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Abstract
In systems with many components that are required to be constantly active, like re-
finery, predicting the components that will break in a time interval after a stoppage
may significantly increase their reliability. However, predicting the set of compo-
nents to be repaired is a challenging task, especially when several conditions (e.g.,
breakage probability, repair time and cost) have to be considered simultaneously.
A data-driven predictive maintenance policy is proposed for maximizing the sys-
tem reliability and minimizing the maximum repair time, considering both budget
and human resources constraints. Therefore, a data-driven algorithm is designed for
extracting component breakage probabilities. Then, two bi-objective optimization
approaches are proposed for determining the set of components to repair. The for-
mer is based on the formulation of a bi-objective MILP model solved through the
AUGMECON method. The latter implements a bi-objective Large Neighborhood
Search, outperforming the first approach.

KEYWORDS
Augmented ε-Constraint; Large Neighborhood Search; Predictive Maintenance;
Mathematical Programming

1. Introduction

In the context of industrial plants, achieving high reliability is fundamental and can be
pursued by implementing effective maintenance policies, even considering its significant
impact on companies’ competitiveness and cost-effectiveness (Peng, Dong, and Zuo
2010). In industrial sectors characterized by high operational risk, the occurrence of
components’ breakage is particularly critical since it may affect not only the plant’s
operation but also the integrity of the environment and people safety (Bevilacqua
and Ciarapica 2018). As reported by the European Committee for Standardization in
EN 13306:2017 (EN 2017), the following approaches should be taken into account in
defining the most appropriate maintenance policy for an industrial environment:

• corrective maintenance: an intervention is carried out after a breakage occur-
rence, in order to restore the normal system functioning;
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• preventive maintenance: maintenance is carried out at predefined intervals or
conditions;
• predictive maintenance: maintenance is carried out according to significant char-

acteristics like the breakage forecast, suggested by the estimations of the degra-
dation state, or the component breakage probability.

Indeed, predictive maintenance policies offer the opportunity of anticipating compo-
nents’ breakage through the analysis of historical data and the implementation of
proper algorithms. Specifically, the increasing data availability, enabled by Industry
4.0 infrastructures, facilitates the development of data-driven algorithms for assets’
availability and reliability maximization that allow a continuous process monitoring
(Kumar, Chinnam, and Tseng 2019). Selecting the optimal set of components to be
predictively repaired (namely, solving a Component Repairing Problem (CRP)) rep-
resents a challenging goal when several conditions (e.g., breakage probability, repair
time, repair cost) have to be taken into account. This work is specifically focused on
process industries whose plants are characterized by a high number of components
and are constantly active (e.g. oil refinery, steel mill, highly automated plants). The
probability of having a plant stoppage is high due to the presence of several compo-
nents that can (also simultaneously) break. Furthermore, the component breakage can
have serious effects, even leading to a plant stoppage to carry out the repair. Since the
plant works constantly, both a stoppage and the subsequent restart (in particular, the
transient before returning to regime) impact on the components, reducing their life
time and increasing the probability that they may break after the restart (Antomarioni
et al. 2019a); in turn, increasing the probability that a stoppage occurs.

Moreover, in the considered scenario, the status of the components cannot be often
monitored due to a lack of sensors or because such sensors would be too complex to
install or too expensive (especially when the installation requires stopping the produc-
tion plant).

Therefore, the goal of this work is to define a data-driven approach, based on the
available data related to past failures, to predict the components that will break in a
time interval after a stoppage occurs. Preventively repairing these components during
the stoppage period increases the reliability of the whole plant. Components to be
repaired must be carefully chosen in order to reduce the impact on both the time to
recover from a stoppage and the overall maintenance costs (e.g., the maintainer hourly
cost and the component repair costs).

The main contributions of this work consist in:

• designing a new data-driven predictive maintenance policy, considering conflict-
ing criteria: the plant reliability has to be maximized, predictively maintaining
the components with highest breakage probability and the maintenance inter-
ventions has to be as short as possible, selecting for maintenance the components
with shortest repair times;
• formulating a bi-objective Mixed Integer Linear Programming (MILP) model

for the bi-objective CRP (b-CRP), i.e., selecting the best set of components to
repair, maximizing the plant realiability and minimizing the maximum repair
time, simultaneously, under budget and human resources constraints;
• solving the proposed model through the Augmented ε-constraint (AUGMECON)

approach;
• designing a bi-objective Large Neighborhood Search (b-LNS) meta-heuristic for

efficiently addressing medium and large sized instances;
• carrying out an experimental campaign on real-life alike case studies, inspired
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by an oil refinery plant;
• performing a data-driven analysis on the effectiveness of the b-LNS moves.

The rest of the paper is structured as follows: Section 2 presents a literature re-
view concerning recent trends on multi-objective optimization based maintenance ap-
proaches. Section 3 describes the problem statement and the notation used, while the
bi-objective MILP model formulated for the b-CRP is detailed in Section 4. Sections
5 and 6 outline the AUGMECON and the b-LNS, respectively. In Section 7, the ex-
perimental results obtained on real-life alike instances taken from a real oil refinery
are discussed, introducing some significant performance metrics. Useful insights are
also derived on the effectiveness of the b-LNS moves through a data-driven analysis.
Finally, Section 8 concludes the work and highlights future research directions worth
of investigation.

2. Literature Review

This section describes the main literature contributions proposed in the maintenance
field, with focus on multi-objective mathematical programming models and solution
methods. The readers are referred to Garg and Deshmukh (2006) for a comprehensive
literature review on maintenance management.

Maintenance is usually a very time consuming activity from the production objec-
tives point of view, since it typically requires a system stoppage. However, delaying
maintenance interventions to avoid interruptions of the production flow may signifi-
cantly increase the failure probability (Ruiz, Garćıa-Dı́az, and Maroto 2007). Hence,
due to these contrasting criteria, several literature contributions apply multi-objective
optimization techniques for designing effective maintenance policies. For example,
Ruiz, Garćıa-Dı́az, and Maroto (2007) propose Ant Colony Optimization (ACO) and
Genetic Algorithms (GAs) for a preventive machine maintenance, minimizing the com-
pletion time of the last job in the production schedule. Marseguerra, Zio, and Pod-
ofillini (2002) propose a GA for a condition based maintenance policy, determining
the optimal degradation level for a preventive maintenance policy, maximizing the
profit and the availability simultaneously. They describe the model predicting the evo-
lution of the degrading system through Monte Carlo simulation (MCS). In Kumar,
Jain, and Gandhi (2018), a predictive tool aimed at deciding the optimum condition-
based maintenance policy is designed. Specifically, the authors propose a semi-Markov
process in order to both model the steady state availability analysis of mechanical
systems and evaluate the optimal condition monitoring interval. This interval is then
used for maximizing the system availability through a GA approach. The problem of
the best maintenance inspection interval identification is tackled by Marseguerra, Zio,
and Podofillini (2004) considering both the maximum system reliability and the min-
imum variance of the model parameters, proposing a multi-objective GA. A similar
approach is proposed in Huang, Qu, and Zuo (2009), together with a mathematical
programming model for maximizing the system reliability and minimizing its costs,
simultaneously. Okasha and Frangopol (2009) formulate the problem of selecting the
best maintenance actions by mathematical programming, maximizing the system re-
liability, minimizing its redundancy and the life-cycle cost. A Non-dominated Sorting
GA II (NSGA-II) is also designed.

Mathematical programming is used in Min et al. (2009) for defining the best pre-
ventive maintenance policy both minimizing maintenance costs and maximizing the
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reliability of a high-speed railway power system. A Chaos Self-Adaptive Evolutionary
Algorithm (CSEA) is also proposed. Considering the same objectives, Raad, Sinske,
and Van Vuuren (2009) define a maintenance policy for water distribution systems,
proposing a Genetically Adaptive MultiMethod Search (AMALGAM) outperforming
existing approaches like NSGA-II. Similarly, Berrichi et al. (2010) design an ACO al-
gorithm for both maximizing the production system availability and minimizing the
makespan. Carlos et al. (2012) address a maintenance problem in a nuclear power
plant, solved by a Particle Swarm Optimization (PSO) algorithm. In the same appli-
cation context, Gjorgiev, Kančev, and Čepin (2012) compare four different versions of
a GA (weight-based classical GA, weight-based steady state GA, weighted sum GA
and NSGA-II). Tian, Lin, and Wu (2012) use the Physical Programming (PP) for
simultaneously maximizing the reliability and minimizing the maintenance costs in
condition based maintenance. In Loganathan and Gandhi (2016), a PSO algorithm
under reliability constraints for minimizing the maintenance cost is designed.

Moghaddam and Usher (2011) formulate a multi-objective optimization model to
determine the optimal preventive maintenance and replacement schedules in a multi-
component system. Both a generational GA and a Simulated Annealing (SA) algorithm
are also designed. A preventive maintenance optimization based approach is also pro-
posed by Moghaddam (2013) with the aim of determining the optimal maintenance
schedules in production systems. The formulated model is then solved through a pro-
cedure that combines MCS and Goal Programming (GP). Ebrahimipour, Najjarbashi,
and Sheikhalishahi (2015) design an exact approach, based on Weighted Sum (WS)
method, to schedule preventive maintenance achieving minimum cost and maximum
reliability. An interactive fuzzy multi-objective linear model for the minimization of
the maintenance costs and of the scheduling tardiness is formulated in Seif, Yu, and
Rahmanniyay (2018).

Lexicographic Goal Programming (LGP) and ε-constraint approaches are applied
in Certa et al. (2012) instead, to define the optimal scheduling for components re-
placement and inspection, minimizing the total cost and the unavailability time. The
selection of the most appropriate maintenance policy can also be addressed through
the Analytic Hierarchy Process (AHP), since it requires several criteria to be simul-
taneously evaluated. For example, Bertolini and Bevilacqua (2006) apply AHP for
evaluating the maintenance alternative policies (i.e., corrective, preventive and pre-
dictive) considering three specific criteria, i.e., the occurrence, the severity, and the
detectability. Then, a GP model is formulated for selecting the best maintenance policy
for each centrifugal pump under budget and human resources constraints. However,
they do not focus on the CRP. AHP can be also combined with GP (Arunraj and Maiti
2010): firstly, AHP is applied to prioritize the possible maintenance policies comparing
them in terms of cost and risk; then, the selection of the best maintenance policy is
performed through GP.

Moghaddam (2015) compare the performances of five GAs, for optimizing the op-
erational costs and the overall reliability of a Computer Numerical Control (CNC)
machine. Fan and Xia (2017) apply a GA instead, to solve a multi-objective opti-
mization problem related to an energy-efficiency building envelope retrofitting plan,
for maximizing the energy savings and the net present value of the investment, while
minimizing its payback period. A maintenance plan in building retrofit is addressed
in the multi-objective model proposed by Wu, Xia, and Wang (2015), solved through
Multi-Objective Neighborhood Field Optimization (MONFO) where the retrofit cost,
the energy saving and the net present value are optimized simultaneously.

Recently, imperfect maintenance policies have been also proposed. For example, in
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Table 1. Main literature contributions on optimization approaches for system maintenance. Papers have been

classified on the basis of maintenance policy proposed: predictive (PM), data-driven (DD) and multi-objective

(MO).

Paper PM DD MO Objectives Approaches
Marseguerra et al. (2002) X Profit, availability GA
Marseguerra et al. (2004) X Reliability, GA

Failure Uncertanity
Ruiz et al. (2007) Makespan ACO, GAs
Huang et al. (2009) X Reliability, Cost GA
Min et al. (2009) X Reliability, Cost CSEA
Okasha & Frangopol (2009) X Reliability, Cost GA
Raad et al. (2009) X Reliability, Cost AMALGAM
Arunraj and Maiti (2010) X Cost, Risk AHP-GP
Berrichi et al. (2010) X Unavailability, ACO

Makespan
Moghaddam & Usher (2011) X Reliability, Cost GA, SA
Carlos et al. (2012) X Unavailability, Cost PSO
Certa et al. (2012) X Unavailability, Cost LGP

ε-constraint
Gjorgiev et al. (2012) X Unavailability, Ageing, GAs

Cost, Uncertainty
Tian et al. (2012) X Reliability, Cost PP
Moghaddam (2013) X Costs, Reliability, Availability GP+MCS
Ebrahimipour et al. (2015) X Reliability, Cost WS
Moghaddam (2015) X Reliability, Cost GAs
Wu et al. (2015) X Retrofit cost, MONFO

Energy saving,
Net present value

Fan and Xia (2017) X Energy saving, GA
Payback period,
Net present value

Seif et al. (2018) X Cost, Tardiness GA
Su and Liu (2019) X Availability, Cost rate NSGA-II
Antomarioni et al. (2019b) X X Breakages Probability ILP
This work X X X Reliability AUGMECON

Max Repair Time b-LNS

Su and Liu (2019), a NSGA-II is applied to solve a multi-objective imperfect preventive
maintenance optimization problem in the context of the electromechanical products.
It is worth noting that, in the present work, attention is focused only on significant
failures and therefore, the possibility to have also imperfect repairs is not taken into
account. Indeed, the domain of the present work is such that the cost of a plant
stoppage is so high that replacing components or repairing them as-good-as-new is
preferable.

Table 1 summarizes the main literature contributions. Specifically, for each paper,
it is shown whether the maintenance policy proposed is predictive (PM) and/or data-
driven (DD) and/or multi-objective (MO). The third column specifies the objective/s
considered for optimization whereas the last column reports the approaches used. It is
worth noting that only Antomarioni et al. (2019b) proposing optimization approaches
for system maintenance actually shows predictive features. In fact, they propose a pre-
dictive maintenance approach where the CRP is mathematically formulated through
Integer Linear Programming (ILP) but for only minimizing the breakages’ probability
(single-objective), under the limiting assumption that a breakage of a specific compo-
nent occurred.
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Table 2. Notation used

Set Meaning
C Set of components
ES Ordered set of stoppage events
Eb Ordered set of component breakage events
Parameter Meaning
bpcj Breakage probability of component cj
rccj Repair cost of component cj
rtcj Repair time of component cj
ncj Number of operators required for repairing component cj
∆Lcj Life span of component cj
∆F cj Mean time between failure of component cj
Tmax Maximum time allowed for maintenance planning
B Maximum budget allowed for maintenance planning
Cwork A fixed hourly cost for employing an operator
∆T Time interval of observation

To the best of our knowledge, this work is the first contribution in which a data-
driven predictive maintenance policy is proposed and the CRP is modelled through
multi-objective mathematical programming for maximizing the system reliability and
minimizing the maximum repair time, simultaneously.

3. Problem Statement and Notation

This section introduces both the problem statement and the notation used, the latter
also summarized in Table 2.

The b-CRP aims at finding the optimal set of components to repair for simultane-
ously maximizing the overall system reliability and minimizing the maximum repair
time required, under constraints on both the total budget B and the total repair time
Tmax.

The set C contains the components which the optimal set has to be selected from.
For each cj ∈ C, a repair cost rccj , a repair time rtcj and the number of maintainers
ncj required for repairing it are given.

The parameter Cwork denotes the fixed hourly cost of employing a maintainer
whereas bpcj is the breakage probability of the j-th component in a given time interval,
∆T , of observation, after a system stoppage. The procedure followed for estimating
the breakage probability bpcj of each cj ∈ C is detailed in Algorithm 1.

Since the phenomenon under investigation is binary (component failure/working),
the algorithm implements a maximum likelihood estimation to derive the set of bpcj .
This approach returns good probability estimations when working conditions do not
change considerably over time and a lot of data on past breakages is available. These
two assumptions hold in the scenario considered in this work: complex and constantly
active process industries (e.g. oil refinery, steel mill, highly automated plants).

The first part of the algorithm concerns the data pre-processing aimed at estimating
the set of breakage probabilities bpcj from input data. To this end, the algorithm
combines information regarding component breakages with system stoppages occurred
in the past. In detail, the algorithm scrolls the list Eb of k component breakage events
(step 5), computing how many times each component breaks within a time window
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Algorithm 1 The data-driven optimization-based approach
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of length ∆T starting from the restart of the system after a stoppage (steps 7-9). If
a breakage event falls outside the time window, the next stoppage is used to define a
new time window (steps 10-14).

In order to take into account the life span of the component cj , namely the time
since the last replacement or repair of cj , its breakage probability is adjusted based on
the Mean Time Between Failure (MTBF) of cj . If the component has been recently
repaired, that is the component life span is less than a given percentage of its MTBF
(i.e., ∆F cj ), then the breakage probability will be decreased proportionally to the

difference between its life span and ∆F cj (step 20). If its life span is longer than
its MTBF, then bpcj can be set to a very large value to increase the chances of the
component being selected for repair; or one can force its replacement, thus setting its
breakage probability to zero in order to prevent it being selected.

Finally, step 23 (i.e., routine selectBestComponents) aims at selecting the sub-set of
components C̄ ⊆ C that is more convenient to repair with regards to the minimization
of two criteria, under budget and time constraints. More specifically, C̄ represents the
set of components with a total repair cost and time, both not exceeding their maximum
availability (B and Tmax respectively), minimizing the total breakage probability and
the maximum repair time, simultaneously. To this purpose, one of the two solution
approaches proposed, respectively, in Sections 4-5 and in Section 6 is invoked.

All parameters in Table 2 are derived from data on past failure events (ES , Eb,
∆Lcj , ∆T ), are extracted from data on components characteristics (rccj , rtcj , ncj ,

∆F cj ), are constants provided by domain experts (Tmax, B, Cwork) or are estimated
by Algorithm 1 (bpcj ). It is worth noting that the value of ∆T should not be chosen
too small otherwise only a few breakages would be considered and the maximum
likelihood estimation criterion implemented in Algorithm 1 would produce inaccurate
results. Similarly, ∆T should not be too wide, otherwise the breakages would be poorly
correlated to the stoppage of the plant, still returning inaccurate results. For these
reasons, the value of ∆T is set on the basis of past knowledge on plant stoppages. In
particular, ∆T is set to the average time between two consecutive stoppages.

4. A Multi-objective Mixed Integer Linear Programming model for the
Component Repairing Problem

This section describes the bi-objective Mixed Integer Non-Linear Programming formu-
lation, aimed at selecting the sub-set C̃ ⊆ C of components, optimizing two criteria,
simultaneously. The former, to minimize, denotes the total breakage probability of the
non-selected components (i.e., the maximization of the total breakage probability of
the selected components and thus, of the system reliability); the latter, to minimize,
represents the maximum repair time (i.e., the makespan). It is worth remarking that
all the costs involved as well as the budget and the maximum time available for re-
pairs are those known at the moment of the system stoppage and therefore, they are
deterministic in the proposed approach.

Then, the following decision variable xcj is introduced, ∀cj ∈ C, equal to 1 if the
component cj is selected for being repaired, 0 otherwise.

minBP =
∑
cj∈C

(1− xcj )bpcj (1)
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minRTmax = max
cj∈C

rtcjxcj (2)

s.t.

Cwork
∑
cj∈C

ncjxcjrtcj +
∑
cj∈C

rccjxcj ≤ B (3)

∑
cj∈C

rtcjxcj ≤ Tmax (4)

xcj ∈ {0; 1} ∀cj ∈ C (5)

The objective function BP (1) to minimize represents the total breakage probability
associated with the non-selected components whereas RTmax (2) to minimize denotes
the maximum maintenance time, i.e., the maximum time devoted to repair a selected
component. In fact, since the present work does not consider the scheduling of the
maintenance activities but only the planning, the companies may be very interested
in having a maintenance plan allowing them to save time.

The total repair cost has not to exceed B (3). It is worth noting that the total cost
is due to two parts. The former considers the effective time cost of the maintainers
used, known the time required by each component to be repaired. The latter refers
to the repair cost of each component that takes into account also the material used
for repairing. It is worth remarking that the costs do not include those due to the
components shortage. In fact, the predictive maintenance activities, especially in com-
plex systems, are usually performed in a medium/long term and therefore, a shortage
of the components to be repaired is highly unlikely. These facts have been confirmed
by the company which the problem and the data were derived from. The total repair
time does not exceed Tmax (4). Finally, the binary nature of the decision variables are
defined in (5).

The proposed model is linearized by introducing an additional continuous non-
negative variable y equal to maxcj∈C rtcjxcj and the related additional constraint (6):

y ≥ rtcjxcj ∀cj ∈ C (6)

The value of RTmax is normalized by dividing the value of the variable y by Tmax.
Therefore, the Mixed Integer Linear Programming (MILP) formulation proposed for
the b-CRP is in the following:

minBP =
∑
cj∈C

(1− xcj )bpcj (7)

minRTmax =
y

Tmax
(8)
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s.t.

Cwork
∑
cj∈C

ncjxcjrtcj +
∑
cj∈C

rccjxcj ≤ B (9)

∑
cj∈C

rtcjxcj ≤ Tmax (10)

y ≥ rtcjxcj ∀cj ∈ C (11)

xcj ∈ {0; 1} ∀cj ∈ C (12)

5. The Augmented ε-Constraint Approach

This section describes the AUGMEnted ε−CONstraint (AUGMECON) approach, in-
troduced by Mavrotas (2009), for solving the bi-objective MILP model (7), (8)–(12).
Indeed, this approach has been already applied successfully for solving several other
decision problems (e.g., Yu and Solvang (2016))

In a bi-objective optimization problem, the objective function f(x), sup-
posed to minimize, can be expressed through a bi-dimensional vector
z = f(x) = (z1 = f1(x), z2 = f2(x)), being the n−dimensional vector x a fea-
sible solution in the feasible region X ⊆ Rn. Therefore, the following two definitions
hold:

Definition 1 Dominance condition :
A solution x

′
with (z

′

1, z
′

2) dominates a solution x
′′

with(z
′′

1 , z
′′

2 ) if and only if z
′

1 ≤ z
′′

1

and z
′

2 ≤ z
′′

2 and at least one inequality is strictly satisfied.

Definition 2 Pareto Efficiency :
A solution x ∈ X is Pareto Efficient if and only if @x′ ∈ X that dominates it.

The Pareto Front contains all the Pareto Efficient solutions. The methods proposed
for solving multi-objective optimization problems can be classified into three classes:
a priori, interactive and a posteriori (Ehrgott and Gandibleux 2000). The a priori
methods (e.g., GP methods) assume to know all the preferences before starting the
decision making process, finding solutions that respect all of them. Instead, in the
interactive approaches, it is assumed that all the preferences are introduced by the de-
cision maker during the decision making process and therefore, these methods require
several interactions with him/her. Finally, in a posteriori approaches, all the efficient
solutions are firstly generated and then, analyzed according to the decision maker pref-
erences. The Weighted Sum and the ε-Constraint method are the most widely used a
posteriori approaches.

Regarding the ε-Constraint approach, assuming that two objectives (z1 and z2) have
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to be minimized, the following optimization problem is defined (13)-(15):

minz1 (13)

subject to

z2 ≤ ε2 (14)

x ∈ X (15)

By properly varying the ε2 parameter, right hand side of the introduced constraint
(14), the efficient solutions can be determined. However, one issue is related to how
setting the variation range of ε2. One way is to build a square payoff table, with a
number of columns (rows) equal to that of the objective functions, through lexico-
graphic optimization. In case of bi-objective optimization, the first row of such a 2× 2
payoff matrix contains z∗1 and z̄2, denoting respectively the optimal value of z1 when
only it is optimized and the optimal value of z2 when only it is optimized under the
constraint z1 = z∗1 . Instead, the second row reports z̄1 and z∗2 , where the latter is the
optimal value of z2 when only it is optimized and the former is the optimal value of
z1 when only it is optimized under the constraint z2 = z∗2 .

In order to avoid generating weakly Pareto efficient solutions, the AUGMECON is
applied. First, the payoff table is derived through the lexicographic optimization and
then, the variation range of ε2 is determined as [z∗2 , z̄2]. In addition, it is required that
constraint (14) has to be binding. Therefore, it is transformed into an equality by
adding a non-negative auxiliary variable s. Such a variable is also introduced in (13)
with lower priority, multiplied by eps

δ , where eps represents a user defined constant
and δ is computed as δ = z̄2 − z∗2 (i.e., it is the width of the variation range). The ε2
parameter is then varied in the range [z∗2 , z̄2] by a step δε2 = δ

α where α is a user input
value.

It is worth remarking that, in order to avoid the trivial solution (i.e., the one in
which no component is repaired), the following constraint is added to the formulation
(7)–(12): ∑

cj∈C
xcj ≥ 1 (16)

6. A Multi-objective Large Neighborhood Search

In this section, a bi-objective Large Neighborhood Search (hereafter, denoted as b-
LNS) is described to efficiently address both medium and large sized instances. The
Large Neighborhood Search (LNS), proposed by Shaw (1998), is a meta-heuristic suc-
cessfully used in several application contexts. Its main advantage is searching larger
and complex neighborhood in order to find better quality solutions (Pisinger and
Ropke 2010). Specifically, when the decision problem presents very tight constraints,
it could be very easy to get stuck at a local minimum.

The main idea is that, starting from an initial solution (e.g., randomly generated),
applying both destroy and repair moves at each iteration, a better solution can be de-
tected. In order to reduce the computational time, it usually starts with a small-sized
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Algorithm 2 b-LNS outline
Input: TL,γ, numR, numA;
Output: Set of non-dominated feasible solutions Sbest

1: Sbest := ∅;
2: sol :=InitialSolution();
3: Sbest := Sbest ∪ {sol};
4: while !stop(TL) do
5: RM :=SelectRandom(numR);
6: IM :=SelectRandom(numA);
7: if RM 6= 0 ∨ IM 6= 0 then
8: sol :=Neigh(RM, IM, sol,γ);
9: else

10: IM :=SelectRandom(numA − 1)+1;
11: sol :=Neigh(RM, IM, sol,γ);
12: end if
13: if !Dominated(sol) then
14: Sbest := Sbest ∪ {sol};
15: end if
16: sol :=SelectRandom(|Sbest|);
17: end while

neighborhood, gradually increased during the search. To the best of our knowledge, a
very few literature contributions already propose a multi-objective LNS (Schaus and
Hartert 2013; Oddi, Rasconi, and Cesta 2015). In the proposed b-LNS, designed to
solve the b-CRP, the destroy moves aim at removing components from the current so-
lution sol (i.e., remove moves) whereas the repair ones aim at adding new components
in the current solution (i.e., add moves). Algorithm 2 outlines the proposed b-LNS.

The b-LNS receives a Time Limit (TL), a user selected parameter γ and two in-
teger number (numR and numA) denoting, respectively, the number of remove and
add moves implemented. The parameter γ, used only in two of the moves, denotes the
percentage of either the components already repaired in sol to remove or the com-
ponents not repaired in sol to select in the new solution. It returns the set Sbest of
non-dominated solutions.

The routine InitialSolution generates an initial solution in which the components to
repair are selected by decreasing repair times; equal, by increasing breakage probabil-
ity; equal, by decreasing repair cost. In any case, the selection is performed respecting
both B and Tmax. The routine stop returns TRUE if TL is reached; FALSE, otherwise.

SelectRandom receives an integer number (i.e., numR or numA) and returns an
integer number, randomly generated, between 0 and the input number, representing
the id of either a remove or an add move to apply (steps 5− 6). In steps 7− 12, a new
solution is found by starting from the current one and by applying the moves selected
in the previous steps. The routine Neigh applies the remove and the add move to sol.
In particular, the Remove moves are detailed in the following. From the set C̄(sol) of
components repaired in sol:

(1) RemoveRandom: randomly removes a component;
(2) RemoveBP : removes the component with the lowest breakage probability;
(3) RemoveTime:removes the component with the highest repair time;
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(4) RemoveBPT : removes the component cj such that:

cj := argmin
ck∈C̄(sol)

{bpck + (1− rtck
T solmax

)} (17)

where T solmax represents the maximum repair time over all the repair times of the
components in C̄(sol);

(5) RemoveGamma: randomly removes γ components.

It worth remarking that more than one component may be individuated by the Re-
moveBP, RemoveTime and RemoveBPT moves to be potentially removed. This is
due to the fact that, especially in the application context of this work, more than one
component may satisfy the requirements imposed by each of these moves.

The Add moves are described in the following. From the set C\C̄(sol) of components
not repaired in sol:

(1) AddRandom: randomly selects a component;
(2) AddBP : adds the component with the highest breakage probability;
(3) AddTime: adds the component with the lowest repair time;
(4) AddBPT : adds the component cj such that:

cj := argmax
ck∈C\C̄(sol)

{bpck + (1− rtck
T ′
max

)} (18)

where T
′

max denotes the maximum repair time of the components not repaired
in the solution sol;

(5) AddGamma: randomly selects γ components.

Each component to add is checked respecting the constraints on both B and Tmax. Also
in this case, more than one component may be individuated by the AddBP, AddTime
and AddBPT moves to be potentially added.
The RemoveBPT aims at selecting the components to remove that are a trade-off
between a low breakage probability and a high repair time. Similarly, the AddBPT
adds the components that are a good compromise between a high breakage probability
and a low repair time.

In addition, the moves Switch and NoMove, shared between the remove and the add
moves, are applied when the move id is, respectively, equal to 6 and 0. In particular,
the Switch move randomly selects one component repaired in sol and one component
not repaired in sol such that the former is removed and the latter is added in the new
solution, considering the respect of the problem constraints. While, the NoMove move
does not apply any remove/add move to sol. However, the situation in which both
the ids are equal to 0, i.e., no components are removed and added from/to sol (steps
10− 11), is avoided.

The routine Dominated (step 13) returns TRUE if sol is dominated; FALSE, oth-
erwise. For this purpose, sol is compared with all the non-dominated ones already
found and stored in Sbest. Once a new non-dominated solution sol is added to Sbest,
the non-dominated solutions already found but dominated by sol are consequently
removed from Sbest.

In step 16, the routine SelectRandom returns a randomly generated number that is
the position in Sbest of the new starting solution to select at the next iteration. This
step is introduced for shaking the algorithm, trying to explore different areas of the
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searching space.
In order to speed-up the b-LNS, once a new solution is found, the value of the

objective (7) is computed as the gap with that of the current solution sol. More
specifically, let BP (sol) and BP (sol′) be respectively the values of (7) with reference
to sol and to the solution sol′ found after applying a remove and an add move. Let
Cremove ⊆ C̄(sol) and Cadd ⊆ C \ C̄(sol) be the list of components to remove and
to add, respectively. Then, BP (sol′) can be computed as BP (sol′) = BP (sol) +∑
j∈Cremove

bpcj −
∑
i∈Cadd

bpci .

Concerning RTmax, let RTmax(sol) and RTmax(sol′) be the maximum repair time
of sol and sol′, respectively. Let rt = max

cj∈Cadd

{rtcj} and r̂t = max
cj∈Cremove

{rtcj} be

the maximum repair time of the components belonging to Cadd and Cremove respec-
tively. If RTmax(sol) ≤ rt then RTmax(sol′) = rt, else if RTmax(sol) > r̂t then
RTmax(sol′) = RTmax(sol), otherwise RTmax(sol′) = max

cj∈(C̄(sol)\Cremove)∪Cadd

{rtcj}.

Since the number of components to add and remove at each iteration is less than
|C̄(sol)| (at most γ|C̄(sol)|), the time to compute RTmax(sol′) is on average less than
the time to compute the maximum on the whole set C̄(sol).

In the worst case, the complexity of each iteration of the b-LNS is O(Γlog(Γ)),
where Γ = max{|C̄|, |C \ C̄|}. Indeed, in the worst case, the complexity of RemoveBP
and RemoveTime is O(|C̄|log(|C̄|)), the complexity of AddBP and AddTime is O(|C \
C̄|log(|C \ C̄|).

7. Computational results

Both the AUGMECON and the b-LNS were implemented by using Java as program-
ming language. ILOGs CPLEX Concert Technology (version 12.9) was used for solving
the MILPs generated by the AUGMECON. The experiments were carried out on a
4-core processor with at 3.40GHz with 32GB RAM.

7.1. Case study

The experimental campaign was carried out on a set of real-life alike instances inspired
by an oil refinery.

To this end, a three year-time interval, from January 2001 to December 2003, was
analyzed. Data came from two databases: one contains information on the process
cycle, recording the hourly amount of product entering each sub-plant and, if any, the
stoppage detail; the other stores information on both component breakages and the
related maintenance interventions. Such a refinery is characterized by a total number
of 715 components. From data, it turns out that in the period considered, the number
of component breakages occurred was 6160 and the total amount of stoppages was
1164. The distributions of both repair costs and times of the components are provided
in Figures 1 and 2. In particular, the repair times distribution is Gaussian-like while
one can note that the most of components have a low cost.
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Figure 1. Distribution of the components’ repair costs.
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Figure 2. Distribution of the components’ repair times.

7.2. Experimental Setting

The parameters setting, shown in Table 3, is fixed in collaboration with a domain
expert. Moreover, 7 instances are generated and grouped into three sets, namely small
(i.e. I20, I40, I80), medium (i.e., I160, I320) and large (i.e., I640, I1280) as reported
in Table 3.

Each instance was randomly generated from the case study distribution. It is worth
remarking that the largest number of components is 1280 since it is by far greater
than the number of components of a very complex case study like the one considered,
hence it is not reasonable to have more than that.

The AUGMECON was run with an increasing step equal to 1 while, eps and the
total time limit have been set to 104 and 3600 seconds, respectively. Furthermore, each
MILP, at each iteration of the AUGMECON, was solved with a CPU time limit of
3600 seconds too.

Concerning the b-LNS, TL was set to 3600 seconds. Its results were collected in
specific time instants, namely 0.1, 0.2, 0.5, 1, 2, 3, 5, 10, 20, 30, 50 seconds, then
from 100 to 1000 seconds with step 100 and from 1000 to 3600 seconds with step
200. However, for the sake of simplicity, the best results obtained are reported. The γ
parameter was set to 0.20 for both small and medium sets. Instead, for large instances,
it was varied from 0.05 to 0.20 and the best experimentally found value was taken.
Specifically, for I640 and I1280, it was fixed to 0.19 and 0.09, respectively. Readers
are referred to Subsection 7.3 for a detailed discussion on this parameter.

The results of both AUGMECON and b-LNS were evaluated considering the fol-
lowing multi-objective metrics:
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Table 3. Parameters setting and instances generation.

Parameter Value
B 170000 euros
Tmax 1440 minutes
Cwork 30 euros per hour
∆T 1 month
Instance name |C|
I20 20
I40 40
I80 80
I160 160
I320 320
I640 640
I1280 1280

• number of non-dominated solutions (η);
• number of non-dominated solutions of one of the two approaches that are actually

dominated by the other (η̂);
• Spacing (S), i.e., a metric introduced in Schott (1995) that measures the range

variance of neighboring solutions in the front. In other words, it measures the
distribution of the solutions along the front and it is defined as follows:

S =

√√√√1

η

η∑
i=1

(di − d̄)2 (19)

where d̄ is the average of all the distances di,∀i = 1, . . . , η and the i-th distance
di is computed as:

di = min
j∈F :j 6=i

{∣∣∣B̃P i − B̃P j∣∣∣+
∣∣∣R̃Tmaxi − R̃T

max

j

∣∣∣} (20)

where F denotes the front whereas B̃P i and R̃T
max

i represent respectively the
normalized value of the two objective functions of the i-th non-dominated solu-

tion. For example, B̃P i is computed as follows:

B̃P i =
BPi −minj∈F BPj

maxj∈F BPj −minj∈F BPj

It is worth remarking that the smaller the S value, the higher the diversifica-
tion of F is.

7.3. Numerical Results

Table 4 reports the numerical results of the experiments.Considering the small and the
medium sized instances, both the approaches always give the same front and, then, the
same S value. In particular, on the small instances, the computational time required
by the AUGMECON (i.e., 48.51, 92.55, 139.74, respectively) is by far higher than that
of the b-LNS (i.e., 0.5, 0.5, 0.5 seconds, respectively).

16



Table 4. Numerical results of experiments on small, medium and large sets.

AUGMECON b-LNS

Instance η η̂ S η η̂ S

S
m

al
l I20 9 0 0.069 9 0 0.069

I40 13 0 0.055 13 0 0.055

I80 12 0 0.100 12 0 0.100

M
ed

iu
m I160 12 0 0.083 12 0 0.083

I320 8 0 0.155 8 0 0.155
L

a
rg

e I640 8 0 0.038 8 0 0.038

I1280 6 0 0.057 9 1 0.042

On I160, the percentage increment of the computational time required by the AUG-
MECON (i.e., 223.39 seconds) with regard that of the b-LNS (i.e., 3 seconds) is 7346%.
Finally, on I320, the computational time required by the AUGMECON is by far higher
than that of the b-LNS, i.e., 640 seconds against 100 seconds.

As for the large set of instances, on I640, both the approaches give the same front.
The computational time required by the AUGMECON is higher than that of the
b-LNS, i.e., 1409.45 seconds against 500 seconds, respectively. Instead, on I1280, the
AUGMECON, that also reaches the time limit, returns 6 non-dominated solutions. For
the b-LNS, η is 9 but 1 solution is actually dominated by those of the AUGMECON.

In order to obtain a better front, the AUGMECON was run without time limit, but
after 12 hours of computation, it failed to finish, fully saturating the memory. The time
required by the b-LNS to return the best front on I1280 is 2600 seconds. Comparing
the fronts obtained by the two approaches, the AUGMECON is not able to find the
three solutions with lower values of BP. Instead, the solution with higher value of BP
for the b-LNS is actually dominated by one solution found by the AUGMECON.

In general, as expected, the computational times of the AUGMECON are on average
about 2 order of magnitude greater than those of the b-LNS for obtaining the same
front (see Figure 3), although both the solution methods are comparable from the
non-dominated solutions point of view. Indeed, the AUGMECON on average solves
3157, 8624 and 20098 MILPs on small, medium and large sets, respectively.

Furthermore, the b-LNS never reaches the time limit whereas the AUGMECON
reaches one hour of computation on I1280. For small and medium sets, the execution
time of the b-LNS is lower than 100 seconds whereas for large set, whatever the value
of γ, it always requires less than 2600 seconds. It is noteworthy that AUGMECON
uses CPLEX for solving each MILP, which runs in multi-threaded mode exploiting all
the 8 threads of the processor. Instead, the b-LNS runs sequentially.

Regarding the γ parameter, it is worth noting that the b-LNS returns the best
results with high values up to I640 whereas small values are used for I1280, as already
anticipated in Section 7.1. In fact, as defined in Section 6, the parameter γ denotes
the percentage of components that in a solution has to be removed/added. This way,
it represents a perturbation (i.e., shaking) applied to the search space. Numerical
results suggest that for small/medium instances, shaking a lot the current solution may
help the algorithm finding new non-dominated solutions. Instead, for large instances,
shaking a bit at a time is preferable. This phenomenon mainly depends on the time
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Figure 3. Computational time of AUGMECON and time for the best front of b-LNS.
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Figure 4. Values of η̂ on I1280 varying the parameter γ

needed to execute the AddGamma and the RemoveGamma moves. Indeed, with high
values of γ, both the moves require computational times to be executed higher than
those needed with small values. Therefore, a few moves can be applied in the CPU
time limit of 3600 seconds. This may have a negative impact on the large instances
where the solutions space increases. Figure 4 shows the trend of η̂ on I1280, by varying
the value of γ from 0.05 to 0.20. In particular, with higher values (γ ∈ [0.15, 0.20]), the
b-LNS performances deteriorate since its results are worse than those obtained with
lower values of this parameter.

7.4. A data-driven analysis on the moves effectiveness

In this section, the effectiveness of the moves of the b-LNS is studied through a data-
driven analysis performed on I1280. On it, in fact, the b-LNS provides more non-
dominated solutions than those detected by the AUGMECON (that reaches the one
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Table 5. Data-driven analysis on the moves effectiveness.A
d

d
R

a
n

d
o
m

A
d

d
B

P

A
d

d
T

im
e

N
oM

ove

A
d

d
B

P
T

A
d

d
G

a
m

m
a

S
w

itch
RemoveRandom 0.49% 0.49% 0.00% 0.00% 0.98% 9.8% 0.49%
RemoveBP 0.98% 0.49% 0.00% 0.00% 0.00% 13.73% 0.00%
RemoveTime 2.45% 4.41% 1.47% 5.39% 0.98% 13.73% 2.94%
NoMove 4.41% 1.47% 10.29% 0.00% 1.47% 3.92% 0.00%
RemoveBPT 0.00% 0.49% 0.00% 1.47% 0.00% 2.94% 0.00%
RemoveGamma 1.47% 0.49% 2.45% 0.00% 1.96% 3.43% 0.00%
Switch 0.00% 0.00% 0.00% 0.00% 0.00% 4.9% 0.00%

hour time limit) but with a value of η̂ equal to 1. This means that one of the non-
dominated solutions of the b-LNS is actually dominated by the AUGMECON.

The data-driven analysis is carried out by running the b-LNS on the I1280 for 100
seconds, gathering information on a total number of 6491782 pairs of moves. Each pair
is made up by both a Remove and an Add move (see Section 6) and has been classified
as either ND or D pair in the case in which it returned either a Non-Dominated or
a Dominated solution, respectively. Table 5 reports the percentage of times in which
a given pair of moves has been selected and it has been classified as ND pair (i.e.,
it has been effective). Among the 6491782 pairs of moves used in 100 seconds, 204
of them have been effective giving a non-dominated solution. In particular, the most
profitable remove move is the RemoveTime, i.e., in almost 31.37% of the cases while
the second most profitable one is NoMove (i.e., 21.57% of cases). The most profitable
add move is the AddGamma, in about 52.45% of the cases. It is worth noting that each
solution has 13.89 components on average and then, AddGamma adds 3 components
on average. The second profitable add move is AddTime, in about 14.22% of the cases.
The pairs of moves (RemoveBP, AddGamma), (NoMove, AddTime), (RemoveTime,
AddGamma) and (RemoveRandom, AddGamma) perform the best. It is worth noting
that all of them add more components than those removed (at most one at time).

The Switch move is effective only in 8.33% of the cases and it is also the most time
consuming move. In addition, the RemoveBPT and the AddBPT are effective in only
4.90% and 4.58% of the cases, respectively. For this reason, all of these three moves
may be candidate to be removed from the set of available moves.

Therefore, the b-LNS is run on the I1280 without the Switch, the RemoveBPT and
the AddBPT move, obtaining η = 9 (greater than that of the AUGMECON equal
to 6) but with η̂ equal to 0 meaning that no solution is dominated by those of the
AUGMECON. Moreover, in this case, the best front is obtained by the b-LNS in only
1200 seconds.

Figure 5 shows the b-LNS execution on the I160. In particular, each point represents
a new non-dominated solution generated during a specific iteration. The arc going from
point p to point p′ indicates that the non-dominated solution p′ has been generated
starting from the non-dominated solution p. Points with only ingoing arcs are those
that, although have been further explored, have not generated new non-dominated
solutions (e.g., the point with BP = 2 and RTmax = 0.5). It is worth noting that
the solutions concentrate in the neighbour of the solutions belonging to the front
(denoted by blue points). In particular, it is interesting observing that the higher
concentration of those solutions is in the right-hand side of the plot, where there is
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Figure 5. Solutions generated by the b-LNS on the I160

the highest density of solutions. This indicates that around those solutions the b-LNS
introduces only small adjustments. In fact, the average length of arcs linking points
having BP > 2.7 and RTmax ≤ 0.17 (i.e., the region with 9 of 12 solutions) is 0.153
while the average length of other arcs is 0.263.

7.5. Practical implications

The proposed approach aims to develop a predictive maintenance policy to identify the
optimal set of components to replace for maximizing the plant reliability and minimiz-
ing the maximum time spent for repairs. This problem, modeled through bi-objective
MILP, supports the maintenance managers in implementing an effective maintenance
policy, considering not only the breakage probabilities but also the resource constraints.
The present approach is entirely data-driven since all parameters are derived from data
on the past failure events, are extracted from data on the component characteristics,
are constants provided by the domain experts or are the breakage probabilities esti-
mated by Algorithm 1. This way, the proposed approach 1) can be applied to different
application contexts and 2) does not require the parameters tuning. Moreover, the
input parameters are those known at the moment of the system stoppage. Then, the
proposed approach adapts well to changes in the working conditions (e.g. B, Tmax,
repair costs and the number of operators needed for repairing each component). If
the working conditions do not change, one can use all available historical data on
the breakages to better estimate the probabilities. Otherwise, one can weight less the
oldest information with regard to the newest one or to use a sliding time window of
observation.

Additionally, depending on the plant characteristics, the decision makers should de-
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fine whether considering the whole plant, limiting the implementation of the predictive
maintenance policy to its portion or to the most critical components.
Considering the impact of the approach on a wider perspective, its implementation
also involves other departments. In fact, one can run the proposed approach before a
stoppage occurs. This way, it is possible to know in advance which components could
be used for maintenance purposes and hence, to implement the appropriate supplying
policy.

8. Conclusions

The increasing huge amount of data, enabled by Industry 4.0 infrastructures, needs
designing data-driven algorithms for assets availability and reliability maximization for
a continuous process monitoring. In particular, determining the optimal set of compo-
nents to be predictively repaired (namely, solving the Component Repairing Problem)
represents a challenging task especially when several conditions (e.g., breakage prob-
ability, repair time and cost) have to be considered simultaneously.

Since the systems with many components, requiring also to be constantly active,
have to be accurately monitored, in this paper, a new data-driven predictive main-
tenance policy is proposed. Firstly, receiving a set of components, a time interval for
the observation, a list of both stoppage and breakage events, the breakage probabil-
ity of each component is determined. Then, according to the breakage probabilities,
a multi-objective optimization approach is designed for individuating the sub-set of
components to repair, maximizing the overall system reliability and minimizing the
maximum time spent for repairing them, under constraints on both the maximum
budget and the the maximum repairing time. Two alternative optimization solution
methods are described: one is based on the formulation of a bi-objective Mixed Inte-
ger Linear Programming model solved through the AUGMEnted ε-CONstraint (AUG-
MECON) approach; the other implements a bi-objective Large Neighborhood Search
(b-LNS) meta-heuristic.

Three sets of real-life alike instances (of increasing size) were derived from a real oil
refinery. Numerical results show that the b-LNS significantly outperforms the AUG-
MECON approach concerning the computational time required. Concerning the so-
lution quality, the front of the b-LNS is almost the same of that provided by the
AUGMECON approach except when the AUGMECON reaches the CPU time limit of
one hour. A data-driven analysis was also performed for assessing the effectiveness of
the b-LNS moves and for deriving insights useful to those researchers who are going to
design a b-LNS to address decision problems arising in similar application contexts.

Future research may focus on applying the proposed approaches for solving other
problems arising in similar application contexts where the decisions mainly concern
systems reliability.
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