA models obtained by using the spectral dataset (Figure 8a) and the D-fused dataset
(Figure 8b) for the classification of strawberries samples of “Silvia” or “Cristina” cultivars
from “Sibilla” or “Romina” cultivars. In comparison to the model developed on the D-NIR
dataset, the PLS-DA model on D-fused dataset shows a separation trend between the two
pair of cultivars (“Cristina” and “Silvia” vs. “Sibilla” and “Romina”) even if it is missing a
clear separation. In detail, the two categories are more overlapping in the scores plot of
Figure 8a,b. This is also confirmed by the better classification results of the latter model.

Figure 8. Scores for the first two latent variables of the PLS-DA models obtained by using the spectral
dataset (a) and D-fused dataset (b) for the classification of strawberries samples of Silvia or Cristina
cultivars from Sibilla or Romina cultivars (MODE 1). Test samples are represented by empty symbols.

In Figure 9 the loadings plot, showing the contribution of the original wavenumbers
to the final PLS-DA classification model of D-NIR dataset, is reported. The wavenumbers
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at 6930 and 5320 cm−1 are mainly related to the OH, CH, and CH2 deformation, while the
band at 5195 cm−1 is assigned to OH combination bonds [46]. The selected wavenumbers
match with the same bands selected by the recursive weighted partial least squares (rPLS)
method for the prediction of SSC content of strawberry fruits in our previous study [20],
highlighting the influence of this parameter for the separation of the different cultivars.

Figure 9. Loading plot of the two first latent variables of the PLS-DA models obtained by using
D-NIR dataset. The most relevant wavenumbers for the classification of the strawberry fruits in the
two classes are marked in the plot.

4. Conclusions

This study led to results of great interest in the field of strawberry fruit analysis, in
particular the prediction of nutritional quality through non-destructive NIR spectroscopy
technique. The main findings can be summarized as follows.

• Fruit quality is strongly affected by genotypes: “Sibilla” and “Cristina” presented
higher values of SSC and TA, but lower values of ACY; “Sibilla” and “Romina” pre-
sented higher values of vitamin C; “Sibilla” and “Silvia presented high values of
phenolic acids, while “Romina” showed the highest values of ACY fruit content.

• PCA showed a trend of separation among cultivars based on their quality characteris-
tics. In general, it can be stated that “Romina” is the cultivar with highest vitamin C
and anthocyanin contents, “Sibilla” and “Silvia” the cultivars with highest phenolic
acid content, and “Cristina” is the poorest in nutritional parameters.

• Classification models were developed based on spectral data (D-NIR) and a fused
dataset (D-fused), i.e., combining D-NIR and D-Lab data using a mid-fusion strat-
egy. The PLS-DA models successfully discriminated between “Romina” and “Sibilla”
versus “Silvia” and “Cristina” cultivars using both datasets.

• The data fusion approach showed improved classification results, highlighting the
importance of certain wavenumbers associated with OH, CH, and CH2 bonds for
distinguishing between cultivars.

In this study, we explored the possibility to use NIR spectroscopy and chemometrics
as a method for the rapid phenotyping of strawberry fruits speeding up the selection
of material for the breeding process. Even if the fused dataset demonstrated enhanced
separation among cultivars, we acknowledged the need for a larger dataset to cover more
cultivar variability. Nevertheless, the findings underscored the value of data fusion in
enhancing classification performance by reducing non-relevant information. Moreover, this
study highlighted the advantages of using near-infrared spectroscopy for cost-effective and
rapid assessment of taste and nutritional quality, which can be instrumental in streamlining
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the breeding process, aligning with consumer preferences. As a future research step, we
plan to enlarge the dataset size adding more cultivars, since the outcomes of this study
are promising for advancing quality control applications and cultivar classification in the
food industry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12173253/s1, Figure S1: PCA score plot of PC1 vs. PC2
computed on D-fused dataset with low-level approach (a) and with standard error ellipses for each
cultivar (b). PCA loading plot of the three first PCs for D-Lab dataset (c) and D-NIR dataset (d).

Author Contributions: Conceptualization, M.M., L.M., G.T., F.C. and B.M.; methodology, M.M.,
L.M., E.L. and R.Q.; software, M.M., L.M., F.G. and V.T.; validation, M.M. and L.M.; formal analysis,
E.L., R.Q., V.T. and F.G.; investigation, M.M. and L.M.; resources, B.M., F.C. and G.T.; data curation,
M.M., F.G., V.T. and L.M.; writing—original draft preparation, M.M. and L.M.; writing—review and
editing, G.T., B.M. and F.C.; visualization, M.M. and L.M.; supervision, B.M., G.T. and F.C.; project
administration, B.M. and G.T.; funding acquisition, B.M. and G.T. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by PRIMA—Partnership for Research and Innovation in the
Mediterranean Area 2019–2022 MEDBERRY project—and the Breeding Value project that has received
funding from the European Union’s Horizon 2020 research and innovation program under grant
agreement No 101000747.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to ongoing funding projects which not
provide public data sharing before the end of the project.

Acknowledgments: This study was carried out within the Agritech National Research Center
and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI
RIPRESA E RESILIENZA (PNRR)—MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4—D.D.
1032 17/06/2022, CN00000022). This manuscript reflects only the authors’ views and opinions,
neither the European Union nor the European Commission can be considered responsible for them.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. FAO. 2019. Available online: http://www.fao.org/faostat/en/#data/qc (accessed on 15 December 2022).
2. Giampieri, F.; Islam, M.S.; Greco, S.; Gasparrini, M.; Forbes Hernandez, T.Y.; Delli Carpini, G.; Giannubilo, S.R.; Ciavattini, A.;

Mezzetti, B.; Mazzoni, L.; et al. Romina: A Powerful Strawberry with in Vitro Efficacy against Uterine Leiomyoma Cells. J. Cell.
Physiol. 2019, 234, 7622–7633. [CrossRef] [PubMed]

3. Gasparrini, M.; Forbes-Hernandez, T.Y.; Cianciosi, D.; Quiles, J.L.; Mezzetti, B.; Xiao, J.; Giampieri, F.; Battino, M. The Efficacy of
Berries against Lipopolysaccharide-Induced Inflammation: A Review. Trends Food Sci. Technol. 2021, 117, 74–91. [CrossRef]

4. Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The Strawberry: Composition, Nutritional
Quality, and Impact on Human Health. Nutrition 2012, 28, 9–19. [CrossRef] [PubMed]

5. Sabbadini, S.; Capocasa, F.; Battino, M.; Mazzoni, L.; Mezzetti, B. Improved Nutritional Quality in Fruit Tree Species through
Traditional and Biotechnological Approaches. Trends Food Sci. Technol. 2021, 117, 125–138. [CrossRef]

6. Zakaria, R.; Vit, P.; Wijaya, A.; Ahmad, A.H.; Othman, Z.; Mezzetti, B. Evolution of Blueberry (Vaccinium corymbosum L.),
Raspberry (Rubus idaeus L.) and Strawberry (Fragaria × Ananassa Duch.) Research: 2012–2021. J. Berry Res. 2022, 12, 365–381.
[CrossRef]

7. Capocasa, F.; Balducci, F.; Di Vittori, L.; Mazzoni, L.; Stewart, D.; Williams, S.; Hargreaves, R.; Bernardini, D.; Danesi, L.; Zhong,
C.-F.; et al. Romina and Cristina: Two New Strawberry Cultivars with High Sensorial and Nutritional Values. Int. J. Fruit Sci.
2016, 16, 207–219. [CrossRef]

8. Noriega, F.; Mardones, C.; Fischer, S.; García-Viguera, C.; Moreno, D.A.; López, M.D. Seasonal Changes in White Strawberry:
Effect on Aroma, Phenolic Compounds and Its Biological Activity. J. Berry Res. 2021, 11, 103–118. [CrossRef]

9. Bhutia, P.O.; Kewlani, P.; Pandey, A.; Rawat, S.; Bhatt, I.D. Physico-Chemical Properties and Nutritional Composition of Fruits of
the Wild Himalayan Strawberry (Fragaria nubicola Lindle.) in Different Ripening Stages. J. Berry Res. 2021, 11, 481–496. [CrossRef]

10. Mezzetti, B.; Balducci, F.; Capocasa, F.; Zhong, C.-F.; Cappelletti, R.; Di Vittori, L.; Mazzoni, L.; Giampieri, F.; Battino, M. Breeding
Strawberry for Higher Phytochemicals Content and Claim It: Is It Possible? Int. J. Fruit Sci. 2016, 16, 194–206. [CrossRef]

11. Tahir, H.E.; Xiaobo, Z.; Jianbo, X.; Mahunu, G.K.; Jiyong, S.; Xu, J.-L.; Sun, D.-W. Recent Progress in Rapid Analyses of Vitamins,
Phenolic, and Volatile Compounds in Foods Using Vibrational Spectroscopy Combined with Chemometrics: A Review. Food Anal.
Methods 2019, 12, 2361–2382. [CrossRef]

https://www.mdpi.com/article/10.3390/foods12173253/s1
https://www.mdpi.com/article/10.3390/foods12173253/s1
http://www.fao.org/faostat/en/#data/qc
https://doi.org/10.1002/jcp.27524
https://www.ncbi.nlm.nih.gov/pubmed/30317591
https://doi.org/10.1016/j.tifs.2021.01.015
https://doi.org/10.1016/j.nut.2011.08.009
https://www.ncbi.nlm.nih.gov/pubmed/22153122
https://doi.org/10.1016/j.tifs.2021.01.083
https://doi.org/10.3233/JBR-220001
https://doi.org/10.1080/15538362.2016.1219292
https://doi.org/10.3233/JBR-200585
https://doi.org/10.3233/JBR-210742
https://doi.org/10.1080/15538362.2016.1250695
https://doi.org/10.1007/s12161-019-01573-w


Foods 2023, 12, 3253 17 of 18

12. Butz, P.; Hofmann, C.; Tauscher, B. Recent Developments in Noninvasive Techniques for Fresh Fruit and Vegetable Internal
Quality Analysis. J. Food Sci. 2006, 70, R131–R141. [CrossRef]

13. Giovenzana, V.; Beghi, R.; Civelli, R.; Guidetti, R. Optical Techniques for Rapid Quality Monitoring along Minimally Processed
Fruit and Vegetable Chain. Trends Food Sci. Technol. 2015, 46, 331–338. [CrossRef]

14. Flores, K.; Sánchez, M.-T.; Pérez-Marín, D.; Guerrero, J.-E.; Garrido-Varo, A. Feasibility in NIRS Instruments for Predicting
Internal Quality in Intact Tomato. J. Food Eng. 2009, 91, 311–318. [CrossRef]

15. Hertog, M.L.A.T.M.; Lammertyn, J.; De Ketelaere, B.; Scheerlinck, N.; Nicolaï, B.M. Managing Quality Variance in the Postharvest
Food Chain. Trends Food Sci. Technol. 2007, 18, 320–332. [CrossRef]

16. Mancini, M.; Mazzoni, L.; Gagliardi, F.; Balducci, F.; Duca, D.; Toscano, G.; Mezzetti, B.; Capocasa, F. Application of the
Non-Destructive NIR Technique for the Evaluation of Strawberry Fruits Quality Parameters. Foods 2020, 9, 441. [CrossRef]

17. Clément, A.; Dorais, M.; Vernon, M. Nondestructive Measurement of Fresh Tomato Lycopene Content and Other Physicochemical
Characteristics Using Visible−NIR Spectroscopy. J. Agric. Food Chem. 2008, 56, 9813–9818. [CrossRef]

18. Nicolaï, B.M.; Defraeye, T.; De Ketelaere, B.; Herremans, E.; Hertog, M.L.A.T.M.; Saeys, W.; Torricelli, A.; Vandendriessche,
T.; Verboven, P. Nondestructive Measurement of Fruit and Vegetable Quality. Annu. Rev. Food Sci. Technol. 2014, 5, 285–312.
[CrossRef]

19. Sánchez, M.-T.; De La Haba, M.J.; Benítez-López, M.; Fernández-Novales, J.; Garrido-Varo, A.; Pérez-Marín, D. Non-Destructive
Characterization and Quality Control of Intact Strawberries Based on NIR Spectral Data. J. Food Eng. 2012, 110, 102–108.
[CrossRef]

20. Mancini, M.; Mazzoni, L.; Qaderi, R.; Leoni, E.; Tonanni, V.; Gagliardi, F.; Capocasa, F.; Toscano, G.; Mezzetti, B. Prediction of
Soluble Solids Content by Means of NIR Spectroscopy and Relation with Botrytis Cinerea Tolerance in Strawberry Cultivars.
Horticulturae 2023, 9, 91. [CrossRef]

21. Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the Most Common Pre-Processing Techniques for near-Infrared Spectra.
TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [CrossRef]

22. Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data Fusion Methodologies for Food and Beverage Authentication
and Quality Assessment—A Review. Anal. Chim. Acta 2015, 891, 1–14. [CrossRef]

23. Amodio, M.L.; Ceglie, F.; Chaudhry, M.M.A.; Piazzolla, F.; Colelli, G. Potential of NIR Spectroscopy for Predicting Internal Quality
and Discriminating among Strawberry Fruits from Different Production Systems. Postharvest Biol. Technol. 2017, 125, 112–121.
[CrossRef]

24. Andersen, P.V.; Afseth, N.K.; Aaby, K.; Gaarder, M.Ø.; Remberg, S.F.; Wold, J.P. Prediction of Chemical and Sensory Properties in
Strawberries Using Raman Spectroscopy. Postharvest Biol. Technol. 2023, 201, 112370. [CrossRef]

25. Joshi, P.; Pahariya, P.; Al-Ani, M.F.; Choudhary, R. Monitoring and Prediction of Sensory Shelf-life in Strawberry with Ultraviolet-
visible-near-infrared (UV-VIS-NIR) Spectroscopy. Appl. Food Res. 2022, 2, 100123. [CrossRef]

26. Cho, J.-S.; Lim, J.H.; Park, K.J.; Choi, J.H.; Ok, G.S. Prediction of Pelargonidin-3-Glucoside in Strawberries According to the
Postharvest Distribution Period of Two Ripening Stages Using VIS-NIR and SWIR Hyperspectral Imaging Technology. LWT 2021,
141, 110875. [CrossRef]

27. Włodarska, K.; Szulc, J.; Khmelinskii, I.; Sikorska, E. Non-destructive Determination of Strawberry Fruit and Juice Quality
Parameters Using Ultraviolet, Visible, and Near-infrared Spectroscopy. J. Sci. Food Agric. 2019, 99, 5953–5961. [CrossRef]
[PubMed]

28. Shen, F.; Zhang, B.; Cao, C.; Jiang, X. On-line Discrimination of Storage Shelf-life and Prediction of Post-harvest Quality for
Strawberry Fruit by Visible and near Infrared Spectroscopy. J. Food Process Eng. 2018, 41, e12866. [CrossRef]

29. Yazici, A.; Tiryaki, G.Y.; Ayvaz, H. Determination of Pesticide Residual Levels in Strawberry (Fragaria) by Near-infrared
Spectroscopy. J. Sci. Food Agric. 2020, 100, 1980–1989. [CrossRef]

30. Mazzoni, L.; Balducci, F.; Di Vittori, L.; Scalzo, J.; Capocasa, F.; Zhong, C.; Forbes-Hernandez, T.Y.; Giampieri, F.; Battino, M.;
Mezzetti, B. Yield and Nutritional Quality of Highbush Blueberry Genotypes Trialled in a Mediterranean Hot Summer Climate. J.
Sci. Food Agric. 2020, 100, 3675–3686. [CrossRef]

31. Diamanti, J.; Capocasa, F.; Balducci, F.; Battino, M.; Hancock, J.; Mezzetti, B. Increasing Strawberry Fruit Sensorial and Nutritional
Quality Using Wild and Cultivated Germplasm. PLoS ONE 2012, 7, e46470. [CrossRef]

32. Tulipani, S.; Mezzetti, B.; Capocasa, F.; Bompadre, S.; Beekwilder, J.; De Vos, C.H.R.; Capanoglu, E.; Bovy, A.; Battino, M.
Antioxidants, Phenolic Compounds, and Nutritional Quality of Different Strawberry Genotypes. J. Agric. Food Chem. 2008, 56,
696–704. [CrossRef] [PubMed]

33. Helsper, J.P.F.G.; Ric De Vos, C.H.; Maas, F.M.; Jonker, H.H.; Van Den Broeck, H.C.; Jordi, W.; Pot, C.S.; Keizer, L.C.P.; Schapendonk,
A.H.C.M. Response of Selected Antioxidants and Pigments in Tissues of Rosa Hybrida and Fuchsia Hybrida to Supplemental
UV-A Exposure. Physiol. Plant. 2003, 117, 171–178. [CrossRef]

34. Schieber, A.; Keller, P.; Carle, R. Determination of Phenolic Acids and Flavonoids of Apple and Pear by High-Performance Liquid
Chromatography. J. Chromatogr. A 2001, 910, 265–273. [CrossRef] [PubMed]

35. Fredericks, C.H.; Fanning, K.J.; Gidley, M.J.; Netzel, G.; Zabaras, D.; Herrington, M.; Netzel, M. High-Anthocyanin Strawberries
through Cultivar Selection: Phytochemicals in Strawberry Cultivars. J. Sci. Food Agric. 2013, 93, 846–852. [CrossRef] [PubMed]

36. Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [CrossRef]

https://doi.org/10.1111/j.1365-2621.2005.tb08328.x
https://doi.org/10.1016/j.tifs.2015.10.006
https://doi.org/10.1016/j.jfoodeng.2008.09.013
https://doi.org/10.1016/j.tifs.2007.02.007
https://doi.org/10.3390/foods9040441
https://doi.org/10.1021/jf801299r
https://doi.org/10.1146/annurev-food-030713-092410
https://doi.org/10.1016/j.jfoodeng.2011.12.003
https://doi.org/10.3390/horticulturae9010091
https://doi.org/10.1016/j.trac.2009.07.007
https://doi.org/10.1016/j.aca.2015.04.042
https://doi.org/10.1016/j.postharvbio.2016.11.013
https://doi.org/10.1016/j.postharvbio.2023.112370
https://doi.org/10.1016/j.afres.2022.100123
https://doi.org/10.1016/j.lwt.2021.110875
https://doi.org/10.1002/jsfa.9870
https://www.ncbi.nlm.nih.gov/pubmed/31215031
https://doi.org/10.1111/jfpe.12866
https://doi.org/10.1002/jsfa.10211
https://doi.org/10.1002/jsfa.10403
https://doi.org/10.1371/journal.pone.0046470
https://doi.org/10.1021/jf0719959
https://www.ncbi.nlm.nih.gov/pubmed/18211027
https://doi.org/10.1034/j.1399-3054.2003.00037.x
https://doi.org/10.1016/S0021-9673(00)01217-6
https://www.ncbi.nlm.nih.gov/pubmed/11261721
https://doi.org/10.1002/jsfa.5806
https://www.ncbi.nlm.nih.gov/pubmed/22887449
https://doi.org/10.1016/0169-7439(87)80084-9


Foods 2023, 12, 3253 18 of 18

37. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36,
1627–1639. [CrossRef]

38. Wold, S.; Martens, H.; Wold, H. The Multivariate Calibration Problem in Chemistry Solved by the PLS Method. In Matrix Pencils;
Kågström, B., Ruhe, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1983; pp. 286–293. [CrossRef]

39. Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130.
[CrossRef]

40. Snee, R.D. Validation of Regression Models: Methods and Examples. Technometrics 1977, 19, 415–428. [CrossRef]
41. Gómez, A.H.; He, Y.; Pereira, A.G. Non-Destructive Measurement of Acidity, Soluble Solids and Firmness of Satsuma Mandarin

Using Vis/NIR-Spectroscopy Techniques. J. Food Eng. 2006, 77, 313–319. [CrossRef]
42. Williams, P.; Norris, K. Near-Infrared Technology in the Agricultural and Food Industries; American Association of Cereal Chemists: St.

Paul, MN, USA, 1987; ISBN 0-913250-49-X.
43. Walsh, K.B.; Blasco, J.; Zude-Sasse, M.; Sun, X. Visible-NIR ‘Point’ Spectroscopy in Postharvest Fruit and Vegetable Assessment:

The Science behind Three Decades of Commercial Use. Postharvest Biol. Technol. 2020, 168, 111246. [CrossRef]
44. Fagan, C.C.; Everard, C.D.; McDonnell, K. Prediction of Moisture, Calorific Value, Ash and Carbon Content of Two Dedicated

Bioenergy Crops Using near-Infrared Spectroscopy. Bioresour. Technol. 2011, 102, 5200–5206. [CrossRef] [PubMed]
45. Magwaza, L.S.; Opara, U.L.; Nieuwoudt, H.; Cronje, P.J.R.; Saeys, W.; Nicolaï, B. NIR Spectroscopy Applications for Internal and

External Quality Analysis of Citrus Fruit—A Review. Food Bioprocess Technol. 2012, 5, 425–444. [CrossRef]
46. Golic, M.; Walsh, K.; Lawson, P. Short-Wavelength Near-Infrared Spectra of Sucrose, Glucose, and Fructose with Respect to Sugar

Concentration and Temperature. Appl. Spectrosc. 2003, 57, 139–145. [CrossRef] [PubMed]
47. Wang, H.; Peng, J.; Xie, C.; Bao, Y.; He, Y. Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors 2015, 15,

11889–11927. [CrossRef]
48. Ríos-Reina, R.; Callejón, R.M.; Savorani, F.; Amigo, J.M.; Cocchi, M. Data Fusion Approaches in Spectroscopic Characterization

and Classification of PDO Wine Vinegars. Talanta 2019, 198, 560–572. [CrossRef]
49. Pirro, V.; Oliveri, P.; Ferreira, C.R.; González-Serrano, A.F.; Machaty, Z.; Cooks, R.G. Lipid Characterization of Individual Porcine

Oocytes by Dual Mode DESI-MS and Data Fusion. Anal. Chim. Acta 2014, 848, 51–60. [CrossRef]
50. Buratti, S.; Malegori, C.; Benedetti, S.; Oliveri, P.; Giovanelli, G. E-Nose, e-Tongue and e-Eye for Edible Olive Oil Characterization

and Shelf Life Assessment: A Powerful Data Fusion Approach. Talanta 2018, 182, 131–141. [CrossRef]
51. Malegori, C.; Buratti, S.; Benedetti, S.; Oliveri, P.; Ratti, S.; Cappa, C.; Lucisano, M. A Modified Mid-Level Data Fusion Approach

on Electronic Nose and FT-NIR Data for Evaluating the Effect of Different Storage Conditions on Rice Germ Shelf Life. Talanta
2020, 206, 120208. [CrossRef]

52. Di Vittori, L.; Mazzoni, L.; Battino, M.; Mezzetti, B. Pre-Harvest Factors Influencing the Quality of Berries. Sci. Hortic. 2018, 233,
310–322. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/ac60214a047
https://doi.org/10.1007/BFb0062108
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1080/00401706.1977.10489581
https://doi.org/10.1016/j.jfoodeng.2005.06.036
https://doi.org/10.1016/j.postharvbio.2020.111246
https://doi.org/10.1016/j.biortech.2011.01.087
https://www.ncbi.nlm.nih.gov/pubmed/21349705
https://doi.org/10.1007/s11947-011-0697-1
https://doi.org/10.1366/000370203321535033
https://www.ncbi.nlm.nih.gov/pubmed/14610949
https://doi.org/10.3390/s150511889
https://doi.org/10.1016/j.talanta.2019.01.100
https://doi.org/10.1016/j.aca.2014.08.001
https://doi.org/10.1016/j.talanta.2018.01.096
https://doi.org/10.1016/j.talanta.2019.120208
https://doi.org/10.1016/j.scienta.2018.01.058

	Introduction 
	Materials and Methods 
	Plant Material and Experimental Plan 
	Soluble Solids Content Analysis 
	Titratable Acidity Analysis 
	Methanolic Extraction 
	Vitamin C Extraction 
	Determination of Vitamin C Content 
	Determination of Phenolic Acid Content 
	Determination of Anthocyanin Content 
	NIR Analysis 
	ANOVA 
	Multivariate Data Analysis 

	Results and Discussion 
	ANOVA Results 
	Vitamin C 
	Anthocyanin and Phenolic Acids 

	Spectra 
	Principal Component Analysis 
	Low- and Mid-Level Data Fusion 
	Classification Models 

	Conclusions 
	References

