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A B S T R A C T

In this paper we propose a new aggregation method for constructing composite indicators based on a
penalization of the power mean. The idea underlying this approach consists in multiplying the power mean
by a factor that accounts for the horizontal heterogeneity among indicators while penalizing units with a
larger heterogeneity. In line with the minimum loss of information principle, the penalization factor proposed
is proven to be linked to the loss of information generated when the indicators are substituted with their
power means. As a consequence, the aggregation approach gives rise to the class of penalized power means
and the penalized Benefit of the Doubt aggregative approach. Including heterogeneity makes the aggregation
approach more suitable for refined rankings. Interestingly, the penalized power mean of order one coincides
with the Mazziotta Pareto Index. Some theoretical properties of the penalized power means are proven, thus
supporting the Mazziotta Pareto index. An empirical analysis of the Human Development Index in 2019 is
presented. Comparisons of the rankings induced by the penalized and non-penalized Benefit of the Doubt and
power mean aggregation approaches are shown. There are three main findings: the penalized power means
satisfy the properties characterizing weakly monotone aggregation functions; the penalization reduces ranking
variations while differentiating units with close means; and the geometric mean provides composite indicators
whose ranking is closest to those obtained with power means of different order.
1. Introduction

The construction of composite indicators consists in reducing a
multidimensional phenomenon to a one-dimensional phenomenon ag-
gregating the multiple dimensions, namely the indicators, into a single
indicator called the composite indicator. The resulting composite indi-
cator, although simpler and easier to interpret and understand, is less
informative with respect to the vector of the indicators. That is, the
aggregation procedure involves a loss of information. Despite the effort
of many authors to develop objective measures of information loss (see,
among others, Zhou, Ang, and Poh (2006), Zhou and Ang (2009), Zhou,
Fan, and Zhou (2010)), choosing an effective measure is a crucial task
and depends on the subjective preference of the decision maker.

A good aggregation should conjugate the contrasting twofold objec-
tives of reducing the dimension of the phenomenon under investigation
while generating a reasonable loss of information. The majority of
aggregation functions are based on minimizing the loss due to replac-
ing the indicators with the aggregated value. Specifically, the power
means are found by choosing the Euclidean distance from the vector
of indicators transformed through a Box–Cox function as a penalty
(loss) function (for more details we refer to Berger and Casella (1992)).
In other words, the power mean can be viewed as the least-squares
estimate of the vector of indicators in the Box–Cox transformed space.
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Therefore, in the transformed space, the power mean suffers from the
same drawbacks as the arithmetic mean, that is, the compensability and
the substitutability. These issues should be considered in the aggrega-
tion phase to differentiate units with same power mean value and, as
a consequence, to make rankings robust to the aggregation procedure.
All these methods share the idea that the importance of an indicator
should be related to the level of information it brings along.

The idea of penalizing units in different ways is shared by Mauro,
Biggeri, and Maggino (2018) and Biggeri, Clark, Ferrannini, and Mauro
(2019) who developed and applied the Multidimensional Synthesis of
Indicators (MSI) approach to well-being, aggregating the indicators
relative to different units with power means of different order. The
order of the power mean is assumed to be a function of the arithmetic
mean of the indicators, such that units with a lower indicator of
arithmetic mean are associated with a lower order.

Surely, the choice of meaningful aggregative process relies on an
appropriate choice of the aggregation and weighting schemes. More-
over, despite the fact that often they are implemented together, the
aggregation and the weighting issues attain different and, in some
ways, complementary aspects. In fact, the aggregation is related to the
choice of a metric that quantifies the relationship or similarity between
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indicators. For example, the choice of the order 𝑝 in the power mean
approach is a metric choice. In fact, the power means of negative order
penalize downwards the unbalance among indicators, emphasizing the
improvements of the indicators with low values while penalizing those
with high values. This is due to the fact that the metrics for negative
orders reduce the distances between indicators with high values and
increase the distances between indicators with low values. On the other
hand, the choice of weights reflects the relative importance/relevance
of the indicators to the overall objective of the analysis. This can be
done a priori or a posteriori using data-driven methods. In the latter,
the contribute of weighting to the construction of composite indicators
is constrained to and limited by the choice of the aggregation method.

In the scientific literature, there are many papers addressing weight-
ing methods. Just to mention a few, the papers Karagiannis and Kara-
giannis (2020), Karagiannis and Karagiannis (2023), Greco, Ishizaka,
Tasiou, and Torrisi (2019), Curry and Faulds (1986), Kopalle and
Hoffman (1992).

In Karagiannis and Karagiannis (2020), Karagiannis and Karagian-
nis (2023) several weighting methods based on information theory
and completely data-driven are proposed. Specifically, in Karagiannis
and Karagiannis (2020) the weighted arithmetic mean approach is
used to aggregate the indicators and the Shannon entropy is used to
derive a set of common weights. The idea is to assign more impor-
tance to the indicators that provide more information and, as a con-
sequence, lower value of uncertainty, measured through the Shannon
entropy. In Karagiannis and Karagiannis (2023) the authors determine
the weights endogenously using four distance-based methods: the max-
imizing deviations, the weighted least square deviation from the mean,
the weighted least square deviation from the ideal, and the weighted
least square dissimilarity.

The evaluation of the uncertainty in the weights for composite
indicators is a key ingredient of Greco et al. (2019). The problem
is addressed by means of the Stochastic Multiattribute Acceptability
Analysis. This analysis allows for the computation of the probability
that a unit attains a given ranking position and the probability that
a unit is better than another. In particular, following the weighted
arithmetic mean aggregation approach, the authors compute, for each
unit, the probability distribution of weights, its mean (𝜇) and standard
deviation (𝜎). Moreover, they construct the ‘‘efficient frontier’’ in the
plane 𝜎 −𝜇. The efficient frontier is made by the units that provide the
best trade-off between standard deviation and mean.

In Curry and Faulds (1986), Kopalle and Hoffman (1992) the au-
hors investigate the sensitivity to weights of the composite indicators
y theoretical and computational points of view. This is done compar-
ng the correlations among ranking associated with composite indica-
ors obtained as arithmetic means with different set of weights. From
he analysis it emerges that positively correlated indicators are less
ensitive to the choice of weights with respect to negatively correlated
ndicators. For an extensive and detailed guide to the construction and
se of composite indicators we refer to OECD (2008).

In this paper, the focus is the aggregation scheme and a generaliza-
ion to include weights. Specifically, in line with the works of Mauro
t al. (2018), Biggeri et al. (2019), Rogge (2018a) and Rogge (2018b),
e propose a new aggregation approach that penalizes the power
ean associated with units characterized by larger heterogeneity. The
enalization consists in a factor which multiplies the mean and ac-
ounts for the horizontal heterogeneity among indicators. We build
his factor for each unit, first by computing the power mean of the
ndicators associated with the unit. Second, we scale the indicators by
heir power mean. Third, we apply the Box–Cox transformation to the
caled indicators. Finally, we compute the variance of the transformed
ndicators and the counter image of this variance using the Box–Cox
unction. The counter image is the resulting penalization factor. This
actor is a kind of ‘‘variance’’ in the transformed space and, therefore,
an be interpreted as the relative error or loss of information associated
1016

ith the 𝑖th unit as the power mean is substituted for the vector of
the transformed indicators. Interestingly, the penalized power mean
of order one coincides with the Mazziotta Pareto Index (Mazziotta &
Pareto, 2016).

Moreover, we implement a Benefit of the Doubt (BoD)-based
weighted version of the penalized power means for constructing an
Human Development Index (HDI) (for more details, see Rogge (2018a)
and Rogge (2018b). The BoD-based weights are considered with the
aim of showing that the proposed aggregation is less sensitive to
the choice of weights with respect to alternative approaches. This
conclusion is motivated by the conjecture that the penalization acts as a
unit-dependent system of weights, neutralizing partially the importance
attributed by the weights to each indicator, and, as a consequence,
originating a more robust composite indicator. It should be noted
that the BoD weights are derived solving an optimization problem,
and, for this reason, they are not always unique. The non-uniqueness
of BoD weights is a crucial task extensively investigated by several
authors (see, among others, Cooper, Ruiz, and Sirvent (2007)). Despite
their efforts, to the best of our knowledge, there are not standard
selection procedures among the multiple optima. Here, the use of
BoD approach is only illustrative to study the effects of weights on
the penalized power means in comparison with their non-penalized
versions. Therefore, although the analysis of the robustness of our
approach to different set of weights, associated with multiple optima,
deserves attention and further investigation, it falls beyond the scope
of paper.

The penalization approach proposed in this paper is fully data-
driven and can be effectively applied in many other fields, such as en-
vironmental indices (Sadiq, Haji, Cool, & Rodriguez, 2010), fuzzy rule-
based systems, pattern recognition, decision-making problems
(Khameneh & Kilicman, 2020), and weighted voting systems (Bustince,
Jurio, Pradera, Mesiar, & Beliakov, 2013). We also investigate whether
it is possible to select the order of the mean to obtain an aggregative ap-
proach that provides composite indicators whose induced unit rankings
are less ‘‘sensitive’’ to the order 𝑝 used in the aggregation. The latter
is a very delicate issue because recent investments in innovation and
green policies have imposed the introduction of ‘‘reliable and robust’’
ranking to make decisions.

Furthermore, the penalization approach also extends to weighted
power means, which are therefore applicable to the BoD approach as
illustrated in Sections 3 and 4.

There are three main findings: the penalized power means satisfy
the properties characterizing weakly monotone aggregation functions;
the penalization reduces ranking variations while differentiating units
with same means; and the zero-th order (i.e., geometric mean) provides
composite indicators whose rankings are the closest to rankings ob-
tained by different power mean approaches, in that the zero-th order
mean minimizes the variation of the rankings with a set of order 𝑝.
Interestingly, the penalized power means are power means applied to
penalized indicators.

The paper is organized as follows. Section 2 introduces the pe-
nalized power means and some properties of this family are proven.
Section 3 extends the penalization to weighted power means and
Section 4 proposes an empirical analysis of the HDI in 2019, comparing
the country rankings of the penalized/non-penalized power mean ag-
gregation to penalized/non-penalized BoD aggregation. Section 5 draws
some conclusions. Appendix A provides some auxiliary results neces-
sary to prove that the penalized power means are weakly monotone
aggregation functions. Appendix B contains the proofs of the main
propositions of Section 2. Appendix C contains the detailed tables of
ranking relative to the numerical experiments of Section 4. Finally,
Appendix D analyzes the effect of penalization on BoD approach when

relative importance constraints on the weights are imposed.
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2. A new class of composite indicators

Let 𝐼𝑖,𝑗 be the value of the indicator 𝑗, 𝑗 = 1, 2,… , 𝑚, relative to
nit 𝑖, 𝑖 = 1, 2,… , 𝑛, such that 𝐼𝑖,𝑗 belongs to the interval [𝑎, 𝑏], where
> 𝑎 > 0. Let the superscript 𝑇 denote the transpose operator and

𝑖 = [𝐼𝑖,1 𝐼𝑖,2 … 𝐼𝑖,𝑚]𝑇 the (column) vector of indicators relative to the
−th unit, 𝑖 = 1, 2,… , 𝑛. For 𝑖 = 1, 2,… , 𝑛, the power mean of order 𝑝
ssociated to 𝐼 𝑖 is defined by

𝑝,𝑖 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

1
𝑚

𝑚
∑

𝑗=1
𝐼𝑝𝑖,𝑗

)
1
𝑝

, 𝑝 ≠ 0,

( 𝑚
∏

𝑗=1
𝐼𝑖,𝑗

)
1
𝑚

, 𝑝 = 0.

(1)

he arithmetic mean, geometric mean, and harmonic mean are special
ases of the power mean for 𝑝 = 1, 𝑝 = 0, and 𝑝 = −1, respectively.

For 𝑖 = 1, 2,… , 𝑛 the composite indicator 𝑀𝑝,𝑖 can be read as solu-
ion to the following optimization problem (Berger & Casella, 1992):

min
𝑐>0

𝐹𝑝(𝑐; 𝐼 𝑖), (2)

where:

𝐹𝑝(𝑐; 𝐼 𝑖) =
1
𝑚

𝑚
∑

𝑗=1
(ℎ𝑝(𝐼𝑖,𝑗 ) − ℎ𝑝(𝑐))2 (3)

s the (information) loss function (or, the penalty function, to use the
omenclature of Calvo and Beliakov (2010)), and ℎ𝑝(𝑥) is the Box–Cox
ransformation (Box & Cox, 1964):

𝑝(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑥𝑝 − 1
𝑝

, 𝑝 ≠ 0,

ln 𝑥, 𝑝 = 0.
(4)

Note that, for any 𝑝, the function ℎ𝑝(𝑥), 𝑥 > 0, is strictly increasing and
satisfies the condition ℎ𝑝(1) = 0.

The claim mentioned above follows from two simple observations.
First, for 𝑖 = 1, 2,… , 𝑛, the solution to problem (2) is the constant

𝑐, such that ℎ𝑝(𝑐) is the arithmetic mean of values ℎ𝑝(𝐼𝑖,1), ℎ𝑝(𝐼𝑖,2), . . . ,
ℎ𝑝(𝐼𝑖,𝑚). The values ℎ𝑝(𝐼𝑖,𝑗 ), 𝑗 = 1, 2,… , 𝑚, are interpreted as the values
of the statistical (latent) variable 𝑌𝑖 which describes the unit 𝑖 in the
‘‘transformed space’’. For later convenience, these values are collected
in the vector ℎ𝑝(𝐼 𝑖) = [ℎ𝑝(𝐼𝑖,1)ℎ𝑝(𝐼𝑖,2) … ℎ𝑝(𝐼𝑖,𝑚)]𝑇 .

Second, the arithmetic mean of the values ℎ𝑝(𝐼 𝑖), satisfies

1(ℎ𝑝(𝐼 𝑖)) =
1
𝑚

𝑚
∑

𝑗=1
ℎ𝑝(𝐼𝑖,𝑗 ) = ℎ𝑝(𝑀𝑝,𝑖), 𝑖 = 1, 2,… , 𝑛. (5)

Eq. (5) allows us to conclude that the optimal value of 𝑐, the solution
to problem (2), is 𝑐 = 𝑀𝑝,𝑖.

Therefore, in the 𝑝-transformed space – the space obtained by
transforming the 𝑚 dimensional vectors via the Box–Cox function of
order 𝑝 – the 𝑝-order generalized mean acts as the arithmetic mean.

Moreover, for any unit 𝑖, 𝑖 = 1, 2,… , 𝑛, we can measure the error
(loss of information) caused by substituting the transformed values of
the indicators, ℎ𝑝(𝐼𝑖,𝑗 ), 𝑗 = 1, 2,… , 𝑚, with ℎ𝑝(𝑀𝑝,𝑖), evaluating the
objective function 𝐹𝑝 at its optimizer:

𝐹𝑝(𝑀𝑝,𝑖; 𝐼 𝑖) =
1
𝑚

𝑚
∑

𝑗=1
(ℎ𝑝(𝐼𝑖,𝑗 ) − ℎ𝑝(𝑀𝑝,𝑖))2, 𝑖 = 1, 2,… , 𝑛. (6)

It is easy to see that for any unit 𝑖, 𝑖 = 1, 2,… , 𝑛, this error coincides
ith the (biased) sample variance of a statistical variable, 𝑌𝑖, whose
alues are given in the vector ℎ𝑝(𝐼 𝑖). Here and in the rest of paper, we

denote this variance with 𝑆2
𝑝,𝑖.

Therefore, for 𝑖 = 1, 2,… , 𝑛, the quantity ℎ−1𝑝 (𝑆2
𝑝,𝑖) is a measure of

he information loss caused by replacing 𝐼 with 𝑀 . Note that the
1017

𝑖 𝑝,𝑖 T
size of ℎ−1𝑝 (𝑆2
𝑝,𝑖) strongly depends on 𝑀𝑝,𝑖; hence, variances of the unit

computed with different 𝑝-orders are not comparable.
We overcome this drawback by scaling the indicators referring to

he same unit by a specific criterion that removes the dependence
rom the power mean. To this end, we consider the vector of scaled
ndicators, 𝐼 𝑖 = [𝐼𝑖,1 𝐼𝑖,2,… 𝐼𝑖,𝑚]⊤, where

�̃�,𝑗 =
𝐼𝑖,𝑗
𝑀𝑝,𝑖

, 𝑗 = 1, 2,… , 𝑚, 𝑖 = 1, 2,… , 𝑛. (7)

Bearing in mind that ℎ𝑝(1) = 0, it follows from the homogeneity
roperty of the 𝑝-order power means that 𝑀𝑝(𝐼 𝑖) = 1 and ℎ𝑝(𝑀𝑝(𝐼 𝑖)) =
𝑝(1) = 0 for 𝑖 = 1, 2,… , 𝑛. As a consequence, the error (loss of

information) caused by substituting the vector of indicators ℎ𝑝(𝐼 𝑖) with
ℎ𝑝(𝑀𝑝(𝐼 𝑖)) = ℎ𝑝(1) = 0 is given by

𝐿𝑝,𝑖 =
1
𝑚

𝑚
∑

𝑗=1
(ℎ𝑝(𝐼𝑖,𝑗 ) − ℎ𝑝(1))2 =

1
𝑚

𝑚
∑

𝑗=1
[ℎ𝑝(𝐼𝑖,𝑗 )]2, 𝑖 = 1, 2,… , 𝑛. (8)

ote that, independent of the fact that the optimizer of problem (2) for
he vector 𝐼 𝑖 is the p-order power mean 𝑀𝑝,𝑖, scaling the indicator by

the optimizer (as done in (7)) makes the optimizer of problem (2) for
the resulting scaled vector 𝐼 𝑖 equal to 1, 𝑖 = 1, 2,… , 𝑛. This means that
the corresponding loss of information is equal to the 𝐿2 norm of vector
ℎ𝑝(𝐼) (as in (8)).

However, the choice of considering scaled indicators does not guar-
antee that the loss of information ranges in a given interval. To over-
come this difficulty, we define:

�̃�2
𝑝,𝑖 ∶= 𝐾𝐿𝑝,𝑖, 𝑖 = 1, 2,… , 𝑛, (9)

where 𝐾 > 0 is a real constant. Commonly, the choice 𝐾 equal to 1
s strongly recommended except for some circumstances explained in
efinition 1.

For 𝑖 = 1, 2,… , 𝑛, the quantity

−1
𝑝 (�̃�2

𝑝,𝑖) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

1 + 𝑝 �̃�2
𝑝,𝑖

)
1
𝑝 , 𝑝 ≠ 0,

exp
(

�̃�2
0,𝑖

)

, 𝑝 = 0,

(10)

is independent of the size of �̃�𝑝,𝑖. It measures the relative information
loss caused by replacing 𝐼 𝑖 with 𝑀𝑝,𝑖. The higher the value of ℎ−1𝑝 (�̃�2

𝑝,𝑖),
the greater the loss of information caused by considering 𝑀𝑝,𝑖 instead
of the sub-indicator vector 𝐼 𝑖.

We use ℎ−1𝑝 (±�̃�2
𝑝,𝑖) to penalize the power mean of order 𝑝. Specifi-

ally, for 𝑖 = 1, 2,… , 𝑛, the penalized power mean of order 𝑝 associated
ith the indicator vector 𝐼 𝑖 is defined by

𝑃𝑀±
𝑝,𝑖 = 𝑀𝑝,𝑖𝑔

±
𝑝,𝑖, (11)

where 𝑔±𝑝,𝑖 is the penalization factor:

𝑔±𝑝,𝑖 = ℎ−1𝑝 (±�̃�2
𝑝,𝑖) = (1 ± 𝑝 �̃�2

𝑝,𝑖)
1
𝑝 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

1 ± 𝑝 �̃�2
𝑝,𝑖

)
1
𝑝 , 𝑝 ≠ 0,

exp
(

±�̃�2
0,𝑖

)

, 𝑝 = 0.

(12)

he sign in (11), (12) depends on the phenomenon considered. Specif-
cally, if increasing variations of the indicator correspond to positive
ariations of the phenomenon (positive polarity), we choose the sign
, otherwise (negative polarity) we choose the sign +.

Furthermore, the scaling in (7) ensures that the term ℎ−1𝑝 (±�̃�2
𝑝,𝑖)

enalizes the score of each unit (the 𝑝-order power mean of the in-
icators) independent of the value of the power mean itself with a
uantity that is directly proportional to the ‘‘horizontal variability’’ of
he indicators. The aim of the penalization is to favor the units that,
iven identical power means, are more balanced among the indicators.

his is the idea underlying the ‘‘Method of Penalties by Coefficient of
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Variation’’, introduced by Mazziotta and Pareto (2016), which adjusts
the arithmetic mean by a penalization coefficient that, for each unit, is
a function of the coefficient of variation defining the Mazziotta Pareto
Index (MPI). Indeed, the indicator in (11) when 𝑝 = 1 is the Mazziotta
Pareto Index, thereby setting in the new class of penalized power means
on firm foundations.

We now take a deeper look at the behavior of the penalization
term 𝑔−𝑝,𝑖 (i.e., positive polarity) as a function of the order 𝑝, for 𝑖 =
1, 2,… , 𝑛. Bearing in mind that �̃�2

𝑝,𝑖 is nonnegative, the penalization

factor (1 − 𝑝 �̃�2
𝑝,𝑖)

1
𝑝 is positive only if the inequality 𝑝 �̃�2

𝑝,𝑖 ≤ 1 holds.
The latter may or may not hold depending on the sign of 𝑝. In fact, we
only prove that �̃�2

𝑝,𝑖 is a positive non-increasing function of 𝑝. Thus, for
𝑝 > 0 the monotonicity �̃�2

𝑝,𝑖 just mentioned, along with the properties
lim𝑝→+∞ 𝑝�̃�2

𝑝,𝑖 = 0 and lim𝑝→0+ 𝑝�̃�2
𝑝,𝑖 = 0, imply that the inequality

𝑝 �̃�2
𝑝,𝑖 ≤ 1 holds for sufficiently large and small values of 𝑝.
In contrast to the case 𝑝 > 0, when 𝑝 is zero or negative, the

penalization term is always nonnegative. Furthermore, when 𝑝 < 0 the
penalization term, (1 − 𝑝 �̃�2

𝑝,𝑖)
1
𝑝 , is smaller than one since the exponent

1∕𝑝 is negative and the base of the power, 1 − 𝑝 �̃�2
𝑝,𝑖, is greater than

ne. This implies that no constraints are necessary on the magnitude of
�̃�2
𝑝,𝑖 when 𝑝 < 0. In the case 𝑝 = 0, the penalization is less than one for

ositive polarity exp(−�̃�2
0,𝑖).

For negative polarity of the sub-indicators, the penalization,
1+𝑝 �̃�2

𝑝,𝑖)
1
𝑝 , 𝑝 ≠ 0 and exp(�̃�2

0,𝑖), 𝑝 = 0, is larger than one, since higher
values of the composite indicator indicate lower ranking positions due
to the negative polarity.

We now provide a formal definition of the penalized power mean of
order 𝑝 as a weakly monotone aggregation function (see Proposition 4)
and we prove some properties. To simplify the notation, in the rest of
this section, where it is not necessary, we drop the subscript 𝑖.

Definition 1 (Penalized Power Mean). Given a non-empty interval
[𝑎, 𝑏] ⊆ (0,+∞) and the vector of indicators 𝐼 = [𝐼1, 𝐼2,… , 𝐼𝑚]𝑇 ∈
[𝑎, 𝑏]𝑚, the penalized power means of order 𝑝 of 𝐼 are the functions

𝑃𝑀±
𝑝 ∶ [𝑎, 𝑏]𝑚 → [𝑎, 𝑏]

defined by

𝑃𝑀±
𝑝 (𝐼) = 𝑀𝑝(𝐼)𝑔±𝑝 (𝐼), (13)

where

𝑀𝑝(𝐼) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

1
𝑚

𝑚
∑

𝑗=1
𝐼𝑝𝑗

)
1
𝑝

, 𝑝 ≠ 0,

( 𝑚
∏

𝑗=1
𝐼𝑗

)
1
𝑚

, 𝑝 = 0,

(14)

is the power mean of order 𝑝 of 𝐼 ,

±
𝑝 (𝐼) = (1 ± 𝑝�̃�2

𝑝 (𝐼))
1
𝑝 (15)

is the penalization factor associated with 𝐼 ,

�̃�2
𝑝 (𝐼) =

𝐾
𝑚

𝑚
∑

𝑗=1

[

ℎ𝑝

( 𝐼𝑗
𝑀𝑝(𝐼)

)]2

, (16)

here 𝐾 = 1 unless a different choice of 𝐾 is necessary to preserve the
ange invariance.

We now establish the following elementary features of the penalized
eans when different units are compared.

roposition 1. The penalized power mean defined in (11) satisfies the
following properties:

1. (𝑃𝑀+ )𝑝 = (𝑃𝑀− )𝑝 + 2𝑝(𝑀 )𝑝�̃�2 for 𝑝 ≠ 0.
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𝑝,𝑖 𝑝,𝑖 𝑝,𝑖 𝑝,𝑖
2. 𝑃𝑀+
0,𝑖 = 𝑃𝑀−

0,𝑖 exp
{

2 �̃�2
0,𝑖

}

.

3. Given two units 𝑘 and ℎ (𝑘 ≠ ℎ) with 𝑀𝑝,𝑘 = 𝑀𝑝,ℎ, we have

𝑃𝑀−
𝑝,𝑘 > 𝑃𝑀−

𝑝,ℎ iff �̃�2
𝑝,ℎ > �̃�2

𝑝,𝑘,

𝑃𝑀+
𝑝,𝑘 > 𝑃𝑀+

𝑝,ℎ iff �̃�2
𝑝,𝑘 > �̃�2

𝑝,ℎ.

4. Given two units 𝑘 and ℎ (𝑘 ≠ ℎ) with 𝑀𝑝,𝑘 > 𝑀𝑝,ℎ, for 𝑝 ≠ 0, we
have

𝑃𝑀−
𝑝,𝑘 > 𝑃𝑀−

𝑝,ℎ iff 𝑀𝑝
𝑝,𝑘 −𝑀𝑝

𝑝,ℎ > 𝑝
(

𝑀𝑝
𝑝,𝑘 �̃�

2
𝑝,𝑘 −𝑀𝑝,ℎ �̃�

2
𝑝,ℎ

)

,

𝑃𝑀+
𝑝,𝑘 > 𝑃𝑀+

𝑝,ℎ iff 𝑀𝑝
𝑝,𝑘 −𝑀𝑝

𝑝,ℎ > 𝑝
(

𝑀𝑝
𝑝,ℎ �̃�

2
𝑝,ℎ −𝑀𝑝

𝑝,𝑘 �̃�
2
𝑝,𝑘

)

.

5. Given two units 𝑘 and ℎ (𝑘 ≠ ℎ) with 𝑀0,𝑘 > 𝑀0,ℎ, we have

𝑃𝑀−
0,𝑘 > 𝑃𝑀−

0,ℎ iff
𝑀0,𝑘

𝑀0,ℎ
> exp

{

�̃�2
0,𝑘 − �̃�2

0,ℎ

}

,

𝑃𝑀+
0,𝑘 > 𝑃𝑀+

0,ℎ iff
𝑀0,𝑘

𝑀0,ℎ
> exp

{

�̃�2
0,ℎ − �̃�2

0,𝑘

}

.

Proof. The proof follows easily from definition (11).

The following results investigate the properties of the penalized
mean of order 𝑝 to investigate whether the term ‘‘mean’’ is used
appropriately.

The main result is Proposition 4, where we show that the penalized
power means satisfy the properties necessary to be an appropriate
aggregative tool for composite indicators.

Before presenting the main proposition, we observe that the loss of
information associated with the vector 𝐼 , �̃�2

𝑝 (𝐼), appearing in formula
(16) does not increase when all the indicators are translated by the
same constant.

Proposition 2. Let 𝑐 = [𝑐, 𝑐,… , 𝑐]𝑇 ∈ R𝑚 be the vector with entries
equal to a constant 𝑐 > 0. The derivative of �̃�2

𝑝 (𝐼 + 𝑐) with respect to 𝑐 is
onpositive, that is, �̃�2

𝑝 (𝐼 + 𝑐) is a non-increasing function of 𝑐.

Proof. See Appendix B.

Note that Proposition 2 says that by translating the indicators,
we reduce the effect of the penalization. Thus, transformations of the
original indicators involving translation affects the penalized means.

We now illustrate the properties of the penalized power mean.

Proposition 3. The penalized power means of order 𝑝, 𝑃𝑀±
𝑝 (𝐼) defined

n (13) satisfy the following properties:

1. 𝑃𝑀±
𝑝 (𝑐) = 𝑐, where 𝑐 > 0,

2. lim
𝑐→0

𝑃𝑀±
𝑝 (𝑐) = 0, where 𝑐 = [𝑐, 𝑐,… , 𝑐]𝑇 , such that 𝑐 > 0,

3. 𝑃𝑀+
𝑝 (𝐼) ≥ 𝑀𝑝(𝐼) ≥ 𝑃𝑀−

𝑝 (𝐼),
4. 𝑃𝑀+

𝑝 (𝐼) = 𝑃𝑀−
𝑝 (𝐼) = 𝑀𝑝(𝐼) iff �̃�2

𝑝 (𝐼) = 0,
5. lim

𝑝→−∞
𝑃𝑀±

𝑝 (𝐼) = min
𝑗=1,2,…,𝑚

𝐼𝑗 ,

6. lim
𝑝→+∞

𝑃𝑀±
𝑝 (𝐼) = max

𝑗=1,2,…,𝑚
𝐼𝑗 ,

7. lim
𝑝→0

𝑃𝑀±
𝑝 (𝐼) = exp

{

±�̃�2
0 (𝐼)

}

,

8. 𝑃𝑀−
𝑝 (𝐼) ≤ max(𝐼),

9. min(𝐼) ≤ 𝑃𝑀+
𝑝 ,

10. 𝑃𝑀±
𝑝 (𝑐 𝐼) = 𝑐 𝑃𝑀±

𝑝 (𝐼) for any 𝑐 > 0 such that 𝑐𝐼 ∈ [𝑎, 𝑏]𝑚,
11. 𝑃𝑀−

𝑝 (𝐼 + 𝑐) ≥ 𝑃𝑀−
𝑝 (𝐼) for any 𝑐 = [𝑐, 𝑐,… , 𝑐]⊤ such that 𝑐 ≥ 0 and

𝐼 + 𝑐 ∈ [𝑎, 𝑏]𝑚,
12. 𝑃𝑀+

𝑝 (𝐼 + 𝑐) ≤ 𝑃𝑀+
𝑝 (𝐼) for any 𝑐 = [𝑐, 𝑐,… , 𝑐]⊤ such that 𝑐 ≥ 0 and

𝐼 + 𝑐 ∈ [𝑎, 𝑏]𝑚,
13. 𝑎 ≤ 𝑃𝑀±

𝑝 (𝐼) ≤ 𝑏.

Proof. See Appendix B.
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Note that Property 13 guarantees that the penalized power mean
are range preserving. Moreover, Properties 5 and 6 in Proposition 3
imply that the penalization has no effect when the power mean of
order −∞ (i.e., the minimum function) or +∞ (i.e., the maximum
function) is considered. In fact, in the case of positive polarity and
negative polarity, the minimum and maximum functions, respectively,
already lead to the maximum penalization for unbalanced values of the
indicators, so they need no further penalizations. Properties 11 and 12
state that the penalized power means exhibit weakly monotonic behav-
ior (for more details about weakly monotonicity and the definition of
aggregation function we refer, respectively, to Wilkin, Beliakov, and
Calvo (2014), Grabisch, Marichal, Mesiar, and Pap (2011)).

Proposition 4. The penalized power means (13) are weakly monotone
aggregation functions.

Proof. The proof follows easily from Properties 1, 2, 11, 12 and 13 of
Proposition 3.

Note that the penalized power means (13) associated with the vector
of indicators 𝐼 are power means applied, respectively, to the vector of
enalized indicators 𝐽± = [𝐽±

1 𝐽±
2 … 𝐽±

𝑚 ]
𝑇 , where:

𝐽±
𝑗 = 𝐼𝑗𝑔

±
𝑝 , 𝑗 = 1, 2,… , 𝑚.

Finally, as mentioned in the Introduction, we prove that the penal-
zed mean of order one is the Mazziotta Pareto Index already used by
he Italian central statistical bureau.

roposition 5. The penalized power mean of order one, 𝑃𝑀±
1 (𝐼),

oincides with the MPI.

roof. Substituting (4) for 𝑝 = 1 in (16) and bearing in mind that
= 1, we have

̃2
1 (𝐼) =

1
𝑚

𝑚
∑

𝑗=1
(𝐼𝑗 − 1)2 = 1

𝑚

𝑚
∑

𝑗=1

( 𝐼𝑗
𝑀1(𝐼)

− 1
)2

=
1
𝑚
∑𝑚

𝑗=1(𝐼𝑗 −𝑀1(𝐼))2

𝑀2
1 (𝐼)

=
𝑆2
1 (𝐼)

𝑀1(𝐼)2
, (17)

where

𝑆2
1 (𝐼) =

1
𝑚

𝑚
∑

𝑗=1
(𝐼𝑗 −𝑀1(𝐼))2 (18)

s the (biased) sample variance of vector 𝐼 .
Substituting (17) into (15) for 𝑝 = 1, we have

𝑃𝑀±
1 (𝐼) = 𝑀1(𝐼)

(

1 ±
𝑆2
1 (𝐼)

𝑀1(𝐼)2

)

, 𝑖 = 1, 2,… , 𝑛, (19)

that is, the MPI.

3. From penalized power means to penalized weighted power
means

In this section, we introduce the penalization for the weighted
power mean aggregation approach. This extension allows us to apply
the penalization to the composite indicators obtained via the ‘‘direct’’
Benefit of the Doubt (BoD) approach illustrated in Cherchye, Moe-
sen, Rogge, and Van Puyenbroeck (2007), Rogge (2018a) and Rogge
(2018b). The weights of the BoD composite indicators are country-
specific, so these indicators are flexible in capturing differences among
the countries. As mentioned in the Introduction, the main focus of the
paper is the presentation of the penalized power mean approach and
its weighted version. The inclusion of weights is done for studying the
sensitivity of the penalized power means to the choice of weights in
comparison with their non-penalized versions. To this end, we use the
Benefit of the Doubt (BoD) approach to illustrate this study.
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For 𝑖 = 1, 2,… , 𝑛, the weighted power mean of order 𝑝 ∈ R is defined
as follows:

𝑀𝑤
𝑝,𝑖 = 𝑀𝑤

𝑝 (𝐼 𝑖) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

( 𝑚
∑

𝑗=1
𝑤𝑖,𝑝,𝑗𝐼

𝑝
𝑖,𝑗

)
1
𝑝

, 𝑝 ≠ 0,

𝑚
∏

𝑗=1
𝐼
𝑤𝑖,0,𝑗
𝑖,𝑗 , 𝑝 = 0,

(20)

here the weights 𝑤𝑖,𝑝,𝑗 are non-negative and depend on the unit 𝑖
country), the order of power mean 𝑝, and the sub-indicator 𝑗.

Assuming that the weights sum to one, i.e., ∑𝑚
𝑗=1 𝑤𝑖,𝑝,𝑗 = 1, we

ntroduce the ‘‘penalized’’ weighted power mean of order 𝑝, viewing the
airs (ℎ(𝐼𝑖,1), 𝑤𝑖,𝑝,1), (ℎ(𝐼𝑖,2), 𝑤𝑖,𝑝,2), . . . ,(ℎ(𝐼𝑖,𝑚), 𝑤𝑖,𝑝,𝑚) as the frequency
istribution of a statistical variable, 𝑌𝑖, which describes the ‘‘𝑖th unit’’.

It is easy to prove that

𝑝(𝑀𝑤
𝑝,𝑖) = 𝑀𝑤

1 (ℎ𝑝(𝐼 𝑖)) =
𝑚
∑

𝑗=1
𝑤𝑖,𝑝,𝑗ℎ𝑝(𝐼𝑖,𝑗 ), 𝑖 = 1, 2,… , 𝑛, (21)

that is, as in Section 2, in the 𝑝−transformed space, the 𝑝-order
weighted generalized mean acts as the weighted arithmetic mean.

Hence, arguing as in Section 2, for any unit 𝑖, we measure the
loss of information that originates from replacing the vector of indi-
cators ℎ𝑝(𝐼 𝑖) with ℎ𝑝(𝑀𝑤

𝑝,𝑖), evaluating the objective function 𝐹𝑤
𝑝 at its

ptimizer:

2
𝑤,𝑝,𝑖 ∶= 𝐹𝑤

𝑝 (𝑀𝑤
𝑝,𝑖; 𝐼 𝑖) =

𝑚
∑

𝑗=1
𝑤𝑖,𝑝,𝑗 (ℎ𝑝(𝐼𝑖,𝑗 ) − ℎ𝑝(𝑀𝑤

𝑝,𝑖))
2, 𝑖 = 1, 2,… , 𝑛.

(22)

e can interpret this loss of information in unit 𝑖 as the variance of the
tatistical variable 𝑌𝑖.

Finally, we introduce the vector of the scaled indicators as in Eq. (7),
.e., �̃�𝑤𝑖 = [𝐼𝑤𝑖,1, 𝐼

𝑤
𝑖,2,… , 𝐼𝑤𝑖,𝑚]

𝑇 , with 𝐼𝑤𝑖,𝑗 = 𝐼𝑖,𝑗∕𝑀𝑤
𝑝,𝑖. Proceeding as in

Section 2, for 𝑖 = 1, 2,… , 𝑛, we define the weighted penalized power
mean of order 𝑝 as follows:

𝑃𝑀±
𝑤,𝑝,𝑖 = 𝑀𝑤

𝑝,𝑖𝑔
±
𝑤,𝑝,𝑖, (23)

here 𝑔±𝑤,𝑝,𝑖 is the penalization factor:

±
𝑤,𝑝,𝑖 = ℎ−1𝑝 (±�̃�2

𝑤,𝑝,𝑖) = (1±𝑝 �̃�2
𝑤,𝑝,𝑖)

1
𝑝 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

1 ± 𝑝 �̃�2
𝑤,𝑝,𝑖

)
1
𝑝 , 𝑝 ≠ 0,

exp
(

±�̃�2
𝑤,0,𝑖

)

, 𝑝 = 0,

(24)

in which

�̃�2
𝑤,𝑝,𝑖 = 𝐾�̃�𝑤,𝑝,𝑖 , (25)

and

�̃�𝑤,𝑝,𝑖 =
𝑚
∑

𝑗=1
𝑤𝑖,𝑝,𝑗 (ℎ𝑝(𝐼𝑤𝑖,𝑗 ) − ℎ𝑝(1))2 =

𝑚
∑

𝑗=1
𝑤𝑖,𝑝,𝑗 (ℎ𝑝(𝐼𝑤𝑖,𝑗 ))

2 . (26)

In conclusion, formula (23) is the penalized version of the weighted
power means.

We note that the definition of penalized weighted power means
of order 𝑝, see Eq. (23), continues to hold when the weights do not
sum to one. In this case, we interpret the quantity �̃�2

𝑤,𝑝,𝑖 as the loss of
information generated by substituting the power 𝑝 of the sub-indicator
𝐼𝑝𝑖,𝑗 with the power 𝑝 of its mean, (𝑀𝑤

𝑖,𝑝)
𝑝, weighted by the importance

of the sub-indicators. The loss is zero if and only if the ratio 𝐼𝑝𝑖,𝑗∕(𝑀
𝑤
𝑖,𝑝)

𝑝

equals one that is, 𝐼𝑖,𝑗 equals 𝑀𝑤
𝑝,𝑖.

In the following section, we apply this generalization to the ‘‘direct’’

BoD composite indicators as proposed in Rogge (2018b).
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Table 1
Descriptive statistics of the sub-indicators of the HDI (left panel); correlation coefficients of the sub-indicators (right panel).

Sub-indicator: 𝐻 𝐸 𝐼

Min. 0.5123 0.2506 0.3052
1st Qu. 0.7292 0.5289 0.5882
Median 0.8308 0.6833 0.7318
Mean 0.8110 0.6592 0.7145
3rd Qu. 0.8908 0.7939 0.8590
Max 0.9985 0.9456 1.00
st.dev 0.1136 0.1724 0.1736

𝐻 𝐸 𝐼

𝐻 1 0.8176 0.8412
𝐸 0.8176 1 0.8653
𝐼 0.8412 0.8653 1
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4. Empirical analysis

In this section, we investigate whether the ranking induced by
power means of order 𝑝 and the corresponding penalized power means
re different and, more interestingly, whether it is possible to choose
he order 𝑝 to minimize the differences in ranking obtained for different
rder pairs (𝑝, 𝑝′).

This analysis aims to develop composite indicators that are robust
o the order of the power mean used to aggregate the composite
ndicator itself. In the empirical analysis illustrated in this section 𝐾

(see Eqs. (9) and (25)) always equals 1 since in our application the
penalized power mean and the penalized weighted power mean are
always range preserving.

As stressed in Guh, Po, and Lee (2008) and Rogge (2018b), the
choice of the order 𝑝 depends on the objective/attitude of the decision

aker, so it is a sort of ‘‘behavioral parameter’’. The parameter 𝑝 can be
hosen a priori based on the expert judgement, or a posteriori based on
he indicator values. For example, the a priori choice can be done in a
ay such that the resulting score favors the improvements of the worst-
erforming indicators. In this case, as explained in the Introduction,
power mean of negative order should be used. Otherwise, if we are

nterested in a composite indicator that favors the improvements of the
est-performing indicators, power means of positive order do for us.
n the other hand, the order of the mean can be chosen a posteriori
ased on the distribution of the indicator values. For example, if the
ata is expected to have outliers or extreme values, a higher value
f 𝑝 might be more appropriate to reduce the impact of outliers.
onversely, if the data is highly skewed towards lower values, a lower
alue of 𝑝 might be preferred to give more weight to smaller values.
lternatively, if we interpret the Box–Cox transformation as a utility

unction with Constant Relative Risk Aversion (CRRA), the parameter
can be expressed as 1−𝛾, where 𝛾 represents the relative risk aversion
oefficient of the decision maker. The loss function measures the loss
hat a decision maker with CRRA utility associates to substituting the
ector of indicators with the composite indicator.

We look for a 𝑝∗ order which induces a unit ranking as close as
possible to the ranking induced by any alternative 𝑝 order. This 𝑝∗ order
may be considered ‘‘fair’’ since it induces a ranking which is not too
sensitive to the power mean order.

We carried out this analysis on the classical and penalized power
means as well as on the corresponding weighted means. The weights
of the latter are constructed as suggested in Rogge (2018b).

In detail, we use

𝑟𝑚(𝑝; 𝐼) = (𝑟𝑚1 (𝑝; 𝐼), 𝑟
𝑚
2 (𝑝; 𝐼),… , 𝑟𝑚𝑛 (𝑝; 𝐼))

and 𝑟𝑝𝑚(𝑝; 𝐼) = (𝑟𝑝𝑚1 (𝑝; 𝐼), 𝑟𝑝𝑚2 (𝑝; 𝐼),… , 𝑟𝑝𝑚𝑛 (𝑝; 𝐼))

to denote the ranking of units implied by the composite indicator
obtained with the classical and penalized 𝑝-order means, respectively.

We define the ‘‘fair’’ 𝑝-value the solution to the following problem:

min
𝑝∈

𝐹 (𝑝) ∶=
∑

𝑝′∈

𝑛
∑

𝑗=1
|𝑟𝑚𝑗 (𝑝; 𝐼) − 𝑟𝑚𝑗 (𝑝

′; 𝐼)|, (27)

and a similar problem can be formulated for the penalized mean.
We conduct our study on the freely downloadable data of sub-

indicators that define the Human Development Index (HDI) relative to
1020

t

𝑛 = 189 countries in the year 2019. The data of sub-indicators were
ownloaded from the UNDP Data Center (https://hdr.undp.org/data-
enter).

Specifically, the HDI is obtained from three sub-indicators – life
xpectancy, education, and income – aggregated by the geometric mean
unction with equal weights (i.e., Eq. (1) with 𝑝 = 0):

𝐷𝐼 = (𝐻 ∗ 𝐸 ∗ 𝐼)1∕3,

here the health dimension (𝐻) is measured through the life ex-
ectancy indicator, the education dimension (𝐸) is the arithmetic mean
f the two education indices (mean years of schooling and expected
ears of schooling), and the gross national income per capita (𝐼) is a
roxy that accounts for the standard of living.

Table 1 shows the descriptive statistics of the sub-indicators. We
bserve that the sub-indicators are positively correlated.

.1. Power mean aggregative approach: unit-independent weights

We compute the composite indicators on HDI data using as an ag-
regation tool both the power mean and the penalized power mean for
ifferent values of the 𝑝-order. Specifically, we choose 𝑝𝑙 = −𝑀+(2𝑙−1),
= 1, 2,…,𝑀 , so the 𝑝-orders considered are integer values varying

rom −𝑀 + 1 to 𝑀 − 1. That is, in (27) we set  = {𝑝1, 𝑝2,… , 𝑝𝑀}. We
hoose 𝑀 = 11 since in the literature, the order usually varies from −5
o 5. Furthermore, we use 𝐶𝑀(𝑝) to denote the classical power mean
f order 𝑝 and 𝑃𝑀(𝑝) for the corresponding penalized version, while
he ranking induced on country 𝑖, 𝑖 = 1, 2,… , 𝑛, (𝑛 = 189) is denoted
ith 𝑟𝐶𝑀 (𝑖, 𝑝) and 𝑟𝑃𝑀 (𝑖, 𝑝), respectively.

We first analyze the distribution of the ranking difference 𝑑𝑖(𝑝) =
𝑃𝑀 (𝑖, 𝑝) − 𝑟𝐶𝑀 (𝑖, 𝑝), 𝑖 = 1, 2,… , 𝑛, induced by the composite indicators
efined by the penalized power mean and the power mean, respec-
ively. Fig. 1 shows the distribution of 𝑑𝑖(𝑝), 𝑖 = 1, 2,… , 𝑛, for negative
alues of 𝑝, 𝑝 = −5,−4,−3,−2,−1, and 𝑝 = 0 (left panel), and for
ositive 𝑝, 𝑝 = 1, 2, 3, 4, 5, and 𝑝 = 0 (right panel). The distributions
hown in Fig. 1 are not symmetric. This finding is confirmed by the
ositive skewness of all distributions in Fig. 1, i.e., 1.189, 1.571, 1.598,
.806, 1.537, 1.047, 0.564, 0.590, 0.285, 0.756, 0.765, respectively for
varying from −5 to 5. This implies that the penalized power mean
ore frequently provides a larger rank than the non-penalized power
ean. Finally, the standard deviation of the distributions increases with
(i.e., 1.741, 1.839, 2.174, 2.523, 2.819, 2.932, 2.935, 2.995 2.971,

.238, 3.219) indicating that ranking differences are less volatile for
egative orders.

Second, we solve problem (27) using the power mean and penalized
ower mean. Fig. 2 shows the graph of the objective function 𝐹 of
roblem (27) when the penalized (blue) and non-penalized (red) power
eans are used to aggregate the sub-indicators with different set of
(𝑝 = −5,−4,… , 4, 5 at the left panel and 𝑝 = −1, 0,… , 4, 5 at the

ight panel). We see that the minimizer is the middle point of the
nterval, i.e., 𝑝 = 0 (left panel) and 𝑝 = 2 (right panel), for both
ggregative approaches. More interestingly, the objective function 𝐹
orresponding to penalized means is smaller than that of non-penalized
eans in both panels. This finding suggests that the ranking differences

enerated for different values of 𝑝 reduce when penalized power means
re used as an aggregative approach. The penalized geometric mean is

he aggregative approach most suitable for reducing ranking variations

https://hdr.undp.org/data-center
https://hdr.undp.org/data-center
https://hdr.undp.org/data-center
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Fig. 1. Distribution of ranking difference 𝑑𝑖(𝑝) = 𝑟𝑃𝑀 (𝑖, 𝑝) − 𝑟𝐶𝑀 (𝑖, 𝑝), 𝑖 = 1, 2,… , 𝑛, (i.e., penalized power mean of order 𝑝 minus the corresponding power mean of order 𝑝) for
𝑝 = −5,−4,−3,−2,−1, 0 (left panel) and for 𝑝 = 0, 1, 2, 3, 4, 5 (right panel).
Fig. 2. Function 𝐹 of Problem (27) when the power mean and penalized power mean are used to build the composite indicator and 𝑝 varies from −5 to 5 (left panel) and from
−1 to 5 (right panel).
when the interval of 𝑝 of the minimization is symmetric with respect
to the origin. This is expected, since the classical power means satisfy
monotonicity with respect to the order 𝑝. Indeed, the monotonicity
supports the fact that the middle point of the interval, where the
minimization is carried out, is the solution to problem (27).

We note that the non-penalized geometric mean corresponds to the
aggregative method used for the Human Development Index (HDI).

As Fig. 2 shows, the power means of order 𝑝 = −1 (harmonic mean),
𝑝 = 0 (geometric mean), and 𝑝 = 1 (arithmetic mean) are those with the
smallest ranking variations when compared with other (penalized/non-
penalized) 𝑝-order power mean. We focus on these means to analyze
countries in the first and last twenty positions of the HDI ranking.

Table 2 shows the countries ranked in the first (top panel) and
last (bottom panel) twenty positions according to the HDI (i.e., ge-
ometric (rGM) mean), along with the rank of the harmonic (rHM)
and arithmetic (rAM) means and the rank of their penalized versions
1021
(i.e., columns rPHM, rPGM and rPAM). All the remaining results are
available in Appendix C.

Table 2 shows that the penalization refines the ranking of the
corresponding non-penalized approach. In fact, looking at the column
of the penalized geometric mean in the top panel of Table 2, we see
that Ireland is above Switzerland, Iceland is above Hong Kong, the
United Kingdom is above Belgium, and Finland is above Singapore.
These differences highlighted by the penalization are due to horizontal
variability, which seems to be more pronounced in countries with a
higher population density.

Looking at the panel at the bottom of Table 2, we notice that,
according to the penalized geometric mean, Haiti is above Sudan,
Guinea-Bissau is above Congo and Liberia, and, more interestingly,
Sierra Leone is four positions above Burkina Faso. This finding does not
confirm that the horizontal variability is linked to population density
as noted in the first twenty countries.
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p

Table 2
The first twenty (top panel) and last twenty (bottom panel) countries in the HDI ranking and the corresponding ranking obtained by the
composite indicators aggregated with non-penalized/penalized power mean approaches for 𝑝 = −1 (HM), 0 (GM), 1 (AM).
Country Classical power mean aggregation Penalized power mean aggregation

rHM rGM rAM rPHM rPGM rPAM

Norway 1 1 1 1 1 1
Ireland 2 2 2 2 2 2
Switzerland 2 2 2 3 3 2
Hong Kong 5 4 4 6 6 5
Iceland 4 4 5 4 4 4
Germany 5 6 6 5 5 5
Sweden 7 7 7 7 7 7
Australia 9 8 8 8 8 9
Netherlands 7 8 8 8 8 7
Denmark 10 10 10 10 10 10
Finland 11 11 12 11 11 11
Singapore 12 11 10 15 12 12
Belgium 13 13 13 13 14 13
United Kingdom 13 13 13 12 12 13
New Zealand 15 15 15 14 15 15
Canada 16 16 16 15 16 16
United States 17 17 17 17 17 17
Austria 18 18 18 18 18 18
Israel 19 19 21 19 19 19
Liechtenstein 21 19 19 23 23 21

Haiti 167 170 171 167 167 168
Sudan 170 170 167 171 170 170
Gambia 172 172 173 169 169 172
Ethiopia 177 173 172 179 179 178
Malawi 175 174 174 177 177 175
Congo 174 175 177 173 174 174
Guinea-Bissau 173 175 180 170 170 173
Liberia 175 175 175 173 175 177
Guinea 177 178 179 176 175 175
Yemen 179 179 177 181 181 180
Eritrea 183 180 176 188 186 183
Mozambique 181 181 182 180 180 181
Burkina Faso 182 182 181 182 182 182
Sierra Leone 180 182 183 175 178 179
Mali 186 184 183 186 184 185
Burundi 185 185 185 184 184 186
South Sudan 184 186 186 183 183 184
Central African Republic 187 187 189 185 187 187
Chad 188 188 188 187 188 188
Niger 189 189 187 189 189 189
w

s

a

𝜋

t
u
w

𝑗
i
p
s

The main finding of this section is that the (non-penalized/
enalized) geometric mean (𝑝 = 0) should be preferred to other power

means, not only because it is non-compensative, but also because it
solves Problem (27) as a middle point of the power order considered.
The second finding is that the penalized mean refines the ranking of the
corresponding non-penalized mean. This could be used to investigate
the robustness of the HDI ranking.

4.2. Benefit of the Doubt aggregative approach: unit-dependent weights

We analyze the effect of penalization on the composite indicators
defined by the Benefit of the Doubt (BoD) direct approach (see, Rogge
(2018a) and Rogge (2018b)). This strand of the literature on com-
posite indicators explores the methodological issue of weighting the
sub-indicators, looking for the proper weights to aggregate the sub-
indicators.

In this section, we consider the composite indicators obtained ap-
plying the ‘‘direct BoD approach’’ as defined in Rogge (2018a):

𝑀𝑤
𝑝,𝑖 = 𝑀𝑤

𝑝 (𝐼 𝑖) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

( 𝑚
∑

𝑗=1
𝜋𝑖,𝑝,𝑗𝐼

𝑝
𝑖,𝑗

)
1
𝑝

, 𝑝 ≠ 0,

𝑚
∏

𝑗=1
𝐼
𝜋𝑖,0,𝑗
𝑖,𝑗 , 𝑝 = 0,

(28)
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⎩

−

here for each unit 𝑖, 𝑖 = 1, 2,… , 𝑛, the unit-dependent weight 𝜋𝑖,𝑝,𝑗 ,
𝑗 = 1, 2,… , 𝑚, with 𝑝 ≠ 0 is the solution to the following problem:

max
𝜋𝑖,𝑝,𝑗

( 𝑚
∑

𝑗=1
𝜋𝑖,𝑝,𝑗𝐼

𝑝
𝑖,𝑗

)1∕𝑝

, (29)

ubject to the constraints:
( 𝑚
∑

𝑗=1
𝜋𝑖,𝑝,𝑗𝐼

𝑝
𝑐,𝑗

)1∕𝑝

≤ 1, 𝑐 = 1, 2,… , 𝑛, (30)

nd

𝑖,𝑝,𝑗 ≥ 0, 𝑗 = 1, 2,… , 𝑚. (31)

The ratio of these weights is that each unit (i.e., country, region)
ries to maximize its composite indicators (see Eq. (29)), to make the
nits’ composite indicators comparable in magnitude (see Eq. (30))
ith non-negative weights (see Eq. (31)).

The case 𝑝 = 0 is obtained numerically by choosing 𝑝 close to zero
(i.e., 𝑝 = 0.0001). Results very close to 𝑝 = 0.0001 are obtained by
choosing 𝑝 = −0.0001. The formulation of Problem (29)–(31) for 𝑝 = 0
is still a challenge since the trivial solution 𝜋𝑝,𝑖,𝑗 = 0, 𝑖 = 1, 2,… , 𝑛,

= 1, 2,… , 𝑚 satisfies Problem (29)–(31) if the values of the sub-
ndicators fall in the interval (0, 1]. This is why, instead of solving
roblem (29)–(31) with 𝑝 = 0, we prefer solve the problem with 𝑝 ≠ 0
mall enough.

As in the previous experiment, we consider a grid of 𝑝-order, 𝑝𝑙 =
𝑀 + (2𝑙 − 1), 𝑙 = 1, 2,… ,𝑀 , so the 𝑝-orders considered are integer
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Table 3
Average values (left panel) and third quartiles (right panel) of BoD weights for different 𝑝-orders.

Arithmetic means of BoD weights

p 𝜋𝑖,𝑝,1 𝜋𝑖,𝑝,2 𝜋𝑖,𝑝,3
(H) (E) (I)

−5 0.706 0.101 0.126
−4 0.712 0.108 0.125
−3 0.715 0.116 0.126
−2 0.719 0.124 0.128
−1 0.722 0.132 0.131
0 0.721 0.150 0.129
1 0.723 0.163 0.131
2 0.726 0.175 0.133
3 0.730 0.189 0.134
4 0.734 0.204 0.135
5 0.738 0.220 0.136

Third quartiles of BoD weights

p 𝜋𝑖,𝑝,1 𝜋𝑖,𝑝,2 𝜋𝑖,𝑝,3
(H) (E) (I)

−5 0.992 0.071 0.000
−4 0.994 0.082 0.000
−3 0.995 0.093 0.000
−2 0.997 0.106 0.000
−1 0.998 0.121 0.000
0 1.000 0.324 0.000
1 1.002 0.360 0.000
2 1.003 0.399 0.000
3 1.005 0.443 0.000
4 1.006 0.490 0.000
5 1.008 0.543 0.000
Fig. 3. Distribution of ranking difference 𝑑𝑖(𝑝) = 𝑟𝑃𝐵𝑜𝐷(𝑖, 𝑝) − 𝑟𝐵𝑜𝐷(𝑖, 𝑝), 𝑖 = 1, 2,… , 𝑛 (i.e., penalized BoD composite indicator of order 𝑝 minus the corresponding BoD composite
indicator of order 𝑝) for 𝑝 = −5,−4,−3,−2,−1, 0 (left panel) 𝑝 = 0, 1, 2, 3, 4, 5 (right panel).
values varying from −𝑀 + 1 to 𝑀 − 1. We choose 𝑀 = 11 since in the
literature the 𝑝-value considered usually varies from −5 to 5.

We solve Problem (29)–(31) for each value 𝑝𝑙, 𝑙 = 1, 2,… , 11 and
for each country/unit 𝑖, 𝑖 = 1, 2,… , 𝑛. We therefore obtain the weights
𝜋𝑖,𝑝,1, 𝜋𝑖,𝑝,2, 𝜋𝑖,𝑝,3 relative, respectively, to the three indicators mentioned
above, i.e., Health (𝐻), Education (𝐸), and Income (𝐼). Table 3 shows
the average values (left panel) and third quartile (right panel) of the
weight distribution 𝜋𝑖,𝑝𝑙 ,𝑗 , 𝑖 = 1, 2,… , 𝑛 corresponding to the three
sub-indicators (i.e. 𝑗 = 1, 2, 3) and the eleven values of the order 𝑝.

The left panel of Table 3 shows that the average values and third
quartiles of the country-specific weights of the health dimension dom-
inates for education and income for any 𝑝 = −5,−4,… , 4, 5. The mean
of the weights associated with health are constant with respect to 𝑝,
while the mean associated with education increases slightly with 𝑝,
and the same behavior can be seen in the third quartile of health
and education. Interestingly, the mean of the weights associated with
income slightly varies with 𝑝, but the third quartile is zero as a function
of 𝑝. This implies that only a few units have weights different from
zero, indicating that health and education play a more crucial role than
income. Furthermore, the right panel of Table 3 shows that education
plays a more relevant role when aggregative approaches with positive
order 𝑝 are used.

Recalling that, when a power mean of positive order is used as
indicator, the marginal increase in the value of the indicator is much
higher when the absolute value of the indicator is large (Rogge, 2018a),
1023
we conclude that education especially affects the composite indicators
that encourage the improvement of countries with good performance.

As in Section 4.1, we analyze the distribution of the ranking dif-
ference 𝑑𝑖(𝑝) = 𝑟𝑃𝐵𝑜𝐷(𝑖, 𝑝) − 𝑟𝐵𝑜𝐷(𝑖, 𝑝), 𝑖 = 1, 2,… , 𝑛, induced by the
composite indicators defined by the penalized BoD and BoD direct
approaches, respectively. Fig. 3 shows the distribution of 𝑑𝑖(𝑝), 𝑖 =
1, 2,… for negative values of 𝑝, 𝑝 = −5,−4,−3,−2,−1 and 𝑝 = 0 (left
panel), and for positive 𝑝, 𝑝 = 1, 2, 3, 4, 5 and 𝑝 = 0 (right panel).

The distributions shown in Fig. 3 are not symmetric with nega-
tive skewness (i.e., −2.931, −2.792, −2.812, −2.935, −2.826, −2.367,
−3.442, −3.324, −3.298, −2.861, −2.876). In line with the power mean
(penalized and non-penalized) composite indicators, the penalized BoD
provides smaller rankings than those from the non-penalized BoD indi-
cators. A comparison between Fig. 3 and Fig. 1 shows that the standard
deviations of the distributions of the BoD ranking differences (penalized
minus non-penalized) are smaller than the standard deviations of the
distributions of the power mean ranking differences (penalized minus
non-penalized). The eleven standard deviations for 𝑝 varying from −5 to
5 are about halved with respect to those of power mean approach; these
are as follows: 1.424, 1.435, 1.429, 1.431, 1.364, 1.311, 1.452, 1.475,
1.501, 1.414, 1.419. This is an expected finding since the BoD weights
are country-specific, thereby reducing the effect of the penalization.
This finding, together with the results about the quartiles shown in
the right panel of Table 3, leads to conclude that the concentration
of weights in the dimensions of wealth and education reduces the
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Table 4
The first twenty (top panel) and the last twenty (bottom panel) countries according to the power means (non penalized/penalized) and BoD direct country-specific weights
(non-penalized/penalized) for 𝑝 = −1 (HM), 0 (GM), 1 (AM). The rankings are obtained using three digits after the decimal.

‘‘Power-mean ranking’’ ‘‘Benefit of the doubt ranking’’

Country rHM rGM rAM rPHM rPGM rPAM rHM rGM rAM rPHM rPGM PAM

Liechtenstein 21 19 19 23 23 21 1 1 1 1 1 1
Qatar 46 45 39 60 53 46 1 1 1 1 1 1
Ireland 2 2 2 2 2 2 1 1 1 5 4 3
Germany 5 6 6 5 5 5 1 1 1 8 5 4
Norway 1 1 1 1 1 1 1 1 1 8 5 4
Switzerland 2 2 2 3 3 2 1 1 1 5 7 4
Singapore 12 11 10 15 12 12 1 1 1 1 7 7
Australia 9 8 8 8 8 9 1 1 1 7 7 7
Iceland 4 4 5 4 4 4 1 1 1 8 7 7
Hong Kong 5 4 4 6 6 5 1 1 1 1 3 12
Japan 21 21 21 22 21 21 11 11 11 11 11 10
Luxembourg 24 22 20 24 24 24 11 11 11 11 11 10
New Zealand 15 15 15 14 15 15 11 11 11 13 13 13
Sweden 7 7 7 7 7 7 14 14 14 13 13 13
Finland 11 11 12 11 11 11 15 15 15 15 15 15
Netherlands 7 8 8 8 8 7 16 16 16 16 16 16
United Kingdom 13 13 13 12 12 13 17 17 17 18 18 18
United States 17 17 17 17 17 17 18 18 18 17 17 17
Denmark 10 10 10 10 10 10 19 19 19 20 20 20
Arab Emirates 32 31 30 34 33 32 20 20 20 19 19 19

Zimbabwe 150 150 152 147 148 149 170 170 170 170 170 170
Gambia 172 172 173 169 169 172 171 171 171 170 170 170
Benin 157 158 161 154 155 157 172 172 172 172 172 172
Burkina Faso 182 182 181 182 182 182 173 173 173 173 173 173
Burundi 185 185 185 184 184 186 173 173 173 173 173 173
Guinea 177 178 179 176 175 175 173 173 173 173 173 173
Angola 147 148 150 145 145 147 176 176 176 176 176 176
Togo 166 167 170 165 165 166 177 177 177 177 177 177
Mozambique 181 181 182 180 180 181 178 178 178 178 178 178
Congo 174 175 177 173 174 174 179 179 179 179 179 179
Cameroon 151 153 154 148 151 151 180 180 180 180 180 180
Mali 186 184 183 186 184 185 181 181 181 181 181 181
Côte d’Ivoire 160 162 162 156 157 160 182 182 182 182 182 182
Guinea-Bissau 173 175 180 170 170 173 183 183 183 183 183 183
Nigeria 158 161 164 153 153 158 184 184 184 184 184 184
South Sudan 184 186 186 183 183 184 185 185 185 185 185 185
Lesotho 163 165 168 158 159 162 186 186 186 186 186 186
Sierra Leone 180 182 183 175 178 179 187 187 187 187 187 187
Chad 188 188 188 187 188 188 188 188 188 188 188 188
Central African Republic 187 187 189 185 187 187 189 189 189 189 189 189
Fig. 4. Distribution of the BoD arithmetic mean weights across the globe. Health weights (left map), Education weights (middle map) and Income weights (right map).
variability among indicators and, as a consequence, reduces the effect
of penalization.

Table 4 shows the first twenty (top panel) and the last twenty
(bottom panel) countries according to the non-penalized arithmetic
BoD ranking. Columns two to four contain the rank of non-penalized
and penalized harmonic, geometric, and arithmetic means, respec-
tively. Columns five to twelve contain the rank obtained with the
penalized/non-penalized harmonic, geometric, and arithmetic BoD pro-
cedure. The rankings were obtained using three digits after the decimal.

Table 4 highlights two results. First, there are several units tied for
first position in the BoD ranking, while the penalized one refines the
ranking. Second, there is a great difference between the power mean
1024
and direct BoD approaches mainly based on the fact that the indicator
of several countries is constructed only with a weight different from
zero. This is the case of Liechtenstein and Qatar, which have zero
weights for health and education, while the weights are equal to one for
income. To better investigate this point we use Fig. 4, which shows the
distribution of the weights relative to health (left), education (middle),
and income (right) across the globe. We can see that the weights of
the African countries are very concentrated in one dimension, mainly
health or, for the richest countries, income. The western countries have
more diffused weights (dark gray in the panels of Fig. 4). The BoD
and arithmetic mean rankings are rather close for the poorest countries
where the values of education and income are very small, and they are
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Fig. 5. Function 𝐹 of Problem (27) when the BoD power mean and BoD penalized power mean are used to build the composite indicator and 𝑝 varies from −5 to 5 (left panel)
and from −1 to 5 (right panel).
Table 5
Spearman’s rank correlation between the power mean and BoD rankings. All
correlations are significant with p-values less than 0.001.

rHM rGM rAM rPHM rPGM rPAM

rBoD_HM 0.95 0.95 0.96 0.94 0.94 0.95
rBoD_GM 0.95 0.95 0.96 0.94 0.94 0.95
rBoD_AM 0.95 0.95 0.96 0.94 0.94 0.95
rBoD_PHM 0.95 0.95 0.96 0.93 0.94 0.95
rBoD_PGM 0.95 0.95 0.96 0.93 0.94 0.95
rBoD_PAM 0.95 0.95 0.96 0.93 0.94 0.95

also close for western countries where the weights are spread out. We
continue to analyze the relationship between the BoD and power mean
approaches using Spearman’s rank correlation.

Table 5 shows the values of the rank correlation between the
composite indicators obtained with penalized and non-penalized power
mean aggregation procedure and the penalized and non-penalized BoD
aggregation procedure. We observe that the correlation coefficients
reach the largest values for the correlation between the non-penalized
arithmetic mean composite indicators and the indicators obtained with
the BoD procedure.

We conclude this section by solving problem (27) to investigate
whether the geometric mean also plays a crucial role in the BoD
aggregation procedure.

Fig. 5 shows the graph of the objective function 𝐹 of Problem (27)
as a function of 𝑝 when 𝑝 varies from −5 to 5 (left panel) and from −1 to
5 (right panel) when the BoD approach is used. In contrast to the power
mean aggregation, the curves are rather flat with the maximum value
achieved by the non-penalized BoD. Interestingly, the penalized mean
shows ranking difference magnitudes smaller than those of the non-
penalized mean as observed in the case of power means. The results
in Fig. 5 show that the ranking differences between the penalized and
non-penalized BoD are negligible, especially when compared with the
differences observed in Fig. 1. This confirms that the effect of the
penalization is reduced by the choice of country-specific weights.
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5. Conclusions

This paper proposes the penalized power means as an approach
to constructing composite indicators that extends and supports the
Mazziotta Pareto Index. The penalized mean accounts for the variability
across indicators while continuing to satisfy some crucial properties al-
ready met by power means. More interestingly, the penalized approach
provides composite indicators whose corresponding rankings are less
sensitive to the choice of the 𝑝-order and more refined than the non
penalized ones. In fact, the penalization is able to discriminate units
taking into account for their horizontal variability. The discriminatory
power of the penalized means reduces when unit specific weights are
considered. The choice of the parameter 𝐾 is crucial for unit specific
weights and it is should be further investigated. In Appendix D we
provide one simple choice. Our empirical analysis shows that the non-
penalized/penalized geometric mean is the best choice for reducing
ranking variations with respect to order 𝑝, since 𝑝 = 0 is the ‘‘middle
point’’ of the interval 𝑝 ∈ (−∞,+∞). This result can be explained for the
non-penalized power mean by the monotonicity of the power means,
and it seems to extend to the penalized power means as well.

Finally, the penalization proposed applies to other aggregation pro-
cedures such as the class of Benefit of the Doubt approaches. Exten-
sions to the indirect BoD and Biggeri’s approaches deserve further
investigation.

Moreover, it could be interesting to investigate how the correlations
between indicators and the non-uniqueness issue of BoD weights impact
on the ranking. The outcomes resulting from the comparison of the pe-
nalized power mean with both the BoD direct and penalized BoD direct
approaches may be affected by the positive correlation among the sub-
indicators of the HDI. These comparative findings could significantly
differ if the sub-indicators exhibit negative or mixed correlations. These
points deserve attention and will be the object of future study.
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Appendix A. Auxiliary results

Following Grünwald and Páles (2022), we recall the following
technical lemma, which is useful for establishing Properties 11 and 12
in Proposition 3. The latter is a simplified version of Corollary 12 in
Grünwald and Páles (2022) when 𝑝1(𝑥) = 𝑝2(𝑥) = ⋯ = 𝑝𝑛(𝑥) = 𝑝(𝑥) = 𝑥𝛼

and 𝑞1(𝑥) = 𝑞2(𝑥) = ⋯ = 𝑞𝑛(𝑥) = 𝑞(𝑥) = 𝑥𝛽 . For the reader’s convenience,
we outline the proof.

Lemma 1. Let 𝐼 ⊂ R+, 𝑛 ≥ 2, 𝑥𝑖 ∈ 𝐼 , 𝑖 = 1, 2,… , 𝑛. Let 𝛼, 𝛽 ∈ R such
that 𝛽 ≥ 𝛼 > 0, then
∑𝑛

𝑖=1 𝑥
𝛽−1
𝑖

∑𝑛
𝑖=1 𝑥

𝛽
𝑖

≤
∑𝑛

𝑖=1 𝑥
𝛼−1
𝑖

∑𝑛
𝑖=1 𝑥

𝛼
𝑖

. (32)

Proof of Lemma 1.
Let 𝛿 = 𝛽 − 𝛼 ≥ 0. It is simple to prove that the following inequality

holds:

𝑡𝛿
(

1 − 1
𝑡

)

≥
(

1 − 1
𝑡

)

, ∀𝑡 > 0. (33)

For 𝑥1, 𝑥2,… , 𝑥𝑛, 𝑦 ∈ 𝐼 , choosing 𝑡 = 𝑥𝑖∕𝑦 in (33), inequality (33)
becomes
(

𝑥𝑖
𝑦

)𝛽−𝛼 (

1 −
𝑦
𝑥𝑖

)

≥
(

1 −
𝑦
𝑥𝑖

)

, (34)

hich also reads
(

𝑥𝑖
𝑦

)𝛽 (

1 −
𝑦
𝑥𝑖

)

≥
(

𝑥𝑖
𝑦

)𝛼 (

1 −
𝑦
𝑥𝑖

)

, (35)

that is,
(

1
𝑦

)𝛽
(

𝑥𝛽𝑖 − 𝑦𝑥𝛽−1𝑖

)

≥
(

1
𝑦

)𝛼
(

𝑥𝛼𝑖 − 𝑥𝛼−1𝑖
)

. (36)

Summing (36) in 𝑖 ∈ {1, 2,… , 𝑛}, we obtain
(

1
𝑦

)𝛽
( 𝑛
∑

𝑖=1
𝑥𝛽𝑖 − 𝑦

𝑛
∑

𝑖=1
𝑥𝛽−1𝑖

)

≥
(

1
𝑦

)𝛼
( 𝑛
∑

𝑖=1
𝑥𝛼𝑖 −

𝑛
∑

𝑖=1
𝑥𝛼−1𝑖

)

. (37)

hoosing 𝑦 =
∑𝑛

𝑖=1 𝑥
𝛼
𝑖

∑𝑛
𝑖=1 𝑥

𝛼−1
𝑖

in the right side of (37) and simplifying
(

1
𝑦

)𝛽

yield
( 𝑛
∑

𝑖=1
𝑥𝛽−1𝑖

)(

∑𝑛
𝑖=1 𝑥

𝛽
𝑖

∑𝑛
𝑖=1 𝑥

𝛽−1
𝑖

− 𝑦

)

≥ 0. (38)

Thus, bearing in mind that 𝑦 equals
∑𝑛

𝑖=1 𝑥
𝛼
𝑖

∑𝑛
𝑖=1 𝑥

𝛼−1
𝑖

, the inequality (38) reads

( 𝑛
∑

𝑖=1
𝑥𝛽−1𝑖

)(

∑𝑛
𝑖=1 𝑥

𝛽
𝑖

∑𝑛
𝑖=1 𝑥

𝛽−1
𝑖

−
∑𝑛

𝑖=1 𝑥
𝛼
𝑖

∑𝑛
𝑖=1 𝑥

𝛼−1
𝑖

)

≥ 0. (39)

This concludes the proof. □
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Proof of Proposition 2

The derivative of 𝑆2
𝑝 (𝐼 + 𝑐) with respect to 𝑐 is

𝜕�̃�2
𝑝 (𝐼 + 𝑐)

𝜕𝑐
= 2𝐾

𝑝

[

1
𝑚
∑𝑚

𝑗=1(𝐼𝑗 + 𝑐)2𝑝
]

[

1
𝑚
∑𝑚

𝑗 (𝐼𝑗 + 𝑐)𝑝
]3

×
⎡

⎢

⎢

⎣

1
𝑚
∑𝑚

𝑗=1(𝐼𝑗 + 𝑐)2𝑝−1

1
𝑚
∑𝑚

𝑗=1(𝐼𝑗 + 𝑐)2𝑝
−

1
𝑚
∑𝑚

𝑗=1(𝐼𝑗 + 𝑐)𝑝−1

1
𝑚
∑𝑚

𝑗=1(𝐼𝑗 + 𝑐)𝑝

⎤

⎥

⎥

⎦

, (40)

hich also reads

𝜕�̃�2
𝑝 (𝐼 + 𝑐)

𝜕𝑐
= 2𝐾

𝑝

[

1
𝑚
∑𝑚

𝑗=1(𝐼𝑗 + 𝑐)2𝑝
]

[

1
𝑚
∑𝑚

𝑗 (𝐼𝑗 + 𝑐)𝑝
]3

𝐻𝑝(𝑐), (41)

here 𝐻𝑝(𝑐) is given by

𝑝(𝑐) =
⎡

⎢

⎢

⎣

1
𝑚
∑𝑚

𝑗=1(𝐼𝑗 + 𝑐)2𝑝−1

1
𝑚
∑𝑚

𝑗=1(𝐼𝑗 + 𝑐)2𝑝
−

1
𝑚
∑𝑚

𝑗=1(𝐼𝑗 + 𝑐)𝑝−1

1
𝑚
∑𝑚

𝑗=1(𝐼𝑗 + 𝑐)𝑝

⎤

⎥

⎥

⎦

. (42)

he sign of
𝜕�̃�2

𝑝 (𝐼+𝑐)
𝜕𝑐 depends on 𝐻𝑝(𝑐)

𝑝 . Applying Lemma 1 in Appendix A

with 𝛽 = 2𝑝 and 𝛼 = 𝑝 when 𝑝 > 0, we obtain 𝐻𝑝(𝑐) ≤ 0 and 𝐻𝑝(𝑐)
𝑝 ≤ 0.

hoosing 𝛼 = 2𝑝, 𝛽 = 𝑝, when 𝑝 < 0, we have 𝐻𝑝(𝑐) ≥ 0 and 𝐻𝑝(𝑐)
𝑝 ≤ 0.

By virtue of Eq. (41), this implies that �̃�2
𝑝 (𝐼+𝑐) is a decreasing function

of 𝑐.
This concludes the proof. □

Proof of Proposition 3

Observing that 𝑀𝑝(𝑐) = 𝑐 and �̃�2
𝑝 (𝑐) = 0 ∀𝑝, we have 𝑃𝑀±

𝑝 (𝑐) = 𝑐.
Since lim

𝑐→0
𝑀𝑝(𝑐) = 0 and lim

𝑐→0
�̃�2
𝑝 (𝑐) = 0, Property 2 follows directly

from (16).
Properties 3 and 4 follow easily, observing that 𝑔−𝑝 (𝐼) ≤ 1, 𝑔+𝑝 (𝐼) ≥ 1

nd 𝑔±𝑝 = 1 if and only if �̃�2
𝑝 (𝐼) = 0.

The quantity �̃�2
𝑝 (𝐼) in (16) can be rewritten as follows:

�̃�2
𝑝 (𝐼) =

𝐾
𝑝2

1
𝑚

𝑚
∑

𝑗=1

(( 𝐼𝑗
𝑀𝑝(𝐼)

)𝑝

− 1
)2

. (43)

Taking the limit of (43) for 𝑝 → −∞ and recalling that 𝑀𝑝(𝐼) ⟶
𝑝→−∞

min(𝐼1, 𝐼2,… , 𝐼𝑚) ≤ 𝐼𝑗 , 𝑗 = 1, 2,… , 𝑚, we have

lim
𝑝→−∞

𝑝 �̃�2
𝑝 (𝐼) = lim

𝑝→−∞
1
𝑝
= 0−. (44)

Substituting (44) into (15) we prove Property 5.
Analogously, taking the limit of (43) for 𝑝 → +∞ and recalling that
𝑀𝑝(𝐼) ⟶

𝑝→+∞
max(𝐼1, 𝐼2,… , 𝐼𝑚) ≥ 𝐼𝑗 , 𝑗 = 1, 2,… , 𝑚, we obtain

lim
𝑝→+∞

𝑝 �̃�2
𝑝 (𝐼) = lim

𝑝→+∞
1
𝑝
= 0+. (45)

Substituting (45) into (15), we obtain Property 6.
Taking the limit for 𝑝 → 0 of 𝑔±𝑝 (𝐼), we obtain

lim
𝑝→0

𝑔±𝑝 (𝐼) =lim𝑝→0

(

1 ± 𝑝�̃�2
𝑝 (𝐼)

)
1
𝑝 = lim

𝑝→0
exp

⎧

⎪

⎨

⎪

⎩

ln
(

1 ± 𝑝�̃�2
𝑝 (𝐼)

)

𝑝

⎫

⎪

⎬

⎪

⎭

=lim
𝑝→0

exp

⎧

⎪

⎨

⎪

⎩

�̃�2
𝑝 (𝐼)

ln
(

1 ± 𝑝�̃�2
𝑝 (𝐼)

)

𝑝�̃�2
𝑝 (𝐼)

⎫

⎪

⎬

⎪

⎭

= exp

⎧

⎪

⎨

⎪

lim
𝑝→0

�̃�2
𝑝 (𝐼)

ln
(

1 ± 𝑝�̃�2
𝑝 (𝐼)

)

𝑝�̃�2
𝑝 (𝐼)

⎫

⎪

⎬

⎪

⎩ ⎭
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𝑝

=exp
{

�̃�2
0 (𝐼)

}

exp

⎧

⎪

⎨

⎪

⎩

lim
𝑝→0

ln
(

1 ± 𝑝�̃�2
𝑝 (𝐼)

)

𝑝�̃�2
𝑝 (𝐼)

⎫

⎪

⎬

⎪

⎭

, (46)

nd using the L’Hôpital’s rule, we obtain

lim
→0

𝑔±𝑝 (𝐼) = exp
{

±�̃�2
0 (𝐼)

}

. (47)

This concludes the proof of Property 7.
Property 8 follows from Properties 3 and 6.
Property 9 follows from Properties 3 and 5.
Property 10 follows from the homogeneity property of the power

means, observing that 𝑔±𝑝 (𝑐 𝐼) = 𝑔±𝑝 (𝐼).
To prove Property 11 and 12, it is enough to prove that the pe-

alization factor 𝑔−𝑝 (𝐼 + 𝑐) ≥ 𝑔−𝑝 (𝐼) and 𝑔+𝑝 (𝐼 + 𝑐) ≤ 𝑔+𝑝 (𝐼), for any
𝑐 ≥ 0.

Let 𝐺±
𝑝 (𝑐) = 𝑔±𝑝 (𝐼 + 𝑐). The derivative of 𝐺±

𝑝 with respect to 𝑐 is

𝑑𝐺±
𝑝 (𝑐)

𝑑𝑐
= ±(𝐺±

𝑝 )
1−𝑝

𝜕�̃�2
𝑝 (𝐼 + 𝑐)

𝜕𝑐
. (48)

he derivative of 𝑆2
𝑝 (𝐼 + 𝑐) with respect to 𝑐 is non-positive as proven

n Proposition 2. This concludes the proof of Properties 11 and 12.
Property 8 implies that 𝑃𝑀−

𝑝 (𝐼) ≤ 𝑏 for all choice of 𝐾 in Defini-
ion 1, moreover, Property 1 implies that 𝑃𝑀−

𝑝 (𝑎) = 𝑎, therefore it is
always possible to find 𝐾 > 0 such that 𝑃𝑀−

𝑝 (𝐼) ≥ 𝑎 for all 𝐼 ∈ [𝑎, 𝑏]𝑚.
n the other hand, Property 9 implies that 𝑃𝑀+

𝑝 (𝐼) ≥ 𝑎 for all choice
f 𝐾 in Definition 1, moreover, Property 1 implies that 𝑃𝑀+

𝑝 (𝑏) = 𝑏,
therefore it is always possible to find 𝐾 > 0 such that 𝑃𝑀+

𝑝 (𝐼) ≤ 𝑏 for
ll 𝐼 ∈ [𝑎, 𝑏]𝑚.

This concludes the proof of Property 13 and the proof of the
roposition. □

ppendix C. Detailed ranking corresponding to the composite in-
icators of Sections 4.1 and 4.2

Table 6 and Table 7 show the country rankings according to har-
onic (HM), geometric (GM), and arithmetic (AM) means and their
enalized versions denoted with PHM, PGM, and PAM. The prefix 𝑟
eans rank.

ppendix D. Benefit of the Doubt aggregative approach with rel-
tive importance constraints

In this Appendix we analyze the effect of penalization on the
omposite indicators defined by the Benefit of the Doubt (BoD) di-
ect approach (see, Rogge (2018a) and Rogge (2018b)) when relative
mportance constraints on the weights are imposed.

The composite indicators obtained applying the ‘‘direct BoD ap-
roach’’ with relative importance constraints are given by (28), where,
or each unit 𝑖, 𝑖 = 1, 2,… , 𝑛, the weights 𝜋𝑖,𝑝,𝑗 , 𝑗 = 1, 2,… , 𝑚, with 𝑝 ≠ 0

are determined as solution of optimization problem (29)–(31) with the
addition of the following constraints (see Rogge (2018a)):

𝜋𝑖,𝑝,𝑗𝐼
𝑝
𝑖,𝑗

∑𝑚
𝑠=1 𝜋𝑐,𝑝,𝑠𝐼

𝑝
𝑐,𝑠

≥ 0.1, 𝑐 = 1, 2,… , 𝑛, 𝑗 = 1, 2,… , 𝑚. (49)

he constraints (49) guarantee that each indicator has a relative con-
ribution of at least 10%.

The case 𝑝 = 0 is obtained numerically by choosing 𝑝 close to zero
i.e., 𝑝 = 0.0001). Results very close to 𝑝 = 0.0001 are obtained by
hoosing 𝑝 = −0.0001.

As done in Section 4, we solve Problem (29)–(31), (49) for each
alue 𝑝𝑙 = −𝑀 + (2𝑙 − 1), 𝑙 = 1, 2,… ,𝑀 , with 𝑀 = 11, and for each
ountry/unit 𝑖, 𝑖 = 1, 2,… , 𝑛. Here, the penalized power means are
omputed rescaling the quantities �̃�𝑤,𝑝,𝑖, with 𝑤 = 𝜋 and 𝑝 = 𝑝𝑙, in
26) by choosing 𝐾 as follows:

= 0.01
max

𝑖=1,2,…,𝑛,
�̃�𝜋,𝑝𝑙 ,𝑖

. (50)
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𝑙=1,2,…,𝑀
This rescaling is necessary to make the loss of information �̃�2
𝑤,𝑝,𝑖, with

𝑤 = 𝜋 and 𝑝 = 𝑝𝑙, comparable across different units 𝑖, 𝑖 = 1, 2,… , 𝑛, and
rders 𝑝𝑙, 𝑙 = 1, 2,… ,𝑀 . Note that, with the choice (50), the maximum

value attained by the quantities �̃�2
𝑤,𝑝,𝑖, with 𝑤 = 𝜋 and 𝑝 = 𝑝𝑙, is equal to

.01. This is in line with the standardization process made by Mazziotta
nd Pareto, where the variance of the indicators is to 0.01 times its
ean. Note that with this choice of 𝐾 the penalized power means are

ange preserving.
Table 8 shows the average values (left panel) and third quartile

right panel) of the weight distribution 𝜋𝑖,𝑝𝑙 ,𝑗 , 𝑖 = 1, 2,… , 𝑛 correspond-
ing to the three sub-indicators (i.e. 𝑗 = 1, 2, 3) and the eleven values
of the order 𝑝. We recall that 𝜋𝑖,𝑝,1, 𝜋𝑖,𝑝,2, 𝜋𝑖,𝑝,3 are, respectively, the

eights relative to the three indicators Health (𝐻), Education (𝐸), and
ncome (𝐼).

Comparing Table 8 with Table 3 we can observe that, although the
verage values and third quartiles of the country-specific weights of
he health dimension continue to dominate for education and income
or any 𝑝 = −5,−4,… , 4, 5, this dominance is weaker. Therefore, we
an conclude that health and education play a more crucial role than
ncome. Differently from the quartiles shown in Table 3, the third
uartiles of income, although smaller than those of health and educa-
ion, are not zero. This is the consequence of the relative importance
onstraints.

As done in Section 4, we analyze the distribution of the ranking
ifference 𝑑𝑖(𝑝) = 𝑟𝑃𝐵𝑜𝐷(𝑖, 𝑝) − 𝑟𝐵𝑜𝐷(𝑖, 𝑝), 𝑖 = 1, 2,… , 𝑛, induced by

the composite indicators defined by the penalized BoD and BoD direct
approaches with relative importance constraints, respectively. Fig. 6
shows the distribution of 𝑑𝑖(𝑝), 𝑖 = 1, 2,… for negative values of 𝑝,
= −5,−4,−3,−2,−1 and 𝑝 = 0 (left panel), and for positive 𝑝, 𝑝 =

1, 2, 3, 4, 5 and 𝑝 = 0 (right panel).
The distributions shown in Fig. 6 are not symmetric with negative

skewness except for 𝑝 = −3 (i.e., −0.066, −0.948, 0.728, −0.681,
−0.273, −0.195, −1.737, −0.435, −1.773, −2.206, −1.830, respec-
tively, for 𝑝 varying from −5 to 5). A comparison between Figs. 3
and 6 shows that the standard deviations of the distributions of the
BoD ranking differences (penalized minus non-penalized) with relative
importance constraints are smaller and more variable with respect to
those of BoD approach for all values of 𝑝. The values of the standard
deviations are as follows: 0.365, 0.505, 0.461, 0.417, 0.623, 0.696,
0.999, 0.768, 0.988, 1.085, 1.229. This means that the use of rela-
tive importance constraints contributes further to reduce the effect of
penalization.

We conclude investigating the role of the geometric mean in the
BoD aggregation procedure with relative importance constraints. To
this end, we show in Fig. 7 the graph of the objective function 𝐹 of
Problem (27) as a function of 𝑝 when 𝑝 varies from −5 to 5 (left panel)
and from −1 to 5 (right panel) when the BoD approach with relative
importance constraints is used. Note that the addition of relative impor-
tance constraints to BoD approach makes the graph of function 𝐹 more
similar in size and shape to the function 𝐹 associated with the power
mean approach (see Fig. 2). Moreover, analogously to the power mean
aggregation, the minimizer for both the functions shown in Fig. 7 is
the middle point of the interval, i.e., 𝑝 = 0 (left panel) and 𝑝 = 2 (right
panel).

Table 9 shows the first twenty (top panel) and the last twenty
(bottom panel) countries according to the non penalized and penalized
BoD with relative importance constraints.

To investigate the role of relative importance constraints, we com-
pare the rankings obtained with the BoD without (Table 4) and with
(Table 9) relative importance constraints. Note that, the rankings of
Table 4 are obtained choosing 𝐾 = 1. Nevertheless, the selection of
𝐾, as outlined in (50), yields identical rankings to those presented in
Table 4. The comparison indicates that incorporating relative impor-
tance constraints into the BoD diminishes variations in rankings. This
is likely due to the fact that the introduction of constraints reduces the
admissible set of weights, and, as consequence, weakens the refining
property of the penalization approach. This effect is more evident for

𝑝 = 0 and 𝑝 = −1.
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Table 6
Country rankings, listed in alphabetical order, obtained with the power means (non penalized/penalized) and BoD direct country-specific weights (non-penalized/penalized). The
method is ‘‘min’’ and three digits after the decimal are used to obtain the ranking.

‘‘Power-mean ranking’’ ‘‘Benefit of the doubt ranking’’

Country rHM rGM (rHDI) rAM rPHM rPGM rPAM rHM rGM rAM rPHM rPGM PAM

Afghanistan 167 169 169 168 168 168 157 157 157 157 157 157
Albania 69 69 67 68 68 69 55 55 55 52 52 52
Algeria 91 91 91 93 92 91 72 72 72 71 71 71
Andorra 37 36 36 44 40 37 30 29 29 29 29 29
Angola 147 148 150 145 145 147 176 176 176 176 176 176
Antigua and Barbuda 80 78 74 82 80 80 68 68 68 68 68 68
Argentina 45 46 47 44 45 45 46 46 46 47 47 47
Armenia 77 81 81 73 75 78 90 90 90 90 90 90
Australia 9 8 8 8 8 9 1 1 1 7 7 7
Austria 18 18 18 18 18 18 29 29 29 31 31 31
Azerbaijan 86 88 89 85 85 86 108 108 108 108 108 108
Bahamas 57 57 59 57 57 57 67 67 67 67 67 67
Bahrain 42 41 41 43 42 41 45 45 45 45 45 45
Bangladesh 133 133 133 136 133 133 113 113 113 113 113 113
Barbados 57 59 59 58 59 59 47 47 47 46 46 46
Belarus 53 53 53 51 51 53 61 61 61 62 62 62
Belgium 13 13 13 13 14 13 25 25 25 25 27 27
Belize 112 111 107 113 114 112 95 95 95 95 95 95
Benin 157 158 161 154 155 157 172 172 172 172 172 172
Bhutan 130 129 129 132 131 129 121 121 121 120 120 120
Bolivia (Plurinational State of) 107 107 109 103 105 107 124 124 124 124 124 124
Bosnia and Herzegovina 76 73 74 75 75 76 64 64 64 64 64 64
Botswana 96 100 101 96 96 96 131 131 131 132 132 132
Brazil 84 84 84 83 83 84 83 83 83 83 83 83
Brunei Darussalam 47 47 46 53 51 47 27 27 27 25 25 25
Bulgaria 55 56 58 52 54 55 83 83 83 85 85 85
Burkina Faso 182 182 181 182 182 182 173 173 173 173 173 173
Burundi 185 185 185 184 184 186 173 173 173 173 173 173
Cabo Verde 126 126 127 126 126 126 108 108 108 108 108 108
Cambodia 144 144 143 146 146 144 134 134 134 134 134 134
Cameroon 151 153 154 148 151 151 180 180 180 180 180 180
Canada 16 16 16 15 16 16 22 22 21 22 22 22
Central African Republic 187 187 189 185 187 187 189 189 189 189 189 189
Chad 188 188 188 187 188 188 188 188 188 188 188 188
Chile 42 43 44 41 42 43 44 44 44 43 43 43
China 85 85 85 87 86 85 72 72 72 71 71 71
Colombia 83 83 83 84 83 83 65 65 65 65 65 65
Comoros 153 156 156 152 152 152 161 161 161 161 161 161
Congo 149 149 151 149 149 149 158 158 158 158 158 158
Congo (Democratic Republic of the) 174 175 177 173 174 174 179 179 179 179 179 179
Costa Rica 63 63 62 65 64 63 43 43 43 42 42 42
Croatia 44 44 45 40 42 44 52 52 52 55 55 55
Cuba 73 70 70 78 77 73 51 51 51 51 51 51
Cyprus 32 33 33 31 31 32 39 39 39 39 39 39
Czechia 26 27 27 25 26 26 36 36 36 36 36 36
Côte d’Ivoire 160 162 162 156 157 160 182 182 182 182 182 182
Denmark 10 10 10 10 10 10 19 19 19 20 20 20
Djibouti 169 166 159 178 172 167 147 147 147 147 147 147
Dominica 96 93 94 99 99 98 58 58 58 57 57 57
Dominican Republic 89 88 88 90 89 89 101 101 101 101 101 101
Ecuador 86 86 86 86 87 86 68 68 68 68 68 68
Egypt 115 116 115 116 116 115 120 120 120 119 119 119
El Salvador 124 124 123 124 124 124 106 106 106 105 105 105
Equatorial Guinea 146 145 145 149 147 145 141 141 141 141 141 141
Eritrea 183 180 176 188 186 183 152 152 152 152 152 152
Estonia 29 29 30 28 28 29 38 38 38 38 38 38
Eswatini (Kingdom of) 138 138 142 133 136 138 168 168 168 168 168 168
Ethiopia 177 173 172 179 179 178 151 151 151 151 151 151
Fiji 92 93 96 91 91 92 115 115 115 115 115 115
Finland 11 11 12 11 11 11 15 15 15 15 15 15
France 27 26 26 27 27 27 30 29 29 29 29 29
Gabon 117 119 119 114 115 116 140 140 140 140 140 140
Gambia 172 172 173 169 169 172 171 171 171 170 170 170
Georgia 57 61 63 56 57 57 48 48 48 48 48 48
Germany 5 6 6 5 5 5 1 1 1 8 5 4
Ghana 137 138 140 133 136 137 163 163 163 163 163 163
Greece 31 31 32 30 30 31 34 34 34 34 34 34
Grenada 71 74 78 69 70 71 104 104 104 104 104 104
Guatemala 127 127 125 130 129 127 99 99 99 99 99 99
Guinea 177 178 179 176 175 175 173 173 173 173 173 173
Guinea-Bissau 173 175 180 170 170 173 183 183 183 183 183 183

(continued on next page)
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Table 6 (continued).
Guyana 121 122 122 121 121 121 133 133 133 133 133 133
Haiti 167 170 171 167 167 168 165 165 165 165 165 165
Honduras 134 132 131 138 138 134 87 87 87 87 87 87
Hong Kong 5 4 4 6 6 5 1 1 1 1 3 12
Hungary 40 40 41 38 39 40 57 57 57 58 58 58
Iceland 4 4 5 4 4 4 1 1 1 8 7 7
India 130 130 130 129 130 131 135 135 135 135 135 135
Indonesia 107 107 107 107 105 107 122 122 122 122 122 122
Iran (Islamic Republic of) 70 71 71 71 71 70 75 75 75 74 74 74
Iraq 123 123 123 123 123 123 129 129 129 129 129 129
Ireland 2 2 2 2 2 2 1 1 1 5 4 3
Israel 19 19 21 19 19 19 21 21 21 22 22 22
Italy 30 29 29 32 31 30 25 25 25 22 22 22
Jamaica 100 101 100 97 98 100 96 96 96 96 96 96
Japan 21 21 21 22 21 21 11 11 11 11 11 10
Jordan 101 102 102 100 101 102 96 96 96 96 96 96
Kazakhstan 51 51 51 47 49 51 68 68 68 73 73 73
Kenya 142 143 143 139 140 142 150 150 150 150 150 150
Kiribati 132 134 134 131 132 132 141 141 141 141 141 141
Korea (Republic of) 23 24 24 21 21 23 28 28 28 28 28 28
Kuwait 67 64 56 75 69 66 32 32 32 32 32 32
Kyrgyzstan 120 120 120 120 120 120 117 117 117 117 117 117
Lao People’s Democratic Republic 139 137 137 141 139 139 143 143 143 143 143 143
Latvia 36 37 38 36 36 36 41 41 41 41 41 41
Lebanon 96 92 90 102 100 96 49 49 49 48 48 48
Lesotho 163 165 168 158 159 162 186 186 186 186 186 186
Liberia 175 175 175 173 175 177 163 163 163 163 163 163
Libya 105 104 104 109 105 105 111 111 111 111 111 111
Liechtenstein 21 19 19 23 23 21 1 1 1 1 1 1
Lithuania 34 34 34 33 34 34 37 37 37 37 37 37
Luxembourg 24 22 20 24 24 24 11 11 11 11 11 10
Madagascar 165 163 162 166 166 165 149 149 149 149 149 149
Malawi 175 174 174 177 177 175 161 161 161 161 161 161
Malaysia 60 62 63 59 60 62 81 81 81 80 80 80
Maldives 101 95 91 114 109 101 49 49 49 48 48 48
Mali 186 184 183 186 184 185 181 181 181 181 181 181
Malta 28 28 28 29 28 28 32 32 32 32 32 32
Marshall Islands 119 117 115 119 119 118 101 101 101 101 101 101
Mauritania 161 157 156 163 162 161 156 156 156 156 156 156
Mauritius 65 66 66 63 64 65 87 87 87 87 87 87
Mexico 75 74 76 73 74 75 92 92 92 91 91 91
Micronesia (Federated States of) 136 136 136 133 134 136 143 143 143 143 143 143
Moldova (Republic of) 90 90 93 87 90 90 119 119 119 120 120 120
Mongolia 93 99 99 92 93 93 124 124 124 125 125 125
Montenegro 48 48 48 46 46 48 61 63 63 62 63 63
Morocco 122 121 121 122 122 122 75 75 75 74 74 74
Mozambique 181 181 182 180 180 181 178 178 178 178 178 178
Myanmar 148 147 146 151 149 148 147 147 147 147 147 147
Namibia 129 131 132 127 127 129 158 158 158 160 160 160
Nepal 143 142 140 143 143 143 128 128 128 128 128 128
Netherlands 7 8 8 8 8 7 16 16 16 16 16 16
New Zealand 15 15 15 14 15 15 11 11 11 13 13 13
Nicaragua 127 128 128 128 128 128 96 96 96 96 96 96
Niger 189 189 187 189 189 189 169 169 169 169 169 169
Nigeria 158 161 164 153 153 158 184 184 184 184 184 184
North Macedonia 82 82 82 79 80 82 85 85 85 84 84 84
Norway 1 1 1 1 1 1 1 1 1 8 5 4
Oman 60 59 59 62 60 59 59 59 59 59 59 59
Pakistan 156 154 152 161 159 154 146 146 146 146 146 146
Palau 50 50 50 47 47 50 52 52 52 53 53 53
Palestine 115 115 114 117 117 116 103 103 103 103 103 103
Panama 60 57 55 63 62 59 56 56 56 55 55 55
Papua New Guinea 154 155 154 155 154 152 160 160 160 159 159 159
Paraguay 103 103 103 101 102 103 99 99 99 99 99 99
Peru 79 79 78 77 77 79 75 75 75 74 74 74
Philippines 107 109 111 103 105 107 126 126 126 126 126 126
Poland 35 35 35 34 35 35 40 40 40 40 40 40
Portugal 37 38 37 38 38 38 35 35 35 35 35 35
Qatar 46 45 39 60 53 46 1 1 1 1 1 1
Romania 49 49 49 49 47 49 79 79 79 79 79 79
Russian Federation 52 52 52 49 50 52 74 74 74 78 78 78
Rwanda 162 160 158 162 163 163 139 139 139 139 139 139
Saint Kitts and Nevis 77 74 73 79 79 76 89 89 89 89 89 89
Saint Lucia 86 86 86 87 87 86 82 82 82 82 82 82
Saint Vincent and the Grenadines 93 98 98 95 95 93 114 114 114 114 114 114
Samoa 111 111 109 112 112 111 106 106 106 105 105 105

(continued on next page)
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Table 6 (continued).
Sao Tome and Principe 135 135 135 136 134 135 131 131 131 131 131 131
Saudi Arabia 41 41 41 41 41 41 42 42 42 43 43 43
Senegal 171 168 166 172 172 171 143 143 143 143 143 143
Serbia 64 64 65 60 63 63 80 80 80 80 80 80
Seychelles 66 67 67 66 66 67 91 91 91 92 92 92
Sierra Leone 180 182 183 175 178 179 187 187 187 187 187 187
Singapore 12 11 10 15 12 12 1 1 1 1 7 7
Slovakia 39 39 39 37 37 39 52 52 52 53 53 53
Slovenia 20 22 23 19 19 20 24 24 24 25 25 25
Solomon Islands 152 152 149 159 158 156 108 108 108 108 108 108
South Africa 113 114 118 109 111 113 136 136 136 136 136 136
South Sudan 184 186 186 183 183 184 185 185 185 185 185 185
Spain 25 25 25 26 25 25 23 23 23 21 21 21
Sri Lanka 71 72 71 72 73 71 68 68 68 68 68 68
Sudan 170 170 167 171 170 170 155 155 155 155 155 155
Suriname 93 95 97 94 94 93 122 122 122 122 122 122
Sweden 7 7 7 7 7 7 14 14 14 13 13 13
Switzerland 2 2 2 3 3 2 1 1 1 5 7 4
Syrian Arab Republic 154 151 147 160 161 155 112 112 112 112 112 112
Tajikistan 125 125 126 125 125 125 127 127 127 127 127 127
Tanzania 164 163 165 164 164 164 154 154 154 154 154 154
Thailand 81 79 76 81 80 81 66 66 66 66 66 66
Timor-Leste 141 141 139 142 142 141 137 137 137 136 136 136
Togo 166 167 170 165 165 166 177 177 177 177 177 177
Tonga 104 104 105 103 103 104 105 105 105 107 107 107
Trinidad and Tobago 67 67 69 66 66 68 94 94 94 94 94 94
Tunisia 96 95 95 97 97 98 75 75 75 74 74 74
Turkey 54 54 53 55 55 54 61 61 61 61 61 61
Turkmenistan 110 110 112 107 109 110 138 138 138 138 138 138
Uganda 159 158 160 156 156 159 167 167 167 167 167 167
Ukraine 73 74 78 70 71 73 92 92 92 92 92 92
United Arab Emirates 32 31 30 34 33 32 20 20 20 19 19 19
United Kingdom 13 13 13 12 12 13 17 17 17 18 18 18
United States 17 17 17 17 17 17 18 18 18 17 17 17
Uruguay 56 55 56 54 56 56 59 59 59 59 59 59
Uzbekistan 106 106 106 103 104 106 115 115 115 116 116 116
Vanuatu 140 140 138 140 140 140 130 130 130 130 130 130
Venezuela 113 113 113 111 113 113 118 118 118 117 117 117
Viet Nam 118 117 115 118 118 118 86 86 86 86 86 86
Yemen 179 179 177 181 181 180 153 153 153 153 153 153
Zambia 145 146 148 143 144 145 166 166 166 166 166 166
Zimbabwe 150 150 152 147 148 149 170 170 170 170 170 170
Fig. 6. Distribution of ranking difference 𝑑𝑖(𝑝) = 𝑟𝑃𝐵𝑜𝐷(𝑖, 𝑝) − 𝑟𝐵𝑜𝐷(𝑖, 𝑝), 𝑖 = 1, 2,… , 𝑛 (i.e., penalized BoD composite indicator of order 𝑝 minus the corresponding BoD composite
ndicator of order 𝑝 with relative importance constraints) for 𝑝 = −5,−4,−3,−2,−1, 0 (left panel) 𝑝 = 0, 1, 2, 3, 4, 5 (right panel).
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Table 7
Country rankings obtained with the power means (non penalized/penalized) and BoD direct country-specific weights (non-penalized/penalized). The method is ‘‘min’’ and three
digits after the decimal are used to obtain the ranking. The countries are ordered by HDI (rGM) rank.

‘‘Power-mean ranking’’ ‘‘Benefit of the doubt ranking’’

Country rHM rGM (rHDI) rAM rPHM rPGM rPAM rHM rGM rAM rPHM rPGM PAM

Norway 1 1 1 1 1 1 1 1 1 8 5 4
Ireland 2 2 2 2 2 2 1 1 1 5 4 3
Switzerland 2 2 2 3 3 2 1 1 1 5 7 4
Hong Kong 5 4 4 6 6 5 1 1 1 1 3 12
Iceland 4 4 5 4 4 4 1 1 1 8 7 7
Germany 5 6 6 5 5 5 1 1 1 8 5 4
Sweden 7 7 7 7 7 7 14 14 14 13 13 13
Australia 9 8 8 8 8 9 1 1 1 7 7 7
Netherlands 7 8 8 8 8 7 16 16 16 16 16 16
Denmark 10 10 10 10 10 10 19 19 19 20 20 20
Finland 11 11 12 11 11 11 15 15 15 15 15 15
Singapore 12 11 10 15 12 12 1 1 1 1 7 7
Belgium 13 13 13 13 14 13 25 25 25 25 27 27
United Kingdom 13 13 13 12 12 13 17 17 17 18 18 18
New Zealand 15 15 15 14 15 15 11 11 11 13 13 13
Canada 16 16 16 15 16 16 22 22 21 22 22 22
United States 17 17 17 17 17 17 18 18 18 17 17 17
Austria 18 18 18 18 18 18 29 29 29 31 31 31
Israel 19 19 21 19 19 19 21 21 21 22 22 22
Liechtenstein 21 19 19 23 23 21 1 1 1 1 1 1
Japan 21 21 21 22 21 21 11 11 11 11 11 10
Luxembourg 24 22 20 24 24 24 11 11 11 11 11 10
Slovenia 20 22 23 19 19 20 24 24 24 25 25 25
Korea (Republic of) 23 24 24 21 21 23 28 28 28 28 28 28
Spain 25 25 25 26 25 25 23 23 23 21 21 21
France 27 26 26 27 27 27 30 29 29 29 29 29
Czechia 26 27 27 25 26 26 36 36 36 36 36 36
Malta 28 28 28 29 28 28 32 32 32 32 32 32
Estonia 29 29 30 28 28 29 38 38 38 38 38 38
Italy 30 29 29 32 31 30 25 25 25 22 22 22
Greece 31 31 32 30 30 31 34 34 34 34 34 34
United Arab Emirates 32 31 30 34 33 32 20 20 20 19 19 19
Cyprus 32 33 33 31 31 32 39 39 39 39 39 39
Lithuania 34 34 34 33 34 34 37 37 37 37 37 37
Poland 35 35 35 34 35 35 40 40 40 40 40 40
Andorra 37 36 36 44 40 37 30 29 29 29 29 29
Latvia 36 37 38 36 36 36 41 41 41 41 41 41
Portugal 37 38 37 38 38 38 35 35 35 35 35 35
Slovakia 39 39 39 37 37 39 52 52 52 53 53 53
Hungary 40 40 41 38 39 40 57 57 57 58 58 58
Bahrain 42 41 41 43 42 41 45 45 45 45 45 45
Saudi Arabia 41 41 41 41 41 41 42 42 42 43 43 43
Chile 42 43 44 41 42 43 44 44 44 43 43 43
Croatia 44 44 45 40 42 44 52 52 52 55 55 55
Qatar 46 45 39 60 53 46 1 1 1 1 1 1
Argentina 45 46 47 44 45 45 46 46 46 47 47 47
Brunei Darussalam 47 47 46 53 51 47 27 27 27 25 25 25
Montenegro 48 48 48 46 46 48 61 63 63 62 63 63
Romania 49 49 49 49 47 49 79 79 79 79 79 79
Palau 50 50 50 47 47 50 52 52 52 53 53 53
Kazakhstan 51 51 51 47 49 51 68 68 68 73 73 73
Russian Federation 52 52 52 49 50 52 74 74 74 78 78 78
Belarus 53 53 53 51 51 53 61 61 61 62 62 62
Turkey 54 54 53 55 55 54 61 61 61 61 61 61
Uruguay 56 55 56 54 56 56 59 59 59 59 59 59
Bulgaria 55 56 58 52 54 55 83 83 83 85 85 85
Bahamas 57 57 59 57 57 57 67 67 67 67 67 67
Panama 60 57 55 63 62 59 56 56 56 55 55 55
Barbados 57 59 59 58 59 59 47 47 47 46 46 46
Oman 60 59 59 62 60 59 59 59 59 59 59 59
Georgia 57 61 63 56 57 57 48 48 48 48 48 48
Malaysia 60 62 63 59 60 62 81 81 81 80 80 80
Costa Rica 63 63 62 65 64 63 43 43 43 42 42 42
Kuwait 67 64 56 75 69 66 32 32 32 32 32 32
Serbia 64 64 65 60 63 63 80 80 80 80 80 80
Mauritius 65 66 66 63 64 65 87 87 87 87 87 87
Seychelles 66 67 67 66 66 67 91 91 91 92 92 92
Trinidad and Tobago 67 67 69 66 66 68 94 94 94 94 94 94
Albania 69 69 67 68 68 69 55 55 55 52 52 52
Cuba 73 70 70 78 77 73 51 51 51 51 51 51

(continued on next page)
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Table 7 (continued).
Iran (Islamic Republic of) 70 71 71 71 71 70 75 75 75 74 74 74
Sri Lanka 71 72 71 72 73 71 68 68 68 68 68 68
Bosnia and Herzegovina 76 73 74 75 75 76 64 64 64 64 64 64
Grenada 71 74 78 69 70 71 104 104 104 104 104 104
Mexico 75 74 76 73 74 75 92 92 92 91 91 91
Saint Kitts and Nevis 77 74 73 79 79 76 89 89 89 89 89 89
Ukraine 73 74 78 70 71 73 92 92 92 92 92 92
Antigua and Barbuda 80 78 74 82 80 80 68 68 68 68 68 68
Peru 79 79 78 77 77 79 75 75 75 74 74 74
Thailand 81 79 76 81 80 81 66 66 66 66 66 66
Armenia 77 81 81 73 75 78 90 90 90 90 90 90
North Macedonia 82 82 82 79 80 82 85 85 85 84 84 84
Colombia 83 83 83 84 83 83 65 65 65 65 65 65
Brazil 84 84 84 83 83 84 83 83 83 83 83 83
China 85 85 85 87 86 85 72 72 72 71 71 71
Ecuador 86 86 86 86 87 86 68 68 68 68 68 68
Saint Lucia 86 86 86 87 87 86 82 82 82 82 82 82
Azerbaijan 86 88 89 85 85 86 108 108 108 108 108 108
Dominican Republic 89 88 88 90 89 89 101 101 101 101 101 101
Moldova (Republic of) 90 90 93 87 90 90 119 119 119 120 120 120
Algeria 91 91 91 93 92 91 72 72 72 71 71 71
Lebanon 96 92 90 102 100 96 49 49 49 48 48 48
Dominica 96 93 94 99 99 98 58 58 58 57 57 57
Fiji 92 93 96 91 91 92 115 115 115 115 115 115
Maldives 101 95 91 114 109 101 49 49 49 48 48 48
Suriname 93 95 97 94 94 93 122 122 122 122 122 122
Tunisia 96 95 95 97 97 98 75 75 75 74 74 74
Saint Vincent and the Grenadines 93 98 98 95 95 93 114 114 114 114 114 114
Mongolia 93 99 99 92 93 93 124 124 124 125 125 125
Botswana 96 100 101 96 96 96 131 131 131 132 132 132
Jamaica 100 101 100 97 98 100 96 96 96 96 96 96
Jordan 101 102 102 100 101 102 96 96 96 96 96 96
Paraguay 103 103 103 101 102 103 99 99 99 99 99 99
Libya 105 104 104 109 105 105 111 111 111 111 111 111
Tonga 104 104 105 103 103 104 105 105 105 107 107 107
Uzbekistan 106 106 106 103 104 106 115 115 115 116 116 116
Bolivia (Plurinational State of) 107 107 109 103 105 107 124 124 124 124 124 124
Indonesia 107 107 107 107 105 107 122 122 122 122 122 122
Philippines 107 109 111 103 105 107 126 126 126 126 126 126
Turkmenistan 110 110 112 107 109 110 138 138 138 138 138 138
Belize 112 111 107 113 114 112 95 95 95 95 95 95
Samoa 111 111 109 112 112 111 106 106 106 105 105 105
Venezuela (Bolivarian Republic of) 113 113 113 111 113 113 118 118 118 117 117 117
South Africa 113 114 118 109 111 113 136 136 136 136 136 136
Palestine 115 115 114 117 117 116 103 103 103 103 103 103
Egypt 115 116 115 116 116 115 120 120 120 119 119 119
Marshall Islands 119 117 115 119 119 118 101 101 101 101 101 101
Viet Nam 118 117 115 118 118 118 86 86 86 86 86 86
Gabon 117 119 119 114 115 116 140 140 140 140 140 140
Kyrgyzstan 120 120 120 120 120 120 117 117 117 117 117 117
Morocco 122 121 121 122 122 122 75 75 75 74 74 74
Guyana 121 122 122 121 121 121 133 133 133 133 133 133
Iraq 123 123 123 123 123 123 129 129 129 129 129 129
El Salvador 124 124 123 124 124 124 106 106 106 105 105 105
Tajikistan 125 125 126 125 125 125 127 127 127 127 127 127
Cabo Verde 126 126 127 126 126 126 108 108 108 108 108 108
Guatemala 127 127 125 130 129 127 99 99 99 99 99 99
Nicaragua 127 128 128 128 128 128 96 96 96 96 96 96
Bhutan 130 129 129 132 131 129 121 121 121 120 120 120
India 130 130 130 129 130 131 135 135 135 135 135 135
Namibia 129 131 132 127 127 129 158 158 158 160 160 160
Honduras 134 132 131 138 138 134 87 87 87 87 87 87
Bangladesh 133 133 133 136 133 133 113 113 113 113 113 113
Kiribati 132 134 134 131 132 132 141 141 141 141 141 141
Sao Tome and Principe 135 135 135 136 134 135 131 131 131 131 131 131
Micronesia (Federated States of) 136 136 136 133 134 136 143 143 143 143 143 143
Lao People’s Democratic Republic 139 137 137 141 139 139 143 143 143 143 143 143
Eswatini (Kingdom of) 138 138 142 133 136 138 168 168 168 168 168 168
Ghana 137 138 140 133 136 137 163 163 163 163 163 163
Vanuatu 140 140 138 140 140 140 130 130 130 130 130 130
Timor-Leste 141 141 139 142 142 141 137 137 137 136 136 136
Nepal 143 142 140 143 143 143 128 128 128 128 128 128
Kenya 142 143 143 139 140 142 150 150 150 150 150 150
Cambodia 144 144 143 146 146 144 134 134 134 134 134 134
Equatorial Guinea 146 145 145 149 147 145 141 141 141 141 141 141

(continued on next page)
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Table 7 (continued).
Zambia 145 146 148 143 144 145 166 166 166 166 166 166
Myanmar 148 147 146 151 149 148 147 147 147 147 147 147
Angola 147 148 150 145 145 147 176 176 176 176 176 176
Congo 149 149 151 149 149 149 158 158 158 158 158 158
Zimbabwe 150 150 152 147 148 149 170 170 170 170 170 170
Syrian Arab Republic 154 151 147 160 161 155 112 112 112 112 112 112
Solomon Islands 152 152 149 159 158 156 108 108 108 108 108 108
Cameroon 151 153 154 148 151 151 180 180 180 180 180 180
Pakistan 156 154 152 161 159 154 146 146 146 146 146 146
Papua New Guinea 154 155 154 155 154 152 160 160 160 159 159 159
Comoros 153 156 156 152 152 152 161 161 161 161 161 161
Mauritania 161 157 156 163 162 161 156 156 156 156 156 156
Benin 157 158 161 154 155 157 172 172 172 172 172 172
Uganda 159 158 160 156 156 159 167 167 167 167 167 167
Rwanda 162 160 158 162 163 163 139 139 139 139 139 139
Nigeria 158 161 164 153 153 158 184 184 184 184 184 184
Côte d’Ivoire 160 162 162 156 157 160 182 182 182 182 182 182
Madagascar 165 163 162 166 166 165 149 149 149 149 149 149
Tanzania (United Republic of) 164 163 165 164 164 164 154 154 154 154 154 154
Lesotho 163 165 168 158 159 162 186 186 186 186 186 186
Djibouti 169 166 159 178 172 167 147 147 147 147 147 147
Togo 166 167 170 165 165 166 177 177 177 177 177 177
Senegal 171 168 166 172 172 171 143 143 143 143 143 143
Afghanistan 167 169 169 168 168 168 157 157 157 157 157 157
Haiti 167 170 171 167 167 168 165 165 165 165 165 165
Sudan 170 170 167 171 170 170 155 155 155 155 155 155
Gambia 172 172 173 169 169 172 171 171 171 170 170 170
Ethiopia 177 173 172 179 179 178 151 151 151 151 151 151
Malawi 175 174 174 177 177 175 161 161 161 161 161 161
Congo (Democratic Republic of the) 174 175 177 173 174 174 179 179 179 179 179 179
Guinea-Bissau 173 175 180 170 170 173 183 183 183 183 183 183
Liberia 175 175 175 173 175 177 163 163 163 163 163 163
Guinea 177 178 179 176 175 175 173 173 173 173 173 173
Yemen 179 179 177 181 181 180 153 153 153 153 153 153
Eritrea 183 180 176 188 186 183 152 152 152 152 152 152
Mozambique 181 181 182 180 180 181 178 178 178 178 178 178
Burkina Faso 182 182 181 182 182 182 173 173 173 173 173 173
Sierra Leone 180 182 183 175 178 179 187 187 187 187 187 187
Mali 186 184 183 186 184 185 181 181 181 181 181 181
Burundi 185 185 185 184 184 186 173 173 173 173 173 173
South Sudan 184 186 186 183 183 184 185 185 185 185 185 185
Central African Republic 187 187 189 185 187 187 189 189 189 189 189 189
Chad 188 188 188 187 188 188 188 188 188 188 188 188
Niger 189 189 187 189 189 189 169 169 169 169 169 169
Table 8
Average values (left panel) and third quartiles (right panel) of BoD weights for different 𝑝-orders with relative importance constraints.

Arithmetic means of BoD weights

p 𝜋𝑖,𝑝,1 𝜋𝑖,𝑝,2 𝜋𝑖,𝑝,3
(H) (E) (I)

−5 0.536 0.156 0.172
−4 0.551 0.164 0.177
−3 0.565 0.172 0.183
−2 0.582 0.178 0.187
−1 0.596 0.187 0.190
0 0.604 0.197 0.200
1 0.617 0.207 0.202
2 0.628 0.219 0.205
3 0.635 0.237 0.208
4 0.646 0.253 0.209
5 0.657 0.270 0.210

Third quartiles of BoD weights

p 𝜋𝑖,𝑝,1 𝜋𝑖,𝑝,2 𝜋𝑖,𝑝,3
(H) (E) (I)

−5 0.720 0.200 0.090
−4 0.738 0.224 0.092
−3 0.755 0.251 0.094
−2 0.771 0.130 0.096
−1 0.786 0.142 0.098
0 0.800 0.155 0.100
1 0.813 0.170 0.106
2 0.825 0.187 0.112
3 0.836 0.205 0.118
4 0.847 0.436 0.125
5 0.857 0.554 0.132
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Fig. 7. Function 𝐹 of Problem (27) when the BoD power mean and BoD penalized power mean with relative importance constraints are used to build the composite indicator
and 𝑝 varies from −5 to 5 (left panel) and from −1 to 5 (right panel).
Table 9
The first twenty (top panel) and the last twenty (bottom panel) countries according
to the BoD direct country-specific weights with relative importance constraints (non-
penalized/penalized) for 𝑝 = −1 (HM), 0 (GM), 1 (AM). The rankings are obtained
using three digits after the decimal.

Country ‘‘BoD ranking’’

rHM rGM rAM rPHM rPGM rPAM

Hong Kong 1 1 1 1 1 1
Ireland 1 1 1 1 1 1
Norway 1 1 1 1 1 1
Singapore 1 1 1 1 1 1
Switzerland 1 1 1 1 1 1
Australia 1 1 1 1 1 6
Germany 1 1 1 1 1 6
Iceland 1 1 1 1 1 6
Sweden 9 9 9 9 9 9
Liechtenstein 9 9 9 10 9 9
Luxembourg 14 11 11 14 11 11
Finland 11 11 12 11 11 11
Netherlands 11 11 12 11 11 13
New Zealand 11 11 12 11 11 13
Japan 15 15 15 15 15 15
United Kingdom 15 16 16 15 16 16
Denmark 17 17 17 17 16 16
United States 18 18 18 18 18 18
Canada 19 19 19 19 19 19
Belgium 20 20 20 20 20 20

Angola 164 168 170 163 168 170
Benin 167 170 171 167 170 171
Gambia 173 172 172 173 172 172
Togo 173 174 173 172 174 173
Cameroon 171 173 174 170 172 174
Guinea 176 175 175 177 175 175
Burkina Faso 179 178 176 180 179 176
Congo 178 176 177 178 177 177
Burundi 181 181 178 183 181 178
Niger 185 182 178 185 182 179
Mozambique 179 180 180 179 180 181
Côte d’Ivoire 175 176 181 175 176 179
Nigeria 176 179 182 176 178 182
Mali 184 185 183 184 185 183
Guinea-Bissau 182 183 184 182 183 183
Lesotho 182 184 185 181 184 185
South Sudan 186 186 186 186 186 186
Sierra Leone 187 187 187 187 187 187
Chad 188 188 188 188 188 188
Central African Republic 189 189 189 189 189 189
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