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Abstract 17 

In forest ecosystems, a variety of abiotic and biotic soil forming factors drives soil organic matter 18 

(SOM) and nutrients cycling with a profitable outcome on climate change mitigation. As a 19 

consequence, type and intensity of forest management, through its impact on carbon (C) and 20 

nutrient soil stocks, can be considered as an additional soil forming force. In this study, we 21 

investigated the influence of the coppice conversion into high forest on pedogenesis and on soil C 22 

and nutrient (N, P, Ca, Mg, and K) stocks, fifty years later the beginning of the conversion-cycle. 23 

The trial was established in a Turkey oak forest historically managed under the coppice system in 24 

central Italy. Specifically, we considered tree population density (natural evolution – control, 25 

moderate thinning, heavy thinning) where soil samples were collected according to genetic horizon 26 

to estimate C, N, and P stocks both in the forest floor and at fixed depth intervals (0-30, 30-50 and 27 

50-75 cm). Further, the stocks of exchangeable Ca, Mg, and K were also assessed for the mineral 28 

layers. The results showed that litter and the upper layer of mineral soil (0-30 cm) contained a 29 

similar quantity of C (about 74-83 Mgha-1), independently of the trials and no differences were 30 

observed also in the whole soil stocks (about 192-213 Mg ha-1). The comparison of the mean stocks 31 

calculated per 1-cm of thickness of organic (O), organo-mineral (OM), and mineral (M) layers, 32 

although it did not display any difference among trials (excepted for P and Mg), showed a similar 33 

capability of the organo-mineral horizons to store C and nutrients compared with the organic ones 34 

(e.g., about 6-12 Mg ha-1, 0.3-0.5 Mg ha-1 and 0.5-1.5 kg ha-1 for C, N and P, respectively). Our 35 

findings showed that thinning operated on Turkey oak coppice did not affect soil capacity to store C 36 

and nutrients. These results suggested that the forest ecosystem itself is the main soil forming force 37 

and this is consistent with the target of adopting forest management able to control the global C 38 

cycle through the storage of SOM in the mineral soil rather than in forest floor, where SOM 39 

turnover is faster. 40 

Keywords: forest soil, organic matter, rock fragments, pedogenetic horizons, coppice conversion 41 

into high forest, sustainable forest management 42 
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1. Introduction 44 

Soil organic matter (SOM) plays key roles in terrestrial ecosystems, where it is involved in many 45 

processes of soil conservation. SOM is fundamental in stabilizing soil structures and reducing soil 46 

erosion, improving water-holding capacity, and releasing nutrients to plants, microorganisms, and 47 

soil fauna (Bot and Benites, 2005; Canedoli et al., 2020). In forest soils, the input of organic matter 48 

depends on litter production, mortality of fine roots, roots exudates, and shoots residues (Lehmann 49 

et al., 2015; Diao et al., 2020; Wu et al., 2020). Thus, depending on the interaction among the main 50 

soil forming forces (parent material, climate, living organisms, relief, and time; Jenny, 1941), a 51 

vastity of physicochemical and biological processes affects the transformation of plant-derived 52 

organic materials in SOM. During this transformation, SOM is stabilized by the formation of 53 

organo-metallic complexes with di- and trivalent cations (Kaiser et al., 2016), the formation of 54 

organo-mineral complexes with clay minerals (Kögel-Knabner et al., 2008, Barré et al., 2014; 55 

Gartzia-Bengoetxea et al., 2020), and the occlusion within aggregates (Schrumpf et al., 2013), 56 

favouring its preservation in the soil. Therefore, plant species, soil properties, and their interactions 57 

play a key role in determining the soil organic C (SOC) stock and, due to SOM elemental content, 58 

also in the biogeochemical cycles of nutrients like N, P, Ca, Mg, and K (Tiessen et al., 1994). For 59 

instance, estimations indicate that the mean world soil content to 1-m depth is 1462-1548 Pg for 60 

organic C and 133-140 Pg for total N (Batjes, 1996), more than the global content obtained 61 

combining vegetation and atmosphere (Lehmann et al., 2015; Mayer et al., 2020). 62 

In forest ecosystems, forest management may impact on SOC and nutrient stock. In their review, 63 

Mayer et al. (2020) reported that management practices like site preparation, harvesting operations, 64 

removal of harvest residues, and removal of litter and biomass for fodder, fuel, or animal bedding 65 

have a negative impact on SOC stock capacity. Conversely, N addition, introduction of N-fixing 66 

plants, and herbivory regulation have a positive impact on SOC storage. Other practices like 67 

management of tree species diversity and periodical thinnings over the whole stand lifespan that are  68 

used to manage tree population density in high forest [which consists in a stand of trees, generally 69 

originated from seed , that develop a high, closed canopy (SAF, 2008)] and in the conversion into 70 

high forest of coppice systems  seem not to interfere with the soil capacity to stock organic C under 71 

both broadleaves and conifers (Bravo-Oviedo et al., 2015; Prasad Dangal et al., 2017; Zhang et al., 72 

2018; Mayer et al., 2020). 73 

Coppicing represents the oldest form of systematic and sustainable use of forests. It is a very 74 

flexible system that requires a low energy input and has been adapted and modified according to the 75 

needs of rural societies, to whom coppice forests deliver small size wood primarily for energy 76 

(firewood and charcoal), agriculture, and small scale businesses. As a matter of fact, coppice forests 77 

characterize the European landscapes, especially in mountainous areas of central, east and southern 78 



Europe. Due to rural migration and technical and economic restrictions, most of the coppice forests 79 

are today neglected or abandoned, representing a significantly underused natural resource (Unrau et 80 

al., 2018). In Italy, coppice forests cover 3.663 million hectares (Mairota et al., 2018)) and both 81 

evergreen and deciduous Quercus spp. make a significant share of the total cover (nearly 1.6 82 

million ha). Following the crisis of the firewood and charcoal system, the conversion of coppices 83 

into high-forests is considered a sustainable forest management in many countries (Fabbio, 2016; 84 

Fabbio and Cutini, 2017; Cutini et al., 2021) due to the low-frequency soil disturbance that would 85 

favour the storage of SOC (Hölscher et al., 2001; Marchi et al., 2016). Therefore, the link between 86 

forest management and soil properties, with its specific capacity to determine SOC stock and 87 

climate change mitigation, has fostered a number of scientific researches (e.g., Caddeo et al., 2019; 88 

Zhang et al., 2019; Zhao et al., 2019; Lee et al., 2020), but scarce has been the interest on the effect 89 

of forest management on the soil stock of nutrients like N, P, Ca, Mg, and K, whose abundance and 90 

availability is key to soil fertility and biomass production.  91 

The aim of this work was to assess the role of thinning performed for the conversion of a coppice 92 

forest into high forest on soil C, N, available P, and exchangeable Ca, Mg, and K stocks. The effect 93 

of periodical thinning vs no silvicultural intervention (namely, natural evolution following the 94 

suspension of periodical harvestings) was investigated in a Turkey oak (Quercus cerris L.) stand 95 

under conversion into high forest and managed as coppice up to 1949 (last coppicing).  96 

To test the hypothesis that different forest managements can affect soil C and nutrients stocks, and 97 

to investigate on the contribution of each horizon to the whole soil stocks, we estimated: i) C, N, 98 

and P stored in the genetic horizons (ranked in organic, organo-mineral and mineral horizons) and 99 

at fixed depth intervals (0-30, 30-50, and 50-75 cm); and ii) exchangeable Ca, Mg, and K stored in 100 

the mineral soil (organo-mineral and mineral horizons) and at fixed depth intervals (0-30, 30-50, 101 

and 50-75 cm). 102 

 103 

2. Materials and Methods 104 

2.1. Environmental and historical background 105 

The study was conducted in the Natural Reserve of Monterufoli-Caselli forest, Tuscany, Italy (Fig. 106 

1), a Natura 2000 Site (SPA-SAC IT5170008 Complesso di Monterufoli). The whole reserve covers 107 

a gentle hilly environment and extends for 4,828 ha within altitudes spanning between 100 and 560 108 

m. The mean annual precipitation is 750 mm and the mean annual air temperature is 13.5 °C. 109 

Geology of the area is rather complex being dominated by serpentinite and polygenic breccias 110 

(Paleocene), followed by calcareous sandstone interbedded with limestone (Cretaceous), pelitic 111 

marine sediments (Pliocene), silty-clay schists (Cretaceous), and quartzous sandstone interbedded 112 



with arenaceous limestone (Paleocene). The area was heavily influenced by human activities since 113 

ancient times. Central Italy, and especially Tuscany, was subject to an intense mining activity 114 

during Bronze and Iron ages. As reported by Cartocci et al. (2007), Tuscany can be considered one 115 

of the most important ancient metallurgical districts of Italy, with several active mining centres 116 

since the Iron Age. In the study area, considerable was the production of iron, pyrite, base metals, 117 

silver, antimony, mercury, and gold for millennia (Chiarantini et al., 2018). Because of this activity, 118 

there was the need of fuel for metal smelting, with the consequent exploitation of forests (especially 119 

oak forests of Quercus cerris L., Quercus pubescens Willd., and others) for charcoal production 120 

(Carrari et al., 2017).  121 

 122 

2.2. Study area 123 

The study was run in a long-term monitoring area located within the Caselli Forest. Forest stands 124 

consisted of Turkey oak (Quercus cerris L.) for about 90%, with broadleaves like Fraxinus spp., 125 

Ulmus spp., Ostrya spp., and Quercus ilex L. as subsidiary species. Under the coppice system, in 126 

Italy Turkey oak cover ≈675,000 ha, i.e. the 18.4% of coppice forests (Manetti et al., 2020). Leaf 127 

area index (LAI) ranged from 4.3 to 5.2 (Cutini, 1996). Here, last coppicing was performed in 1949; 128 

then, in 1969, a long-term experiment aimed at comparing the periodical thinning of standing crop 129 

vs its natural evolutive pattern to achieve coppice conversion into high forest was established. The 130 

main goal of the experiment was to verify stand dynamics as for its structural-compositional 131 

arrangement and functional traits of tree biomass. The treatments on the ground were the full 132 

release of the dominated layer, moderate thinning (MT) and heavy thinning (HT) with an average 133 

release of 1500 and 1100 stems ha-1 in the dominant layer, respectively. The coppice under natural 134 

evolution, in absence of any practice, was considered as control (CTR); here, the average full tree 135 

density was 4269 ha-1 (Fabbio and Amorini, 2006; Manetti and Gugliotta, 2006). Each trial was 136 

repeated four times according to a randomized blocks design. Within plots of several thousands of 137 

m2, we selected a survey area of 900 m2 all within a NNE-NNW exposure on slopes roughly 138 

ranging from 10 to 20% (Table S1, Supplementary Materials). A second thinning was implemented 139 

in 1989 releasing 715 and 1036 shoots ha-1 in HT and MT, respectively. Average stem density 140 

decreased to 3589 ha-1 in CTR. The arrangement of stand structure following the applied 141 

silviculture was a two-storied stand: the dominant layer mainly made of Turkey oak, and the 142 

dominated layer made the set of subsidiary broadleaved species.  143 

Other inventories were performed in 1998 and 2004. In 2004, there were 578 shoots ha-1 in the 144 

dominant layer of HT and 869 shoots ha-1 in MT. Average full stem density was 3417 ha-1 in CTR. 145 

Main stand parameters are summarized in Table 1.  146 



 147 

2.3. Sampling sites and soil sampling 148 

The study site spanned from 337 to 345 m above sea level, on soil formed on calcareous sandstone 149 

interbedded with limestone. In each of the four plots of the three trials, in 2017 a survey was run to 150 

evaluate the spatial variability of surface stoniness, rock outcrops, slope, micro-topography, 151 

dominant vegetation, and understorey to select the location where to dig a soil profile. Then, a total 152 

of 12 profiles (1 profile • 4 plots • 3 trials) representative of each plot conditions were opened 153 

within locations with 12-15% slope and 90-95% soil cover. In each plot the soil profile was dug at 154 

≈1 m from the stem (downslope position) of one of the oldest trees and until the depth of ≈1 m, 155 

except for lithic contact. For each profile, the organic horizons forming the forest floor were 156 

morphologically described per Baize et al. (2008) and sampled in an area of about 3 m2 around the 157 

profile. The mineral soil was morphologically described per Schoeneberger et al. (2012) and 158 

sampled by genetic horizons. Soil morphologies provided of understorey composition (Frati et al., 159 

2021) are reported in Table S1 of Supplementary Material. During the field operations, the collected 160 

samples were stored in a refrigerated bag and, once in the laboratory, they were allowed to air-dry. 161 

Thus, the mineral samples were sieved at 2 mm to separate the fine earth (< 2-mm fraction) from 162 

the skeleton (> 2-mm fraction).  163 

 164 

2.4. Laboratory analysis 165 

The bulk density of both fine earth and skeleton of each horizon was determined by soil cylinders. 166 

Specifically, two horizontal soil cores were collected from each mineral horizon by using cylinders 167 

of 503 cm3 (height: 10.8 cm; diameter: 7.7 cm). In the laboratory, the collected sample was sieved 168 

at 2 mm and the volume of the skeletal particles was determined by water displacement after the 169 

particles were water-saturated (Corti et al., 1998). The volume of the fine earth was obtained by 170 

subtracting that of the skeletal particles from the total volume of the cylinder. Both fine earth and 171 

skeleton were then heated at 105°C and weighed. The content of large cobbles was estimated by the 172 

“percent of area covered” figure reported in Schoeneberger et al. (2012), and their bulk density 173 

determined as mentioned above. For the organic horizons, the bulk density was estimated by 174 

pedotransfer functions (De Nicola et al., 2014), which have been tested by other researcher in 175 

various Italian contexts (Brenna et al., 2010; Garlato et al., 2009a, b; Guermandi et al., 2013). These 176 

equations provide bulk density as a function of the percentage of estimated organic matter (OM = 2 177 

● organic C) as follows:  178 

1. For OM > 30%: bulk density (g cm-3) = 0.00589 ● organic C + 0.554;  179 

2. For OM = 30–15%: bulk density (g cm-3) = 0.00745 ● organic C + 0.593; 180 



3. For OM < 15%: bulk density (g cm-3) = 0.00797 ● organic C + 0.553. 181 

Aliquots of 20 g of fine earth were used to determine the particle-size analysis after they were 182 

maintained submerged in deionised water for 24 h; sand was retrieved by wet sieving at 0.053 mm, 183 

while silt and clay were obtained by sedimentation. All the following analyses were performed on 184 

both fine earth and skeleton. The pH values were determined potentiometrically in water after one 185 

night of solid:liquid contact at 1:2.5 w:v ratio for the mineral samples and 1:8 w:v ratio for the 186 

organic samples (Cardelli et al., 2019). Total organic carbon (TOC) was estimated by K-dichromate 187 

digestion, heating the suspension at 180 °C for 30 minutes (Nelson and Sommers, 1996). Water-188 

extractable organic matter (WEOM) was extracted after one night of the 1:10 solid:liquid 189 

suspension in an orbital shaker at 140 rpm and filtered through a Whatman 42 filters (Agnelli et al., 190 

2014). The organic C content of the extract (WEOC, water-extractable organic carbon) was 191 

determined by titration (Nelson and Sommers, 1996). Total N (TN) was measured by a dry 192 

combustion analyser (EA-1110, Carlo Erba Instruments, Milan, Italy), while available P (Pav) was 193 

determined following the Olsen et al. (1954) method. Exchangeable Ca, Mg, and K were displaced 194 

by a 0.2 M BaCl2 solution (solid:liquid ratio 1:10) and extracted after 10 min of shaking (Corti et 195 

al., 1997). The obtained suspensions were centrifuged and filtered through Whatman 42 filters. 196 

Elements were determined by atomic absorption with a Shimadzu AA-6300 spectrophotometer 197 

(Tokyo, Japan). For the skeletal fraction, pH, Pav, and exchangeable Ca, Mg, and K were 198 

determined on unground fragments, while TOC, WEOC, and TN were measured on ground aliquots 199 

(Ugolini et al. 1996; Corti et al., 1997; Corti et al., 2002).  200 

 201 

2.5. Stock calculation 202 

Soil rock fragments can contain considerable amounts of nutrients (Ugolini et al., 1996). In 203 

particular, as pointed out by Corti et al. (2002) and Cuniglio et al. (2009), calcareous skeleton may 204 

represent a large reservoir of C, N, and nutrient cations. Thus, considering the soil as made of fine 205 

earth only may result in significant overestimations of the soil nutrient budget. Therefore, C and 206 

nutrients (N, P, Ca, Mg, K) stocks were calculated for each genetic horizon taking into 207 

consideration both fine earth and skeleton contributions.  208 

The amount of element stored in the fine earth and skeleton was calculated as following (De Nicola 209 

et al., 2014):  210 

 211 

 212 

ES = EC ● BD ● TH ● CC           (1) 213 

 214 



where ES is the element stock (in Mg ha-1 for C, N, and exchangeable Ca, Mg, and K; in kg ha-1 for 215 

Pav), EC is the element concentration (g kg-1 for C and N; mg kg-1 for Pav and exchangeable Ca, Mg, 216 

and K), BD is the bulk density (kg dm-3), TH is the horizon thickness (cm), and CC is the 217 

coefficient applied to normalize the units of measure (10-1 for C, N and Pav; 10-4 for exchangeable 218 

Ca, Mg, and K). 219 

Thus, the total C and nutrient stored in each genetic horizon were determined as the weighed mean 220 

for the fine earth and skeleton contents: 221 

 222 

ESTOT = [(ESfe ● FE%) + (ESsk ● SK%)] / 100                                                                           (2) 223 

 224 

where ESTOT is the total amount of element stored in the genetic horizon (in Mg ha-1 for C, N, and 225 

exchangeable Ca, Mg, and K; in kg ha-1 for Pav), ESfe is the amount of element contained in the fine 226 

earth, FE% is the percentage of fine earth content in the horizon, ESsk is the amount of element 227 

contained in the skeleton, SK% is the percentage of skeleton content in the horizon.  228 

For each element, the amount stored by 1-cm thickness of the organic, organo-mineral, and mineral 229 

horizons was also calculated. 230 

 231 

2.6. Statistical analysis 232 

Because of the soil variability, profiles showed slight differences in the sequence of horizons. Thus, 233 

genetic horizons were grouped into soil layers based on their nature: forest floor (OLn, OLv, OFr, 234 

and OH horizons), organo-mineral (A and AB horizons), and mineral (Bw, Bg, BC, and Cr 235 

horizons). Properties of the soil layers were obtained by calculating the weighed mean of each 236 

property based upon the thickness of each horizon. The element stocks for the 0-30, 30-50, and 50-237 

75 cm of soil were calculated considering the thicknesses of the organo-mineral and mineral soil 238 

horizons. To highlight differences in C and nutrient stocks, one-way ANOVA was performed along 239 

the soil layers and among soils under different forest managements. Prior to ANOVA, normality 240 

and homoscedasticity of the dataset were assessed using Shapiro-Wilk statistical test and by 241 

Levene's test at 5% significance level, respectively. Assumptions were not violated and Tukey's 242 

Honest Significant Difference (HSD) test with P≤0.05 was used to compare differences among 243 

means. Results of ANOVA (F value and significance level), showing the influence of management 244 

and depth on physical and chemical properties and elements stock in the surveyed soils are reported 245 

in Table S5 a/b of Supplementary Materials. 246 

 247 

3. Results 248 



3.1. Soil morphology, and physical and chemical properties in the three forest trials 249 

Properties of the experimental site were similar in the three forest trials. 250 

All the soils were classified as Humustepts (Soil Survey Staff, 2014). Soil morphology organized in 251 

soil layers is reported in Table 2 and Table S1 of Supplementary Material. The litter layer was on 252 

average 2 to 5 cm thick and was mainly made by Turkey oak leaves and branch fragments. Organo-253 

minerals horizons showed a thickness spanning from 2 to 6 cm thick, and the soil structure was 254 

moderately to well-developed, in form of crumbs or subangular blocks; in the area massively 255 

frequented by wild boars (MT), the structure was platy. Mineral horizons showed poorly to well-256 

developed structure mainly made of subangular and angular blocks. Gley B horizons (Bg) indicate 257 

periodical soil water saturation (Soil Survey Staff, 2014). The skeleton content in the three trials 258 

ranged from 0 to 50-60%, with the greatest contents in depth (Table 2).  259 

The soil pH was sub-acid (ranging between 5.69 and 6.15), with no significant difference among 260 

layers and trials (Table 3). The particle-size distribution showed a coarser texture in the organo-261 

mineral horizons (loam to sandy-loam textures) than in the mineral ones (silty clay and clay loam). 262 

No statistically significant difference (P>0.05) among the trials was observed. As expected, the 263 

largest contents of TOC, WEOC, TN, and Pav were in the litter and showed a decreasing trend with 264 

depth. Among the trials, no difference occurred for TOC, WEOC, and TN, whereas the organo-265 

mineral horizons of HT displayed the highest Pav concentrations. The WEOC/TOC ratio showed 266 

very high values with respect to other reports (Corvasce et al., 2006; De Feudis et al., 2017), with 267 

statistically significant differences only in the MT trial, where the mineral horizons displayed the 268 

highest value. The C/N ratio showed a significantly decreasing trend with depth in all the trials, 269 

with no significant difference among them (Table 3, S2 and S3 of Supplementary Material for fine 270 

earth and skeleton data, respectively). 271 

 272 

3.2. C and nutrient stocks in the three forest trials 273 

In the three trials, litter and the upper 0-30 cm mineral layer contained similar quantity of C, which 274 

was higher than in the 30-50 and 50-75 cm mineral layers (Table 4). Other differences among litter 275 

and mineral layers were observed for TN in CTR, exchangeable Ca in HT, and K in HT and MT, 276 

always with the highest stock in the 0-30 cm layer. However, the stock of all elements showed no 277 

statistical difference among the trials. The contribution of the skeleton to the element stocks was 278 

negligible or null for C, TN, and Pav, but ranged from ≈1.5 to ≈11% for exchangeable K, and from 279 

≈27 to ≈63% for exchangeable Ca and Mg (Table 4 and Table S4 of Supplementary Material).  280 

The amount of the elements stored by 1-cm thickness of the organic, organo-mineral, and mineral 281 

horizons in the three trials is reported in Fig. 2. The quantity of C, TN, and Pav stored in 1 cm of 282 



litter was often similar to that of the organo-mineral horizons (except for Pav in CTR), and from 283 

three- to ten-fold higher than that of the mineral horizons (except for TN in CTR, where no 284 

significant difference was observed). For the exchangeable Ca, Mg, and K, the stock capacity of 1 285 

cm of organo-mineral horizons was generally greater than in the mineral horizons but because the 286 

samples were small (Webster, 2001), the differences were not statistically significant except for Ca 287 

in MT, Mg in HT, and K in both HT and MT, where the variability was proportionally less than in 288 

the other cases. Contrasting the stock capacity per 1-cm thickness among the different trials, only 289 

Pav and exchangeable Mg showed significant differences, with the highest contents of the two 290 

elements in the organo-mineral horizons of HT (Table 3).  291 

 292 

4. Discussion  293 

4.1. Effect of thinning on soil morphology and physicochemical properties 294 

The effect of thinning on the main pedological features appeared negligible in the studied forest. In 295 

the topsoil, which is the soil portion most sensitive to disturbances and management practices (Song 296 

et al., 2005), the effect of thinning could have been masked by the wild boar activity. In our case, 297 

the topsoil mixing due to wild boars seemed to have not substantially affected the soil morphology, 298 

probably because all trials have been characterized over time by their presence, albeit with different 299 

intensities.  300 

Although the soils developed from calcareous parent material, the soil profiles displayed sub-acid 301 

pH values, indicating that soils have been subjected to a heavy decarbonation induced by several 302 

acidification processes (Haynes, 1990; Richter et al., 2007; Lemanceau et al., 2009; Chapin et al., 303 

2011; Cocco et al., 2013; Corti et al., 2019). Because of this, and the long time needed to dissolve 304 

all carbonates (Cocco et al., 2013), these soils can be considered as highly weathered (e.g., 305 

Sundquist and Visser, 2003) and, consequently, it was not expected that the forest thinning could 306 

induce marked changes on soil pH in 50 years. Moreover, even when carbonates have been 307 

dissolved, acidification is buffered by clay and organic matter (Brady and Weil, 2017), which 308 

contribute to reduce pH changes. The soil texture is a parameter not responding quickly to 309 

environmental changes; in fact, it is similar for all the trials. Along the profiles, the texture was finer 310 

at depth than at the surface probably for the occurrence of lessivage, a process that requires long 311 

time to produce differences in terms of soil texture and drainage (Buurman et al., 1998; Quénard et 312 

al., 2011; Calabrese et al., 2018). 313 

The decreasing of TOC, TN, and Pav with depth is a common trend in soil and especially in forest 314 

soils, where the majority of the biomass produced is added in form of litter (Mason and Zanner, 315 

2005). While TOC and TN were not affected by thinning, as they respond slowly to changes (Bai et 316 

al., 2017), the different Pav content in the organo-mineral and mineral horizons of the three trials 317 



were considered an effect of the forest thinning. In fact, working on soils under Fagus sylvatica 318 

forests, Cardelli et al. (2019) reported that P liberation and activity of enzymes involved in the P 319 

cycle are higher in the organo-mineral (A) than in the organic (O) horizons because of the major 320 

content of decaying SOM and the consequently greater availability of P-bearing substances like 321 

nucleic acids, carbohydrates, proteins, and fatty acids. The major reduction of the canopy density in 322 

HT might have enhanced SOM degradation through the increased solar radiation and temperature 323 

(e.g., Gressel et al., 1996; Scharenbroch and Bockeim, 2007; Cheng et al., 2021)), with the 324 

subsequent higher release of P.  325 

The WEOM content and the WEOM/TOC ratio did not change among the trials. This behaviour 326 

was unexpected because WEOM, which is composed of easily degradable molecules that represent 327 

the main C and energy source for the soil microbial community (De Feudis et al., 2019), is 328 

considered as an indicator of microbial activity (Gutiérrez-Girón et al., 2015), very sensitive to 329 

disturbances and management (Chantigny, 2003). However, since the WEOM is released following 330 

SOM mineralization (Bartos et al., 2020) and the two thinning intensities did not produce different 331 

litter thicknesses (Table 2) and soil TOC and TN concentrations (Table 3) in respect to the control, 332 

it would justify the similar WEOC contents and WEOC/TOC ratios found among the trials. 333 

Throughout the profiles, the decreasing content of WEOC and the parallel increase of WEOC/TOC 334 

ratio (statistically significant only in MT) confirmed the importance of this soluble fraction as 335 

energetic substrate for the organisms harbouring the deeper soil horizons.  The increase of the 336 

WEOC/TOC ratio in the mineral layers, where the clay content is the highest, could be also due to 337 

adsorption of organics on the clay mineral lattices, with the formation of mobile organo-mineral 338 

complexes (Corvasce et al., 2006).  339 

The magnitude of the values of the C/N ratio for the three trials agreed with those reported in other 340 

studies conducted on Mediterranean forests ( Corral-Fernández et al., 2013; Cools et al., 2014). The 341 

decreasing trend of the C/N ratio with depth is a common trend in forest soils, where the litter is 342 

made by less degraded (and with higher C/N ratio) biomass than the organic molecules translocated 343 

into the deeper soil horizons after SOM decaying (Marinari et al., 2021).  344 

 345 

4.2. Effect of thinning on the stocks of C and nutrients  346 

In all the trials, SOC stock is similar in both litter (with a general thickness of 6-10 cm) and 0-30 347 

cm layer, while the SOC stored below 30 cm depth amounted to 54-69% of that in the upper layer. 348 

The large amount of C stored in the sub-superficial mineral soil has a basic ecological relevance due 349 

to the role of forest soils as C sink and, hence, in the climate change mitigation. In the mineral 350 

layers, SOM is stabilized and protected from degradation (e.g., Ono et al., 2013; Yao et al., 2019) 351 



mostly because of clay minerals associations and oxygen limitation (e.g., Wattel-Koekkoek et al., 352 

2003; Kleber, 2010). As a consequence, with increasing depth the C turnover rate slows down and 353 

the mean residence time of SOM (e.g., Trumbore, 2000; Wang and Chang, 2001) and decaying 354 

roots (e.g., Agnelli et al., 2014) tend to increase.  355 

Regarding the different stocks observed along the depth for TN (in CTR) and exchangeable Ca (in 356 

HT) and K (in HT and MT), they appeared not related with the amount of roots or with the presence 357 

of leguminous species in the understorey that could have enriched the soil of N (Table S1 of 358 

Supplementary Materials). The knowledge on the influence of thinning on the stock of elements in 359 

the different layers along the soil depth is scarce but, working on a multi-centennial holm oak 360 

(Quercus ilex L.) forest in a pedoclimatic condition similar to that of our trials, Agnelli et al. (2016) 361 

found that many soil features, especially those not directly linked to the microbial activity, were 362 

rather homogeneous for each soil depth because of the long lasting pedogenesis. Since our trials 363 

were established under a forest cover as old as at least three millennia, we believe that, especially 364 

for exchangeable Ca and K, differences derived from spatial differences of parent material and 365 

skeleton content rather than to thinning experimentation started ≈50 years before this study. 366 

The three trials showed no significant effect for none of the four (in case of C, N, and Pav stocks) or 367 

three (for exchangeable Ca, Mg, and K) layers considered. Thinning has been reported not to be 368 

able to produce changes on the organic C (and N) stock in naturally settled broadleaves and conifers 369 

stands (e.g., Bravo-Oviedo et al., 2015; Bai et al., 2017; Prasad Dangal et al., 2017; Zhang et al., 370 

2018; Mayer et al., 2020).  Opposite results were found in planted forests. For example, in their 371 

review Gong et al. (2021) took into consideration 77 articles on the effect of forest thinning on SOC 372 

stocks in the 0–30 cm mineral soil thickness across planted forests in China and concluded that a 373 

moderate thinning significantly increased SOC stocks with respect to both no-thinning and heavy 374 

thinning. Instead, working in a Picea crassifolia Kom. plantations, He et al. (2018) observed a 375 

decrease of the C stock with increasing thinning intensity, with a parallel increase of soil water 376 

storage. These reports reinforced the hypothesis that thinning cannot affect the stock of C and other 377 

elements in soils with long forest cover history, where pedogenesis has heavily homogenized the 378 

soil profile.  379 

The 1-cm stock values confirmed that the organic and the organo-mineral horizons are able to stock 380 

similar amounts of C, TN, and Pav, while more in depth this ability is minor. While the 381 

concentration of C and TN in the organic and organo-mineral horizons was ascribed to their 382 

richness of SOM, the large concentration of Pav was attributed to the degradation of SOM, which 383 

released P from the organic structures (e.g., Pistocchi et al., 2018; Ni et al., 2021). With respect to 1 384 

cm of mineral horizons, the ability of 1 cm of organo-mineral horizons to stock nutrient cations was 385 



statistically significant only for Ca in MT, Mg in HT, and K in HT and MT, but a generalized trend 386 

was observed in all cases, even though the differences were not significant because the samples 387 

were relatively small. In all these cases, the differences were attributed to the relatively fast SOM 388 

degradation occurring in the organo-mineral horizons (e.g., Pistocchi et al., 2018; Wang et al., 389 

2019). 390 

When contrasting the 1-cm stock capacity among the trials, thinning appeared to have an effect only 391 

on Pav and exchangeable Mg, which assumed the highest values in the organo-mineral horizons of 392 

HT. Also in this case, although not significant, the same appeared true at least for the potentially 393 

available Ca, while for the exchangeable K differences were probably disturbed by spatial 394 

variability of parent material and skeleton contribution. However, since a more intense thinning is 395 

expected to induce a diffuse higher soil water storage because of the resulted lower canopy density 396 

(He et al., 2018), it is probable that a larger water availability in the organic and organo-mineral 397 

horizons favoured a greater SOM mineralization with consequent release of nutrients (e.g., 398 

Vesterdal et al., 1995; Prescott, 2002; Chiti et al., 2015; Gross et al., 2018). 399 

 400 

5. Conclusions 401 

The soil physicochemical parameters and the stock of C and nutrients in the litter and in the 0-30, 402 

30-50, and 50-75 cm layers under a multi-millennial Turkey oak forest cover, appeared slightly 403 

influenced by thinnings operated along the last 50 years. This result, which contradicts our research 404 

hypothesis, was achieved considering the contribution of the skeletal fraction that, especially in 405 

depth, was present in a considerable amount. The only parameters that appeared to be more affected 406 

by thinning were Pav and exchangeable Mg. The more intense thinning was able to increase the 1-407 

cm storage of the organo-mineral horizons via a major SOM mineralization. Our results contrast 408 

with those reported for recently (decades) planted forests, especially if plantation occurs in former 409 

cultivated fields, where thinning has tangible effects on element storage. This is equivalent to 410 

saying that, after about three millennia of Turkey oak forest use, both forest cover and human 411 

activity are the main soil forming forces.  412 

Our study also showed that organo-mineral and mineral horizons under the Turkey oak forest are 413 

able to store an amount of SOM similar to the litter layers. Since the SOM contained into the 414 

organo-mineral and mineral horizons has higher recalcitrance and, consequently, is less involved in 415 

the C turnover processes than that of the forest floor, it is mandatory to adopt forest managements 416 

strategies able to increase SOM in depth rather than in the superficial organic horizons, to affect 417 

positively the global C cycle.  418 



Finally, considering that i) coppice stands under conversion into high forest via natural evolution 419 

and by means of periodical thinnings appeared to be equal as for soil ecosystem properties 50 years 420 

later, and that ii) the latter option is more profitable for environmental, socio-economic issues and 421 

recreational purposes, thinning implementation can be considered as a valuable solution, among the 422 

different and complementary strategies on the floor, to manage nowadays the original coppice area.  423 
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