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ABSTRACT Road Condition Monitoring is a critical task for the management and maintenance of the
pavement network infrastructure by the authorities. In recent years, the application of Artificial Intelligence
(AI) techniques in this domain has experienced a significant growth, driven by the continuous advancements
in Al algorithms. This paper presents a comprehensive review of the latest developments in Road Condition
Monitoring approaches using Al methods, with a particular focus on Deep Learning techniques, covering
works published from 2020 onwards. It highlights novel approaches that have not been thoroughly explored
in previous literature reviews. The literature review categorizes studies based on the type of signal data,
distinguishing between acoustic, vibrational, and vision-based approaches. For each data type, the paper
examines and discuss the most recent advancements and improvements achieved through Al techniques.
Additionally, it provides an overview of future directions and identifying key challenges that remain open
in the field. In conclusion, relatively few studies have focused on the analysis of acoustic data, although
some studies have reported promising results. Methods based on vibrational data typically integrate feature
extraction in frequency and wavelet domain with Convolutional Neural Networks or Long Short-Term
Memory Networks. Meanwhile, vision-based methods have experienced significant improvements, driven
by the constant evolution of Deep Learning architectures. A total of 173 research articles are summarized
across 10 tables.

INDEX TERMS Artificial intelligence, convolutional neural networks, deep learning, road condition
monitoring, sensors.

I. INTRODUCTION
Road network agencies in Europe spend several billions euros
annually for pavement maintenance. These interventions
aim to improve pavement conditions and include repairing
asphalt damage, reducing roughness, and partially or fully
reconstructing pavement sections that have deteriorated due
to weather, temperature changes, and heavy traffic.

Road condition monitoring (RCM) is a crucial part of
a Pavement Management System. Real-time assessment
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of the overall infrastructure condition can save significant
monetary resources on pavement maintenance by allowing
for early corrective actions before severe deterioration occurs.
Additionally, this leads to better infrastructure quality and
enhanced safety and comfort for users. Automation in road
transport plays a crucial role in advancing top policy priorities
set by the European Commission. Cooperative, connected
and automated mobility (CCAM) is the project that aims
to make transport safer. Copernicus, the Earth observation
component of the European Union’s Space programme,
supports the planning, design, construction, and monitoring
of road infrastructure by drawing from satellite Earth

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

154271


https://orcid.org/0000-0001-6996-6928
https://orcid.org/0000-0003-2526-6422
https://orcid.org/0000-0002-7622-0857
https://orcid.org/0000-0003-1494-1138

IEEE Access

L. Manoni et al.: Recent Advancements in DL Techniques for Road Condition Monitoring

Road Pavement
Condition Monitoring
based on Al

Acoustic Vibrational
data data

Traditional Deep Classification Semantic Object
ML Learning L= Segmentation Detection

FIGURE 1. Road condition monitoring based on Al techniques.
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observation and in-situ data, as reported in the Commission
Staff Working Document [1].

In recent years, alongside advancement in scientific
literature, numerous European-funded projects have focused
on developing innovative solutions on pavement condition
monitoring. For instance, the RPB HEALTECH [2] project
aimed to deploy a system for detecting pavement defects, for
determining their causes, and for assessing their degradation
rate using Ground Penetrating Radar (GPR), infraRed ther-
mography and air coupled ultrasonic technologies. An instru-
mented vehicle was used to perform measurements at a
traffic speed without causing traffic disturbances. Conversely,
The PAV-DT project [3], proposed an innovative low-cost
technology that can be installed in any custom car to measure
the International Roughness Index parameter. Furthermore,
the PAVE-SCAN project [4] implemented a data driven
solution employing participatory sensing to detect, classify
and georeference road defects. To this aim, Al algorithms
have been applied to data collected by integrated, low-
cost sensors based on European Global Navigation Satellite
System (EGNSS).

In the European framework, the Italian National Center for
Sustainable Mobility (MOST, SPOKE 7 “CCAM, Connected
Networks and Smart Infrastructure”) [S] is developing
solutions for the maintenance of infrastructures, as well as
methods for the assessment of the resilience at a network level
and for the management of infrastructural assets.

The adoption of Al techniques for Road Condition
Monitoring has seen a significant growth in recent years.
Sholevar at al., in their review [6] have proven Deep Learning
(DL) techniques clearly outperform traditional Al algorithms
such as Support Vector Machine (SVM), k-Nearest Neighbor
(KNN), Decision Trees (DT), Random Forest (RF). These
traditional techniques still offer a low-cost computational
alternative for detecting and classifying road anomalies using
vibrational data captured by accelerometers. Nevertheless,
in their review [7], Ma et al. showed that for vision data,
which include RGB images or 3D imaging performed by
stereo vision or by GPR, DL methods are almost entirely
replacing the older image processing-based algorithms.

Several review papers have covered this topic in recent
years. In [8], Ranyal et al. reviewed studies employing Al
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algorithms and smart sensors for road condition monitoring,
providing a comprehensive point of view focused on the
advances in sensor technology used for RCM across various
platforms such as instrumented ground vehicles, smartphones
and Unmanned Aerial Vehicles (UAV). In contrast, the
previously cited work [6] presented a review of Machine
Learning (ML) techniques for RCM, focusing more on the
algorithm perspective rather than on sensor technology.

However, to the best of our knowledge, literature reviews
on this subject do not cover the most recent advances
in RCM using Al and DL techniques over the last two
years. During this period, these have seen significant
improvements in algorithms performances for pavement
damage classification and numerous novelties regarding
system-level and employed technology. Approximately 85%
of the research articles examined in this review article were
published from 2020 to 2024. These articles have not been
covered in previous review papers. The great amount of
recent publications highlights the current significance and
relevance of Artificial Intelligence methods in road condition
monitoring. In this paper a review of the most recent
advancements in Al approaches, in particular DL techniques,
for RCM was performed by including papers published from
2020 onwards to address the aforementioned gap in literature.

The literature search was conducted by using the Web of
Science (WoS) and Scopus databases with three different
sets of keyword expressions, detailed in Tab. 1. These sets
correspond to three type of sensor data: acoustic data captured
by microphones, vibrational data obtained by low-cost and
professional accelerometers, and vision data collected using
RGB and stereo cameras, CCD sensors, laser and GPR.

The general framework of the review, categorized by Al
algorithms and sensor types, is shown in Fig. 1.

Section II details the methods applied to acoustic data.
Section III summarizes the methods used for accelerometer
data. Section IV presents the DL techniques applied to road
imagery. The results are summarized in tables reporting
the key aspects of the different research works. Section V
discusses the state of the art and future research trends in Al
applications for road damage detection. Finally, conclusions
are presented in the last section.

Il. ACOUSTIC-BASED METHODS

Assessing road pavement quality through acoustic data
involves measuring on road/tyre noise using one or more
microphones positioned near the tyre or within its cavity.

A. TRADITIONAL MACHINE LEARNING

Existing approaches in the literature for pavement charac-
terization using conventional Machine Learning techniques
typically involve extracting features from Power Spectral
Density (PSD) of the sound coming from the tyre/road
interaction. Vazquez et al. [9] experimentally estimated the
correlation between sound spectrum levels, recorded by a
microphone positioned near the tyre, and the depth of road
macrotexture measured by a laser profilometer. In another
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TABLE 1. Keywords used for literature search in Scopus and WoS
databases.

TABLE 2. Pavement type/anomalies detection using DL with acoustic
data.

Data

type Keywords

("road" OR "pavement") AND
(“damage” OR "pothole"

OR "anomaly" OR "distress" OR "type") AND
("detection” OR "classification") AND ("deep learning") AND
("acoustic" OR "audio" OR "sound pressure")
("road*" OR "pavement") AND
(“damage” OR "condition” OR "pothole"

OR "anomal*" OR "distress*" OR "roughness") AND
("detect*" OR "classif*" OR "recognition”

OR "estimat*" OR "eval*" OR "assess*") AND
(acceler* OR "gyroscope" OR rotation* OR vibration*) AND
("AI" OR "machine learning” OR "deep learning” OR
"neural network*" OR "*NN")

("road" OR "pavement") AND
("image" OR "vision" OR "laser") AND
(damage* OR defect* OR condition OR
Vision anomal* OR pothole* OR crack* OR distress*) AND
(detect* OR classif* OR identif* OR recogn* OR assess*) AND
("AI" OR "machine learning" OR "deep learning"
OR "neural network" OR "NN")

Acoustic

Vibrational

work by Alonso et al. [10] a microphone was positioned on
the car trunk and SVM technique was applied to signal
spectrogram to classify road surface as dry/wet. However,
the classification error was notably high due to engine noise
interference.

Significantly improved results were obtained by placing
microphone inside the tyre cavity, effectively utilizing it
as a reverberation chamber. In a study conducted by
Masino et al. [11] an acoustic sensor was positioned inside
tyre cavity, and the SVM technique was applied to the PSD
of acoustic signal to classify five different types of asphalt.
The classification accuracy reached 69.9% in the testing set
and could be further increased up to 91% by merging two
classes and by smoothing classifier output.

B. DEEP LEARNING
Deep learning-based methods have significantly improved
the performance of road type or status classification.

In the work of Pratico et al. [12], the seismic waves were
captured by an isolated microphone placed on the asphalt
near a passing car wheel to identify concealed cracks in the
pavement. A dataset consisting by 1D time series data audio
responses was used to train a simple one-layer convolutional
neural network for crack classification. After hyperparameter
optimization a 95.6% accuracy was achieved.

More detailed information about tyre/pavement interac-
tion noise (TPIN) signal can be exploited by feeding a
2D convolutional neural network (2D-CNN) with images
obtained through Wavelet transforms or time/frequency
analysis instead of raw time-series. In [13] Lee et al. used
a costant-Q filter bank was used to extract a 2D image
from TPIN data (sampled at 51.2kHz) captured by two
microphones on the rear and front wheels of a car in order to
classify 13 different types of asphalt obtained by combining
pavement type with its condition snow, humid, dry or wet.
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ESP32
Microcontroller
208.17 ms
prediction latency

dirty and grass
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Tiny

(4] p.chN

tyre cavity 92.7%

A lightweight sequential 2D-CNN was trained using a mean-
square-error loss function, optimizing signal window length,
and achieving a 95.6% accuracy on the test set. The model
was implemented in a real-time classification system in
MATLAB Simulink environment.

Staderini et al. [14] implement a real-time identification
system that uses a ESP32-WROOM-32D module for data
acquisition and to run inference. A very tiny 2D-CNN was
trained with sound data capture by a microphone placed
inside the tyre cavity to classify road types between: dirty
and grass road, high roughness and road with cracks and
potholes. The model, which takes as input 2D time-frequency
analyses of audio signal, was converted in TensorFlow Lite
(TFLite) for the microcontroller and a dedicated firmware
was developed for data acquisition, preprocessing, inference
and sending output result to BLE devices. A latency of
208.17 ms was obtained for the prediction.

Tab. 2, categorizes the papers that apply DL methods to
acoustic data.

Iil. VIBRATIONAL-BASED METHODS
The recent literature trend concerning vibrational methods is
focused to the application of ML and DL techniques.

Threshold techniques were initially favored thanks to
their intuitive nature, simplicity and low computational
requirements. Parameters, such as root mean square, standard
deviation [15], local peaks [16] and derivative of vertical
acceleration component [17] are generally used to identify
abnormalities. While threshold techniques achieve high
detection accuracy [8] and they are suitable for a real-time
implementation, they struggle to differentiate multiple types
of irregularities and often require a recalibration [18] to
ensure reproducibility.

Machine and deep learning techniques demonstrated supe-
rior performance compared to threshold methods. Typically,
this kind of studies requires initial collection and labeling
of accelerometer and gyroscope data. Labeling is often
synchronized with GPS or video data and acceleration to
ensure accuracy. However, the high amount of data required
for model training poses a significant challenge for ML
approaches, requiring a standardized and automated data
collection process. To address this problem, a customized app
is often developed when smartphone sensors are used.

Some studies have proposed crowdsourcing-based solu-
tions where individual users upload accelerometer, gyroscope
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and GPS data to cloud-based or server-based platforms to
expedite the collection of training data for model develop-
ment.

A. TRADITIONAL MACHINE LEARNING

Due to their low computational requirements, traditional ML
methods offer a viable solution for implementing real-time
identification systems.

In [19], Basavaraju et al. conducted a comparative analysis
of SVM, DT and multi-layer perceptron (MLP) approaches
to classify road condition (smooth, pothole and crack)
using acceleration data from a smartphone fixed to the
windshield. The proposed framework is suitable for a real-
time implementation, primarily due to the computational
burden associated with time, frequency and wavelet feature
extraction, rather than the classification algorithms them-
selves. MLP classifier outperformed SVM and DT with a
92.12% accuracy on the test set.

A real-time speed bump and pothole identification system
was proposed in [20] by Andrade et al. utilizing an
Arduino 33 BLE device connected to a 3D digital accelerom-
eter (LSM6DS3 by STMicroelectronics). An unsupervised
algorithm with low computational cost was employed for
classification. Similarly, Egaji et al. [21] developed a
real-time pothole detection framework by extracting raw time
features from smartphone 3-axis acceleration data and by
feeding them to different ML classifiers as Naive Bayes (NB),
Logistic Regression (LR), Support Vector Machine (KSVM),
KNN and RF.

Ferjani and Alsaif [22], proposed a ML benchmark using a
synthetic dataset generated with the Pothole Lab, presented
in [23] by Carlos et al. and a real world dataset collected
by Gonzilez et al. [24]. The real world dataset, presented
in [24], was obtained using multiple smartphones positioned
in different positions within a car and connected to a tablet for
acceleration data collection. The abnormalities like potholes,
speed bumps, metal bumps, worn road and regular road
were distinguished. The benchmark employed SVM, DT and
MLP techniques on time, frequency and Daubeshies Wavelets
features extracted from acceleration data. MLP trained with
time and Wavelets features obtained the highest classification
accuracy of 52% in the test set.

Recent advances in traditional ML methods have focused
on candidate event window selection with threshold or
Dynamic Time Warping (DTW) techniques. For instance,
Sattar et al. [25] identified potential road anomalies with
a threshold method based on the correlation between
instantaneous and the averaged re-oriented acceleration
vectors. 3-axis acceleration data was collected using smart-
phones affixed to the dashboards of multiple cars before a
re-orientation was performed. Then unsupervised learning
with a Gaussian Mixture Model approach was used to
classify anomalies between high severity or lower severity.
Duetal. [145] proposed a threshold method to identify poten-
tial event windows while compensating for vehicle speed
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variation effect, rarely incorporated into the features extracted
for traditional ML. Zheng et al. [27] used a DTW method to
select candidate events for potholes, speed bump and metal
bumps from acceleration data provided by a smartphone
fixed to the rear of an electric motor, followed by KNN
classification. Additionally, Chibani et al. [28] employed a
Dynamic Sliding Window (DSW) approach as an alternative
to the traditional Static Sliding Window (SSW) method with a
fixed window length, for event detection to face the problem
of variable length events due to different speeds. Different
classifiers, like KNN, SVM, Neural Network (NN), DT,RF
were tested on synthetic datasets in [23] and [27] concluding
that the DSW method outperforms the SSW technique.

An alternative to DTW or threshold method for vibra-
tional signal analysis, was presented by Zhour et al. [110],
employing DL image object detection to identify manholes
from smartphone images. Acceleration and angular velocity
coming from the same smartphone were combined with an
SVM classifier to recognize manhole severity.

One of the critical aspects in vibrational-based techniques
is the noise affecting the sensors. The issue of smartphone
acceleration noise was addressed by Dong et al. [30],
where sensors were mounted on car windshield to classify
normal road conditions, potholes, patching, and distortion.
Filtering process in the PSD domain followed by inverse Fast
Fourier Transform (IFFT), was conducted to mitigate engine
vibration noise before extracting time domain features for a
KNN classifier.

Shtayat et al. used in [31] a high precision piezoelectric
sensor (356B18 by PCB Piezotronics) to classify various
types of road distress, including alligator cracks, edge cracks,
longitudinal cracks, and patches, based on collected 3-axis
acceleration data. SVM outperformed RF and DT classifiers
after training with time domain features.

Furthermore, Martinelli et al. [32] proposed an original
feature extraction methodology. This approach involved
computing entropy and coefficient of variation of Short-Time
Fourier Transform (STFT) sub-bands of a z-axis acceleration
data. SVM, DT and KNN were used to classify no distress,
long-term distresses, and short-term distresses in road
condition, such as fatigue cracking or potholes, respectively.

B. DEEP LEARNING

Deep Learning methods achieve significant performance
improvement over traditional ML classifiers not only because
they learn to extract the optimal features for the problem,
but also because they can incorporate additional input
signals. For example, 3-axis rotation has been included by
Basavaraju et al. [19] or vehicle speed by Sabapathy and
Biswas [33]. Speed is a key variable that influences the accel-
eration response, as reported in the work of Wang et al. [34].
However, real-time classification implementation poses a
challenge since prediction must be made within the duration
of the signal window. Consequently, most studies perform
offline classification.
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Luo et al. achieved in in [35] a very high accuracy
for road anomaly classification using Deep Feedforward
Networks (DFN), 2D-CNN and Recurrent Neural Networks
(RNN) with raw time data, including 3-axis acceleration,
rotation velocity, wheel speeds, spindle, and shock responses.
However, multiple anomaly categories (pothole, bump,
gravel, and other different pavement types) were merged in a
single class, thus obtaining a simple binary normal/abnormal
classification problem.

Numerous studies have focused on the feature extraction
procedure, a critical factor for the overall performance of the
classification framework.

Baldini et al. [36] made a comparison between 1D-CNN
with raw time data as input and a 2D-CNN with STFT
magnitude, STFT phase and Morlet Continuous Wavelet
Transform (CWT) to classify road anomalies and obstacles
using acceleration and rotation data from a sensor (Xsens Mti
by Movella) fixed on car dashboard. The STFT magnitude
applied to re-orientated z-axis acceleration provided the best
accuracy, achieving 97.21% in test set. In [37], Cheng et al.
compared the performance of STFT and Wavelet Transform
(WT) applied to 3-axis smartphone acceleration data, by feed-
ing them into a 2D-CNN to distinguish normal road from
transverse cracks or manholes. WT transform performed
best, reaching a 97.53% accuracy. Martinez-Rios et al. [38]
proposed the Generalized Morse Wavelet to detect pavement
transverse cracking from the vertical acceleration captured by
a high cost piezoelectric sensor (CT1100L) mounted on a car
tire suspension knuckle. An FFT-based denoising technique
was applied before computing the 2D image, which was
then input to well known pre-trained Deep Neural Network
(DNN) architectures used for images: GoogleNet [39],
SqueezeNet [40], ResNetl8 [41]. ResNetl8 achieved an
accuracy of 91.18%.

Other studies have focused on more specific pavement
characterizations. For example in [42], Varona et al. used a
3-axis smartphone acceleration data together with a ID-CNN,
Long Short-Term Memory (LSTM) network and the Reser-
voir Computing approach, presented by Bianchi et al. [43],
to distinguish between road anomalies and acceleration
variations due to some driver actions. In [33], Sabapathy
and Biswas classified road pavement conditions as good,
medium or bad using the Pavement Surface Evaluation
and Rating (PASER) system labels available for the cities
considered. An On-Board Diagnostic II data logger was used
to collect 3-axis acceleration, rotation velocity and speed data
which were input to a 1D-CNN. A bump characterization
system was presented by Salman and Mian in [44], where
acceleration, rotation and speed data of a smartphone fixed
on car dashboard were used to train a 1D-CNN to classify
different types of bumps such as: flat-top, sinusoidal, thump,
round-top.

Advances in DNN model in this context include
hybrid-architectures and multiple features or data fusion
approaches.
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In the work by Setiawan et al. [45], an unrolled Genera-
tive Adversarial Networks (GAN) was employed for data
augmentation, aiming to extend a small dataset comprising
smartphone acceleration data. The objective was to discern
various road conditions, including flat road, potholes, speed
bumps and rough road ultimately enhancing classification
performance through Deep Convolutional Neural Network
(DCNN).

Setiawan et al. [46] proposed a 1-dimensional semantic
segmentation methodology, where in each signal window
was assigned a time-varying label. Data acquisition involved
mounting smartphones on a motorcycle to capture different
environmental factors such as road conditions (flat, pot-
holed, speed-bumped, rough), human activity, and machine-
induced vibrations. Furthermore, an hybrid Bidirectional
Long Short-Term Memory (BiLSTM) Skip-U-Net archi-
tecture was developed, and trained with raw time z-
axis acceleration/rotation data. This model demonstrated
superior performance over conventional 1D and 2D U-Net,
as evidenced by higher accuracy and mean Intersection over
Union (mloU) scores.

Menegazzo et al. [47], achieved a classification of distinct
road surfaces (paved, unpaved and cobblestone) utilizing data
from multiple gyroscope, accelerometer and magnetometer
sensors (MPU-9250 by InvenSense) affixed to different
vehicles. Information regarding 3-axis acceleration, rotation,
and speed was integrated to discern the nuances of road types,
facilitating comprehensive analysis and classification. A 1D-
CNN, LSTM and a hybrid 1D-CNN-LSTM model were
trained on raw time data, CNN model gave the highest test
accuracy 93.17%. The benchmark is available in [48]. It can
be also configured for speed bump detection as in [49] where
a CNN-LSTM outperforms the other state-of art models. In a
related work by Narit et al. [50], a squeeze-excitation module
1D-ResNet was introduced for the same PVS benchmark
as discussed in [47], resulting in a notable enhancement
in accuracy. Singh et al. [51] proposed a binary feature
extraction custom layer tailored for an LSTM architecture,
aiming for pothole detection using smartphone accelerometer
and gyroscope data. Among the classical LSTM variants
examined, the Improved-LSTM model developed in this
research exhibited the highest accuracy.

Gated Recurrent Unit (GRU) and LSTM performance
were compared by Ibrahimetal.[52] for classifying
bump, pothole, rough and smooth road using raw smart-
phone acceleration data, with GRU achieving better
accuracy.

Siddiqui et al. [53] addressed the issue of road anomaly
event length variability by implementing an initial binary
BiLSTM detector to classify normal versus abnormal event
followed by another BiLSTM classifier to differentiate
among specific the anomaly type, including cat’s eye,
manhole, pothole and speed bump. Accelerometric sensors
mounted on car wheel and dashboard were used to collect
3-axis acceleration data, from which instantaneous frequency
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and spectral entropy features were extracted and used as
model inputs.

A lightweight hybrid model was implemented by
Raslan et al. [54] to classify road segments into categories
such as normal road, speed bump, potholes, bad road.
The dataset comprised 3-axis acceleration, rotation and
speed from a MPU-9250 sensor. A SepConvID-BiLSTM
architecture was proposed, employing raw time data for the
BiLSTM block and FFT data for a Separable-1D-Conv block.
The features from these block were fused to generate the
final prediction. This model not only achieved the highest
accuracy compared to the other state-of-art networks, but also
maintained a low computational cost.

Pandey et al.in [55] presented an peculiar framework
that fused image and acceleration data using a hybrid
2D-CNN + ID-CNN network for pothole detection. Data
were collected from smartphone mounted on windshield,
capturing both 3-axis acceleration sampled at 100 Hz and
128 x 128 images. Data augmentations techniques such as
scaling and permutation were applied to acceleration data,
while geometric transformation and brightness variation were
applied to images. The hybrid model outperformed 1D-CNN
and 2D-CNN models, which utilized only acceleration or
image inputs, achieving a test accuracy of 95.71%.

The existing literature on International Roughness Index
(IRI) estimation using ML methods is relatively sparse. The
primary challenge in this domain is the need of ground truth
IRI measurement for supervised learning, which typically
requires expensive inertial or laser profilometers.

Aboah Adu-Gyamfi [56] employed a DL method based
on entity embedding to estimate road IRI from smartphone
acceleration data and historical IRI values. Reference rough-
ness data were sourced from an on line viewer portal
(MoDOT’s ARAN). Raw time-series data were preprocessed
using Empirical Mode Decomposition (EMD) techinque to
extract different resolution modes, and PSD parameters of
each mode were computed as input features for a CNN.
Instead of direct data collection, vehicle response to road
profiles can be obtained using quarter-car models. In Jeong
and Jo [57] a road profile with a IRI values was generated
following the method presented by Tyan et al. [58], and the
acceleration response simulated using an half-car model was
employed to train a 2D-CNN model.

Liu et al. [59] proposed a semi-supervised method for IRI
estimation by fitting a nonlinear PSD model using already
available IRI values within a collaborative framework. Previ-
ously calculated IRI values from an inertial profilometer data
were used by Jeong et al. [60] to develop a 2D-CNN model
named IRI-Net. This model was trained with smartphone
acceleration, angular velocity and speed data collected with
several cars and phone positions. Peigen et al. [61] used a
randomly generated profile with variable variance to simulate
vehicle acceleration response, training an LSTM with vertical
acceleration and speed data. Transfer learning from Vehicle-1
and Vehicle-2 dataset was employed to improve performance.
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The method was validated using real data collected with a
9-axis accelerometer and inclinometer with BLE connection
(WT901BLECLS.0 by WIT motion) and real IRI values
measured with a three-meter straight edge.

Tab. 3 reports the available datasets and benchmarks for
the vibrational signals. A great amount of accelerometric data
(trips, cars, distress type) are freely available to be used as
benchmark. Video and GPS coordinates are associated to the
3axis accelerometer data. Different types of accelerometer
were used, each with its own signal-to-noise ratios and
accuracy levels.

Tab. 4 summarizes the state of the art for DL techniques for
anomaly detection using vibrational signals. The techniques
are primarily employed to detect the presence of potholes on
the road. The feature extraction process is a critical factor
in the overall performance of the classification. The most
commonly used architecture is the CNN. The dataset vary
in terms of acquisition systems and sensor accuracy, making
direct comparisons difficult. Nevertheless, the accuracy of the
results is over 90%.

Tab. 5 summarizes data acquisition setups of vibrational
signals utilized by DL methods, including both publicly
available and proprietary systems. Various types of 3-axis
accelerometers, ranging from piezoelectric sensors to MEMS
embedded in common smartphones, each offering different
signal-to-noise ratios and accuracy levels. The sensor position
in the vehicle is usually selected for ease of application,
no discussion is presented on the relevance of its position.
The availability of low-cost hardware implementations
for the solutions presented in the table facilitates data
acquisition.

C. CROWDSOURCING STUDIES

Some recent crowdsourcing solutions for road condition
monitoring with vibrational data have performed aggregation
and/or clustering of single users predictions on a cloud or
server in order to produce a reliable global estimation of road
segments condition.

A pothole system called DeepBus was presented by
Bansal et al. [65]. In this system 3-axis acceleration and
angular velocity data were collected with a accelerometric
sensor (MPU-6050 by InvenSense) on a motorbike and
transmitted to a Raspberry Pi3, running a ML classifier imple-
mented in Python, sent predictions to a server. Additionally,
a companion app was developed to display road potholes on
a map in real-time.

An Android app called RoadCare was developed by
Tiwari et al. [66]. This app collects 3-axis acceleration data
and includes an embedded NN model that classifies road
condition as good, medium or bad. Users’ prediction
confidences are sent to a server, which computes a global 1-10
score rating by applying an unsupervised clustering algorithm
to the prediction confidences.

Other works preferred to leave feature extraction and/or
road status estimation to servers or super nodes within
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TABLE 3. List of available benchmarks for the vibrational signals.

Distress Dataset Sensor Sensor Sampling
Reference : i
type details data details frequency
Potholes
Metal bumps Different car models. 3-axis smartphone
[23] Asphalt bumps More than 500 ) ) P 50 Hz
acc. accelerometers
Worn out road events were recorded
Regular road
Unpaved 9 datasets: 3-axis acc.
[48], [50] Cubblestone combination of different ~ 3-axis rotation MPU-9250 100 Hz
paved(normal) cars and drivers speed
Normal
Cateye . ADXL362
10 cars 3-axis
[54] Manhole . VK2828U7GS5LF 93 Hz
2454 anomalies acc.
Pothole Sensors
Speed bump
Transverse 3-axis Piezoelectric
39 327 samples 1380 Hz
(391 cracks P acc. CT1100L
TABLE 4. Resume of state-of-art deep learning anomaly detection with vibrational signals.
Ref Distress Model Input Dataset Performance Main Main
type arch. data details novelty disadvantage
608 normal events
Potholes CNN 302 potholes . . ec0 Identify different kinds of surface, oo
[43] speed bumps LST™M 1D Time 218 speed bumps CNN pavement _lyp?. 85% distinguish potholes LOW numbgr of dlttergn&
. . CNN driver actions: 93% " . driver action samples
driver actions RC 98 street gutters speed bumps and driver actions
A ion by stretching
12 cars and 20 loops
1D Time 4 obstacles . .
N(‘>rmal‘ STFT 15 anomalies Spectrogram data Ou.[pemrmb Proposed spectrogram instead of Onl‘y 19 "‘“e‘ef“
[37] obstacles CNN all other domains. N physical anomalies
road anomalies Spectrogram 9600 segments Top accuracy: 97.21% 1D time, STFT or CWT & obstacles
i Morse CWT 11/12 train P ¥ 2 : ’
1712 test
Transverse cracks L . .
STFT 1792 training samples . Comparison between Data collected with a
[38] ':2'::::]6 CNN CWT 768 testing WT has best accuracy: 97,53% WT and STFT unique constant speed
Unpaved CNN . ) Sensor position
[48], [50], [51] Cubblestone LSTM 1D Time di ffmn? f;‘r‘:‘;‘; drivers acccljgcb?“;%"“i% Available PVS benchmark below & above suspension
paved(normal) LSTM+CNN h h y: 2. 1% not practical
normal road Proposed a lightweight architecture Proposed a model
speed bump SepConvID + 1D Time to SepConvID . . . . L § & o . for IoT but did not evaluate
[55] - R 301 sequences Proposed model acc: 93.1% Comparison with state-of-art models. .
potholes BiLSTM FFT to BiLSTM . . execution performance
N Estimation of Road Quality Index .
bad road on an IoT device
No comparison with
. Proposed baseline methods.
X 2 datasets 5 architectures -
[63] potholes 2D-CNN raw time 432 and 1132 samples best model: 93.24% acc 5 deep network Same car, drly;r and
architectures sensor pnsllmn
for all datasets
Normal .
Cateye VISC trespasses FLSC Variable length event model Very simple classifier
. Istantaneous frequency 10 cars Events detection and A
[54] Manhole BiLSTM . and VLSC. e for variable length
Spectral Entropy 2454 anomalies o classification networks .
Pothole Accuracy> 90% for all classes - event detection
Vehicle indepedent model
Speed bump
float road
pothole Motoreycle used No comparison with
[47] speed ‘bm_np BiLSTM Skip-U-Net 1D time 6 routes Hybnd network Performs segmentation hlgh perl(?m“ung slale—_ol—arl
rough surface has 90 % accuracy on raw time data semantic segmentation
26 km length . X
human movement architectures
machine vibration
Pothole Improved LSTM with custom Obtains high performances
[52] P 1D time 5 trips with one vehicle ILSTM has 99.45% accuracy feature extraction layer but focuses only on
smooth road LSTM L . 7
Comparison with other models pothole detection
. ID-CNN + 1D time + 33360 images a‘md Fused model Images and acceleration Data collected
[56], [64] Potholes 2D-CNN 2D im: data samples ccuracy: 95.71% data fusi ly with hicl
2D image Trainfval/test: 70/15/15 accuracy: 95.71% ata fusion only with one vehicle
. . o . Crowdsourcing system Feature extraction technique
[65] Potholes LSTM 1D u_m © Different cars Join mo_dd with acceleration and video from video and acceleration
acc+video 10 m segments best accuracy: 92.17%

the network, which have virtually unlimited computational
capabilities.

Mihoub et al. [67] developed the Road Scanner app to
classify road segments as normal, pothole, bump or other.
However, the app requires users to actively select the anomaly
type on the app and collect data. Wu et al. [68] conducted a
comparative study of ML classifiers to identify road condition
as good, poor or extremely bad, for a crowdsourcing
monitoring system.

A LoRaWAN based network was designed in [69], where
smartphones are connected to gateways that send smartphone
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data fusion

could be improved

acceleration data to a server. An app was developed to

monitor road condition in real-time.

A 2D-CNN + GRU model was proposed in the crowd-
sourcing approach in [70] to mark road as flat, satisfactory
or unsatisfactory by using CFS features extracted from

smartphone acceleration data.

Instead, Bustamante et al. presented in [71] a V2I-
Fog computing architecture based on on-board unit, which
collects and sends the data to a roadside Unit, which is
responsible for preprocessing and classification using ML
methods to categorize road condition as plain, pothole, speed
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TABLE 5. Resume of data acquistion setups for vibrational signal DL methods.

Sensor Sensor Sampling Sensor Speed
Ref data details frequency position dependency Hardware
Z-acc. ) . 50,100, fixed on car Different speeds .
(37] Y-ang. velocity Xsens Mt 200, 250 Hz dashboard each loop GNSS receiver
3-axis smartphone constant
[38] ace. sensor 100 Hz back seats 30 km/h camera
3-axis acc Front axle HP Webcam HD-4110
[48], [501, [51] 3-axis angular velocity MPU-9250 100 Hz left/right from 0 to 91 km/h GPS
speed Control arm Raspberry Pi 3
3-axis acc. . .
: . car Included in Raspberry Pi 4
[55] 3-axis ang. velocity MPU-9250 71 Hz dashboard model input GPS
speed
ADXL362
. dashboard GPS
[54] 3-axis acc. VK2828U7G5LF 93 Hz car wheel n/a PICI8F26K22
Sensors
3-axis acc. Data Logger . . included in OBD Data
[34] speed OBD II 24 Hz inside vehicle model input Logger
63] 3-axis acc. smartphone 100 Hz fixed in maximum Two smart
) ang velocity accelerometer vehicle 50 km/h mobile devices
(52] 3-axis acc. smanphone 450 Hz windscreen different speed two
ang. velocity sensor each trip smartphones
(39] vertical Piezoelectric 1280 Hz tire suspension 30,40,50 MCC USB-231
acc. CT1100L knuckle km/h notebook PC

bump, or curve/turn. The on-board devices used MPU6050
sensors, while the roadside devices were Raspberry Pi
3 units equipped with Spark, Sklearn, NumPy, Pandas and
TensorFlow Python libraries. The results are then sent to a
central database for storage.

An LSTM model was proposed by Bhosale et al. [72] for
a cloud-based fusion system for road hazard detection using
smartphone motion data. Road segments were classified
into three categories: no hazard, road defect, and obstacles
hazards.

Sabor et al. [73] implemented a 2D-CNN with Low-High
Frequency Features Mixer block for a crowdsourcing system
designed to detect asphalt bump, pothole or metal bump.
The method used an an initial 2-way classifier to detect
the presence of anomaly, followed by a 3-way classifier to
identify the anomaly type.

Pandey et al. [55] suggested the potential of a 6G connected
autonomous vehicle framework that fuses vibrational and
images data using DL technique. The framework is based
on federated learning, enabling distributed training of a DL
model without accessing private user data.

Ramesh et al. [74] proposed a cloud-based collaborative
fusion approach using Amazon Web Services (AWS).
This method employed smartphone motion data for dam-
aged/undamaged classification and a vision DL method to
recognize the damage type. An LSTM model was trained with
raw smartphone acceleration data. Cloud system gathered
user prediction and performed a data clustering to aggregate
results.

Xin et al. [64] introduced an interesting approach that
combines acceleration and video data in a crowdsourcing
solution for pothole detection. Features from a video slide
of n frames were extracted with a 2D-CNN block and
concatenated with raw acceleration data to produce a global
feature used for prediction. A spatial density-based clustering
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algorithm was used for single user prediction fusion. This
joint model significantly outperformed ML and LSTM
classifiers in terms of accuracy.

Tab. 6 summarizes the crowdsourced studies based on
vibrational signals. Similar observations can be made regard-
ing data acquisition setups used by DL methods.

IV. VISION-BASED METHODS

In the following subsections, we considered three main
aspects of the Al applied to vision data: object classification,
image segmentation and object detection. Classification
approaches aim to recognizing distress categories in vision
data. Image segmentation techniques emphasize the small
objects or details. Object detection focuses on identifying
instances of semantic objects within a certain class.

A. CLASSIFICATION

Classification approaches using Deep Learning on vision data
typically subdivide the collected images into smaller patches,
which are then used to train the neural network and perform
classification.

This is done for two main reasons: first, to avoid adding
excessive computational burden to the method, which would
result in much longer training time and impracticality for
real-time implementation; and second, because classification
is mainly used to detect localized distresses, as shown by
Qureshi et al. [75].

One of the first available benchmarks for image classi-
fication was proposed by Eisenbach et al. [76], where the
well-known GAPs dataset was collected with an S.T.LLE.R.
mobile mapping system for large-scale pavement surveys.
The distress categories considered—such as cracks, potholes,
inlaid patches, applied patches, open joints and bleedings
were labeled with bounding boxes around each distress in
high resolution images captured by a CCD sensor (KAI-2093
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TABLE 6. Resume of crowdsourced studies based on vibrational signals.

Distress . Sensor Sensor Sampling System
Ref type Algorithm data details frequency details
Logistic Reg, . . .
[6]  potholes  SVM.KNN,NB, ™¥S2¢  npygoso 10 Hz Raspherry Pi 3 detection
DT,RFE, EV g veloeity v
Good RoadCare app
[67] Medium CNN 3-axis acc. smartphone 50 Hz Real—tllme detectlo.n
Bad speed accelerometer Clustering and ranking
predictions on server
Pothole
Bump .
SVM . smartphone Devices connected to
(70] patched road CNN 3-axis acc. accelerometer 16 Hz LoRaWAN network
damaged road
normal road
plain
pothole ANN e V2I-Fog
[72] speed bump KNN 3-axis acc. MPU6050 1000 Hz computing arch.
curve/turn
1D-CNN + 3-axis acc. smartphone 6G connected vehicles
(561 potholes 2D-CNN image acc, camera 100 Hz Federal Learning scheme
3-axis acc smartphone Joint acc+video model
[65] potholes LSTM L ? accelerometer 50 Hz Classification and clustering
video .
dashcam on multiple local servers

by Kodak). The distresses boxes were extracted and resized
to 64 x 64.

An extension of the GAPs dataset was proposed
by Stricker et al. [77] increasing the number of images
from 1969 to 2468 with a patch size of 100 x 100. A custom
network called ASINVOSNet, with 3 convolution blocks,
achieved a Fy-score of 91.74% on the test set.

Zhang et al. [78], proposed a patch-wise classification
method to distinguish clean road, patch, potholes, linear and
reticular cracks. Granular segmentation masks were of a
full-scale resolution images demonstrated the the method’s
effectiveness. The proposed custom CNN outperformed
ASINVOSNet in term of accuracy.

Chun et al. [79] used medium-sized, partially overlapped
patches of 256 x 256 pixels from 1024 x 1024 images
collected with a 3D Mobile Mapping System to distin-
guish several types of cracks and road markings. They
proposed an iterative training technique for ResNet50,
which adds incorrectly classified images to the training
set at each iteration and evaluates model performance
on a fixed, separated set, achieving a final accuracy
of 94%.

The variability of road distresses dimensions can sig-
nificantly limit classification performance. In this context,
Eslami and Yun [80] proposed a multi-scale CNN which
processes 50 x 50, 250 x 250, and 500 x 500 mm? images’
Region of Interests, all resized to 50 x 50 pixels. The network
comprises three convolution blocks and a final attention block
that combines the features. The multi-scale model achieved
the highest F{-score of 92.0% on the UCF-Pave 2017 dataset,
which contains images with four types of distress anomalies
and five types of non-distress anomalies.

1) THERMAL, INFRARED AND 3D LASER IMAGES

Since the performance of vision techniques based on RGB
images can be significantly affected by weather conditions,
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camera noise, and illuminance variations, recent research
in road damage detection has explored the application of
thermal, infrared and laser 3D images, which are more robust
to these issues.

The feasibility of using thermal images taken by a camera
(FLIR ONE by Teledyne Flir) for pothole detection was
first studied by Aparna et al. [81]. ResNet-18,34,50,102,150
models were trained and tested on a dataset made by
4500 images resized to 240 x 295 and augmented with data
augmentation techniques. All the models reached an accuracy
above 89%.

Chen et al. [82] presented an RGB, thermal, and
Multi-band Dynamic Imaging (MSX) fusion approach
with 500 RGB and 500 thermal images for each of
the nine considered categories, including various types of
transverse, longitudinal, and alligator cracks, potholes, joint
or patches, manholes, shadows, road markings, and oil
stains. EfficientNet BO-7 [83] performances were compared
after training on single RGB, thermal and fused images
datasets. The fused images approach outperformed RGB,
thermal and MSX for all EfficientNet versions and categories,
EfficientNet B4 achieving the highest average accuracy of
98.34%.

The same data collection setup and categories as [82]
were used in Chen et al. [84], where an RGB-thermal con-
catenation was employed to train a CNN including custom
hierarchical residual blocks,channel attention modules and
spatial attention modules.

Liu et al. [85] proposed a visible-infrared images fusion
framework combined with EfficientNet BO-B7 to classify
three levels of severity for cracks and absence of crack.
Fusion technique improved accuracy compared to the visible
dataset for all state-of-art networks, with EfficientNet B3
achieving the highest accuracy of 94.14%.

Another approach involves using range images, which
measure the spatial distance of the surface from a focal
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point. Zhou et al. [86] employed a 3D laser imaging system
by AMES to collect RGB and range images of pavement
to detect cracks. Three approaches were compared: Net-A
utilized a heterogeneous dataset made by both intensity and
range images, Net-B received fused intensity-range images
as input, and Net-C had two distinct blocks for intensity and
range images, later fusing their features. Net-B, with image
fusion, achieved the best detection accuracy of 99.16%.

2) GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks (GANSs) are architectures
used to generate synthetic data that closely resemble real
data. They represent a rapidly expanding and innovating field
within DL, applicable to both supervised and unsupervised
learning.

GANSs architectures consist of two main components: a
generative block, which typically takes random noise as
input and generates fake samples, and a discriminative block,
which aims to distinguish between real samples and those
produced by the generator.

Training a GAN involves solving a min-max optimization
problem. The discriminator’s weights are adjusted to maxi-
mize the probability of correctly identifying generated data as
fake, while the generator’s weights are adapted to maximize
the probability of generated data being classified as real.

In this context GANs are utilized to address the issue
of small datasets, offering an alternative to traditional data
augmentation methods.

A Variational Autoencoder was used to extract input
features for the generator in [87], extending a dataset of both
phone and camera images for crack detection. A combined
dataset of 3000 real crack images and 3000 DCGAN-
generated images was produced, resulting in an improvement
in crack detection accuracy on the original dataset and with
Faster-RCNN from 68.25% to 90.32%.

Xu et al. [149] compared VGG-19 classification accuracy
on a dataset before and after GAN augmentation. Images
captured with high resolution camera were labeled as
no crack, linear crack and reticulated crack after being
subdivided in smaller patches. Accuracy improved from
80.15% t0 91.61%.

A comparison between traditional data augmentation and
expansion using GAN-generated data was performed by
Yun et al. [89] to classify horizontal, vertical, and alligator
cracks, pothole, and non-crack labeled images captured with
a camera (AC7 by ORDRO) from a top down perspective.
Traditional data augmentation techniques included flipping,
rotation, cropping, adding Gaussian noise, and color jittering.
A modified VGG16 network was used for classification,
achieving a 93.27% accuracy on the augmented set with
image processing, and a 97.01% accuracy on the augmented
set with GAN.

3) PARTICIPATORY SENSING SYSTEMS
Several recent studies have focused on classification within
participatory sensing solutions in crowdsourced systems.

154280

Bibi et al. [90] proposed a framework with edge implemen-
tation of anomaly recognition among crack, pothole, bump,
and no anomaly within a vehicular ad hoc network (VANET).
In this system vehicles communicate with each other and
with the infrastructure, transmitting information about road
anomalies for safety purposes. ResNet18 and VGG-11 were
trained on a dataset obtained by merging three existing
databases of smartphone images, achieving an accuracy of
99.92%.

For real-time edge implementation of the DL model,
Yue et al. [91] developed a custom network named Mobile-
crack to classify road anomalies such as: cracks, sealed
cracks, pavement markings, or matrices. Smaller patches
were extracted from high resolution images, and an optimal
patch size of 200 x 200 pixel was chosen to balance the
trade-off between accuracy and inference time, measured on
an Intel Core i7-6700 CPU. The model achieved an accuracy
of 86.5% on test set was with an inference time of 47 ms.

Jana et al. [92] presented a benchmark for model per-
formance comparison using a participatory sensing dataset
of 1590 images captured by users’ smartphones for pothole
detection.

Patra et al. [93] introduced a mobile participatory sensing
framework named PotSpot for pothole detection. Users
collect images using a distributed application, that can either
send the images along with GPS location to a Firebase
server or run pothole detection on their devices and send the
detection information to the server. The model was initially
developed in Tensorflow, then converted to Tensorflow-Lite,
and integrated into the Android application.

Table 7 summarizes the state-of-art of DL classification
techniques on vision data.

B. SEMANTIC SEGMENTATION

Most of semantic segmentation literature for road condition
assessment focuses on cracks rather than other types of
damages, as cracks are well-suited for characterization with
a binary mask where each pixel is classified as belonging to
a crack or not. However, a few studies concentrated on other
types of distresses, such as potholes.

In contrast to vibrational-based methods, a significant
number of available datasets and benchmarks exists for
segmentation methods. Table 8 summarizes the main publicly
available datasets for road crack semantic segmentation.
These datasets provide a large number of images, including
high-resolution images, with the primary distress type being
cracks. Preferred data collection setups generally involve
high-resolution cameras with fixed angle capturing only
pavement view, CCD sensors mounted on inspection vehicles
for top-view images, and smartphone-based data collection
setups.

Existing datasets have been extensively used to evaluate
and compare the performances of DL segmentation models.
This has led to the development of high-quality performing
crack segmentation DL architectures from 2020 onwards.
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TABLE 7. Resume of state-of-art of deep learning classification techniques on vision data.

Ret. Distress Architecture Dataset Input Data Performance Main Main
. type details resolution acquisition novelty disadvantage
crack RGB images ! _ Higher
crack seal Custom UCE-PAVE 2017 dataset 3 different scales  Four different high-speed e8¢ Fl-score=92.0% 5 o4 o Multiscale model computational cost
[81] multi-scale CNN 1215 pavement images ! A ! Best among other ; om ;
patch ! ; resized 10 50x50  line-scanning cameras " with Attention block & inference time than
with Attention block 719 asphalt, 496 concrete ! state-of-art models ! <
pothole top down view bascline models
Transverse cracks
Longitudinal cracks
Alligator cracks 500 RGB, 500 thermal for each category
Joint or patches Data augmentation with noise, RGB images & Accuracy from RGB + thermal fusion Does not use
(831 Potholes EfficientNet BO-B7 thermal colorbar scaling n/a Thermal images 96919 and 99,526 Comparison of a fusion model for
Manholes 18945 augmented FLIR ONE camera S R EfficientNet versions RGB and thermal images
Shadows train/valltest: 60%/20%/20%
Road Markings
Oil Stains
10 crack MobileNet-V2 RGB & EfficientNet B3 best: Transfer learin
g low severity crack ResNet 34-152 2316 total images 994 x 994 infrared images acc=93.28% RGB RGB & infrared fusion (mDreves nerformaces
medium severity crack DenseNet 121-161 train/test: 80%/20% Infrared camera acc=86.55% infrared for crack severity classif. e ol o
high severity crack EfficientNet BO-B7 FLUKE TiX58 acc=94.14% fused Y forvis ages
Custom train/val/test:
) Net:A: same CNN 13000/6000/6000 256 x 256 intensity & range images o crack detecton with Focuses only
871 cracks with intensity or range 3D laser imaging Net-B best: acc=99.6% intensity & range o .
(1 mtensity of 509%/50% patches onSIty & T on crack detection
Net-B: fused intensity & range R - system by AMES images fusion
. crack/non-crack
Net-C: dual architecture
horizontal crack
vertical crack Custom GAN gener. & discrim. : e Improved VGG16 acc.: . ; Proposes only a
“set: 5200 images camera are: augm. wi " poses
190] alligator crack Improved VGG16 o e 3300 Images 01 % 01 ORDROACT camera T-set=93.27% Compares GAN augm. with e modification of VGG16
pothole for classif. i & P P G-set=97.01% age p! g augm- for classification
non-crack
pothole Potholc Image Dataset
bump ResNet!8 Speed Hump/Bump Dataset . — . Edge-Al based Poorly
o1 crack VGG-11 Pothole and plain road images 224 % 224 Web Scrapped Accuracy: 99.92% framework for VANET consistent dataset
no anomaly Merge + data i
crack 100°x 100 Optimal performance No comparison
2] sealed crack MobileCrack train/val/test: 200 x 200 road inspection ith 200 % 200 ncenge s, Proposed a lightweight network it e
- pavement marking T 10,000/1000/400 400 x 400 vehicle with camera « 20 Acke0.oT MobileCrack o
! Inference time=47 ms lightweight models
pavement matrix patches
Participatory sensing system
trainftest: users mobile Android App with Focuses only
‘ : e . 2cc=97.59 intearate o
[94] potholes Custom CNN 64160 64 x 64 e Custom CNN acc=97.5% integrated NN model on pothole deteation

The following subsection provides a detailed review of
the most recent high-performance DL architectures for crack
segmentation, tested on available benchmarks.

Additionally, we explore recent innovations focused on
specific types of problems or approaches. Examples include
hybrid methods that combine segmentation with classifica-
tion or detection to enhance performances, the application
of pavement 3D images collected by laser or stereo vision
systems, and alternative methods to address the imbalance
between crack and non-crack pixels in images.

1) NOVEL DEEP LEARNING ARCHITECTURES FOR CRACK
SEGMENTATION

One of the most significant breakthroughs in crack seg-
mentation was the introduction of the Hierarchical Feature
(HF) approach by Zou et al. [94]. HF outperformed classical
segmentation architectures like UNet of Jenkins et al. [95]
and Fully Connected Networks (FCN) of Long et al. [96].

HF approach extracts prediction masks from the multiple
intermediate-scale decoder features, and creates a fused
prediction through concatenation and convolution operations.
Training uses a combined loss by summing contributions
from the multiple prediction masks.

The application of Feature Pyramid with Hierarchical
Boosting (FPHB) to a custom UNet on the Crack500
dataset by Yangetal. [97], which was collected in the
same study, resulted to a model significantly outperforming
existing methods as FCN, CrackForest, holistically-nested
edge detection (HED), richer convolutional features (RCF).
In their work, the authors measured the segmentation quality
with an indicator known as ODS, which is defined as the
maximum F1-score with respect to value of the threshold used
to extract the binary mask from the predicted probabilities.
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Data collected by a Firebase
cloud service

Han et al. [98] proposed a modification of UNet, which
consisted of an upsample block nested into the main
encoder-decoder structure to perform crack segmentation
on Crack500 dataset enlarged by self collected images. A
77.32% IoU was obtained in the test set by using 720 x
1280 image resolution.

Wang and Su [99] achieved a 4.53% IoU improvement with
respect to the UNet version proposed in [100] for Crack500
segmentation by using a DenseNet121 backbone as encoder
combined with a decoder based on global attention upsample
blocks.

In [101] Liu et al. proposed a network called DeepCrack,
along with a dataset of the same name comprising 537 crack
images of 544 x 384 resolution. They used the first 13 con-
volutional layers of VGG16 as a backbone, combined with
HF approach and aggressive data augmentation, achieved an
86.5% F1-score on the DeepCrack test set.

Deeplabv3+ [102], by Chen et al., is one of the highest
performing segmentation architectures due to the Atrous Spa-
tial Pyramidal Pooling Module, which provides robustness
against objects scale variations.

Qu et al. explored in [103] the application of a custom
DeepLab with Feature Piramid (FP) approach and multi-scale
feature fusion in the decoder, reaching a 67.5% F1-score
on Crack500, nearly matching the performance obtained by
Song et al. [104] with CrackSeg.

In [105] Fan et al. assessed the application of a
multi-dilation convolution module in a customized UNet
combined with FP approach, proposing the U-HDN network,
which was trained and tested on CFD and AigleRN datasets.

A significant performances boost on Crack500 was
achieved by Qu etal. [106]. Gao et al. presented in [107]
an encoder-decoder network with a Res2Net101 backbone
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encoder and HF approach achieving 75.3% ODS on
Crack500 test set, which is 2.4% higher than the ODS
obtained by the DeepCrack in the same work. Fig. 2 reports
a scheme of this architecture.

The first architecture to slightly outperform DeepCrack
performances is DMA-Net, proposed by Sun et al. [108] and
reported in Fig. 3. This network utilized a Deeplabv3+
encoder with a pre-trained ResNet101 backbone on Ima-
genet [109], a double-scale attention fusion decoder and
hierarchical feature approach.

An improvement of 3.1% ODS over DeepCrack was
achieved by Zhou et al. [110] with a ECDFFNet model. This
model featured an encoder composed of enhanced blocks
with horizontal, vertical, and square parallel convolutions,
strip blocks made up of 1D and 2D large convolutions,
and HF approach. Additionally, a Dynamic Fusion Strategy
was introduced to replace the traditional fixed weight fusion
method, enabling the generation of a global prediction mask
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from the multiscale features. Fig. 4 reports a scheme of this
architecture.

Al-Huda et al. [111] proposed a transfer learning approach
based on the fusion of the features produced by a segmenta-
tion network and a class activation map (CAM) architecture.
The segmentation model was based on a Xception encoder
while the CAM network was custom. The proposed hybrid
network called KTCAM-Net outperformed DMA-Net [108]
on Crack500 and DeepCrack datasets by more than 1% F1-
score.

To the best of our knowledge, the model that achieved
the highest performance boost over DeepCrack was MST-
Net, presented by Yang et al. [112]. MST-Net employed a
multi-scale encoder with ResNet block, a triple attention
module for each scale containing channel, spatial, and
pixel-wise attentions, and the classical HF. Performances
comparison on Crack500 and DeepCrack demonstrated
significant improvement not only over DeepCrack but also
over the most recent architectures, including ECDFFNet.

Table. 9 summarizes the most recent high-performing
DL architectures for crack segmentation. A comparison
between the performances of the different architectures can
be partially performed when the same dataset is used.

2) OTHER RECENT NOVELTIES

Other recent researches focused on addressing various
challenges such as developing real-time segmentation archi-
tectures, a challenging task causing a high computational
burden, leveraging 3D images captured by laser or stereo sys-
tems, utilizing UAVs for monitoring systems, and combining
segmentation with object detection to select distress regions
for improving accuracy.

As stated by Paszke et al. [113], achieving at least 30 FPS
is necessary for a DL segmentation model to be suitable
for a real-time implementation. Wang et al. [114] explored
the possibility of using the BiseNet architecture proposed
by Yu et al. [115] for real-time processing on desktop GPU.
An inference speed of 31.3 FPS was reached on 1024 x
512 images using NVIDIA GTX1080Ti GPU, and demon-
strated a comparable segmentation performance on Crack500
dataset as Deeplabv3+ and FC-DenseNet103 [116].

A custom CNN was designed by Pengfeietal. [117],
featuring an encoder with asymmetric convolution enhanced
blocks that include vertical, horizontal, and square parallel
convolutions, and a 5 x 5 kernel convolution. In the decoding
stage, a multi-scale feature fusion approach was used. This
network proved feasible for real-time implementation on a
NVIDIA Geforce RTX2080 TI GPU, achieving 33.61 FPS
with 1280 x 1024 images. Although BiseNet showed
better computational performances, the proposed model had
superior segmentation accuracy.

Contrary to the aforementioned studies that utilized
a desktop GPU, a low-computational cost architecture,
feasible for mobile implementation was presented by
Dogan at al. in [118], with an encoder based on MobilenetV2
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bottlenecks, presented by Sandler et al. [119]. This archi-
tecture demonstrated superior segmentation performances
compared to [114], additionally a lower computational cost
than MobilenetV2 was proven.

Liu et al. [120] employed hybrid detection-segmentation
approaches to overcome the problem of imbalance between
crack and non-crack pixels or samples. In [121] Nguyen
et al. trained a custom classification network to classify
96 x 96 patches from higher resolution images as con-
taining cracks or not, followed by segmentation of the
classified patches with another custom CNN. This combined
method outperformed traditional one-step methods. Simi-
larly, Qiaoning et al. [122] proposed an hybrid method to
handle the high number of non-crack images collected during
inspections by selecting images classified by a pre-trained
VGG16 for segmentation with a UNet++.

3D laser imaging is another expanding research direction
for crack segmentation. Zhang et al. [123] addressed this
issue. They proposed the CrackNet network, trained on a
dataset collected with the PaveVision3D system using 4096 x
2048 3D images, achieving an 88.86% F1-score in the test set.
Fei et al. [124] developed an evolution of this model named
CrackNet-V, with a significantly fewer parameters than [123]
and comparable segmentation performance on a private 3D
images dataset. The problem of imbalance between crack and
non-crack pixels in both 3D and color images was intelli-
gently addressed by Tang et al. [125], where the label binary
mask was projected into a lower dimensional feature-space
using an autoencoder initially trained to reconstruct the input
label. A segmentation network was trained to estimate the
low dimensional features produced by the autoencoder from
the binary labels, achieving a 97.82% F1-score in the test set,
thus significantly outperforming CrackNet-V and UNet with
ResNet34 encoder.

UAV images are becoming an attractive alternative for
road condition monitoring to the inspection with equipped
vehicles, offering feasibility with solutions for real-time
monitoring. A highway road crack segmentation dataset
of UAV images was published by Hong et al. [126], which
contains 1157 images captured with a 5cm resolution at
the height of 200 m. This dataset was used to evaluate the
performance of a custom light UNet architecture with channel
and spatial attention modules after the encoder, which was
trained on an existing dataset [127] originally used for object
detection. UNet-CBAM achieved a 98.87% F1-score on the
evaluation set.

Chao et al. [128] implemented a system for road 3D
reconstruction using stereo vision with a high resolution
camera mounted on a vehicle. The aim of the work was to
perform a high-precision volume estimation of potholes and
cracks. The 3D reconstruction involved estimating camera
coordinates with feature tracking between successive frames,
followed by a triangulation procedure to generate the 3D
point cloud. Semantic segmentation was performed with a
UNet based on depthwise convolutions to select the pothole
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or damages regions from the orthoimages and depth images
generated with the aid of 3D construction.

Instead of performing a pixel-level segmentation,
Tang et al. [129] developed an iterative patch-level segmen-
tation technique to classify 300 x 300 patches from full
resolution images as containing several types of cracks,
raveling, repair or being normal road. A classification
network was iteratively trained with the output produced
in the previous iteration as target labels by starting from a
constant patch label along the full-scale image. The proposed
method outperformed EfficientNet in terms of Precision and
Recall.

In order to perform crack segmentation, Mei et al. [130]
proposed a GAN which employed a conditional generator
along with the Wasserstein distance instead of the classical
Kullback-Leiber divergence. The network was trained on a
dataset made up of 600 images collected with a GoPro Hero
mounted at the back of a vehicle. High resolution collected
images were split into 256 x 256 patches. The method reached
superior segmentation accuracy than UNet, ResNet152-FCN
and VGG19-FCN.

Segmentation of road images is generally not performed
on very high resolution images due to the computational
and memory constraints. Reduced image resolution typically
limits the segmentation accuracy of DL models. To address
this, Shim et al. [131] proposed an image resolution enhance-
ment technique based on GAN, to increase road damage
images resolution from 512 x 512 to 1024 x 1024.
A segmentation network, also based on a GAN, was then
used to produce the map from the generated high resolution
images. This approach was tested with several generators and
discriminators for the two GANSs, resulting in a significant
improvement over traditional low resolution supervised
segmentation methods.

C. OBJECT DETECTION

As opposed to semantic segmentation methods which mainly
concentrate on cracks, several categories of road damages
are typically considered. Unlike semantic segmentation
methods that primarily focus on cracks, object detection DL
architectures handle multiple categories of road damages
by performing both localization and classification tasks
simultaneously.

Additionally, while segmentation methods usually work on
datasets collected from inspection vehicles or professional
cameras with top-down view images, object detection is
suitable for distress detection in wide view images captured
by user cameras and real-time monitoring systems based on
UAVs.

One of the most well known state-of-art object detection
benchmarks for road pavement anomalies was published by
Maeda et al. [137]. A total of 9053 600 x 600 images were
collected in Japan with a LG Nexus smartphone mounted
on car dashboard, including 15435 abnormalities instances
belonging to eight different categories.
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TABLE 8. Resume of the main available datasets for semantic segmentation and classification techniques.

Ref. Dataset Distress Method Nl.lmber of Acqm?mon Domain Orlgm.al
name images device resolution
CrackForest semantic smartphone
[133] dataset (CFD) cracks segmentation 18 camera RGB 480 x 320
. Aigle RN (62), ESAR (30),
[134] AELLT cracks _ semantic 269 LCMS (65), LRIS (89) RGB varying
segmentation laser
and Tempest (23)
[135] YangCD cracks Se;’f:;i?;lgon 800 n/a RGB from 72 to 300 dpi
[102]  DeepCrack cracks Se;n‘r;‘::[jon 537 n/a RGB 544 x 384
[102]  CrackTree260 cracks %e;fr:nn::irtl:ticon 260 area-array camera gray-scale 512 x 512
crack
pothole .
inlaid patches cach image has £ 64 64 Kodak KAI-2093
[77] GAPs applied patches detection b & ding b cCD gray-level 1920 x 1080
applied patches ounding box scanner
ngen joint with a distress
bleeding
Normal
Applied patch
crack . Extended GAPs Kodak KAI-2093
[78] GAPsv2 inlaid patch detection 2 468 images CCD scanner gray-level 1920 x 1080
open joint
pothole
semantic 384 crack images Kodak KAI-2093
18] GAPs384 cracks segmentation from GAPs CCD scanner RGB 1920 > 1080
semantic 300 collected images smartphone
[98] Crack500 cracks seA mentation each cropped in 16 regions ’ can]:era RGB 2000 x 1500
8 3368 total images
semantic
[131]  EdmCrack600 cracks segmentation 600 GoPro Hero 7 Black RGB 1920 x 1080
transverse crack, massive crack in-vehicle cameras
alligator crack, crack pouring patch-wise . -
[130] CQU-BPDD longitudinal crack. raveling classification 60059 of a professional pavement  gray-level 1200 x 900
& repair norn;al J inspection vehicle
11300 images
semantic Own dataset merged with
[136] B cracks segmentation Crack500, Gaps, CFD, n/a RGB 256 x 256
AELLT, CrackTree260
[137] CrackSC cracks Se;;”;‘:;‘;on 197 images iPhone 8 RGB 320 x 480
cracks in semantic 5cm
[127] - highway 5 ‘ 1157 UAV RGB Jat
pavements segmentation resolution

Maeda et al. [138] proposed RDD2019 which is an
augmentation of RDD2018 made with a GAN approach.
An additional category was added such as ““Utility Hole” and
the number of images was increased up to 13159 containing
30989 instances.

Arya et al. [139] recategorized RDD2019 by merging
classes and obtaining only four different categories such
as longitudinal cracks, transverse cracks, alligator cracks
and potholes. The dataset was also enlarged with images
collected with a dedicated smartphone app in India and Czech
Republic. A total of 26336 images dataset was obtained,
including 31000 instances.

Furthermore Arya et al. [140] proposed the most recent
version of this dataset called RDD2022 by expanding
RDD2020 up to 47420 images and 55000 instances by adding
images collected in Norway with high resolution camera,
from Google street view in USA and from China with drones
and smartphones mounted on motorbikes.

Traditional deep learning architectures for object detection,
such as Single Shot Multibox Detector(SSD) [141], Faster R-
CNN [142], and YOLOV3 [143], have been extensively tested
on available benchmarks.
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Cao et al. [144] established a benchmark employing
the RDD2018 [137] dataset to compare the performances
of SSD Mobilenet V1-2, Faster R-CNN Inception V2,
Inception ResNet V2, and ResNet50-101. Despite being
computationally efficient, SSD Mobilenet V1-2 achieved
significantly lower detection accuracy than Faster R-CNN,
which reached a 54.75% mean Average Precision (mAP) with
Inception ResNet V2 backbone.

A better trade-off between computational complexity
and detection accuracy can be achieved by YOLO-series,
as shown by Du et al. [145], where cracks, patched cracks,
potholes, patched potholes, net, patched net, and manholes
were considered as distress classes. YOLOv3 obtained
slightly lower average precision (AP) than Faster R-CNN but
had a lower inference time than SSD when tested on NVIDIA
Geforce Titan X.

Zhu et al. [146] presented the largest available UAV
collected dataset for detection, comprising 3151 images of
size 512 x 512, considering several types of cracks, sealed
cracks, and repaired patches, potholes as categories. YOLOv3
achieved a 56.6% mAP, outperforming Faster R-CNN, which
did not reach 50% mAP, and even its evolution YOLOvV4.
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TABLE 9. Resume of state-of-art novel DL architectures for crack segmentation on available benchmarks.

Ref. Archite.cture Dataset lnpu.t Training Performance State-of.-art
details resolution method comparison
CrackWNet:
[99] UNet with round trip CkaSOQ + 720 x 1280 scratch Lol = 77'32:/6 ToU > 7% higher than FCN, UNet
. self collected images Rec = 57.37%
skip-level upsample block
Crack500 Crack500: ODS = 60.4%
Custom UNet with GAPs384 Depends on GAPs384: ODS = 22.0% Clearly outperforms
[98] Hierarchical Feature CrackTree200 dataset scratch CrackTree200: ODS = 51.7% FCN, HED, RCF
approach CFD i CFD: ODS = 68.3% and CrackForest
AigleRN AigleRN: ODS = 49.2%
U-HDN:
UNet + multi-dilation CFD . CFD: ODS = 93.5% Higher ODS
(106] convolution module + AigleRN 320480 scratch AigleRN: ODS = 92.7% than UNet, FPHBN[98]
Hierarchical Feature approach
DeepLab + Crack500 Crack500: F1 = 67.5%
[104] multiscale feature fusion + DeepCrack n/a scratch DeepCrack: F1 = 85.8% SS ame perrffA ag ]géacllz)szeg onDCracé(§03)(
Hierarchical Feature approach CrackDataset (eval. only) CrackDataset: F1 = 61.5% ame pert. s [102] on DeepCrac
Encoder-decoder: D ccrakdzsool ly) DC racéSOO]; %?)Ss: 7;3340{; ODS 2.4% higher th:
. . eepCrack (eval. only . eepCrack: = 83.4% 4% higher than
(107] Hl’:f;rziff;l“;;’iz:zﬁzzch CED (eval. only) wa scratch CFD: ODS = 72.6% DeepCrack[102]
CrackTree260 (eval. only) CrackTree260: ODS = 32.5%
DenseNet-121 backbone Training:
[100] Global Attention Upsample blocks Crack500 + DeepCrack + 512 x 512 transfer Crack500: IoU = 62.35% IoU 4.53% higher than UNet in [101]
GAPs384
DMA-Net:
Deeplabv3-plus Crack500 ) Cracks00: 'F] :774'40? F1 14% higher than FPHB on Crack500.
[109] . - R DeepCrack n/a transfer DeepCrack: F1 = 87.0% f 2
(Dilated ResNet101 backbone) + EMA dataset FMA: F1 = 75% F1 0.5% higher than DC on DeepCrack
double scale attention decoder i
ECDFFNet:
Enhanced encoder blocks Crack500 448 x 448 Crack500: ODS=78.8% P i o
[111] horiz,vert, square conv. + DeepCrack 480 x 480 scratch DeepCrack: ODS= 87.2% O%g%%gﬁ]gﬁ?f{;:s%%ﬁ 1[3;] (0):: g;‘;;lgg(c)k
strip mixed conv blocks CFD 480 x 320 CFD: ODS= 86.3% o
Hierachical Feature approach
Enco delf’gecaﬁxlr\g;l\fjszé d with Crack500 Crack500: F1 = 75.4% )
[112] activation maps produced by DeepCrack 294 x 224 scratch DeepCrack: F1 = 88.6% F1 1% hl.gher than DMA-Net on Crack500
Class Activation Mapping CFD CFD: F1 = 96.0% F1 1.6% higher than DMA-Net on DeepCrack
Xeenti . CrackSC CrackSC: F1 = 92.1%
ception backbone
MST-Net:
Multiscale inputs + ResNet blocks + DeepCrack 512 x 512 DeepCrack: mIoU=91.1% .
[113] Additive attention blocks + YCD 512 x 512 scratch CFD: mloU=78.5% mloU 2.7% hﬁgh}fr ‘h};‘“ ECDFFI\ZI“ on D“"C'aik
Triple attention blocks + CFD 320 x 480 YCD: mloU=78.7% mloU 5.1% higher than DC [102] on DeepCrac

Hierarchical Feature approach

Another advantage of YOLO series over Faster R-CNN
is that YOLOvV3,v4, and v5 are based on COCO
pre-trained backbones such as DarkNet53 first proposed
by Redmon et al. [143] and CSPDarkNet53 proposed by
Wang et al. [147], which are easily scalable by reducing the
number of residual convolutions in each block.

Notable improvements for Faster R-CNN have been made
by Ahmed in [148] and Xuetal. [149], where a Mask
R-CNN [150] was trained and tested on a small dataset of
148 smartphone images to detect and segment cracks. Mask
R-CNN extends Faster R-CNN by adding a parallel branch
for segmentation in addition to detection.

Tab. 10 lists object detection works with available data,
showing by a large amount of high resolution images.

1) EVOLUTIONS ON YOLO-BASED ARCHITECTURES

The evolution of YOLO architecture in recent years has led
to highly performing object detection solutions with reduced
computational complexity and inference time compared to
previous versions.

Wang et al. [156] chose ResNetl01 as backbone for
YOLOV3, replacing the classical DarkNet53. Combined with
an aggressive data augmentation, this approach effectively
detected and distinguished potholes filled with water from
those without water in top-down images captured from a
mobile mapping system with a high resolution camera. Mean
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average precision reached 89.3%, more than 13% higher than
the baseline YOLOV3.

YingChao et al. [157] proposed a modified version
of YOLOV3, incorporating in its neck several multi-level
attention blocks. This model was trained on the AUPD
database achieving over 7% mAP improvement compared to
the baseline YOLOV3.

Some works have applied YOLOv3 to analyze GPR,
B-scan, C-scan, and D-scan images captured by multichannel
ground-coupled antenna arrays to detect concealed crack
in pavement, rather than the usual RGB images. In [158],
Zhen et al. proposed a version of YOLOv3 with four output
features for concealed crack detection from single B-scan and
C-scan images or their spatial concatenation. This method
showed very promising results, outperforming Faster-RCNN
and YOLOv3-ResNet50 which was used for concealed crack
detection from GPR images by Liu et al. [159].

A significant breakthrough was achieved by YOLOVS
[160], which, despite lacking an official reference paper,
has quickly become a standardized architecture within the
Ultralytics library.

Habeeb et al. [161] improved YOLOvV5’s performances for
pothole detection by using a super resolution image enhance-
ment based on a GAN with a relativistic discriminator.

Fang at al. [162] proposed a lightweight variant of
YOLOV5-s called YOLO-LRRDD, whose architecture is
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TABLE 10. Resume of available datasets for object detection.

Dataset

Number of

Other

Original

Ref. name Distress images details Acquisition resolution Place
DOO: linear crack, longitudinal,
wheel mark part
DO1: linear crack, longitudinal,
construction joint part
D10: linear crack, lateral,
equal interval . .
[138] RDD2018 D11: linear crack, lateral, 9053 images First benchmark LG Nexus 5X on 600 x 600 Japan
L 15435 instances for this competition car dashboard
construction joint part
D20: alligator crack
D40: rutting, bump,
pothole, separation
DA43: cross walk blur
D44: white line blur
RDD2018 + 13135 images RDD2018 augmented LG Nexus 5X on 8 8
[139] RDD2019 D50: utility hole 30989 instances with GAN & re-annotation car dashboard 600 > 600 Japan
DO0: longitudinal Cracks RDD2019 augmented .
D10: transverse Cracks 26336 images with images from smartphone 720 x :720 India Jape}n
[140] RDD2020 - B . . 600 x 600 Japan, India
D20: alligator cracks 31000 instances India, Czech Republic app Czech Republic Czech Republic
D40: potholes & recategorized rech Kepublic rech Republic
RDD2020: smartphones o
. RDD2020 augmented Norway: high resolution camera 720 x 720 Jdp¢_m
47420 images . . X X 600 x 600 India
[141] RDD2022 same as RDD2020 B with multi-source images USA: Google street view .
55000 instances . N 512 x 512 Czech Republic
from Norway, USA and China China: drones & .
X . 3650 x 2044 USA, China, Norway
smartphones on motorbikes
Pothole Tmage 665 images includes effects of shadows,
[152] & potholes & moving vehicles Online sources 720 x 720 -
Dataset 8000 potholes . o .
illumination variations
. Loc. & classif. Camera on car dashboard
with two separate networks Near road area
[153] - potholes 5676 images 352 x 224 for localization . 3680 x 2760 South Africa
cropped and resized
ROIs cropped from t0 1170 x 1120
1170 x 1120 images
transverse crack
longitudinal crack UAV DIJI M600 Pro
alligator crack . Largest UAV 35.9 mm x 24.0 mm CMOS sensor - .
(1471 UAPD oblique crack 3151 images available dataset 300 high resolution images 7952 % 5304 China
repair cropped into 512 x 512 regions
pothole
PANGEA pothole P Multi-agent data UAV: DJI Mavic Air 2 . S .
[154] dataset crack 365 images collection system 4K digital camera 3840 x 2160 China
road measurement vehicle
[155] ~ cracks 10400 images Rgdundam annotation CCD sensor lmelxel 3024 x 1889 Mongolia
sealed cracks Semi-automatic annotation top-down view
images cropped to 600 x 600
RDD2022 China
[156] - Same as RDD2022 2893 images drone images + DII Air 25 3840 x 2160 China
Spain collected Spain

drone images
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FIGURE 5. YOLO-LRDD architecture proposed in [162].
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represented in Fig 5. The majority of bottleneck blocks of
YOLOVS5 backbone were replaced with ShuffleNet blocks.
YOLO-LRDD was trained and tested on a dataset with
13780 images, selected from RDD2020 and supplemented
with images collected in China. YOLO-LRDD was revealed
to be computationally lighter than YOLOVS5-s and achieved a
slightly superior detection performances with a 57.6% mAP.

Ren et al. [163] proposed an enhanced architecture for
the neck and head of YOLOVS5, replacing the backbone with
an additional feature scale output, a Generalized Feature
Pyramid Network (FPN) neck, and a decoupled head similar
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to YOLOX developed by Ge et al. [164]. Trained on Google
Street View images to detect various types of crack, patch
types, potholes, and other distresses, this model outperformed
most newer architectures as YOLOR and YOLOvV7 proposed
by Wang et al. [165] and Wang et al. [166] respectively.

Roy and Bhaduri [167], to the best of our knowledge,
achieved the highest detection accuracy reported in literature
on RDD2018 dataset with DenseSPH-YOLOVS5, an evolu-
tion of TPH-YOLOVS proposed by Zhu et al. [168]. TPH-
YOLOVS [168], incorporating Swin Transformer blocks and
Channel + Spatial attention modules in the neck, was initially
designed for detecting different vehicles and pedestrians
from drone images. In comparison, DenseSPH-YOLOvV5
[167] share a similar neck with TPH but additionally
integrates single DenseNet blocks between bottleneck stages
in the backbone. This model achieved an mAP of 85.2%
for RDD2018, significantly surpassing TPH-YOLOvS and
baseline YOLOVS.

2) REAL-TIME MONITORING SYSTEMS

In the context of object detection, developing scalable models
or lightweight architecture is generally more feasible than in
pixel wise image analysis. Consequently, several studies were
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TABLE 11. Resume of state-of-art deep learning object detection techniques.

Ref. Distress Architecture Dataset Input Data Performance Main _ Main
details resolution acquisition novelty disadvantage
I SSD MobilnetV1-2
oype I transverse cracks SSDLite MobilenetV2 a0l Best performance by Benchmark which compares  High quality performances
1451 hoor construction joint SSD Inception V2 e in 600 % 600 RDD201S Faster R-CNN- SSD and Faster R-CNN are only achieved by
[145] T” T~ ijks Faster RCNN ResNet50-101 n cﬁmcs g “Inception-Resnet-V2: with several backbones Faster R-CNN with
Bt Olﬁ o Faster RCNN Inception V2 9493 e mAP = 54.75% on RDD2018 heavy backbones
ype IV: Dther damage Faster RCNN Inception-ResNet V2 > Images
Tmages from mAP e mn YOLOVSs reaches
[49] hol Modified VGG-Faster R-CNN  Roboflow, MakeML + arying smartphone YOLOVSs: 58.9% bﬁf"i“’f ?nrj?}icrdkvcg']g(, higher mAP and
potholes YOLOVS5-1,m,s ResNet101 additional arying on car windshield Faster R-CNN MVGG16: 45.4% ff" "mho‘;e d:[wio" lower inference time
665 total Faster R-CNN ResNet50: 64.12% P : on desktop GPU
Mask R-CNN
Mask R-CNN 148 images outperforms YOLOV3. Compares Mask-RCNN to Detection performances
[150] cracks Faster R-CNN wainftest: 00110 % 800 x 500 smartphone Detection performances to YOLOV3 and Faster-RCNN tested on a very
YOLOV3 anest ‘ more sensitive on a small crack dataset. small dataset
than Faster R-CNN
- mAP: Proposes Pothole
YOLOv4 665 pothole images . ., rroposes Fothoe Low accuracy for
[152] potholes Tiny YOLOv4 Train/val/test: 416 x 416 online YOLOV4:77.7 % Tmage Detection dataset. potholes located
sources Tiny YOLOV4: 78.7% Compares YOLO :
YOLOVS-s 70/20/10 % A at long distances
YOLOVS-s: 74.89 performances
mAP, FPS Model implementation
YOLOVI-v5 y ' Tiny YOLOv4: 80.04%, 31.4 on a Raspberry Pi OAK-D Does not propose a
[170] potholes Tiny YOLOv4 PID dataset T‘?&%ﬁg_"giélf g_lélﬁ ;:;:‘lr‘::s YOLOVS: 95%, 18.5 with OpenVino framework novel architecture
SSD MobilenetV2 : SSD MobilenetV2 for real-time pothole for real-time detection
poor performances detection on edge device
[154] potae Tiny YOLOv4 565 images 1200 x 900 a DJI Mavic Air 2 5.52 ms image latency TOPOSC & ques Cic
crack ) monitoring system based on UAV precision higher
quadcopter on Nvidia Jetson GPU
than 47 %
Real-time monitoring -
pothole mAP s UAV navigation
171 crack Tiny YOLOV3 10000 images 416 x 416 UAV Tiny YOLOV3 improv: 94% system with UAV might be affected by
yellow lane improved Tiny YOLOV3: 89% Images captured by UAV. detector performance
Y Y P sent to Jetson TX2 with Wifi. P
1595 images
YOLO—S{?&?I’:H Flow 1735 cracks Tiny model dlifcﬂ;:gi Lsrﬁ:\r/n No comparison with
[172] cracks p é Augmented with 512 x 512 smartphone oy . . ction system other lightweight
iny model ned acc=98.1%, 29 FPS with Median Flow algorithm 1aht
1500 crack images ; architectures
from YOLO-MF goncrated by GAN for crack counting
800 pothole images Mobil
othole with water 1200 images Ma h: :qem mAP Proposed a YOLO-ResNet101 Architecture novelty
[157) glholc ithout water YOLOv3-ResNet101 without potholes 512 x 512 High d‘“c‘z.mﬁlgi amera Proposed model: 89.3% for pothole detection is only a modification of
P Train/val/test: o down view YOLOv3-base: 76.0% from top-down images YOLO anchor sizes
1200/400/400 P ©
UAPD YOLOV3 with mAP Proposed a modified YOLOV3 Smaller mAP
[158] ategories Multi Level Attention UAPD 416 x 416 UAV DJI M600 Pro YOLOV3-MLAB: 68.75% with different types improvement obtained
catego blocks in YOLO neck YOLOV3-base: 61.09% of attention blocks in YOLO neck for RDD2020
GPR images 3D radar Detection of concealed cracks
concealed YOLOV3-FDL B,C-scan, detection system mAP from B.C-scan GI;R images Limited number
[159] ks with multi-scale fusion B,C scan 416 x 416 Multichannel YOLOV3-FDL DCN: 87.8% o o g of images.
acks neck Train/val/test: ground-coupled YOLOV3-ResNet50: 83.0% YOLOVS with modifien neck No data augmentation
2784/928/928 antenna arrays V2> with modified nee
MAP=376%
YOLO-LRDD ; ) Several network
Chinese extension Accuracy comparable Proposed a YOLOVS
2 /5: Y eced pars .
11631 RDD2020 Modified YOLOVS: of RDD2020 640 x 640 wa with YOLOVSs-m with ShuffleNet ECA backbone  “"IePugged parameters

ShuffleNet layers and ECA blocks
backbone

categories 13780 images

Lower computational
cost than YOLOvSs

and BiFPN neck

detection performance

Tongitudinal crack
transverse crack

alligator crack YOLOVS Improved:

Additional output in the backbone 2900 images

Street view

AP=79.8% F1=75%

Proposed a modified YOLOVS
with improvements

Higher
computational cost

[164] pothole al outputin | ° Train/valftest 1024 x 1024 trect view Outperforms YOLOR in backbone, neck and head !
manhole cover Generalized FPN in the neck 1740/580/580 Baidu maps and YOLOV? for damage detection than YOLOvSs
wnhol Decoupled head as YOLOx ) ige detectior baseline
longitudinal patch from Google street view images
transverse patch
DenseSPH-YOLOVS: mAP
RDD2018 YOLOYS with DenseNet LG Nexus 5X on TP\}{I?YL(?[YLSJ:\'Q 7173 thv/( Proposed an extension mgklxl::e:he:; e\(‘(l)l;i%\i
[168] blocks in backbone. RDD2018 600 x 600 X o DeneSPLY L oS, o3 350 of TPH-YOLOVS [169] with e on

categories N
< Swin Transformer and

CBAM modules in the neck

focused on implementing real-time monitoring systems for
road infrastructure.

For instance, Asadetal.[169] analyzed the feasibility
of YOLOvS, Tiny YOLOv4 and SSD Mobilenet V2 for
real-time pothole detection on the Pothole Image Dataset.
Detection was performed with an OAD-K camera equipped
with a VPU, a processor optimized for accelerating Al
algorithms. Tiny YOLOv4 Darknet was the only model to
achieve adequate real-time detection speed on Myriam VPU
hardware, reaching 31.76 FPS together with a 80% mAP.
Although YOLOVS achieved 95% mAP, it reached 18 FPS,
insufficient for real-time performance. SSD Mobilenet V2
did not achieve sufficient accuracy.

Silva et al. [153] developed a multi-agent monitoring
system based on UAVs and the PANGEA platform, utilizing
a distributed data collection approach. The system, which
detected potholes and cracks, employed Tiny YOLOvV4 as a
detector, achieving 95% accuracy with a 5.52 ms inference
time on a NVIDIA Jetson device. The images were published
as a an available benchmark.

Hassan et al. [170] also used UAVs for potholes, cracks and
yellow lanes detection. Images were sent via Wifi to a Jetson
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Outperforms every other
work on RDD2018

DenseNet blocks in the backbone

NVIDIA GPU

TX2, which ran an improved Tiny YOLOv3 Darknet detector
along with a control algorithm for the drone’s position based
on the detected yellow lanes. Images were then transmitted to
a server with Wifi or 5G technology if pothole or a crack was
detected.

Jinetal. [172] proposed a modified version of YOLOVS for
real-time detection of highway road cracks. A 1560 images
dataset was collected with a DJI Mavic3 UAV in realistic sit-
uations where the crack occupies only few pixels in the image.
The proposed modified YOLOVS5 included Swin-Transformer
blocks in the backbone and a bidirectional feature pyramid
network (BIFPN) in the neck. A 90% detection accuracy was
obtained along with 43.5 FPS detection speed.

Ma et al. [171] integrated a Median Flow algorithm
into a tiny YOLO detector for a real-time crack counting
UAV solution. The drone, equipped with a NVIDIA Jetson
Nano, executed the Tiny YOLOvV3 model accelerated by the
TensorRT library, achieving 98.1% accuracy and 29 FPS in a
real-time system test. Fig. 6 reports the structure of the UAV
monitoring system.

Tab. 11 summarizes the state-of-art of object detection
techniques using DL. The evolution of the performances of
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TABLE 12. Resume of the main improvements for road condition monitoring with Al algorithms for different data types.

Data Algorithm System
type novelties novelties
Acoustic o 2D-CNN with sound spectrogram input image + Microphone placed inside tyre cavity

o Few explored in literature

e DL methods have overcome Traditional ML

e More advanced CNN & LSTM architectures. CNN based on 2D

o Larger number of classified distresses

Vibrational images extracted with FFT or wavelet transforms . .
. . . o Crowdsourcing solutions.
e Data fusion of acceleration, rotation and speed to assess speed
dependency problem.
e Improvement of crack pixel-wise segmentation performances on
Vision existing benchmarks with novel architectures o Distress detection solutions with thermal, 3D laser & GPR images

tures based on YOLO-series
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FIGURE 6. Structure of the UAV monitoring system proposed in [171].
Copyright 1558-0016 © 2022 IEEE.

the YOLO architecture is highlighted by the number of recent
researches using this architecture.

V. DISCUSSION AND FUTURE WORK

A summary of the most recent advancements in road
condition monitoring using Al algorithms, as explored in this
paper, is provided in Tab. 12.

Although some studies have achieved promising results,
acoustic data-based monitoring remains relatively underex-
plored in the literature.

For vibrational data-based methods, feature extraction in
the frequency and wavelet domain has leveraged the per-
formance advantages of 2D-CNN architectures. In contrast
ID-CNN and RNN architectures could benefit from the
fusion of different data types such as acceleration, angular
velocity and speed. Additionally, several crowdsourced
approaches have been proposed, where data collected by the

154288

o Improvement of detection performances with novel DL architec- o Real-time monitoring systems with UAVs

users is uploaded to a central server or database to train or
fine-tune road anomaly classification algorithm.

Vision data-based methods have seen significant improve-
ments in distress classification accuracy due to the constant
evolution of DL architectures. For crack pixel-wise segmen-
tation, the high number of available datasets has enabled
extensive performance comparisons of proposed models
against the state-of-the-art. Novel architectures based on
feature pyramidal pooling, attention modules, and innovative
convolution structures has led to a visible improvement in
segmentation accuracy.

The performances of distress recognition with object
detection have also seen notable accuracy improvements,
particularly with YOLOvS5-based evolutions, which are
expanding very rapidly and they are being applied for
road condition monitoring more than other standardized
architectures such as Faster-RCNN due to their computa-
tional scalability. Some studies have successfully explored
the feasibility of using different sensor data for detecting
pothole, crack, or other distress from RGB images, such as 3D
range images from laser, stereo vision data, and GPR images
for concealed cracks, along with data fusion approaches.
Real-time detection has been primarily explored in UAV
monitoring systems, where the drones have hardware with
low computational capacity.

The following aspects and challenges remain open or
unexplored in the considered research field.

« Standardization: There is a lack of of standardization in
data collection setups and preprocessing, especially for
vibrational data methods. Different works use varying
sensors, data acquisition setup, labeling technique, and
types of distresses, making results from different studies
non-comparable.

o Few existing available datasets: The scarcity of
publicly available datasets for vibrational data hinders
standardization and performance comparison in this
context.

o Data fusion: The fusion of acceleration data with
images or video has been minimally explored and could
offer significant performances benefits.
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o Lightweight models: Lightweight models require lower
storage space, shorter training times, and could poten-
tially be used for real-time estimation. The scalabil-
ity of YOLO detectors offers a promising solution.
Additionally, compression techniques based on pruning,
quantization, and transfer learning could be highly
beneficial.

o Crowdsourcing systems: Crowdsourcing systems rep-
resent an expanding research field; however, their
potentialities for infrastructure monitoring needs further
exploration.

« Distress detailed characterization: The application of
Al techniques to 3D laser, GPR, and LiDAR data could
offer solutions for detailed distress shape, dimension,
and depth estimation, which are critical parameters
for assessing the global infrastructure condition for
authorities.

VI. CONCLUSION
In this article, we provide an extensive review of the most
recent advances in RCM using Al techniques.

In recent years, the field of Al applied to road condition
monitoring has seen a significant increase in published
research articles. In this study, we identified key publications
from the Scopus and Web of Science (WoS) databases,
using the keywords reported in Tab. 1. Notably, only six of
the selected papers utilized acoustic data, while 61 papers
employed Al techniques on vibrational data, with 51 of
these published between 2020 and 2024. The majority of
studies, however, focused on image-based approaches for
road condition monitoring, comprising 98 papers, 75 of
which were published between 2020 and 2024.

Although acoustic data-base approaches have shown some
promising results, they remain underexplored.

Vibrational methods have seen significant improvement
thanks to the advent of DL architectures, which are replacing
traditional ML techniques. These advancements include also
new feature extraction methods and the the integration of
angular velocity and speed with acceleration data. Addi-
tionally, several crowdsourcing studies using participatory
sensing were proposed.

However, vision techniques have seen the most significant
improvement in detecting road pavement damages, driven by
advancements in DL for pixel level crack segmentation and
image object detection.

The feasibility of several data types as an alternative or a
fusion with RGB images has been explored such as thermal
images, 3D range images from laser, stereo vision data and
GPR images to detect various types of damages.

Real-time monitoring systems are also expanding, partic-
ularly those based on UAVs, where low computational cost
DL models are implemented to meet real-time constraint.
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