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Computational Hardness of the Permuted Kernel and
Subcode Equivalence Problems‹

Paolo Santini, Marco Baldi, and Franco Chiaraluce

Polytechnic University of Marche, Ancona, Italy
{p.santini, m.baldi, f.chiaraluce}@univpm.it

Abstract. The Permuted Kernel Problem (PKP) asks to find a permutation which maps
an input matrix into the kernel of some given vector space. The literature exhibits several
works studying its hardness in the case of the input matrix being mono-dimensional (i.e.,
a vector), while the multi-dimensional case has received much less attention and, de facto,
only the case of a binary ambient finite field has been studied. The Subcode Equivalence
Problem (SEP), instead, asks to find a permutation so that a given linear code becomes a
subcode of another given code. At the best of our knowledge, no algorithm to solve the SEP
has ever been proposed. In this paper we study the computational hardness of solving these
problems. We first show that, despite going by different names, PKP and SEP are exactly the
same problem. Then we consider the state-of-the-art solver for the mono-dimensional PKP
(namely, the KMP algorithm, proposed by Koussa, Macario-Rat and Patarin), generalize it
to the multi-dimensional case and analyze both the finite and the asymptotic regimes. We
further propose a new algorithm, which can be thought of as a refinement of KMP. In the
asymptotic regime our algorithm does not improve on KMP but, in the finite regime (and
for parameters of practical interest), we achieve significant improvements, especially for the
multi-dimensional version of PKP. As an evidence, we show that it is the fastest algorithm
to attack several recommended instances of cryptosystems based on PKP. As a side-effect,
given the mentioned equivalence between PKP and SEP, all the algorithms we analyze in
this paper can be used to solve instances of the latter problem.

1 Introduction

The Permuted Kernel Problem (PKP) is an NP-complete problem [14] which, in its more general
formulation, asks to find a permutation of a given ℓˆn matrix V which belongs to the right kernel
of another, given, m ˆ n matrix A. The most studied case for the PKP is the one in which the
input matrix V has only one row (i.e., ℓ “ 1), hence it is a vector; we will refer to this case as the
mono-dimensional PKP.

The use of the mono-dimensional PKP in cryptography has been introduced by Shamir in 1989
[28]; recently, the problem has been employed to build post-quantum signature schemes [1,7–9,13].
These schemes have some very good features, such as competitive signature sizes (8.9 kB for 128
bits of security [9]) and compatibility with the MPC-in-the-Head paradigm [13], where MPC stays
for multiparty computation. As it is well known, the construction of a satisfying post-quantum
signature scheme is still an open problem, which is the reason why the National Institute of
Standards and Technology (NIST) issued an additional round, specifically tailored to signatures.
To contextualize: SPHINCS+, which has been identified for standardization during the third round
of the NIST PQC Standardization process, has signatures of approximately 17 kB (for the fast
version) or 8 kB (for the short version). The schemes in [9] and [13] already compare favourably
with SPHINCS+ as well as other state-of-the-art post-quantum schemes. Consequently, PKP-based
signatures are likely to be viable and competitive solutions.

Given this state of affairs, improving and consolidating our understanding about the practical
hardness to solve PKP is definitely an important goal. The mono-dimensional variant has been
extensively studied over time [4, 15, 18, 19, 22, 24, 25]. Prior to [25], the solver with the lowest time
complexity was the Koussa-Macario-Rat-Patarin (KMP) algorithm [19], which consists in a brute-
force search plus standard optimizations, such as reducing to a small instance and employing a
meet-in-the-middle approach. In our recent work [25], we have proposed an improvement of the

‹ Part of the material in this paper has been presented at the 2022 IEEE International Symposium on
Information Theory (ISIT), Espoo, Finland [25].
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KMP algorithm, describing a strategy based on kernel subspaces with small support, i.e., containing
vectors that have always zero entries in several positions1. These subspaces correspond to kernel
equations involving an abnormally small number of coordinates and, consequently, are somewhat
easier to solve. Such equations can be used to implement an initial filtering stage, after which
the KMP algorithm is executed: this allows excluding some of the candidates which the KMP
algorithm would consider and, in several cases, leads to a slight but nontrivial speed-up.

Perhaps surprisingly, the multi-dimensional PKP (i.e., the case in which the input V has ℓ ą 1
rows) has received much less attention. Only recently a digital signature based on such a problem
has appeared [1]: the scheme, called PERK, exploits the increased value of ℓ to amplify the challenge
space which, in turn, results in a lower soundness error. Prior to [1], the multi-dimensional PKP has
been considered only in [20]. The recommended instances are for the binary case (i.e., the ambient
finite field is binary) and have been cryptanalyzed in [21] using a coding theory approach: roughly
speaking, the attack first searches for low-weight codewords and then uses them to efficiently
reconstruct the target permutation. Note that the algorithm in [21] is specific for the binary case.

Another interesting and quite recent problem is the Subcode Equivalence Problem (SEP). On
input two linear codes, the SEP asks to find a permutation mapping one into a subcode of the other,
and has been proven to be NP-complete in [5]. There already exist some cryptographic proposals
based on SEP: for instance, [16] and the quasi-dyadic specialization in [10]. At the best of our
knowledge, currently there is no proposed algorithm to solve SEP; hence, the practical hardness
of this problem is currently unknown.

Our contribution As highlighted above, there exist some connections between the PKP and prob-
lems from coding theory. Indeed, both [21] and [25] solve PKP employing coding concepts and
algorithms. In this paper, we provide some further contributions along this line of research. We
first show that PKP and SEP are actually the very same problem: this somehow justifies the fact
that, to solve the PKP, one can borrow concepts from coding theory. As a consequence, all the
algorithms we discuss in this paper (which we refer to as PKP solvers) can also be employed to
solve SEP.

Then, we delve into the study of techniques for solving the PKP. We first consider the KMP
algorithm and study its performance in the asymptotic regime. We show that, for growing n, the
time complexity of KMP is a super-exponential function of n and is constant in ℓ. This holds
only when the finite field size q is chosen adaptively as a function of n and ℓ, which implies that
it is the smallest value for which PKP has on average a unique solution. In such a regime, q
decays exponentially with ℓ, but the number of equations we dispose of increases with ℓ: these two
effects compensate one each other, so that there is no dependency on ℓ. Notice that the asymptotic
regime predominates only for very large values of n and, for parameters of practical interest, the
time complexity can still vary considerably with ℓ. We also show that the instances with q chosen
adpaptively with n and ℓ are the hardest to solve, since for different regimes (e.g., fixed q and
growing ℓ) the time complexity of the KMP algorithm becomes lower.

We then improve the analysis of the solver in [25] and generalize it to the multi-dimensional
case. We show that such an algorithm is not better than KMP in the asymptotic regime but, in
the finite regime, it can achieve non trivial speed-ups with respect to KMP. As concrete examples,
we show that for some recommended PKP instances this algorithm has a time complexity which
is lower than that of KMP and [21]. Namely, for the mono-dimensional, 128-bits and 192-bits
instances of PKP-DSS [8], our algorithm is slightly faster than KMP. For the multi-dimensional
instances recommended in [20], our algorithm is faster than both KMP and [21]. In addition, our
approach is more general since it works regardless of the finite field size. The algorithms we discuss
in this paper has already been used as a basis for parameter selection for PERK [1].

We also provide an open source proof-of-concept implementation of our algorithm2, which
can be used to validate the theoretical analysis (and some of the employed heuristics) for small
parameters, along with an open source software implementation of all the expressions we have used
for deriving numerical results.

1 Note that a similar idea was already briefly mentioned in [19], but the authors concluded that finding
kernel equations with the desired properties was not feasible. In [25], we have shown that such equations
can instead be efficiently found and employed.

2 Source code available at https://github.com/secomms/pkpattack/

https://github.com/secomms/pkpattack/
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Paper organization In Section 2 we establish the notation and recall some background notions
about linear codes. In Section 3 we state useful facts about subcodes, recalling and enriching some
notions from [25]. The equivalence between PKP and SEP is presented and discussed in Section
4. The KMP algorithm and its asymptotic behavior are analyzed in Section 5. The generalization
of the algorithm in [25] is presented and discussed in Section 6, which also provides a comparison
of the considered PKP solvers. Finally, in Section 7, we briefly comment about how PKP and
SEP behave in terms of input sizes, and compare them with other well known problems (say, the
Syndrome Decoding Problem (SDP)). Finally, Section 8 concludes the paper.

2 Notation and background

In this section we settle the notation we use throughout the paper and recall some background
concepts about linear codes.

2.1 Notation

As usual, Fq denotes the finite field with q elements; in this paper we focus only on the case of q
being a prime. Bold lowercase (resp., uppercase) letters indicate vectors (resp., matrices). Given
a (resp., A), ai (resp., ai,j) denotes the entry in position i (resp., the entry in the i-th row and
j-th column). With some abuse of notation, we use GLm,n to indicate the set of m ˆ n matrices
over Fq, with m ď n, having full rank m. The identity matrix of size n is denoted as In, while
0 denotes the all-zero matrix (the sizes will always be clear from the context). Given a set (or a
list) A, |A| denotes its cardinality (i.e., the number of elements). If a is a random variable (or a
quantity that depends on some random variables), we write a

.
“ x if it has average value x. Given

a matrix A and a set J , AJ is the matrix formed by the columns of A that are indexed by J ;
analogous notation, but referred to elements instead of columns, is used for vectors. We denote
by RREFpA, Jq the algorithm that computes the Row Reduced Echelon Form (RREF) of A with
respect to the set J , i.e., outputs A´1

J A if AJ is square and non singular, and otherwise returns
a failure. We use Sn to denote the group of length-n permutations. Given a “ pa1, ¨ ¨ ¨ , anq and
π P Sn, we write πpaq “

`

aπp1q, ¨ ¨ ¨ , aπpnq
˘

. Analogous notation is employed for matrices, so that
πpAq is the matrix obtained by permuting the columns of A according to π. Given a, b, with some
abuse of notation, we define aX b as the set of entries appearing in both a and b. We extend the
notation to matrices, i.e., AXB is the set of columns which are in both A and B. For a matrix A
with n columns with no repeated column, we defineS upAq as the set of length-u matrices with
columns picked from those of A. Notice that |S upAq| “

n!
pn´uq! .

2.2 Linear codes

A linear code C Ď Fn
q with dimension k, redundancy r “ n ´ k and rate R “ k{n is a linear k-

dimensional subspace of Fn
q . Any code admits two equivalent representations: a generator matrix,

that is, any G P GLk,n such that C “ tuG | u P Fk
qu, and a parity-check matrix, that is, any

H P GLr,n such that C “ tc P Fn
q | cH

J “ 0u (where J denotes transposition). If G generates C,
then any SG, with S P GLk,k, is a generator for C; the same holds for parity-check matrices, i.e.,
H and SH, with S P GLr,r, are parity-check matrices for the same code. Given a vector x P Fn

q ,

its syndrome is s “ xHJ: codewords are vectors having null syndrome. The dual of C, that we
denote by CK, is the space generated by any parity-check matrix H. For any codeword c P C

and any b P CK, we have cbJ “ 0. The support of C, that we indicate as SupppCq, is the set
of indexes i such that there is at least one codeword c P C with ci ‰ 0. A subcode B Ď C with
dimension k1 is a k1-dimensional linear subspace of C. The number of such subcodes is counted by
“

k
k1

‰

q
“

śk1
´1

i“0
1´qk´i

1´qi`1 . Any subspace with dimension 1 is the orbit of a codeword, under scalar

multiplications by the elements in Fq: the number of such subcodes is given by r k1 sq “
qk´1
q´1 .

2.3 Useful approximations and asymptotics

In this section we recall some well known asymptotics and approximations for quantities that will
arise naturally in our treatment (for more details about these estimates see, for instance, [17]).
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For two functions fpnq and gpnq, we write fpnq „ gpnq if limnÑ8
fpnq
gpnq “ 1. From Stirling’s

approximation for factorials, we have

n! „
1

?
2πn

´n

e

¯n

“ 2n
`

log2pnq´log2peq
˘`

1`op1q
˘

. (1)

For any integer q ě 2 and x P r0; 1s, the q-ary entropy function is defined as

hqpxq “ x logqpq ´ 1q ´ x logqpxq ´ p1´ xq logqp1´ xq.

Let ω P r0; 1s be a constant; then
ˆ

n

ωn

˙

“ 2nh2pωq
`

1`op1q
˘

, (2)

n!

pn´ ωnq!
“ 2n

`

h2pωq`ω log2pωn{eq
˘`

1`op1q
˘

. (3)

The number of vectors with length n, values over Fq and Hamming weight ωn is then
ˆ

n

ωn

˙

pq ´ 1qωn “ 2nhqpωq log2pqq
`

1`op1q
˘

. (4)

Finally, for constant d P N and ω P R, ω P r0; 1s, we have

r
ωn
d sq

r
n
d sq

„ q´dp1´ωqn. (5)

3 Subcodes with small support

In this section we discuss the properties of small support subcodes, which will have a fundamental
role in the analysis of the algorithms we will describe in the following.

3.1 Number of subcodes with small support

For a random code, the average number of subcodes with dimension d and support size w can be
bounded thanks to the following theorem [25].

Theorem 1 For a code C Ď Fn
q , we define Aw,dpC q as the set of subcodes of C with dimension d

and support size w. Let Nkpw, dq be the average value of |Aw,dpC q|, when C is picked at random

among all codes with dimension k. Then N
Ž

kpw, dq ď Nkpw, dq ď N
Ź

kpw, dq, with

N
Ź

kpw, dq “

ˆ

n

w

˙

pqd ´ 1qw
śd´1

i“0 pq
d ´ qiq

“

k
d

‰

q

r
n
d sq

,

N
Ž

kpw, dq “

ˆ

n

w

˙

pqd ´ 1qw´d

“

k
d

‰

q

r
n
d sq

.

Proof. See [25]. [\

Remark 1. The bounds in Theorem 1 are tight, up to a factor which tends asymptotically to 1 as
q grows. Indeed, consider that

N
Ź

kpw, dq

N
Ž

kpw, dq
“

pqd ´ 1qd
śd´1

i“0 qd ´ qi
“

pqd ´ 1qd

qd2
śd

i“1p1´ q´iq
.

Since e´
1
x « 1´ 1

x if x is sufficiently large, we have 1´ q´i « e
´ 1

qi and

N
Ź

kpw, dq

N
Ž

kpw, dq
«

pqd ´ 1qd

qd2
śd

i“1 e
´ 1

qi

“ pqd ´ 1qdq´d2

e
řd

i“1
1

qi

ď e
řd

i“1
1

qi “ e

´

1´q´d´1

1´q´1 ´1
¯

“ e
qd´1

pq´1qqd ď e
1

q´1 .

The above quantity is independent of the code length and the desired support size, and tends to
1 as q increases.
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Since N
Ž

kpw, dq ď Nkpw, dq ď N
Ź

kpw, dq, the value of N
Ž

kpw, dq constitutes a tight estimate for
Nkpw, dq, with an error that depends only on the finite field size and is never greater than e1 «
2.718. Indeed, it holds that

Nkpw, dq

N
Ž

kpw, dq
ď

N
Ź

kpw, dq

N
Ž

kpw, dq
ď e

1
q´1 ď e1 « 2.718.

Notice that the estimate gets better when q increases: for instance, if q “ 251, we have e
1

q´1 « 1.004.

Starting from Theorem 1, one can derive the minimum expected support size for d-dimensional
subcodes, when dealing with random codes. To this end, we consider the following proposition.

Proposition 1 Let C Ď Fn
q be a random code with rate R. Let d P N be constant, and ω˚ P r0; 1s

such that ω˚ “ min tω P r0; 1s | Nkpωn, dq ě 1u. Then

ω˚ « h´1
qd

ˆ

1´R`
d

n

˙

.

Proof. See Appendix A. [\

3.2 Finding subcodes with small support

In [25], we considered an adaptation of Prange’s Information Set Decoding (ISD) to find sub-
codes with small support3. In principle, the algorithm may be improved by considering techniques
which are normally employed for standard ISD algorithms (e.g., partial Gaussian elimination and
a meet-in-the-middle search). Yet, in this paper we do not focus on such aspects, hence we refer
to the algorithm in [25], whose time complexity is recalled in the next proposition. For the sake of
completeness, the algorithmic procedure of ISD, as well as the proof of the proposition, are shown
in Appendix B.

Proposition 2 Time complexity of ISD
We consider ISD as an algorithm that, on input C Ď Fn

q with dimension k and integers w, d P N
such that w ď n` d´ k, returns a random element from Aw,dpCq with average running time

T
pdq
ISDpn, k, wq “ O

˜

k3 `
`

k
d

˘

ppdqpn, k, wq

¸

,

with ppdqpn, k, wq “ min

"

pwdqp
n´w
k´dq

pnkq
N
Ž

kpw, dq ; 1

*

.

Proof. See Appendix B. [\

4 The equivalence between PKP and SEP

In this section we recall the PKP and the SEP, and show the connections between this latter
problem and another code-based problem, namely, the Permutation Equivalence Problem (PEP).
We proceed by describing a reduction from SEP to PEP, which gives us a first way to solve SEP.
This reduction is interesting since it bridges two different code-based problems but, in practice, is
not efficient since it runs in exponential time. Finally, we show that PKP and SEP are equivalent,
namely, they are different formulations of the very same problem. This unlocks the possibility of
solving SEP with solvers for PKP.

3 The use of ISD to find subcodes has been firstly proposed in [6]. In this paper (and in [25]) we consider
the very same algorithm, with the only (minor) difference that we do not fix the subcode dimension to
be equal to 2.
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Algorithm 1: Reduction of SEP to PEP

Input: G P Fkˆn
q , G1

P Fk1ˆn
q

Output: permutation π P Sn and matrix S P GLk1,k such that G1
“ SGP

1 Choose uniformly at random S P GLk1,k;

2 Set rG “ SG;

3 Try to solve the PEP on input t rG,G1
u;

4 If a solution π P Sn is found, return tS;πu, else restart from step 1.

4.1 PKP, SEP and PEP

We start by introducing the PKP in its most general formulation.

Problem 1 Permuted Kernel Problem (PKP)
Given A P Fmˆn

q and V P Fℓˆn
q , with m, ℓ ď n, find π P Sn such that πpVqAJ “ 0.

This formulation is sometimes called homogeneous PKP ; in Section 5, we will also make use of
the inhomogenous version (we require that πpVqAJ is equal to a given, non necessarily null,
ℓˆm matrix). When ℓ “ 1 (which, arguably, is the most considered PKP formulation), the above
problem corresponds to the one employed, for instance, in [8, 28]; we will refer to this case as
mono-dimensional PKP. In [20], instead, the authors consider the case ℓ ą 1; we will refer to this
case as multi-dimensional PKP.

The subcode equivalence problem is another NP-complete problem introduced in [5] which
reads as follows.

Problem 2 Subcode Equivalence Problem (SEP)
Given C Ď Fn

q with dimension k and C1 Ď Fn
q with dimension k1 ă k, find π P Sn such that

πpC1q Ď C. Equivalently, given G P Fkˆn
q and G1 P Fk1

ˆn
q , find S P GLk1,k and π P Sn such that

G1 “ SπpGq.

Considering the above formulation but requiring that k1 “ k would correspond to the PEP.

Problem 3 Permutation Equivalence Problem (PEP)
Given C,C1 Ď Fn

q , both with dimension k, find π P Sn such that πpC1q “ C. Equivalently, given

G,G1 P Fkˆn
q , find S P GLk,k and π P Sn such that G1 “ SπpGq.

We remember that SEP is NP-complete [5], while a well-known result establishes that the NP-
completeness of PEP would imply collapse of the polynomial hierarchy [23]. Also, for codes with
small hull (that is, the intersection between a code and its dual), efficient solvers for PEP exist [2,
27]. These algorithms essentially require some linear algebra computations (e.g., intersecting vector
spaces) plus auxiliary operations, such as hull enumeration [27] or reducing to graph isomorphism
[2]. The cost of these auxiliary operations grows exponentially with the hull dimension and, when
the dimension is large, actually becomes the predominant term. In such a case, currently known
best solvers are radically different algorithms [3,6], which require to find low weight codewords and
consequently take exponential time.

Notice that, for random codes, the hull dimension is a small constant with high probability [26].
Hence, for random codes, with overwhelming probability the algorithms in [2, 27] solve PEP in
polynomial time: for this reason, PEP is considered easy on average.

4.2 Reducing SEP to PEP

We start by describing a trivial way to solve SEP, which highlights its connection with PEP.
Consider the procedure in Algorithm 1 which, basically, performs a brute force search over all
subcodes of C and, for each candidate, tries to solve the associated PEP instance. The running
time of the algorithm is analyzed next.
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PKP Equivalent problem Parameters

ℓ ă n ´ m SEP k “ n ´ m, k1
“ ℓ

ℓ “ n ´ m PEP k “ k1
“ n ´ m

ℓ ą n ´ m SEP k “ ℓ, k1
“ n ´ m

Table 1: Relations between PKP, SEP and PEP

Proposition 3 Algorithm 1 requires average time O
´

“

k
k1

‰

q
TPEPpq, n, kq

¯

, where TPEPpq, n, kq is

the running time of an algorithm that solves the PEP on codes with length n and dimension k,
defined over a finite field with q elements.

Proof. The probability that a choice for S is valid is given by the reciprocal of
“

k
k1

‰

q
. Hence,

“

k
k1

‰

q

corresponds to the number of times, on average, we call the PEP solver. [\

Remark 2. As a simple approximation, we can use
“

k
k1

‰

q
« qk

1
pk´k1

q: regardless of the cost of

solving the PEP, the above reduction takes exponential time.

The considered reduction is interesting from a theoretical point of view, since it creates a connection
between SEP and PEP. However, its running time is not satisfying: even when the obtained PEP
instance is easy (i.e., TPEPpq, n, kq is polynomial), the reduction itself takes exponential time since
qk

1
pk´k1

q grows with k “ Rn. In the next section, we will see that SEP and PKP are exactly the
same problem: this allows solving SEP through any known algorithm for solving PKP.

4.3 Equivalence between PKP and SEP

In the following proposition we show that PKP and SEP are equivalent.

Proposition 4 If ℓ ‰ n´m, PKP is equivalent to SEP; if ℓ “ n´m, PKP is equivalent to PEP.

Proof. In the following, we will denote by tA P Fmˆn
q ,V P Fℓˆn

q u an instance of PKP, and by

tG P Fkˆn
q ,G1 P Fk1

ˆn
q u an instance of SEP. Also, we denote by C and C1 the codes generated,

respectively, by G and G1. To avoid burdening the notation and the treatment, we carry out
the proof considering that matrices have full rank; in case this is not true, the proof still holds,
with the only precaution that one first needs to remove redundant rows (and update parameters
accordingly). We start by considering that any SEP instance can be transformed into a PKP
instance with some simple linear algebra. Indeed, to solve the SEP, we want to find a permutation
π and a non-singular S P GLk1,k such that G1 “ SπpGq. Equivalently, it must be π´1pG1q “ SG.

Let H P Fpn´kqˆn
q be a parity-check matrix for C: then, π solves SEP if and only if

π´1pG1qHJ “ 0.

The above corresponds exactly to the requirement for a PKP instance with m “ n´ k and ℓ “ k1.
The same procedure works in the other way, i.e., in showing how PKP can be seen either as

SEP or PEP. We start by considering the case of ℓ ă n ´m, and interpret A as a parity-check
matrix for C and V as a generator for C1. Repeating the above reasoning, it is immediately seen
that the problem corresponds to a SEP instance. If instead ℓ “ n´m, we have that C and C1 have
the same dimension k “ k1 “ ℓ “ n´m, so we end up with a PEP instance. Finally, we notice that
if ℓ ą n´m, the code C1 has a dimension that is larger than that of C. So, PKP still corresponds
to a SEP instance, but the role of the codes are exchanged; this means that C is the permutation
of a subcode of C1. [\

A summary of the relations between PKP and SEP in shown in Table 1. As we have already
said, the PEP has been extensively studied and is considered easy when the input codes are random.
Consequently, the PKP can be considered easy, on average, if ℓ “ n ´m; for such reason, in the
present paper we will not study this case. Also, from now on we set 1 ď ℓ ă n ´m: indeed, the
case of ℓ ą n´m can be tackled identically, apart from a mere swap in the roles of the parameters
ℓ and n´m.
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5 General considerations on PKP and asymptotics for the KMP
algorithm

In this section we recall general properties about hard PKP instances. Also, we recall the algorithm
in [19], which we refer to as KMP (the acronym is formed by the authors’ initials). We generalize
all our considerations, as well as the KMP algorithm, to the multi-dimensional version of the PKP.
Finally, we derive its running time in the asymptotic regime.

5.1 Hardest instances

Following the literature regarding the PKP, we study the constrains under which hardest to solve
instances are obtained; in doing this, we generalize the considerations holding for the mono-
dimensional PKP to the multi-dimensional case. Namely, we assume A P Fmˆn

q and V P Fℓˆn
q

both with full rank and no repeated columns, and also set the parameters so that, on average, only
one solution exists. Formally, these conditions correspond to the following constrains:

i) RankpAq “ m, RankpVq “ ℓ;
ii) qℓ ě n, qm ě n;
iii) A and V with no repeated columns;

iv) n!

”

n´m
ℓ

ı

q

r
n
ℓ sq

ă 1.

Notice that condition ii) is simply obtained considering that, if qℓ ă n, then for sure V contains at
least two identical columns; the same holds for the condition qm ă n. Finally, condition iv) is about
the uniqueness of the solution. Consider that any permutation π of V yields a vector space with
dimension ℓ. The number of ℓ-dimensional spaces that are orthogonal to the space generated by

A is counted by
“

n´m
ℓ

‰

q
. Then,

”

n´m
ℓ

ı

q

r
n
ℓ sq

is the probability that a random ℓ-dimensional subspace

of Fn
q is orthogonal to A. Since V has all distinct columns, we have that the number of distinct

πpVq is |S npVq| “ n!. Assuming that each πpVq behaves as a random subspace of Fn
q , then we

can use n!

”

n´m
ℓ

ı

q

r
n
ℓ sq

ă 1 as an estimate of the average number of solutions: setting this number to

be smaller than 1, we guarantee that, on average, we expect to have no more than one solution.

Remark 3. It holds that

”

n´m
ℓ

ı

q

r
n
ℓ sq

« q´ℓm, so that condition iv) becomes n!q´ℓm ă 1.

Another common criterion consists in studying instances which are not vacuously hard, i.e., such
that at least one solution exists. To do this, we first choose rV as a random kernel element with
full rank and no repeated columns; then, we obtain V by permuting rV according to a randomly
selected permutation.

Adding one extra equation and inhomogenous PKP We consider that A can be enriched with an

additional linear equation. Indeed, let H “

ˆ

A
1, 1, ¨ ¨ ¨ , 1

˙

P Frˆn
q , with r “ m` 1. Let rV “ πpVq,

where π is the solution for PKP. We consider that

E “ rVHJ “

´

rVAJ, rV ¨ p1, 1, ¨ ¨ ¨ , 1qJ
¯

“

˜

0ℓˆm,
n

ÿ

i“1

rvi

¸

“

˜

0ℓˆm,
n

ÿ

i“1

vi

¸

“ p0ℓˆm, eq P Fℓˆr
q , (6)

where rvi is the i-th column of rV and vi that of V. Notice that e is a length-ℓ column vector.
The solution is, now, a permutation π P Sn such that πpVqHJ “ E where, in general, E ‰ 0.
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This formulation for the problem is sometimes called Inhomogenous PKP since, differently from
what stated in Problem 1, the linear equations that define the problem may be not homogenous.
In practice, transforming to the inhomogenous version allows to gain one extra equation which, in
turns, reduces the time complexity of solvers. From now on, we always consider the inhomogenous
formulation.

Guessing the action of π only on n´ r coordinates We now show that, to solve PKP, it is enough
to guess how π acts on a subset of n´ r coordinates. To this end, let

SH “ RREFpH, tn´ r ` 1, n´ r ` 2, ¨ ¨ ¨ , nuq “ pU, Irq, (7)

with S P GLr,r and U P Frˆpn´rq
q . Let rE “ ESJ, write rV “

´

rV1, rV2

¯

and consider that

rE “ rV1U
J ` rV2,

from which
rV2 “ rE´ rV1U

J. (8)

Notice that, if H does not admit a change of basis as in (7), it is enough to row reduce with
respect to a different set of r indices. In other words, let J Ă t1, 2, ¨ ¨ ¨ , nu of size n ´ r and
␣J “ t1, 2, ¨ ¨ ¨ , nuzJ . Also, let J be such that H␣J is non singular. Then, it holds that

V␣J “
`

E´VJHJ

˘

H´J
␣J , (9)

where the ´J operator denotes the inverse transposal. In other words, we are always able to
reconstruct the values of rV outside of the set J , since they depend only on rVJ . Hence, we simply
need to correctly guess the action of π for n´ r coordinates, that is, the ones indexed by J .

A coding theory perspective We now explicitly reformulate the PKP as a code-based problem. This
has partially already been shown since we described that PKP and SEP are exactly the same
problem. Yet, rephrasing everything in terms of codes also for the inhomogenous PKP will be
helpful in analyzing the attacks we discuss in this paper.

Problem 4 Inhomogenous PKP as a Decoding Problem
Given H P Frˆn

q , the parity-check matrix of C Ď Fn
q with code rate R “ 1 ´ r

n , V P Fℓˆn
q and

E P Fℓˆr
q , find π P Sn such that E “ πpVqHJ.

This formulation highlights the fact that the inhomogenous PKP is, in the end, a decoding problem.
Namely, we are given a set of ℓ syndromes ei, where ei is the i-th row of E, and a set of ℓ vectors
vi, where vi is the i-th row of V. We want to find a permutation π so that

ei “ πpviqH
J, @i P t1, ¨ ¨ ¨ , ℓu.

To decode a syndrome into a vector, it is enough to guess the values of the vector in an information
set, that is, a set J Ă t1, 2, ¨ ¨ ¨ , nu of size k and such that

tcJ ‰ c1J | c, c
1 P C, c ‰ c1u.

It is easy to see that, if J is an information set for C, then H␣J is non singular, hence, it can be
used in (9). In other words, to solve the problem, it is enough to determine the values of V in the
information set J : the values outside of the information set can be computed using (9).

5.2 KMP algorithm

We here recall the KMP algorithm [19], originally proposed for the mono-dimensional PKP, and
generalize it to the multi-dimensional case. The algorithm works by producing a list L with can-
didates for the values that the solution rV “ πpVq assumes in an information set. Each candidate
is then checked using (9). To produce L, the algorithm relies on a collisions search approach by
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u1 u2 n ´ u1 ´ u2

rr

rr ℓ

r

ℓ

rr

Multiplication by S P Frrˆr
q ,

such that SH “ p rH1, rH2q

n

rH1
rH2

H1 “

V “

E “

rE “

Fig. 1: Representation of the matrices employed in the KMP algorithm

creating and merging two lists L1 and L2. This approach works only if L1 and L2 can be con-
structed with relatively small effort, say, smaller than that of enumerating all the possible values in
an information set. This becomes possible only if sparse equations are employed, that is, equations
that involve a small number of variables. To achieve this, the KMP algorithm brings H into row
reduced echelon form and then selects a subset of parity-check equations: by construction, there
will be variables that never participate in the chosen equations.

Technically, the algorithm works with two parameters u1, u2 P N such that n´r`1 ď u1`u2 ď

n. Let rr “ u1`u2´pn´rq be the number of considered sparse equations. The procedure is initialized

by first computing H1 “ RREFpH, tn´r`1, ¨ ¨ ¨ , nuq and then setting rH as the sub-matrix formed
by the entries of H1 in the first rr rows and the first u1 ` u2 columns. Let S P Frrˆr

q with rank rr

and such that rH corresponds to the submatrix formed by the first u1 ` u2 columns of SH4. This
transformation is applied to E, obtaining rE “ ESJ P Fℓˆrr

q . Then, we partition rH as p rH1, rH2q,

where rH1 P Frrˆu1
q and rH2 P Frrˆu2

q . To visualize these matrices, see Figure 1.
After this preparatory step, the algorithm proceeds by constructing the two lists

L1 “

!

pX,X rHJ
1 q

ˇ

ˇ

ˇ
X PS u1

pVq
)

,

L2 “

!

pX, rE´X rHJ
2 q

ˇ

ˇ

ˇ
X PS u2

pVq
)

.

Let L “ L1 ’ L2, where ’ is computed as follows:

1. use an efficient search algorithm (e.g., permutation plus binary search) to find collisions, i.e.,
pairs pX,Yq P L1 and pX1,Y1q P L2 such that Y “ Y1;

2. keep only the collisions for which X and X1 have no common columns.

By construction, it holds that

L “
!

pX,X1q PS u1`u2
pVq | pX,X1q rHJ “ rE

)

.

Then, we find J Ď t1, ¨ ¨ ¨ , n´ r` rru with size n´ r such that Ht1,¨¨¨ ,nuzJ is non-singular, compute
rH “ RREFpH, t1, ¨ ¨ ¨ , nuzJq and use (8) to test each element in L. Namely, for each X P L, we

use the entries of XJ as rVJ and see if the resulting rV belongs toS npVq.
We observe that u1 ` u2 should be not lower than n ´ r, otherwise we would not be guessing

enough values for an information set. Actually, we require u1 ` u2 ě n ´ r ` 1. Indeed, collisions
between L1 and L2 are searched using matrices of size ℓˆrr, so it must be rr ě 1 (colliding matrices
must have at least one column): since rr “ u1 ` u2 ´ pn´ rq, we get u1 ` u2 ě n´ r ` 1.

Coherent with the literature about the PKP, we measure the running time of the KMP algorithm
as the number of matrix-matrix multiplications and list operations.

4 The matrix S corresponds to the submatrix formed by the first rr rows of the full rank, rˆ r matrix that
brings H into row reduced echelon form.
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Proposition 5 Running time of the KMP algorithm
Let u1, u2 P N such that n´ r ` 1 ď u1 ` u2 ď n. Then, the KMP algorithm runs in time

TKMPpu1, u2q “ |L1| ` |L2| `NL1’L2
` |L|,

where |Li| “
n!

pn´uiq!
, NL1’L2

.
“
pn!q2qℓpn´r´u1´u2q

pn´u1q!pn´u2q!
and |L|

.
“ n!
pn´u1´u2q!

qℓpn´r´u1´u2q.

Proof. Each list Li has size |S ui
pVq|: given that V does not have repeated columns, we have

|Li| “
n!

pn´uiq!
. We now estimate the average number of collisions NL1’L2 . We consider that each

collision is due to two equal matrices with sizes ℓ ˆ rr. Since we are dealing with random PKP
instances, we can consider that any pair of elements pX,Yq P L1 and pX1,Y1q P L2 collides with
probability

q´ℓrr “ q´ℓpu1`u2`r´nq “ qℓpn´r´u1´u2q.

Then, the average value of NL1’L2
can be set as

|L1| ¨ |L2| ¨ q
ℓpn´r´u1´u2q.

Finally, we consider that L contains all the matrices inS u1`u2pVq such that their product by rH

returns rE, having size ℓˆ rr. Hence, the average size of L can be estimated as

|S u1`u2
pVq| ¨ qℓpn´r´u1´u2q “

n!qℓpn´r´u1´u2q

pn´ u1 ´ u2q!
.

[\

Observe that we always have |L| ď NL1’L2
, so that in the end the time complexity of the KMP

algorithm is dominated by max t|L1| ; |L2| ; NL1’L2
u. In practice, the algorithm is optimized

when these three terms are balanced, that is,

|L1| « |L2| « NL1’L2
.

In such a case, the time complexity is « |L1| « |L2|. Notice that the same would hold if, more
generally, we require |L1|, |L2| ě NL1’L2 . In any case, having |L1| « |L2| implies u1 « u2 (that is,
either u1 “ u2 or u1 “ u2˘1). For the sake of simplicity, in the following we consider u1 “ u2 “ u,
which leads to5

|L1| “ |L2| “ L “
n!

pn´ uq!
.

NL1’L2
“ L2qℓpn´r´2uq.

Since we want NL1’L2 ď L, this results in Lqℓpn´r´2uq ď 1, which can be rewritten as

n!

pn´ uq!
ď qℓp2u`r´nq. (10)

The optimal value for u is the smallest one for which the above inequality is satisfied.

5.3 Asymptotic analysis of KMP

We now derive the asymptotic running time of the KMP algorithm. Let us first consider the
following proposition.

Proposition 6 Asymptotic running time for KMP
Let µ P R` such that R

2 ă µ ď 1
2 and

h2pµq ` µ log2

´µn

e

¯

` ℓ log2pqq
`

R´ 2µ
˘

“ 0. (11)

Then, asymptotically, the running time of the KMP algorithm is minimized with u1 “ u2 “ µn

and is given by 2n¨cKMPpµq
`

1`op1q
˘

, where

cKMPpµq “ h2pµq ` µ log2

´µn

e

¯

.

5 There are cases in which requiring u1 “ u2 results in slightly worse running times. For this reason, we
presented the algorithm, as well as the time complexity analysis, with the more general description in
which u1 is not necessarily equal to u2.
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Proof. See Appendix C. [\

Notice that the KMP algorithm runs in time which is super-exponential in the code length n, since
the dominant term grows exponentially with n log2pnq. However, to give a rigorous proof of this
fact, we need some further considerations.

First, we express q as a function of the code length. We choose q as the smallest integer such
that the condition of having no more than one solution holds, that is, as the smallest integer such

that n!

”

n´r
ℓ

ı

q

r
n
ℓ sq

ď 1. As we will see in the following, this corresponds to considering the hardest

PKP instances with density 1 (i.e., having on average at most one solution). Then, taking (1) and
(5) into account, we find

q „
´n

e

¯
1

ℓp1´Rq

ˆ

1`
1

2nℓp1´Rq
log2pπnq

˙

“

´n

e

¯
1

ℓp1´Rq `

1` op1q
˘

. (12)

In this regime, we can find an easy, closed-form formula for the running time of KMP. To this end,
let us consider the following proposition.

Proposition 7 Running time of KMP in the asymptotic regime: closed form formula

Let q „
`

n
e

˘
1

ℓp1´Rq . Let µ P pR{2; 1{2s be the value that optimizes the KMP algorithm, as in

Proposition 6. Then, limnÑ8 µ “ µ˚ “ R
1`R and the KMP asymptotically runs in time 2n¨c

˚
KMP ,

where

c˚KMP “ lim
nÑ8

cKMPpµq “ cKMP

ˆ

R

1`R

˙

“
1

1`R

´

log2 p1`Rq `R log2

´n

e

¯¯

.

Proof. See Appendix C. [\

The above propositions lead to the following three interesting observations, which hold in the
asymptotic regime:

- the optimal value of µ is independent of ℓ;
- the optimal time complexity is independent of ℓ;
- the KMP algorithm runs in time which is super-exponential in the code length.

Remark 4. The fact that the running time of the KMP algorithm does not depend on ℓ can be
quickly justified by considering how the relevant terms in the time complexity behave, when ℓ varies.
First, the attack is optimized when u1 “ u2 “ u; notice that |L1| “ |L2| “ L “ n!

pn´uq! , hence,

there is no dependency on ℓ. Now, the average number of collisions is NL1’L2 “ L2 ¨ qℓpn´r´2uq.

Since we are considering q «
`

n
e

˘
1

ℓp1´Rq , we get

NL1’L2
« L2

´n

e

¯

n´r´2u
1´R

. (13)

Finally, we choose u such that NL1’L2
« L: both sides of the relation have no dependency on ℓ.

Let us now provide some more insight in the behavior of KMP, with the help of some numerical
experiments. Let us consider several triplets pℓ, R, nq and, for each one, look for the smallest prime
q for which the average number of solutions to PKP is not greater than 1. Using these parameters,
we study the performance of KMP. In Figure 2 we report an example of how the optimal value of
µ behaves, for the case of ℓ “ 1; as we can see from the figure, the optimal value for µ is already
well approximated by µ˚ for n ď 1, 000. Figure 3 reports the optimal values of the complexity
coefficient cKMP, for growing n, and a comparison with c˚KMP. We notice that there is a small, but
non negligible, difference between the values of cKMP and c˚KMP. This is due to the fact that cKMP

tends to c˚KMP very slowly. In any case, as predicted by Proposition 7, the values of cKMP exhibit



Computational Hardness of the Permuted Kernel and Subcode Equivalence Problems 13

100 250 400 550 700 850 1000
0.1

0.2

0.3

0.4

0.5

Code length (value of n)

O
p
ti
m
a
l
va
lu
es

o
f
µ

R “ 0.2

R “ 0.4

R “ 0.6

R “ 0.8

Fig. 2: Values of µ that optimize the KMP algorithm, for ℓ “ 1 and several code rates (indicated
by R). The continuous line has been obtained by selecting, among all possible choices for pu1, u2q,
the ones yielding the smallest value for TKMPpu1, u2q. Dashed lines report the optimal values of µ
which we have found by numerically solving (11). Dotted lines correspond to µ˚ “ R

1`R .

a logarithmic dependence in n. In Figure 4 we show how the complexity exponent behaves, for
the case of R “ 0.5, several values of ℓ and much greater values of n (informally, we are closer to
the asymptotic regime). We see that the resulting complexity exponents have essentially the same
values, apart from some fluctuations which are due to the fact that we require q to be a prime
integer, hence, we may need to change the value resulting from (12). Yet, as we expected, the value
of ℓ does not affect significantly the complexity exponent.
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Fig. 3: Complexity exponents for the KMP algorithm, as a function of n, for the case of ℓ “ 1
and several code rates (indicated by R). Continuous lines report the values of cKMP arising from
Proposition 6, while dotted lines report the values of c˚KMP.
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Fig. 4: Complexity exponents for the KMP algorithm, as a function of n, for the case of ℓ “ 1.
Continuous lines report the values of cKMP arising from Proposition 6, while dotted lines report
the values of c˚KMP.

5.4 KMP algorithm with constant q

We stress that the running time of the KMP algorithm does not depend on ℓ only when q is chosen
according to (12), that is, as the smallest integer such that the average number of solutions is not
greater than 1. If we choose larger values for q, then the running time gets lower. Consequently,
PKP instances in which q is chosen adaptively as a function of n,R and ℓ (according to (12)) are
the hardest to solve.

We give a brief explanation about this fact, by considering the situation where we fix q, n and
R, and let ℓ grow. We set q as the value that guarantees uniqueness of the PKP solution for the

mono-dimensional case, that is, q «
`

n
e

˘
1

1´R . Let us consider, for simplicity, but without loss of
generality, u1 “ u2 “ u “ µn, so that L “ |L1| “ |L2|. For any value of ℓ, we have

NL1’L2 “ L2qℓpn´r´2uq

“ L2
´n

e

¯

ℓpn´r´2uq

1´R

“ L2
´n

e

¯

pn´r´2uq

1´R `
pℓ´1qpn´r´2uq

1´R

“ L2
´n

e

¯

n´r´2u
1´R

looooooomooooooon

Number of collisions
with adapted q

¨

´n

e

¯

pℓ´1qpn´r´2uq

1´R

looooooooomooooooooon

γpℓqď1

“ N 1
L1’L2

¨ γpℓq,

where N 1
L1’L2

is the average number of collisions one would have considering an adapted q. Now,
because of γpℓq (which is always not greater than 1 and decays exponentially with ℓ), we can choose
values of u that are smaller than the ones we would have, when q is chosen adaptively through
(12). This reduces the overall complexity of the attack, since we can use initial lists with smaller
size.

To have a confirmation on this, we have considered how the time complexity of the KMP
algorithm behaves, for the case of n “ 100 and several code rates, when ℓ increases and q stays
constant. We have chosen q as the smallest prime that guarantees uniqueness of the PKP solution
for ℓ “ 1 (i.e., for the mono-dimensional case). In Figure 5 we report both the complexity exponent
as well as the optimal choice for µ “ u

n . As ℓ increases, the complexity of the algorithm initially
decreases and ultimately converges to a minimum value; the optimal value for µ exhibits the same
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Fig. 5: Performances of the KMP algorithm, as a function of ℓ, for n “ 100 and several code rates.

q has been fixed as «
`

n
e

˘
1

1´R ; (a) reports the complexity exponent, while (b) reports the optimal
value of µ “ u

n .

behaviour. In particular, we see that µ tends to R
2 : this means that we are choosing u as small

as possible (which implies either 2u “ k ` 1 or 2u “ k ` 2). Indeed, when ℓ is large enough,
the average number of collisions is guaranteed to be much smaller than L (the size of the initial
lists), regardless of u. The running time of the algorithm is dominated by L, which is minimized
by choosing u as small as possible. For growing ℓ, the time complexity converges from above to
L “ n!

pn´uq! “
n!

pn´nR
2 q!

which, asymptotically, yields the complexity exponent

h2

ˆ

R

2

˙

`
R

2
log2

ˆ

Rn

2e

˙

.

6 Improving KMP in the finite regime

In [25] we have introduced a novel algorithm for the mono-dimensional case of PKP. As we have
already said, it comes as a refinement of KMP and it has been shown that, in several cases and in
the finite regime, it exhibits a better running time than KMP. In this section we further improve
the analysis of such an algorithm: we first extend it to the multi-dimensional case, provide a more
rigorous analysis and finally compare it with other PKP solvers.

6.1 New solver

We first describe, at a high level, the main idea behind [25]. In the following, we will denote by
rV “ πpVq the solution to PKP. Remember that the time complexity of the KMP algorithm grows
with the size of the initial lists L1 and L2. These lists are built considering all possible values
of rVt1,¨¨¨ ,u1u and rVtu1`1,¨¨¨ ,u2u, that is, by enumeration ofS u1

pVq andS u2
pVq. To get linear

equations with few variables, the KMP algorithm brings H into systematic form. This creates
rr “ u1 ` u2 ´ pn´ rq equations involving at most u1 ` u2 variables, that is, the columns of rV in
positions t1, ¨ ¨ ¨ , u1 ` u2u.

The algorithm in [25] starts by finding a set of abnormally sparse linear equations, say, sparser
than the ones we would obtain with the systematic form. Namely, the goal is to find d independent
equations involving w variables and have w ă d`n´r. This corresponds to finding a rank-d matrix
S P GLd,r such that H˚ “ SH P Fdˆn

q has support J Ă t1, ¨ ¨ ¨ , nu with size w. The equations given
by H˚ can be solved with a meet-in-the-middle approach, using two lists K1 and K2 obtained by
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Fig. 6: Graphical representation of the algorithm in [25]. Figure (a) describes how the coordinates

of the solution rV are partitioned; figure (b) shows lists operations. The use of colors in both figures

is coherent, for instance: list K2 in figure (b) contains candidates for the submatrix of rV colored
in grey.

enumeratingS w1
pVq andS w2

pVq (obviously, it must be w “ w1 ` w2). This way, we produce a
list

K “ tX PS wpVq | XH˚J “ ESJu.

Each element in K is a candidate for rVJ .

Notice that if w ă n´ r we cannot use the elements of K for (9), since we do not have enough
variables to fill an information set. Hence, we need to consider some new sparse equations involving
new variables. Namely, we want to use linear equations that involve only coordinates of rV that are
indexed by J 1 Y J , where J 1 is disjoint with J . These equations can be found using the systematic
form of H. As in the KMP algorithm, we then build two lists L1 and L2, with candidates for rVJ 1

and rVJ , respectively. The elements in L1 are obtained by enumeration, while the ones in L2 are
picked from K. This is the main difference with the KMP algorithm: the list L2 actually contains
a subset ofS wpVq, namely, all the matrices that satisfy the equations imposed by H˚. Because of
this difference, we say that our algorithm can be thought of as the KMP algorithm plus an initial
filtering step. In other words, the equations represented by H˚ are used to filter the elements that
we would have used to populate the list L2 for the KMP algorithm.

In Figure 6 we show a graphical representation of how the algorithm operates. We point out
that, in practice, the procedure is slightly more involved because of some technical caveats that
are needed, in order to avoid a rank deficiency in the equations which are used to merge L1 and
L2. Indeed, we want to find sparse equations that contain the coordinates indexed by J , but we
already know that J is the (small) support of a subcode with dimension d. This affects the rank of
such equations. As we detail in the following, we will need to row-reduce with respect to a specific
set and, no matter what, will always have some rank-deficiency: we will use rr equations from the
systematic form, but these will have rank rr ´ d.

Our algorithm can improve with respect to KMP since the initial sparse equations can be
obtained essentially for free. Indeed, the cost of finding such equations if much smaller than the
cost of all the other operations (i.e., creating and merging lists). Improvements on KMP can be
obtained only when the algorithm uses subcodes such that w ă d` n´ r. If the only subcodes we
are able to find have w “ d` n´ r, then the equations we use for the initial filtering are as sparse
as those that we would obtain with the systematic form: our algorithm is not different than KMP.

The algorithmic description of our new approach is reported in Algorithm 2. To visualize the
matrices which are used in the algorithm, we refer to Figure 7. In the next proposition we show that
the algorithm is correct, i.e., that its execution always results in a solution for the PKP instance
tH,V,Eu.
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Algorithm 2: Combinatorial algorithm to solve PKP

Data: w1, w2, d, rr P N, such that w “ w1 ` w2 ď n, d ď rr ď r
Input: H P Frˆn

q , E P Fℓˆr
q , V P Fℓˆn

q

Output: π P Sn such that πpVqHJ
“ E

/* Find subcode with support size w and dimension d */

1 Use ISD to find H˚, generator matrix of B Ď CK, with dimension d and support size w “ w1 ` w2;

/* Solve equations represented by H˚ with meet-in-the-middle */

2 Compute S P GLd,r such that H˚
“ SH;

3 Compute σ P Sn such that Supp
`

σpH˚
q
˘

“ tn ´ r ` rr ´ w ` 1, ¨ ¨ ¨ , n ´ r ` rru;
4 Set J1 “ tn ´ r ` rr ´ w ` 1, ¨ ¨ ¨ , n ´ r ` rr ´ w2u, J2 “ tn ´ r ` rr ´ w2, ¨ ¨ ¨ , n ´ r ` rru;

5 Set E˚
“ ESJ, H˚

1 “
`

σpH˚
q
˘

J1
, H˚

2 “
`

σpH˚
q
˘

J2
;

6 Prepare K1 “

!

`

Y1,Y1H
˚J
1

˘

ˇ

ˇ

ˇ
Y1 PS w1pVq

)

, K2 “

!

`

Y2,E
˚

´ Y2H
˚J
2

˘ˇ

ˇY2 PS w2pVq

)

;

7 Compute K “ K1 ’ K2;

/* Solve equations represented by H˚ with meet-in-the-middle */

8 Compute M P GLr,r such that MσpHq “ pU, Irq;

9 Set rH as the matrix formed by the rows of pU, Irq in positions td ` 1, ¨ ¨ ¨ , uu;

10 Set rE as the matrix formed by the columns of EMJ in positions td ` 1, ¨ ¨ ¨ , uu;
11 Set J 1

“ t1, ¨ ¨ ¨ , n ´ r ` rr ´ wu and J “ tn ´ r ` rr ´ w ` 1, ¨ ¨ ¨ , n ´ r ` rru;

12 Set rH1 “ rHJ1 , rH2 “ rHJ ;

13 Prepare L1 “

!

`

X1,X1
rHJ

1

˘

ˇ

ˇ

ˇ
X1 PS n´r`u´wpVq

)

, L2 “

!

`

X2, rE ´ X2
rHJ

2

˘

ˇ

ˇ

ˇ
X2 P K

)

;

14 Compute L “ L1 ’ L2;

/* Test each produced candidate */

15 Set rU as the matrix formed by the last r ´ rr rows of U;

16 Set rE as the matrix formed by the last r ´ rr rows of eMJ;
17 for X P L do

18 Set X1
“ rE ´ Xt1,¨¨¨ ,n´ru

rUJ;

19 if pX,X1
q PS npVq then

20 Compute π such that σ
`

πpX,X1
q
˘

“ V;
21 Return π.

Proposition 8 Algorithm 2 is correct, i.e., it always returns a solution for the input PKP instance.

Proof. In the following, we will indicate by π the solution to PKP and rV “ πpVq. Since π is a
solution, i.e., πpVqHJ “ E, then

ESJ “ σ
`

rVq
`

SσpHq
˘J

, @S P Fr1
ˆr

q , @r1 ď r, @σ P Sn. (14)

In line 1 of the algorithm, a subcode of the dual code CK (i.e., the code generated by H) is found.
We denote by H˚ P Fdˆn

q a generator matrix for such a subcode. Observe that H˚ “ SH for some
S P GLd,r. Thanks to the equality in (14), we have

E˚ “ ESJ “ rVpSHqJ “ rVH˚J.

The permutation σ we compute in line 3 is only considered to simplify the description, since it is
such that σpH˚q has the only non-null columns at positions tn ´ r ` rr ´ w ` 1, ¨ ¨ ¨ , n ´ r ` rru.
Again, thanks to, (14), we are guaranteed that

E˚ “ σprVqσpH˚qJ.

Since σpH˚q has only w non null columns (the ones indexed by J “ J1 Y J2 “ tn ´ r ` rr ´ w `

1, ¨ ¨ ¨ , n´r`rru), solving the above equation allows to find all candidates for σprVqJ . Indeed, given
that the only non-null columns of σpH˚q are at the positions indexed by J , we can write

p0dˆpn´r`rr´wq, σprVqJ ,0dˆpr´rrqqσpH
˚qJ “ E˚.
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rr ´ d

d

rH1
rH2“MσpHq

σpH˚q “ H˚
1 H˚

2d

w

n ´ r ` rr

n ´ r ` rr ´ w uw1u uw2u

Fig. 7: Matrices employed in Algorithm 2 and respective sizes. The sub-matrix highlighted in light
blue is rH

The listK contains all matrices pY1,Y2q PS wprVq such that p0dˆpn´r`rr´wq,Y1,Y2,0dˆpr´rrqqσpH
˚qJ “

E˚, hence it also contains σprVqJ .

The matrices rH and rE which are computed in lines 9 and 10 of the algorithm are obtained
by puncturing6 ĂMσpHq and rE “ EĂMJ, where ĂM P GL

rr´d,r is such that ĂMσpHqJ has, on
the rightmost part, r ´ rr null columns. Hence, (14) continues to hold. Notice that J 1 Y J “

t1, ¨ ¨ ¨ , n´ r ` rru and that L contains candidates for rVt1,¨¨¨ ,n´r`rru. In particular, we consider all

elements ofS n´r`rr´wpVq to build the list L1, while to build L2 we use the elements in K. We

populate L1 with all possible candidates for σprVqJ 1 while, as we have already seen, K contains

σprVqJ . So, the merge between these two lists is guaranteed to contain σprVqt1,¨¨¨ ,n´r`rru.
Notice that each X P L is a matrix with n ´ r ` rr columns. To compute the remaining r ´ rr

columns, which are denoted as X1 in the algorithm, we exploit the systematic form pU, Irq. Notice

that, if pX,X1q PS npVq, then this implies that σprVq “ pX,X1q “ σ
`

πpVq
˘

. From this relation,
we can easily find π. [\

Remark 5. The additional permutation σ has been used only to simplify the description of the
algorithm, namely, to allow having the pivoted columns on the right (after RREF). We choose σ so
that the support of H˚ is moved at the bottom of t1, ¨ ¨ ¨ , n´ r`rru. We argue that, without doing
this, computing the desired systematic form for H would not be possible. For instance, consider a
permutation σ that, instead, moves J in the first w positions: the resulting σpHq cannot be brought
in systematic form. To see this, let S P GLd,r such that SσpHq “ σpH˚q has, on the rightmost

part, n´w null columns. Let M “

ˆ

S1

S

˙

, where S1 P Fpr´dqˆr
q is such that M has full rank. Notice

that MσpHq is a matrix having, on the bottom rightmost part, a null matrix of size dˆ pn´ wq.
This means that the rightmost r ˆ r matrix of MσpHq cannot have full rank (it contains d null
rows) and, consequently, σpHq cannot be brought in systematic form.

In the following proposition we derive the time complexity of Algorithm 2. As for KMP, we express
the cost in terms of linear algebra and lists operations.

Proposition 9 Let d,w1, w2 such that w “ w1 ` w2 ď n, d ď rr ď r and N
Ž

w,d ą 1. Then,
Algorithm 2 runs in average time

T
pdq
ISDpn, r, wq ` TK ` TL ` |L|,

6 We discard the last r ´ rr columns.
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where

TK
.
“

n!

pn´ w1q!
`

n!

pn´ w2q!
`

pn!q2q´dℓ

pn´ w1q!pn´ w2q!
,

TL
.
“

n!

pr ` w ´ rrq!
` |K| `

n!

pr ` w ´ rrq!
¨ |K| ¨ q´ℓprr´dq,

|L|
.
“
pn´ wq!q´prr´dqℓ

pr ´ rrq!
¨ |K|,

and |K|
.
“ max

!

n!
pn´wq!q

´dℓ , 1
)

.

Proof. Since N
Ž

kpw, dq ą 1, we expect that CK contains at least a subcode with dimension d and

support size w. To find such a subcode, we must face a cost given by T
pdq
ISDpn, r, wq.

Steps 2–5 are obtained with some basic linear algebra, so we omit their cost. The cost of building
the lists K1 and K2 is given by

|K1| ` |K2| “
n!

pn´ w1q!
`

n!

pn´ w2q!
.

Every time we find a collision between two elements pY1,Y2q, we need to check if there are no
repeated columns. This can be done very efficiently: for instance, the schoolbook approach (i.e.,
scanning all pairs of columns) would take timeOpℓw2q. Consequently, we consider that each collision
is checked with one elementary operation. Assuming that each term Y1H

˚J
1 and E˚ ´Y2H

˚J
2 is

a random ℓˆ d matrix over Fq, we can estimate the average number of collisions as

|K1| ¨ |K2|

qdℓ
“

pn!q2q´dℓ

pn´ w1q!pn´ w2q!
.

Consequently, we estimate the cost of instructions 2–7 as

TK
.
“

n!

pn´ w1q!
`

n!

pn´ w2q!
`

pn!q2q´dℓ

pn´ w1q!pn´ w2q!
.

After collisions are filtered, K contains, on average, max
!

n!
pn´wq!q

´dℓ , 1
)

elements. Notice that

we need to use the max operator since, knowing that the algorithm is correct, existence of at least

one solution is guaranteed. Hence, we set |K| “ max
!

n!
pn´wq!q

´dℓ , 1
)

.

Steps 8–11 involve only linear algebra, hence their cost will be neglected. The cost to build L1

and L2 is, again, estimated by counting the number of elements. Notice that |L1| “
n!

n´pn´r`rr´wq! “

n!
pr`w´rrq! while L2 has an average number of elements given by |K|. Given thatX1

rHJ
1 and rE´X2

rHJ
2

are ℓˆprr´dq matrices, we assume that each pair of list elements collides with probability q´ℓprr´dq.
Hence, the average number of collisions is

|L1| ¨ |L2|

qℓprr´dq
“

n!

pr ` w ´ rrq!
¨ |K| ¨ q´ℓprr´dq

“ max

"

pn!q2q´rrℓ

pr ` w ´ rrq!pn´ wq!
,

n!q´ℓprr´dq

pr ` w ´ rrq!

*

.

Consequently, the cost of executing steps 13–14 is

TL
.
“

n!

pr ` w ´ rrq!
` |K| `

n!

pr ` w ´ rrq!
¨ |K| ¨ q´ℓprr´dq.

To conclude the proof, we need to estimate the cost of going through instructions 15–20, i.e., to
test each element of L. Each test requires basic matrix operations, hence we can use |L| as an
estimate for the running time. We consider that for each matrix X2 in L2, the number of matrices
X1 that i) do not have columns identical to those of X2, and ii) provide a collision can be obtained

as pn´wq!q´p rr´dqℓ

`

n´w´pn´r`rr´wq
˘

!
“
pn´wq!q´p rr´dqℓ

pr´rrq! . Multiplying this quantity by the number of elements in L2,

we obtain that the average size of L is O
´

pn´wq!q´p rr´dqℓ

pr´rrq! ¨ |K|
¯

. [\
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6.2 Comparison with KMP

In this section we compare the performances of our algorithm with those of KMP. For both algo-
rithms, we consider the finite regime, that is: for KMP, we use the estimate of TKMP resulting from
Proposition 5, while for our algorithm we refer to Proposition 9. In Figures 8a, 8b, 8c we report the
complexity exponents of the two approaches for different code rates R, several code lengths n and
the cases of ℓ “ 1, 2 and 4. The figures report the complexity exponent, that is: for a running time
equal to T , we plot 1

n log2
`

T
˘

. As it can be seen, our algorithm can indeed be faster than KMP
in several occasions. Actually, for any tested value of ℓ and unless n gets too large, our algorithm
performs better than KMP. We also notice that, for larger value of ℓ, the improvement becomes
more significant. Instead, when we approach the asymptotic regime (i.e., when n gets larger), our
algorithm becomes slower; in the following, we provide a justification of this behavior. Recalling
Proposition 1, for fixed d and increasing q, the value of ω˚ (i.e., the ratio between the code length
and the minimum support size for d-dimensional subcodes) tends to 1´R´ d

n . When n increases,

q increases as well (recall (12)), consequently ω˚ tends to 1 ´ R ` d
n . Since here we are targeting

subcodes in the code generated by H, we need to replace R with RK “ r
n . Consequently, for our

interest case, we have that ω˚ tends to 1 ´ RK ` d
n . This implies that the minimum support size

we can hope to find, when n gets larger, tends to

w˚ “ nω˚ “ n´ r ` d.

This value of w˚ is exactly the same support size we would obtain with any RREF: subcodes
with these properties are already, implicitly, employed in the KMP algorithm. Remember that our
algorithm can improve upon KMP only w and d can be chosen such that w ă n ´ r ` d. As we
have just shown, for large values of n such parameters cannot be chosen because subcodes with the
desired properties do not exist: this explains why, for increasing n, our algorithm becomes slower
than KMP.
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(a) ℓ “ 1
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(b) ℓ “ 2
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(c) ℓ “ 4

R “ 0.2 R “ 0.3 R “ 0.4 R “ 0.5

Fig. 8: Complexity exponents for our algorithm and KMP, for ℓ “ 1 and several code rates (indi-
cated by R). Continuous lines are referred to our algorithm, dotted lines to the KMP algorithm.

To have more insight on how our algorithm compares with KMP, in Table 2 we consider some
other examples. To analyze parameters with practical interest, we focus on the PKP-DSS instances
recommended in [8]; the rows associated to these parameters are highlighted in grey in Table 2. For
each instance, we fix the values of n and r, increase the values of ℓ and, consequently, recompute
q. For our algorithm, the table also contains the parameters which optimize the attack. We can
see that, in several cases, our algorithm is significantly faster than KMP.

In particular, the speed-up gets larger for increasing values of ℓ. This is due to the fact that,
when ℓ increases, the required value of q gets lower. Recalling again Proposition 1, this implies
that we can run our algorithm with more aggressive parameters, that is, larger values of d. This
makes the initial filtering stage more powerful since, when d gets larger, the elements in K1 and
K2 must collide on a larger number of equations. Again, when we cannot choose w and d so that
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w ă n´ r ` d, our algorithm should not be faster than KMP. For example, consider the first two
instances with pn, rq “ p106, 48q. Our algorithm is optimized by choosing d “ 21 and w “ 79, but
n´ r ` d “ 79: as we can see from the table, our algorithm has essentially the same running time
of KMP.

Finally, we observe that the relevant term in the complexity of our algorithm is never T
pdq
ISDpn, r, wq:

the cost of ISD is always much smaller than the cost of creating and merging the lists.

Table 2: Comparison between the running times (in log2 units) of KMP and Algorithm 2
pn, r, q, ℓq KMP pd,w,w1, rrq Algorithm 2

p69, 42, 251, 1q 127.37 p1, 22, 2, 16q 125.47
p69, 42, 17, 2q 125.26 p14, 40, 20, 27q 121.34
p69, 42, 7, 3q 124.32 p3, 24, 5, 16q 118.45
p69, 42, 5, 4q 118.85 p11, 36, 18, 22q 110.87
p69, 42, 3, 5q 128.00 p8, 30, 12, 22q 115.16
p69, 42, 3, 6q 118.10 p10, 33, 16, 20q 101.72
p69, 42, 3, 7q 112.20 p8, 30, 15, 16q 91.04
p69, 42, 2, 8q 127.00 p12, 34, 17, 24q 105.77
p69, 42, 2, 9q 119.64 p10, 31, 15, 20q 96.52

p94, 55, 509, 1q 190.82 p1, 31, 2, 22q 189.77
p94, 55, 23, 2q 190.48 p2, 32, 3, 22q 186.43
p94, 55, 11, 3q 178.89 p2, 30, 4, 18q 173.75
p94, 55, 5, 4q 189.36 p4, 34, 6, 23q 179.85
p94, 55, 5, 5q 172.07 p3, 31, 6, 17q 163.40
p94, 55, 3, 6q 185.98 p18, 54, 27, 34q 172.52
p94, 55, 3, 7q 175.68 p14, 49, 24, 27q 159.03
p94, 55, 3, 8q 166.51 p11, 45, 22, 22q 148.03
p94, 55, 2, 9q 190.76 p11, 42, 16, 29q 169.04

p106, 48, 4093, 1q 257.40 p21, 79, 39, 23q 257.40
p106, 48, 67, 2q 256.97 p21, 79, 39, 23q 256.97
p106, 48, 17, 3q 256.41 p1, 40, 2, 21q 251.56

p106, 48, 11, 18q 245.74 p1, 39, 3, 18q 241.13
p106, 48, 7, 5q 245.71 p1, 39, 3, 18q 239.95
p106, 48, 5, 6q 245.72 p2, 41, 5, 19q 238.33
p106, 48, 5, 7q 237.49 p2, 40, 6, 16q 227.60
p106, 48, 3, 8q 251.90 p3, 43, 6, 22q 241.35
p106, 48, 3, 9q 244.82 p3, 42, 7, 19q 230.59

6.3 Comparison with the attack in [21]

To make another practical example, we consider the PKP instances recommended in [20], for which
pn, r, q, ℓq are set as p38, 16, 2, 10q and p42, 16, 2, 11q. Notice that we are already referring to the non-
homogeneous version, i.e., we are considering r “ m`1. In Table 3 we report the time complexities
of Algorithm 2, and compare them with those of the attack in [21] and with KMP. There instances
have originally been proposed for security levels of 79 and 89 bits, but [21] shows how they can be
attacked in approximate times 263 and 277, respectively. Coherently with the literature on PKP
(and with the analysis we have performed in this paper), the estimates in [21] count the number of
matrix by matrix multiplications. Notice that, interestingly, the attack in [21] has some similarities
with our approach. Indeed, it starts by repeatedly calling ISD to find low-weight codewords in
both codes (i.e., the one generated by V and the one having H as parity-check matrix). Then,
the secret permutation is reconstructed by matching the locations of set entries. In our attack,
we search only for low weight codewords (or subcodes) in one code (that is, the one having H as
parity-check matrix), and then use them to speed-up the KMP algorithm.

As we can see from the table, the running time of our algorithm is lower than that of [21].
Namely, the gain is approximately 5 bits for the first instance, and 8 bits for the second one.
In addition, our algorithm works regardless of the considered finite field, while the one in [21] is
specific to the binary case.
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For a completely fair comparison, we observe that our algorithm requires an exponential amount
of memory, while the one in [21] has a much lower space complexity. In principle, an algorithm
running in time T and using a large memory M should somehow be penalized, in the sense that
its overall cost should be larger than T . This additional cost is normally neglected and only the
running time is considered. Yet, for the sake of completeness, we briefly comment about this fact.
Notice that establishing how a large memory usage affects the performance of an algorithm is a
rather complex task. We stick to the analysis in [12], where the authors conclude that a logarithmic
cost seems to be the most appropriate one, for the case of ISD algorithms. Given that the large
space complexity of advanced ISD algorithms is essentially due to operations with lists, it makes
sense to extrapolate this result and apply it also to our case. Consequently, for an algorithm with
time complexity T and space complexity M , we consider an overall cost of T ¨ log2pMq. Given that,
for Algorithm 2, we have M « T , we use T log2pT q as an estimate of its cost.

Even if we assume no penalty for the attack in [21] (the authors claim that the employed
memory is negligible), our algorithm remains competitive. Indeed, the costs for our algorithm
would become approximately 63 (instead of 57.7) and 75 (instead of 69.2), which are in the same
ballpark of [21].

Table 3: Comparison between the running times (in log2 units) of KMP, the attack in [21] and
algorithm 2, for the instances recommended in [20]

pn, r, q, ℓq KMP [21] pd,w,w1, rrq Algorithm 2

p38, 16, 2, 10q 74.9 63 p5, 21, 10, 10q 57.7
p42, 16, 2, 11q 87.4 77 p6, 26, 13, 11q 69.2

7 Further considerations

Arguably, the interest in PKP and SEP is mainly due to their cryptographic applications. To the
best of our knowledge, these problems have been used only in the design of signature schemes
in the Fiat-Shamir paradigm. Yet, we cannot exclude that, in the future, other applications may
appear, e.g., signatures in the hash&sign paradigm or encryption schemes. Analogously, most of the
attention has been dedicated to the mono-dimensional PKP. The use of the multi-dimensional PKP
has only been considered in [20], but [21] and this paper show that the recommended instances have
a security level which is significantly below the claimed one. Yet, this is not enough to conclude that
the multi-dimensional PKP is less useful, with respect to the mono-dimensional PKP. Following
this line of reasoning, some questions arise naturally; for instance:

– Can a PKP-based encryption scheme, or a hash&sign signature scheme, be competitive?
– Can multi-dimensional PKP be preferable over mono-dimensional PKP, in some cases?

In the remainder of this section, we argue why these questions may admit, in principle, a positive
answer. Namely, we show that to achieve a running time of at least 2128 operations (corresponding
to a security level of 128 bits) the required input size for PKP (equivalently, SEP) can be rather
small, when compared to other problems. This implies that, potentially, PKP and SEP may be
employed to design cryptographic schemes with competitive performance. Notice that we adopt
a purely speculative point of view, that is, we do not propose any specific construction but only
consider the performance that hypothetical such schemes may achieve. Yet, these results hint at
the fact that these problems are worth looking into.

7.1 Relevant quantities and scenarios

As it is common when studying hard problems, we first focus on the input size. For PKP, the input
is constituted by H, of size r ˆ n, and V, of size ℓ ˆ n; both matrices take values in Fq. Notice
that, for both matrices and without loss of generality, we can employ a convenient representation
and consider the RREF form. Indeed, this allows saving some space, since the identity matrices
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can be excluded from the input. Consequently, to represent such matrices, the number of bits we
need is

SizepHq “ rpn´ rq log2pqq,

SizepVq “ ℓpn´ ℓq log2pqq.

For the overall input size, we can consequently consider SizepHq ` SizepVq. Notice that, under a
cryptographic point of view, the input size can be interpreted as the public key plus ciphertext size
of a hypotethical encryption scheme where H constitutes the public key and V is the ciphertext.

Notice that, when considering signature schemes in the Fiat-Shamir paradigm, H can be fixed
or generated at random starting from some seed. Instead, the size of (some) exchanged messages
is, more or less, equal to that of V. Consequently, in this scenario, it makes sense to neglect the
size of H and consider only that of V.

7.2 Case study of 128-bit security

Let us focus on the common case of 128 bits of classical security, which is the minimum security
level required, nowadays, for cryptographic schemes. We first consider the minimum input size we
need, for PKP, to have that all known attacks have a running time not lower than 2128. In other
words, we consider several code rates and, for each value of R, find the values of n, q and ℓ such
that all known attacks run in time ě 2128 and the value of SizepHq ` SizepVq is minimized. We
first focus on the mono-dimensional case. For the corresponding parameters, see Table 4, where we
additionally compare with the results in [11], where the authors derive the minimum input size for
the SDP with the low Hamming weight and the high Hamming weight requirements. As we can
see from the Table, the PKP can achieve the same complexity with a much smaller input. We also
consider how the problem behaves when switching to the multi-dimensional version. Interestingly,
the input size can be reduced significantly. Indeed, when ℓ gets larger, we can use smaller values
for q, and this has a positive impact on SizepVq. For example, considering the same rate R « 0.51,
we can choose n “ 70, r “ 32, q “ 2 and ℓ “ 10, yielding to an input size of approximately 0.23
kB. Notice that this reduction is mostly due to the fact that representing H becomes significantly
less costly: instead of the 1.12 kB required for the mono-dimensional case, we need only 0.15 kB.

Problem Parameters Min. Input Size

SDP, Low Weight q “ 2, R “ 0.326 46.75
SDP, High Weight q “ 3, R “ 0.369 12.38

PKP, ℓ “ 1 n “ 62, q “ 653, r “ 30 1.19

Table 4: Minimum input size, in kB, and corresponding parameters, for different problems and 128
bits of complexity

We now focus on minimizing just the size of V. For ℓ “ 1, we find that the optimal choice is
n “ 69, q “ 239 and r “ 41 (the code rate is approximately 0.4), yielding to SizepVq « 67 B.
When switching to the multi-dimensional case, we can obtain approximately the same sizes with
essentially the same n but a much smaller q. For instance, choosing n “ 68, q “ 17 and ℓ “ 2, we
obtain, in practice, the same value for SizepVq. We observe that, using the same n, the solution to
PKP has the same size; however, we can use a much smaller value for q, and this should make the
arithmetic faster.

8 Conclusions

We have studied the hardness to solve the PKP and the SEP. First, we have shown that the two
problems are actually equivalent, hence, all solvers for the former can also be used to solve the
latter. Despite that this result is based on a very simple reduction, to the best of our knowledge, this
is the first time it is made explicit. Then, we have deeply studied the performance of state-of-the-
art solvers. For what concerns the KMP algorithm, we have generalized it to the multi-dimensional
case (i.e., when ℓ ą 1) and have derived its complexity in the asymptotic regime. Our analysis
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shows that, perhaps surprisingly, the running time does not depend on the value of ℓ. Also, the
algorithm runs in time which is super-exponential in the code length. We have then thoroughly
analyzed the algorithm we introduced in [25], extended it to the multi-dimensional case (regardless
of the finite field size) and compared it with KMP and the attack in [21], which is specific to
the binary field. Our analysis shows that, in the finite regime, our algorithm is in several cases
faster than other approaches; instead, in the asymptotic regime, KMP has better performance.
Finally, we have considered how PKP and SEP behave in terms of input size. We have shown that
they can achieve practical security levels with rather compact inputs, when compared to other
problems (say, SDP). Also, switching to the multi-dimensional version has no practical impact on
the security, while it can lead to a significantly reduced input size. This analysis hints at the fact
that, potentially, PKP and SEP can be used to design very promising quantum-safe cryptographic
primitives. As a confirmation of this, the algorithms analyzed in this paper have already been
used as a basis for parameters selection for PERK [1], a digital signature scheme which has been
submitted to the NIST additional call for PQC signatures.
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Appendix A - Proof of Proposition 1

We have already observed that the bounds N
Ž

kpw, dq and N
Ź

kpw, dq are tight, up to a factor which

is not greater than e1 « 2.7183: so, we can reliably use N
Ž

kpw, dq in place of Nkpw, dq. Let k “ Rn,
for a constant R P r0; 1s; since d is constant as well, from (5) we have

“

k
d

‰

q

r
n
d sq

“

“

Rn
d

‰

q

r
n
d sq

„ 2dpk´nq log2pqq “ 2dnpR´1q log2pqq.

From (4), and neglecting the op1q (since they vanish for growing n), we have that

ˆ

n

w

˙

pqd ´ 1qw´d “

ˆ

n

ωn

˙

pqd ´ 1qw´d

“

ˆ

n

ωn

˙

pqd ´ 1qwpqd ´ 1q´d

“ 2nhqd
pωq log2pq

d
q´d log2pq

d
´1q

“ 2d
`

nh
qd
pωq log2pqq´log2pq

d
´1q

˘

.

Then, we can write

N
Ž

kpw, dq “ 2nd log2pqqhqd
pωq´d log2pq

d
´1q´dnp1´Rq log2pqq.

Let ω˚ be the minimum ω P r0; 1s so that N
Ž

kpωn, dq ě 1. From the above equation, we obtain

ω˚ “ h´1
qd

ˆ

1´R`
log2pq

d ´ 1q

n log2pqq

˙

.

We further notice that, whenever qd " 1, we can further simplify log2pq
d ´ 1q « d log2pqq, from

which

ω˚ « h´1
qd

ˆ

1´R`
d

n

˙

.

https://ia.cr/2019/412
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Appendix B - Proof of Proposition 2

ISD is a randomized, iterative procedure in which the steps in Algorithm 3, corresponding to a
single iteration, are continuously executed until the algorithm successes.

Algorithm 3: One iteration of ISD for d ą 1

Input: Code C generated by G P GLk,n, w, d P N such that w ď n ´ k ` d
Output: failure, or generator matrix for B Ď C with dimension d and support size w

1 Choose uniformly at random σ P Sn;
2 if RREF

`

σpGq, t1, ¨ ¨ ¨ , ku
˘

fails then
3 Report failure;
4 else
5 pId,Mq Ð RREF

`

σpGq, t1, ¨ ¨ ¨ , ku
˘

6 for U Ď t1, ¨ ¨ ¨ , ku with size d do
7 B Ð matrix formed by rows of M indexed by U ;
8 if B has support size w ´ d then
9 Return σ´1

`

pId,Bq
˘

10 Report failure;

Consider the running time in Proposition 2. Notice that the numerator of the formula cor-
responds to the cost of each iteration, while the denominator is the success probability of each
iteration. For this probability, we consider that the code contains Nkpw, dq subcodes with dimen-
sion d and support size w. The probability that a chosen permutation is valid for one of them

is given by
pwdqp

n´w
k´dq

pnkq
and, if we multiply such probability by the expected number of subcodes,

we obtain the average number of subcodes each ISD iteration is able to find. Now, if this prod-
uct is smaller than 1, then we can deem it as the success probability. Instead, if it is close to (or
greater) than 1, then we can assume that every ISD iteration returns a subcode, so that the success
probability of every iteration is practically 1. This reasoning explains why we can set the success

probability of each iteration as ppdqpn, k, wq “ min

"

pwdqp
n´w
k´dq

pnkq
Nkpw, dq ; 1

*

. Finally, we replace

Nkpw, dq with the (tight) lower bound N
Ž

kpw, dq.

Appendix C - Asymptotics of KMP algorithm

Proof of Proposition 6

We first notice that the number of elements in L is always not larger than the number of collisions
between L1 and L2, that is, NL1’L2

. Hence, asymptotically, the cost of the algorithm can be
assumed as maxt|L1| , |L2| , NL1’L2

u, and the algorithm is optimized when the three quantities
are identical. To achieve this, we choose u1 “ u2 “ u “ µn, where µ P pR{2; 1s. This guarantees
that |L1| “ |L2| and, recalling the asymptotics in Section 2.3, we have7

L “ |L1| “ |L2| “ 2n
`

h2pµq`µ log2p
µn
e q

˘

.

Furthermore, it holds that

NL1’L2
“ L2qℓpn´r´2µnq

“ 2n
`

2h2pµq`2µ log2p
µn
e q`ℓ log2pqqpR´2µq

˘

.

Then, it is easy to see that L “ NL1’L2 happens when µ is such that

h2pµq ` µ log2

´µn

e

¯

` ℓ log2pqqpR´ 2µq “ 0. (15)

These considerations and relationships prove the proposition.

7 To ease notation, we here neglect the op1q terms.
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Proof of Proposition 7

In the asymptotic regime we have q „
`

n
e

˘
1

ℓp1´Rq . Consequently, we rewrite (15) as

h2pµq ` µ log2

´µn

e

¯

`
R´ 2µ

1´R
log2

´n

e

¯

“ 0. (16)

It is easy to see that, for any sufficiently large n, the above equation always admits a root µ in the
range µ˚ P pR{2; 1{2s. Indeed, the function on the left side of the equation is continuous, is positive
for µ “ R{2 and negative for µ “ 1{2: consequently, it must have a root in the range pR{2; 1{2s.
Let ω˚ be the limit of the root of (16), for n going at infinity, and consider that

lim
nÑ8

h2pµ
˚q ` µ˚ log2

ˆ

µ˚n

e

˙

`
R´ 2µ˚

1´R
log2

´n

e

¯

“ µ˚ log2

´n

e

¯

`
R´ 2µ˚

1´R
log2

´n

e

¯

.

Requiring the above limit to be equal to 0, we find

µ˚ “
R

1`R
.

Then, we consider that

cKMPpµ
˚q “ h2pµ

˚q ` µ˚ log2

ˆ

µ˚n

e

˙

“ ´p1´ µ˚q log2p1´ µ˚q ` µ˚ log2

´n

e

¯

“ ´
1

1`R
log2

ˆ

1

1`R

˙

`
R

1`R
log2

´n

e

¯

“
1

1`R
log2 p1`Rq `

R

1`R
log2

´n

e

¯
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