
27 July 2024

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

Machine learning-driven service function chain placement and scaling in MEC-enabled 5G networks /
Tejas, Subramanya; Harutyunyan, Davit; Riggio, Roberto. - In: COMPUTER NETWORKS. - ISSN 1389-1286. -
166:(2020). [10.1016/j.comnet.2019.106980]

Original

Machine learning-driven service function chain placement and scaling in MEC-enabled 5G networks

Publisher:

Published
DOI:10.1016/j.comnet.2019.106980

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/291301 since: 2024-04-24T13:51:20Z

This is the peer reviewd version of the followng article:

note finali coverpage

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

Machine Learning-Driven Service Function Chain Placement and Scaling in
MEC-enabled 5G Networks

Tejas Subramanyaa,∗, Davit Harutyunyana, Roberto Riggioa

aFBK CREATE-NET, Via Alla Cascata 56/C, 38123, Trento, Italy

Abstract

5G mobile network technology promises to deliver unprecedented ultra-low latency and high data rates, paving the
way for many novel applications and services. Network Function Virtualization (NFV) and Multi-access Edge Computing
(MEC) are two of the technologies that are expected to play a pivotal role in 5G to achieve ambitious Quality of Service
requirements of such applications. While NFV provides flexibility by enabling network functions to be dynamically
deployed and inter-connected to realize Service Function Chains (SFC), MEC brings the computing capability to the
edges of the mobile network thus reducing latency and alleviating the transport network load. However, adequate
mechanisms are needed to meet the dynamically changing network service demands, to optimally utilize the network
resources while, at the same time, making sure that the end-to-end latency requirement of services is always satisfied.

In this work, we first propose machine learning models, in particular neural-networks, that can perform auto-scaling
by predicting the required number of virtual network function instances based on the traffic demand, using the traffic
traces collected over a real-operator commercial network. We then employ Integer Linear Programming (ILP) techniques
to formulate and solve a joint user association and SFC placement problem, where each SFC represents a service requested
by a user with end-to-end latency and data rate requirements. Finally, we propose a heuristic to address the scalability
concern of the ILP model.

Keywords: Auto-scaling, Service Function Chain Placement, Machine learning, Neural-networks, Multi-access Edge
Computing

1. Introduction

The 5th generation of mobile networks is expected to
support high data rates, extremely low-latency, high relia-
bility, the capability to extend access to distributed com-
putation and storage facilities in addition to connectiv-
ity and bandwidth [1]. These characteristics of the 5G
systems open the door for many novel Ultra-reliable low-
latency (URLLC) applications such as augmented/virtual
reality and autonomous driving, whose ambitious Qual-
ity of Service (QoS) requirements cannot be satisfied by
the preprocessors of the 5G networks. Therefore, the 5G
architecture needs to incorporate new technologies such
as Multi-access Edge Computing (MEC) [2] and Network
Function Virtualization (NFV) [3], to meet the insatiable
data rate and low-latency requirements of the applications
mentioned above [4].

IThis work has been performed in the framework of the European
Unions Horizon 2020 project 5G-CARMEN co-funded by the EU
under grant agreement No 825012. The views expressed are those
of the authors and do not necessarily represent the project. The
Commission is not liable for any use that may be made of any of the
information contained therein.

∗Corresponding author
Email addresses: t.subramanya@fbk.eu (Tejas Subramanya),

d.harutyunyan@fbk.eu (Davit Harutyunyan), rriggio@fbk.eu
(Roberto Riggio)

The basic idea of MEC is to bring computing capabil-
ities and applications closer to the end-users, from cloud
data centers to the edges of the cellular network, therefore,
reducing the delay experienced by the users and alleviat-
ing the transport network load. Consequently, the ETSI
MEC Industry Specification Group proposes three possible
MEC deployment options in 5G networks, collocated with
the gNodeB (gnb.mec) or collocated with an aggregation
point (ap.mec) or collocated with the 5G core network
(5gc.mec) [5], as shown in Fig. 1. The closer the MEC
nodes are towards the end-users, the scarcer their com-
putational resources become. It is important to mention
that the integration of MEC into 5G network requires the
collocation of a User Plane Function (UPF) element with
each MEC node to reap the benefits of the MEC system [5].
The functionality of the UPF in MEC systems is illustrated
in Section 2, together with other relevant concepts and
terminologies in 5G mobile network.

NFV, on the other hand, decouples network functions
(e.g., UPF) or MEC applications from their dedicated pro-
prietary hardware and deploys them as virtualized soft-
ware entities on commodity servers [6]. In our work, we
use the generic term VxF to refer to either UPF virtualized
network function (VNF) or virtualized MEC application
function (VMAF). VxFs require a specific computational
capacity (e.g., CPU) to be instantiated and can be chained

Preprint submitted to Computer Networks [Elsevier] November 8, 2019

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

UE
SFC

5GC

gNodeB1

MEC
collocated with

gNodeBs
(gnb.mec)

NG Backhaul link

gNodeB2

Uu Transmission link

5G Core Network (5GC)

1 2

MEC node

Aggregation
point

VxF

Management &
Orchestration (MANO)

SFC Placement
decision
(2 - ILP

3 - Heuristic)

VxF Auto-scaling
decision
(1 - MLP)

Network Traffic
statistics

Xn Backhaul link

3

4

MEC collocated
with

Aggregation
points (ap.mec)

MEC
collocated
with 5GC
(5gc.mec)

VxF

Fig. 1. An example of a distributed MEC-NFV System
Architecture.

together, forming a Service Function Chain (SFC) that
represents a specific service, with a guaranteed latency
and data rate requirements, that can be requested by User
Equipments (UEs). As shown in Fig. 1, there are multiple
locations (e.g., gnb.mec, ap.mec, 5gc.mec) for instantiating
VxFs, which can be shared by many UEs.

In the described network scenario, given the UEs with
their SFC demands, the natural question that arises is
how to associate UEs, place their SFCs, allocate sufficient
VxF instances and resources to make sure that the UEs
SFC requirements are satisfied while the network resources
are used efficiently? Moreover, the mobility patterns of
UEs result in non-uniform traffic distribution within the
mobile network [7]. Consequently, the number of VxF
instances required to manage load variations and to meet
performance guarantees is expected to fluctuate frequently.
Towards this end, auto-scaling of VxFs, in addition to UEs
association and their SFC placement, is thought to be
an essential requirement for successful management and
orchestration (MANO) of resources and services in 5G
networks.

Most of the existing literature address either the prob-
lem of VxF autoscaling [8] or the placement of SFC in
distributed MEC nodes [9]. In this paper, we first advocate
that VxFs of SFC has to be proactively scaled in synergy
with varying network traffic dynamics to avoid service
disruption. Based on those scaling decisions, the VxFs
need to be dynamically placed in distributed MEC nodes,
to minimize end-to-end latency and to meet data rate re-
quirements. To the best of our knowledge, we are the first
to address the combined challenges in VxF auto-scaling
and placement of SFCs within a distributed MEC-NFV
environment, based on the real-operator mobile network
traces. This work has three main contributions (also as
depicted in Fig. 1) compared to our previous work [10]:

(i) Our previous work just considered a neural-network-
based Multi-layer Perceptron (MLP) classifier model to
estimate the required number of UPF instances as a func-
tion of the network traffic they should process in each

base station. In this extended work, we also consider the
neural-network-based MLP regressor model to perform the
same objective, and we analyze the performance of both
models. Additionally, our previous work only examined
the QoS-prioritized neural-network model while in this
work, we also examine the cost-prioritized neural-network
model and compare the performance of both methods.
The output from the best performing MLP model i.e., ’the
number of UPF instances’ is fed as an input to the Integer
Linear Programming (ILP) model. It is to be noted that
the 5G mobile network dataset employed in our model is
obtained by a commercial operator in Armenia.

(ii) Our previous work used the ILP technique to solve
solely the VxF (not SFC) placement problem with specific
latency demands as requested by UEs. However, the delay
values used in our model were static values based on other
similar works, and also the model did not consider UE
associations to gNodeBs and their requested data rates.
In this extended work, we employ ILP technique to formu-
late and solve a ’joint UE association and SFC placement
problem’, where each SFC is composed of several VxFs
interconnected through virtual links, with specific latency
and data rate demands as requested by UEs positioned
in diverse areas of the 5G mobile network. Furthermore,
we also develop a comprehensive end-to-end latency model
considering radio delay (comprised of UE processing delay,
over-the-air transmission delay, gNodeB processing delay,
scheduler queuing delay, and Hybrid automatic repeat re-
quest (HARQ) retransmission delay), backhaul network
delay (comprised of propagation delay and transmission
delay both in Xn and NG interfaces as shown in Fig. 1),
and SFC processing delay for 5G mobile networks.

(iii) Our previous work did not propose any heuristic
algorithm since the ILP model was simplistic while in this
work, we propose a heuristic algorithm with the same
objective as that of ILP to address the scalability problem
of ILP.

The rest of this paper is organized as follows. Sec-
tion 2 and Section 3 describes the necessary background
and related work, respectively. Section 4 describes the pro-
posed MLP classifier and MLP regressor models and eval-
uates their performance. In Section 5, we model latency-
optimal SFC placement problem whileSection 6 formulates
the problem using ILP and also proposes a heuristic algo-
rithm. InSection 7, we perform several experiments to
evaluate our proposed SFC placement solutions. Finally,
we conclude the paper in Section 8.

2. Background: 5G Mobile Network

In this section, we briefly introduce the 5G mobile
network architecture (see Fig. 2) and provide an overview
of the basic concepts and terminologies in 5G. At a very
high level, a 5G mobile network is composed of two ma-
jor elements: the 5G Access Network and the 5G Core
Network (5GC). The 5G Access Network comprises one
logical node, the next-generation NodeB (gNodeB), which

2

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

connects to the User Equipments (UEs), providing control
plane and user plane services. The gNodeBs are intercon-
nected to each other using the Xn interface. The 5GC
consists of many logical nodes such as Access and Mobil-
ity Management Function (AMF), Session Management
Function (SMF), and User Plane Function (UPF). The
gNodeBs are connected to the 5G Core Network through
NG interfaces, more specifically to the AMF through NG-
C control plane interface and to the UPF1 through NG-U
user plane interface. The components within the 5GC are
also interconnected using standardized interfaces.

Xn

gNodeB

gNodeB

UE

AMF

UPF1

SMF

Data
Network

NG-U

NG-C N11

N4

N6

MEC node

UPF2

GTP

IP

Fig. 2. 5G mobile network overview.

The scheduler entity in the gNodeB is responsible for
deciding which UEs should be allocated air interface re-
sources, i.e., Physical Resource Blocks (PRBs) on Trans-
mission Time Interval (TTI) (e.g., 1ms or 0.5ms or 0.25ms
or 0.125ms) basis and how much PRBs should be allocated
to send or receive data. Once a UE attaches to the net-
work using control plane signaling (e.g., attach process), it
can send/receive data to/from the Packet Data Networks
(PDN) using the GPRS Tunneling Protocol (GTP). The
uplink UE traffic received by the gNodeB over its air inter-
face is encapsulated into a GTP packet and then delivered
to the UPF1 over the NG-U interface. This GTP tunnel is
terminated at the UPF1 which removes the GTP header
and forwards the UE traffic to its intended destination
(e.g., the Internet).

Besides, consider a MEC node being placed in between
the gNodeB and the 5GC to support low-latency applica-
tions. For the MEC applications to operate, it needs to
have access to the UE IP traffic. Therefore, the integration
of MEC in the 5G network requires the colocation of a UPF
network function with the MEC node. The UPF takes
care of performing a stateful termination and recreation of
the GTP session concerning the UE. As we see in Fig. 2,
the GTP-encapsulated UE traffic is redirected from the
gNodeB to the UPF2. Here the GTP tunnel is terminated,
and the UE IP traffic, now accessible, is redirected to the
MEC Node running MEC applications. On the way back,
the GTP tunnel is recreated by UPF2, and the response
is delivered back to the UE.

3. State of the Art

ETSI NFV Industry Specification Group defines net-
work service as a composition of one or more VNFs that

are chained together. Each VNF requires a specific amount
of resource to process the traffic flowing through it. To
deploy a network service, the operator needs to find the
right placement of VNFs complying with various resource
constraints and service latency agreements. Once the hosts
are selected and the VNFs deployed, resource requirements
for the VNFs may vary due to traffic fluctuations. To
meet these demands, a resource allocation algorithm is
needed that can automatically allocate/release resources
to a VNF (vertical scaling) or add/remove one or more
VNF instances (horizontal scaling).

3.1. Virtual Network Function auto-scaling.

Previous works on VNF auto-scaling can be divided
into two categories: reactive mode and proactive mode.

In reactive mode, threshold levels can be either stat-
ically pre-defined or dynamically updated. In [11], [12],
and [13], the authors propose scalability mechanisms based
on static thresholds. They define two threshold levels
(scaleinthr and scaleoutthr) to determine if the load re-
duces below or exceeds above the respective limits and
accordingly trigger the scaling process. However, such
techniques may result in an oscillating behaviour affecting
the overall system performance. On the other hand, [14]
and [15] propose mechanisms such as queuing theory and
reinforcement learning, which allows the scaling policy to
be improved based on dynamic or adaptive thresholds.
Although it performs better than static approaches, it
remains a reactive solution with similar weaknesses.

In proactive mode, forecasting techniques (e.g., ma-
chine learning) are applied to allow the systems to au-
tomatically learn and to anticipate future needs, based
on which scalability decisions are taken. For example,
the authors in [16] propose a solution to forecast CPU
usage based on a historical dataset using time series model.
Other authors such as Mijumbi et al. [17] and Mestres et
al. [18] addresses the problem of managing VNF resource
fluctuations by predicting resource requirements using ML
techniques and thereby enhancing the performance of the
resource allocation algorithm.

In contrast to these works which targets data centers,
our approach investigates the problem of proactive auto-
scaling in a distributed MEC-NFV deployment. Moreover,
we use real-operator traffic traces to generate training sets
required for predicting auto-scaling decisions, unlike other
works that are based on simulated datasets.

3.2. Service Function Chain placement.

There already exists some literature on the SFC place-
ment problem with certain end-to-end latency needs that
need to be satisfied [9], [19], and [20]. In [9], the authors
present a delay-aware SFC placement problem such that
VxFs forming SFCs are placed so as to satisfy end-to-end
latency demands while utilizing network resources in an
effective manner. A joint VxF placement and CPU alloca-
tion problem is studied in [19] and an optimization prob-
lem is formulated by employing a queuing-based model to

3

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

minimize the ratio between the actual and the maximum
allowed latency, for all SFC requests. The authors in [20]
study the problem of VxF instantiation and migration with
a goal of minimizing SFC delays. However, all these stud-
ies do not consider UE processing time, gNodeB processing
time, and propagation or transmission time over the air
interface. Besides, none of the above studies consider het-
erogeneous MEC nodes, which increases the search space
causing the SFC placement problem to grow cumbersome.

In contrast to the above SFC placement solutions, we
consider the joint problem of user association and SFC
placement which allows the optimization of end-to-end
latency according to user locations, SFC latency and data
rate requirements, and computing/networking resource
availabilities. Furthermore, our proposed latency model
stands out from the existing delay models within the
context of 5G mobile network.

4. Machine Learning-driven Proactive ’UPF’
Auto-scaling

In this section, we create two types of neural-network
based MLP models, a classifier and a regressor, that can
identify and exploit hidden patterns in network traffic load
instances to predict UPF scaling decisions ahead of time.
In particular, we illustrate on different steps involved in
creating our models and eventually evaluate them based
on several performance metrics [21].

4.1. Problem Description

We investigate how to map traffic load statistics X to
VNF scaling decisions Y using supervised learning, which
involves learning from a training set of data. The traffic
load statistics X include measurements from a commercial
operator 5G mobile network. The VNF scaling decisions
Y refer to the required number of UPFs to process incom-
ing traffic with an objective to either maximize QoS or
minimize cost. The details on the composition of X and
Y are discussed in Section 4.4.

The X and Y metrics evolve over time, influenced
mainly by the mobile network traffic dynamics and the
actual number of mobile users. Consequently, the com-
bined evolution of X and Y metrics is modeled as a time
series {(xt, yt)}. Our goal is to determine the distribution
of scaling decision metric Y constrained on knowing the
traffic load metric x ∈ X.

Employing the statistical learning framework, X and
Y are modeled as random variables. We assume that each
sample (xt, yt) in the training set is obtained from the
conditional probability distribution of (X,Y). Further,
we suppose that xt is multi-dimensional (multi-variate)
and yt is one-dimensional (uni-variate). In this formalism,
the inference problem consists of finding a model F : x -
>P (Y |x) for x ∈ X, so as to maximize the likelihood func-
tion L({P (yt|xt)}), which can be attained by minimizing
the loss/error function.

In this work, a neural-network called Multilayer Per-
ceptron (MLP) is used to estimate the parameters of the
model to predict the probability distribution P (Y |x). We
select artificial neural-network in our approach for two
reasons:

(i) it has proven its potential in identifying traffic pat-
terns due to its effectiveness in predicting time-series prob-
lems, whether periodic or not [22].

(ii) it can build new customized features through hid-
den layers and fit nonlinear activation functions when a
specific mathematical definition is not available.

(iii) it can represent both linear, piecewise-linear and
non-linear relationships and learn these relationships di-
rectly from the data.

4.2. Multilayer Perceptron (MLP)

An MLP is a class of feed-forward artificial neural net-
work, consisting of at least three layers of nodes (neurons):
an input layer, one or more hidden layers, and an output
layer, as shown in Fig. 3 and Fig. 4. These nodes are fully
interconnected in the form of a directed graph, starting
from the input to the output. All nodes except the input
nodes have an associated activation function, which is used
to compute the node output based on the weighted inputs
from other nodes. An MLP model is trained through a
backpropagation mechanism using gradient-descent as an
optimization algorithm, where the weights between the
nodes are adjusted iteratively for minimizing the error
function.

MLP Classifier. In classification, a relu activation
function is used for all hidden layer nodes, and a softmax
activation function is used for the output layer nodes.
The output is a vector containing the probabilities that
sample x ∈ X belongs to each class, which is equivalent to
a categorical probability distribution (as seen in Fig. 3).
The final result is the class with the highest probability.
With a categorical cross-entropy loss function, the network
parameters are chosen to minimize the following:

E = −
C∑
l=1

bx,llog(px,l) (1)

where C is the number of classes, b is the binary indica-
tor (0 or 1) whether class label l is the correct classification
for input x, and p is the predicted probability that input
x belongs to class l. Here, a separate loss is calculated for
each class label per input, and the result is the sum of all
those losses.

MLP Regressor. In regression, a relu activation
function is used for all hidden layer nodes, and a linear
activation function is used for the output layer nodes.
The output is a real-valued quantity predicted based
on the input sample x ∈ X (as seen in Fig. 4). With
a mean-squared-error (MSE) loss function, the network
parameters are chosen to minimize the following:

MSE = 1/n

n∑
i=1

(Ya − Yp)2 (2)

4

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

Input layer Hidden layer Output layer

X Y

Fig. 3. Structure of the MLP classifier model.

where n is a vector of predictions generated from a
sample of n data points while Ya and Yp are the actual
and predicted values of the samples.

Input layer Hidden layer Output layer

X
Y

Fig. 4. Structure of the MLP regressor model.

4.3. Modeling MLP in Keras

Keras is an open-source neural-network Python
library capable of running on top of Theano [23] or
TensorFlow [24]. It is characterized by a clean, uniform,
and streamlined high-level API, allowing users to rapidly
define, train, and evaluate neural network models [25].

In Keras, the structure of the neural network model
can be defined in a modular way, as a sequence of stan-
dalone and fully configurable modules, which can be read-
ily plugged together. Keras offers several predefined neural
layers such as a dense layer, a recurrent layer, and a convo-
lutional layer. A wide range of activation functions is also
available including relu, sigmoid, softmax, tanh, to name a
few. Similarly, many predefined loss functions (e.g., mean
squared error, cross entropy) and regularization schemes
(e.g., dropout) are supported. Also, since Keras performs
backpropagation automatically, users do not need to im-
plement it. Moreover, numerous approaches are available
to partition the dataset into training, validation, and test
sets.

To implement an MLP in Keras, we construct a se-
quential model with a number of predefined dense layers
and their corresponding activation functions. We then
configure the learning process of the model by choosing
an optimizer, a loss function (equation 1 or equation 2),
and a list of metrics to be reported. Lastly, the model

is trained with an objective to minimize the loss function
and then evaluated.

4.4. Collecting Data and Feature Engineering

The different steps that we followed in creating our
MLP models are as follows:

4.4.1. Data Collection

The dataset utilized in this work is generated from a
commercial operator by monitoring the mobile network
traffic load on 6 base stations, with each base station hav-
ing 10 cells, for a period of 8 consecutive days. The traces
in the dataset are in the form of a time series {(xt, yt)} and
we interpret this time series as a set of samples {(x1, y1),
(x2, y2), ..., (xn, yn)}. The traces are collected on an hourly
timescale.

4.4.2. Feature Extraction

We now describe the input feature sets Xdefault and
Xconstructed, which, when combined, is referred to as X,
as well as the output classes or real-valued quantities Y .

The Xdefault feature set includes 8 numeric features
that are already available in the dataset, as described in
Table 1. In addition to these default features, we construct
9 numeric features (Xconstructed) from the basic dataset,
as shown in Table 2, using a process called feature trans-
formation by extending backward from time t. These
constructed features contain information or patterns on
how the traffic load evolves, therefore assisting in proactive
VNF scaling decisions.

Default features (Xdefault)

1. gNodeB ID.

2. Date.

3. Time-stamp t.

4. Average number of users between t and t− 1 in each
cell.

5. Maximum number of users between t and t − 1 in
each cell.

6. Average downlink user throughput in each cell.

7. Average uplink user throughput in each cell.

8. Traffic load measured in each cell at time t, given by
λ(t).

Table 1: Default set of features available in the dataset.

4.4.3. Definition of classes or real-valued quantity ’Y’

The next step is to define how we generate output
classes or real-valued quantity Y , which the MLP classifier
or regressor tries to predict, respectively. In VNF autoscal-
ing, there is a tradeoff between QoS and cost. More UPF
instances (i.e., resources) need to be allocated to guar-
antee QoS, but allocating more resources raises the cost.
Therefore, we propose two different approaches: (i) QoS

5

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

Constructed features (Xconstructed)

9. Traffic load measured in each cell at time t−1, given
by λ(t− 1).

10. Traffic load measured in each cell at time t − 2,
given by λ(t− 2).

11. Traffic load measured in each cell at time t − 3,
given by λ(t− 3).

12. Traffic load measured in each cell at time t − 4,
given by λ(t− 4).

13. Change in traffic load in each cell from time t to
t− 1.

14. Change in traffic load in each cell from time t − 1
to t− 2.

15. Change in traffic load in each cell from time t − 2
to t− 3.

16. Change in traffic load in each cell from time t − 3
to t− 4.

17. Weekday or weekend.

Table 2: Constructed set of features from the dataset.

favored classifier/regressor (Q-classifier/Q-regressor) and
Cost favored classifier/regressor (C-classifier/C-regressor).

In Q-classifier/Q-regressor, the network operator gives
priority to QoS over the cost. The autoscaling decision
at step n considers future traffic demands until the next
autoscaling step n + 1. Therefore, the class value or the
target variable value is generated as follows:

YQ = min(vnfmax,max(
λ(t)

γ
))∀t ∈ {τ(n),, τ(n+ 1)}

(3)
where t are the timestamps containing traffic data sam-

ples between steps n and n+ 1 (including τ(n) and τ(n+
1)), λ(t) is the traffic load in a cell at time t, γ is the max-
imum traffic load a single UPF can handle, and vnfmax is
the maximum number of UPFs per cell that can be hosted
on the MEC node.

In C-classifier/C-regressor, the network operator
chooses to neglect short-lived bursty traffic between
steps n and n + 1 to avoid over-provisioning of UPFs,
therefore minimizing cost and enduring short-lived
degradations. Consequently, the autoscaling decision
considers measured traffic load only at step n and at next
auto-scaling step n + 1. Therefore, the class value or the
target variable value is generated as follows:

YC = min(vnfmax,max(
λ(τ(n))

γ
,
λ(τ(n+ 1))

γ
)) (4)

where τ(n) is the time at which step n occurs and τ(n+
1) is the time at which step n+ 1 occurs.

It is to be noted that in our work, we examine the per-
formance metrics for Q-classifier, Q-regressor, C-classifier,

and C-regressor for two cases: (i) autoscaling decisions
performed on one hour time-intervals and (ii) autoscaling
decisions performed on two hour time-intervals. Although
our traffic traces are collected on hourly time intervals,
our model is generic enough to handle lower time interval
granularities (e.g., 5-minute time interval data samples)
and different auto-scaling steps (e.g., 1 hour, 5 hours).

4.4.4. Feature Subset Selection

Next, we identify the dominant features from our fea-
ture list based on their influence on classification ’accu-
racy’ or regression ’R-squared’ values using Recursive Fea-
ture Elimination (RFE) and Principal Component Analy-
sis (PCA) techniques.

RFE is a greedy optimization technique that strives
to find the best performing feature subset. It repeatedly
generates models and keeps aside the best or the worst
performing feature in each iteration. The next model is
constructed with the remaining features until all the fea-
tures are depleted. It then ranks the features based on
the order of their elimination. With MLP, it is difficult to
understand which input features are relevant and which
are not. The reason being, each input feature has multiple
coefficients that are linked to it - each corresponding to
one node of the first hidden layer. Additional hidden
layers make it even more challenging to decide how big
of an impact the input feature has on the final prediction.
Therefore, we apply the RFE technique on a linear sup-
port vector machine model to find the optimal number of
features and use them in creating our MLP models. After
ranking, features 8, 9, 10, 11, and 12 are ranked highest,
which implies that measured loads closer to the scaling
decision time are the crucial features. Features 2, 17, and
3 are ranked 2nd, 3rd, and 4th, respectively. The rest of
the features are ranked in the following order: 14, 15, 13,
and 16. Finally, features 1, 4, 5, 6, and 7 are recommended
not to be used in the model (RFE returns ’false’).

We have also validated this observation using Principal
Component Analysis (PCA), a statistical method to find
correlated features and their impact on classification and
regression. In PCA, the first principal component has
the most notable variance, accounting for much of the
variability in the data samples. Our PCA lists a combina-
tion of features 8, 9, 10, 11, and 12 as the first principal
component, indicating similar conclusions as RFE.

Based on the ranking of these features, we use only
12 features (eliminating 1, 4, 5, 6 and 7 from Table 1) that
provides the best results for our MLP models.

4.4.5. Dataset Decomposition

Once data is collected and features extracted/selected,
the dataset is decomposed into training, validation and
test datasets. We use a rule-of-thumb decomposition con-
forming to 60%/20%/20% between the training, validation
and test datasets, respectively. The data samples chosen
for training and validation (i.e., close to 6 days of data
from 6 gNodeBs) are the most balanced data in our dataset

6

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

compared to samples from other days that were used for
testing (close to 2 days). Even then, the training sam-
ples are slightly imbalanced in classes/target real-valued
quantities which might result in overfitting the model (i.e.,
a condition where a statistical model begins to output a
random class or error value outside the original dataset),
and therefore we look at other performance metrics such
as confusion matrix, precision, recall, and F1-score for
MLP classifier and R-squared value for MLP regressor,
which can provide more insight into the performance of our
MLP models than traditional classification accuracy and
regression mean squared error, which are excellent mea-
sures only if the datasets are entirely symmetric. Finally,
if the performance metrics indicate overfitting, the K fold
cross-validation technique can be used to generate multiple
mini train-test splits to tune our MLP models, which was
not necessary in our case.

4.5. Classification and regression using neual networks

Finding the parameters of a neural-network model
means searching for the best hyper-parameters of
the MLP that can make the best predictions on the
input. We applied grid search and baby-sitting as
search strategies to perform an extensive search on the
space of hyper-parameters to find the most accurate
neural-network classifier and regressor. This process
included finding the number of hidden layers and nodes,
the batch size, the regularization parameter, the learning
rate of the optimizer, and the number of epochs. We
encountered the process of finding hyper-parameters
time-consuming and hard, which assures that this topic
still requires significant research. Our search space for
finding optimal hyperparameters for MLP models are as
follows:

• Hidden layers: 1 to 5.

• Nodes in each hidden layer: 12 to 30 in intervals of
3.

• Optimizer: adam, SGD, RMSprop.

• Learning rate: 0.1, 0.01, 0.001.

• Batch size: 100 to 500 in intervals of 100.

• Number of epochs: 100 to 500 in intervals of 100.

We eventually found the architecture of the neural net-
work that performs best on our traffic load traces and is
described as follows. The structure includes one input
layer with 12 nodes (i.e., one for each input feature), three
hidden layers with 12, 24 and 12 nodes, respectively, and
an output layer with 10 nodes for MLP classifier (i.e.,
one for each output class) and 1 node for MLP regressor.
The regularization parameter used is 0.01, the optimizer
is based on stochastic gradient approach with a constant
learning rate of 0.001, the batch size is fixed to 100, and
the number of epochs equals 300.

4.6. MLP model evaluation

We consider that MEC nodes in proximity to the gN-
odeBs are capable of hosting UPFs on their NFV infras-
tructure. We assume the link bandwidth capacity to be 20
Gbps and each VNF can process a maximum of 200 Mbps
traffic without QoS degradation. We consider horizontal
VNF auto-scaling with each MEC node capable of hosting
100 (20Gbps/200Mbps) VNFs and vnfmax = 10, i.e., a
maximum of 10 VNFs can be hosted per cell. These as-
sumptions are derived based on the evaluations performed
by authors in [26]. If traffic load increases, additional VNF
instances are deployed to meet QoS/cost requirements,
whereas if traffic load decreases, VNF instances are re-
moved to save operational expenses.

MLP Classifier. Once the MLP classifier models are
created as discussed before, a test dataset is used to assess
the performance of the model in predicting outcomes. The
test outcomes can be classified into four groups: True
Positive (TP) and True Negative (TN) are when the model
correctly predicts actual positive and negative instances,
respectively. Whereas, False Positive (FP) and False Neg-
ative (FN) are when the model makes incorrect predic-
tions for negative and positive actual instances, respec-
tively. Therefore, we consider four performance metrics
to evaluate our MLP classifier model: accuracy, precision,
recall, and f-measure, as given by equations 5, 6, 7 and 8,
respectively.

Q-cl
as

sifi
er

(1
hr)

Q-cl
as

sifi
er

(2
hr)

C-cl
as

sifi
er

(1
hr)

C-cl
as

sifi
er

(2
hr)

80

85

90

95

100

P
er

ce
n
ta

ge
(%

)

Accuracy Precision
Recall F-measure

Fig. 5. Comparision of the proposed MLP classifier models for
VNF auto-scaling.

Accuracy =
1

|C|

|C|∑
i=1

TPi + TNi
TPi + TNi + FPi + FNi

(5)

Precision =
1

|C|

|C|∑
i=1

TPi
TPi + FPi

(6)

Recall =
1

|C|

|C|∑
i=1

TPi
TPi + FNi

(7)

7

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

Fmeasure = 2 ∗ Precision ∗Recall
Precision+Recall

(8)

where C is the number of classes in the MLP model.

Class 1 2 3 4 5 6 7 8 9 10
1 685 9 0 0 0 0 0 0 0 0

2 5 384 6 0 0 0 0 0 0 0

3 0 6 404 7 0 0 0 0 0 0

4 0 0 7 280 6 0 0 0 0 0

5 0 0 0 3 206 8 0 0 0 0

6 0 0 0 0 9 101 3 0 0 0

7 0 0 0 0 0 2 70 5 0 0

8 0 0 0 0 0 0 4 43 3 0

9 0 0 0 0 0 0 0 3 30 0

10 0 0 0 0 0 0 0 0 1 14

Table 3: Confusion matrix for the Q-classifier (1hr)/ C-
classifier (1hr) models.

Class 1 2 3 4 5 6 7 8 9 10
1 322 6 0 0 0 0 0 0 0 0

2 2 165 4 1 0 0 0 0 0 0

3 0 3 206 5 0 0 0 0 0 0

4 0 0 2 142 6 0 0 0 0 0

5 0 0 0 2 112 6 1 0 0 0

6 0 0 0 0 6 53 1 0 0 0

7 0 0 0 0 0 3 41 4 0 0

8 0 0 0 0 0 0 3 24 1 0

9 0 0 0 0 0 0 0 3 19 0

10 0 0 0 0 0 0 0 0 0 9

Table 4: Confusion matrix for the Q-classifier (2hr) model.

Class 1 2 3 4 5 6 7 8 9 10
1 320 8 0 0 0 0 0 0 0 0

2 3 165 2 2 0 0 0 0 0 0

3 0 6 204 4 0 0 0 0 0 0

4 0 0 5 140 5 0 0 0 0 0

5 0 0 2 6 106 7 0 0 0 0

6 0 0 0 0 6 53 1 0 0 0

7 0 0 0 0 0 2 42 3 1 0

8 0 0 0 0 0 0 4 22 2 0

9 0 0 0 0 0 0 0 4 17 1

10 0 0 0 0 0 0 0 0 1 8

Table 5: Confusion matrix for the C-classifier (2hr) model.

Accuracy is the most intuitive performance measure
that gives the proportion of true predictions among the
total number of predictions observed. However, accuracy
is an excellent measure only if the datasets are entirely
symmetric, i.e., false positives and false negatives are al-
most the same. Therefore, other performance metrics need
to be considered when evaluating a model. Precision is
a measure of correctly predicted positive observations to
the total predicted positive observations. It is a good

measure to determine when the cost of FP is high. In
the case of VNF auto-scaling, a high number of FPs re-
sults in over-provisioning of resources leading to increased
operational costs. On the other hand, Recall is a mea-
sure that calculates how many of the actual positives are
captured in our model by labeling it as positive. It is a
good measure to determine when the cost of FN is high.
In the case of VNF auto-scaling, a high number of FNs
results in under-provisioning of resources leading to QoS
degradation. Finally, F-measure is the weighted average of
precision and recall, and it is used when there is an uneven
class distribution.

Fig. 5 compares the performance of four proposed
MLP classifier models: Q-classifier with scaling decisions
every hour, Q-classifier with scaling decisions every two
hours, C-classifier with scaling decisions every hour, and
C-classifier with scaling decisions every two hours. We
use 6912 samples for training, 2304 samples for validation,
and 2304 samples for testing. The Q-classifier/C-classifier
with scaling decisions taken every hour outperforms
other two models where scaling decisions are taken every
two hours in all measures with 96.2% accuracy, 95.6%
precision, 96% recall, and 96.2% f-measure.

Table 3, Table 4, and Table 5 reports the confusion
matrix concerning the test data samples for Q-
classifier/C-classifier models with scaling decisions every
hour, Q-classifier model with scaling decisions every
two hours, and C-classifier model with scaling decisions
every two hours, respectively. It gives a breakdown of
predictions into a table showing correct predictions (the
diagonal) and the types of incorrect predictions made
(what classes incorrect predictions were assigned). For
example, if we observe Table 3 on the 2nd row, on 5
instances class 2 is misclassified as class 1, and on 6
instances class 2 is misclassified as class 3. Similarly, if
we observe Table 4 on the 2nd row, on 2 instances class
2 is misclassified as class 1, and on 4 instances class 2
is misclassified as class 3, and on 1 instance class 2 is
misclassified as class 4.

MLP Regressor. Once the MLP regressor models are
created as discussed before, a test dataset is used to assess
the performance of the model in predicting outcomes. We
implement four custom performance metrics in Keras to
evaluate our MLP regressor models: mean absolute error
(MAE), mean squared error (MSE), root mean squared er-
ror (RMSE), and R2-score, as given by equations 9, 10, 11,
and 12.

MAE =
1

n

n∑
i=1

|Ya − Yp| (9)

MSE =
1

n

n∑
i=1

(Ya − Yp)2 (10)

RMSE =

√√√√ 1

n

n∑
i=1

(Ya − Yp)2 (11)

8

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

Q-re
gr

es
so

r (1
hr)

Q-re
gr

es
so

r (2
hr)

C-re
gr

es
so

r (1
hr)

C-re
gr

es
so

r (2
hr)

0

0.2

0.4

0.6

0.8

1

Mean Absolute Error (MAE)

Mean squared Error (MSE)

Root Mean squared Error (RMSE)

R2-score

Fig. 6. Comparision of the proposed MLP regressor models for
VNF auto-scaling.

R2
score = 1−

∑
(Ya−Yp)2∑
(Ya−Ym)2

(12)

where n is the number of test data samples, Ya is the
actual value of Y, Yp is the predicted value of Y, and Ym
is the mean value of Y.

MAE estimates the average magnitude of errors in a
set of forecasts, without considering their direction (i.e.,
the average of the absolute values of differences between
the forecast and the corresponding observation).MSE
measures the average of the squares of the errors (i.e., the
average squared difference between the estimated values
and the actual values). RMSE is a quadratic scoring
rule which measures the average magnitude of the error
(i.e., the difference between the estimated values and
the actual values are each squared and then averaged
over the sample). Then, the square root of the average is
estimated. Considering the errors are squared before they
are averaged, the RMSE adds a relatively high weight to
big errors. Therefore, RMSE is most useful when large
errors are undesirable. The RMSE is always larger or
equal to the MAE, the greater difference between them,
the higher the variance in the individual errors in the
sample. If the RMSE is equal to the MAE, then all the
errors are of the same magnitude. R2-score (Coefficient
of determination) represents the coefficient of how well
the values fit compared to the original values. The value
from 0 to 1 are interpreted as percentages. The higher
the value is, the better the model is. It is equivalent to
the accuracy metric in classification problems.

Fig. 6 compares the performance of four proposed
MLP regressor models: Q-classifier with scaling decisions
every hour, Q-classifier with scaling decisions every two
hours, C-classifier with scaling decisions every hour, and
C-classifier with scaling decisions every two hours. We use
6912 samples for training, 2304 samples for validation, and

2304 samples for testing. The Q-regressor/C-regressor
(1hr) performs the best among the four models in all
measures with 0.194 MAE, 0.0696 MSE, 0.194 RMSE and
98.43% R2-score/accuracy. Moreover, considering that
the MAE and the RMSE values are equal to each other,
it is safe to say that the model has no large errors in the
required number of UPF predictions.

MLP Classifier vs MLP Regressor. Fig. 7 shows
the prediction results of VNF auto-scaling (for a full
day) on test dataset for most reliable MLP classifier and
MLP regressor models based on the metrics mentioned
earlier, where we display the prediction performance
on all six MEC nodes, aggregated over all 10 cells for
each gNodeB. In the figure, the blue line represents
the actual output generated from the dataset, the red
line means the predicted VNF scaling decisions using
Q-classifier/C-classifier (1hr) models, and the brown
line represents the predicted VNF scaling decisions
using Q-regressor/C-regressor (1hr) models. As we can
observe, both classifier and regressor models introduced
in this study can accurately follow the pattern of actual
data, which point out the strong predicting capability
of our models. However, Q-regressor/C-regressor (1hr)
models (accuracy of 96.2%) perform slightly better than
Q-classifier/C-classifier (1hr) models (accuracy of 98.43%
or R2-score of 0.984).

Fig. 8 depicts the MAE between the actual and
predicted values of VNF auto-scaling decisions on test
dataset for best performing MLP classifier and MLP
regressor models calculated over all six MEC nodes for
each hour during the entire day. In the figure, the red
line represents the MAE for predicting VNF scaling
decisions using Q-classifier/C-classifier (1hr) models, and
the brown line represents the MAE for predicting scaling
decisions using Q-regressor/C-regressor (1hr) models.
The former performs better than the latter with respect
to MAE throughout the day.

It is worth mentioning that the predicted UPF auto-
scaling decisions in Q-regressor/C-regressor (1hr) MLP
model (i.e. the best performing model) is used as input to
evaluate the SFC placement model presented in Section 5.
However, in doing so, we assume that UEs can be associ-
ated and served by any of the cells of a candidate gNodeB,
to simplify the problem.

5. Latency-optimal SFC Placement Problem De-
scription and Network Model

In this section, we first define the latency-optimal
SFC placement problem and then describe the 5G mobile
network model, SFC request model, and UE association,
scheduling and delay model employed in formulating the
ILP problem.

5.1. Problem Statement

Consider a 5G mobile network, composed of six gN-
odeBs, two aggregation points, and one 5GC, as depicted

9

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

09
:0
0

12
:0
0

15
:0
0

18
:0
0

21
:0
0

00
:0
0

03
:0
0

06
:0
0

20

40

60

80

100

Time (HH:MM)

N
u

m
b

er
of

U
P

F
s

re
q
u

ir
ed

Actual values

Q-classifier/C-classifier predictions

Q-regressor/C-regressor predictions

(a) MEC node 1 (gNodeB 1)

09
:0
0

12
:0
0

15
:0
0

18
:0
0

21
:0
0

00
:0
0

03
:0
0

06
:0
0

20

40

60

80

100

Time (HH:MM)
N

u
m

b
er

of
U

P
F

s
re

q
u

ir
ed

Actual values

Q-classifier/C-classifier predictions

Q-regressor/C-regressor predictions

(b) MEC node 2 (gNodeB 2)

09
:0
0

12
:0
0

15
:0
0

18
:0
0

21
:0
0

00
:0
0

03
:0
0

06
:0
0

20

40

60

80

100

Time (HH:MM)

N
u

m
b

er
o
f

U
P

F
s

re
q
u

ir
ed

Actual values

Q-classifier/C-classifier predictions

Q-regressor/C-regressor predictions

(c) MEC node 3 (gNodeB 3)

09
:0
0

12
:0
0

15
:0
0

18
:0
0

21
:0
0

00
:0
0

03
:0
0

06
:0
0

20

40

60

80

100

Time (HH:MM)

N
u

m
b

er
o
f

U
P

F
s

re
q
u

ir
ed

(d) MEC node 4 (gNodeB 4)

09
:0
0

12
:0
0

15
:0
0

18
:0
0

21
:0
0

00
:0
0

03
:0
0

06
:0
0

20

40

60

80

100

Time (HH:MM)

N
u

m
b

er
o
f

U
P

F
s

re
q
u

ir
ed

(e) MEC node 5 (gNodeB 5)

09
:0
0

12
:0
0

15
:0
0

18
:0
0

21
:0
0

00
:0
0

03
:0
0

06
:0
0

20

40

60

80

100

Time (HH:MM)

N
u

m
b

er
o
f

U
P

F
s

re
q
u

ir
ed

(f) MEC node 6 (gNodeB 6)

Fig. 7. Prediction results on the number of UPFs required at each MEC node based on the proposed MLP models.

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

00
:0
0

02
:0
0

04
:0
0

06
:0
0

08
:0
0

10
:0
0

1

2

3

4

Time (HH:MM)

M
ea

n
A

b
so

lu
te

E
rr

or

Q-classifier/C-classifier (1hr)

Q-regressor/C-regressor (1hr)

Fig. 8. Comparison of Mean Absolute Error between the best
performing MLP classifier and MLP regressor models.

in Fig. 9. A set of three gNodeBs are interconnected to
each other through Xn-interfaces. Using NG-interfaces,
the six gNodeBs are served by two aggregation points,
and the 5GC serves both of these aggregation points. For
simplicity, in the rest of this paper, we consider gNodeB1,
gNodeB2, gNodeB3, and AP1 belong to cluster 1 while gN-
odeB4, gNodeB5, gNodeB6, and AP2 belong to cluster 2,
as represented in Fig 9. Each element in our network topol-
ogy is equipped with a resource-constrained (e.g., CPU)
MEC node that is capable of hosting SFCs composed of
one or several VxFs (e.g., VMs, containers). We consider
three feasible options for physically deploying MEC nodes

in 5G networks, as defined by ETSI [5], i.e., MEC col-
located with gNodeB, MEC collocated with aggregation
point, and MEC collocated with 5GC. Furthermore, in
the considered hierarchical network topology, we assume
that the closer is the MEC node to UE, the less is its
computational capacity (e.g., MEC1, MEC2, and MEC3
are identical nodes with least capacity, MEC7 has the
medium capacity, and MEC9 has the highest capacity).

Suppose the UE (e.g., autonomous car) is associated
with gNodeB2 and requests for an SFC with an end-to-end
latency (i.e., real-time, near real-time or non-real-time)
and data rate requirements. The SFC requests considered
in our work can be either of the three types as depicted
in Fig. 9. Depending on the selected cost function to
be minimized, the network provider can choose to place
the VxFs of the SFC requested by the UE on either the
host node (i.e., MEC2) or any neighboring nodes (i.e.,
MEC1, MEC3) or distant nodes (MEC7, MEC9) or cluster
2 nodes (i.e., MEC4, MEC5, MEC6, MEC8) by allocating
sufficient network resources (e.g., CPU, backhaul band-
width), efficiently, while also making sure that the end-to-
end latency and data rate requirements of the requested
SFC is always satisfied. In the first case, no additional
delay is introduced in the backhaul since the MEC node
collocated with the host gNodeB is the one hosting the
VxFs. Conversely, in the other three cases, backhaul delay
is introduced to map the virtual link onto a backhaul path,
connecting the host gNodeB with a neighboring MEC node
or a distant MEC node or a MEC node from a different

10

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

cluster that is hosting VxFs. Formally, the problem of
latency-optimal SFC placement is stated as follows:

Given: a small 5G mobile network with gNodeBs, ag-
gregation points, 5GC, MEC nodes, the scheduling capa-
bilities of gNodeBs (e.g., PRBs, TTI duration, subcarrier
spacing), the computational capacity of each MEC node,
the transport network topology with the capacity of each
backhaul link, the number of UEs and their requested
SFCs with an end-to-end latency and data rate require-
ments.

Find: ’where’ to allocate resources to VxFs and
’which’ network paths to use.

Objective: minimize average end-to-end latency for
UEs to access their SFCs in the mobile network.

SFC Request

5GC

gNodB2 MEC collocated
with gNodeBs

(gnb.mec)

MEC collocated
with aggregation
points (ap.mec)

MEC collocated
with 5GC
(5gc.mec)

NG Backhaul link

gNodeB3

gNodeB1

gNodeB5 gNodeB6

gNodeB4UE

AP1 AP2

Xn Backhaul link

Uu Transmission
linkAggregation Point

5G Core Network (5GC)

7 8

9

2

1

3 5 6

4

MEC node

VxF VxFUE

SFC Request

VxF
VxF

UE
VxF

SFC Request

VxF VxFUE VxF

1 2 3

Clus
ter

 1 Cluster 2

Fig. 9. Substrate network topology and SFC requests

5.2. 5G Mobile Network Model

The mobile network infrastructure is modeled
as an undirected graph Gnet = (Nnet, Enet), where
Nnet = Ngnb.mec ∪ Nap.mec ∪ N5gc.mec is the union of
the set of |Ngnb.mec| gNodeBs collocated with the MEC
node, |Nap.mec| aggregation points collocated with the
MEC node, and |N5gc.mec| 5GCs collocated with the
MEC node and Enet is the set of backhaul links such
that an edge emn ∈ Enet only if a connection exists
between m, n ∈ Nnet. Each network node m ∈ Nnet is
attributed with a weight wnetcpu(m), representing its CPU
capacity, under the assumption that one VxF requires
one CPU unit to be instantiated. Additionally, each
network node m ∈ Ngnb.mec is also associated with a

weight wgnb.mecprb (m) representing the number of Physical

Resource Blocks (PRBs) available at each timeslot that
can be scheduled to UEs for trasmitting data packets.
Furthermore, each edge emn ∈ Enet is associated with a
weight wnetbw (emn) representing its bandwidth capacity (in
Gbps). Finally, each network node m ∈ Nnet is associated
with a geographical location loc(m) (in terms of (x, y)
coordinates) and each network node m ∈ Ngnb.mec
is associated with a coverage area cov(m). Table 6

summarizes all the parameters used in the mobile network
model.

Notation Definition
Gnet Graph of the mobile network.

Nnet Set of all network nodes in Gnet.

Ngnb.mec Set of gNodeBs collocated with the MEC
node in Gnet.

Nap.mec Set of aggregation points collocated with
the MEC node in Gnet.

N5gc.mec Set of 5GCs collocated with the MEC node
in Gnet.

Enet Set of all backhaul links in Gnet.

wnetcpu(m) Computing capacity of the network node
m ∈ Nnet.

wgnb.mecprb (m)PRBs available for each timeslot at gN-
odeB m ∈ Ngnb.mec.

wnetbw (emn) Bandwidth capacity of the backhaul link
emn ∈ Enet.

loc(m) Geographical location of the network node
m ∈ Nnet.

cov(m) Coverage area of the gNodeB m ∈
Ngnb.mec.

Table 6: Parameters in the mobile network model.

5.3. Service Function Chain Request Model

Let Greq = (Nreq, Ereq) be a directed graph modeling
the SFC requests, where Nreq = Nue ∪ Nsfc is the union
of the set of |Nue| UEs and |Nsfc| the set of SFCs re-
quested from the UEs and Ereq is the set of virtual links
between the UEs and their requested SFCs. Each SFC
s ∈ Nsfc is composed of a UPF (i.e., for encapsulation
and decapsulation of GPRS Tunnelling Protocol for the
user plane (GTP-U) of an UE requesting MEC services [5])
and one or more VMAFs from a set of Nvnfs. Each
SFC s ∈ Nsfc is characterized by a maximum acceptable
end-to-end latency (e.g., real-time, near real-time, non
real-time) represented by DE2E,max(u, s) and a minimum
guaranteed data rate denoted by Thrreq(u, s) that needs to
be satisfied. Each UE u ∈ Nue is associated with a location
loc(u) (in terms of (x, y) coordinates). Table 7 summarizes
the parameters used in the SFC request model.

5.4. UE Association, Scheduling and Delay Model

In contrast to 4G technology where the goal is only
to enhance the throughput of Mobile Broadband (MBB)
services, 5G is expected to support low-latency applica-
tions with end-to-end latency constraints of 1− 10ms and
error rates of 10−3 to 10−5 (e.g., connected cars). For
cellular communicatons, two types of latencies are defined
in 3GPP: control-plane (C-plane) latency and user-plane
(U-plane) latency. The C-plane latency is the transition

11

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

Notation Definition

Greq Graph of the SFC association request.

Nreq Set of all UEs and their SFC requests in
Greq.

Nue Set of UEs in Greq.

Nsfc Set of all the SFCs in Greq.

Nvnfs Set of all the VxFs available to compose
an SFC.

Ereq Set of all virtual links in Greq.

DE2E,max(u, s)Maximum acceptable end-to-end latency
for a UE u ∈ Nue on its requested service
s ∈ Nsfc.

Thrreq(u, s) Requested data rate for a UE u ∈ Nue
on the requested service s ∈ Nsfc.

loc(u) Geographical location of the UE u ∈
Nue.

Table 7: Parameters in the SFC request model.

time for the UE to switch from idle mode to connected
mode including the establishment of the user plane while
U-plane latency is the one-way delay required to transmit
a data packet from the UE to the mobile network (uplink)
or vice-versa (downlink) [27].

In this work, we consider only the U-plane latency
for computing end-to-end delay (DE2E), since it is the
major contributor that is hindering the support of URLLC
applications. DE2E is computed from the time UEs start
transmitting packets in uplink untill the time they start
being processed in MEC nodes. For a scheduled UE, we
assume we have 3 different communication delays con-
tributing to DE2E :

(i) Radio delay (Due,gnb
radio) is the sum of UE process-

ing delay (tprocue), over-the-air transmission delay (tTTI),
gNodeB processing delay (tprocgnb), scheduler queuing delay

(tq), and HARQ retransmission delay, which is given by
equation 13,

Due,air,gnb
radio = tprocue + tTTI + tprocgnb + tq

+2.nharq(t
proc
ue + tTTI + tprocgnb + tq)

(13)

where nharq is the number of HARQ retransmissions
required to achieve a BLER target of 10−3 to 10−5. Sim-
ilar to 3GPP, we adopt Orthogonal Frequency Division
Multiplexing (OFDM) scheme. To satisfy the latency re-
quirements of URLLC, 3GPP also proposes new frame
structures with shorter TTI durations and multiple sub-
carrier spacings. Scaling up the base subcarrier spacing of
15kHz by 2µ (e.g., 30kHz, 60kHz, and 120kHz), the TTI
duration of 1ms is scaled down by 2µ (e.g., 0.5ms, 0.25ms,
and 0.125ms), where µ = {1, 2, .., n}, enabling faster trans-
mission and lower processing time [28]. In our model, we
adopt a TTI duration of 0.25ms resulting in a subcarrier

spacing of 60kHz for all URLLC UEs. The resulting tprocue

and tprocgnb processing delays are 3 OFDM symbols and 1

TTI, respectively, as measured in [29]. The scheduler
queuing delay (tq), as represented in equation 14, is the
sum of offset time (toffset) i.e., the waiting time (∼ 0
to 1 TTI) once the packet is ready for transmission until
the beginning of the next TTI and the packet congestion
time (tpktcon) i.e., if the scheduler does not have enough
PRBs to schedule a requested SFC packet in one TTI, the
SFC packets may remain in the gNodeB buffer for longer
duration.

tq = toffset + tpktcon (14)

To determine tpktcon, we first need to determine the
number of PRBs (Nprb(u, s,m)) required for the SFC s ∈
Nsfc of an UE u ∈ Nue to be assigned by its associated
gNodeB m ∈ Ngnb.mec. Given the data rate demand of the
SFC s, the number of PRBs (Nprb(u, s,m)) is computed
according to equation 15 as given in 3GPP [30]:

Nprb(u, s,m) =
Thrreq(u,s)∗Tµs

12∗10−6∗Ncc∗Nmimo∗Nmod∗sf∗R∗(1−oh)
(15)

where, Ncc is the number of aggregated component
carriers, Nmimo is the number of MIMO layers, Nmod is
the modulation order (e.g., 2 for QPSK, 4 for 16QAM, 6
for 64QAM, 8 for 256QAM), sf is the scaling factor, R
is the code rate, oh is the overhead for control channels,
and Tµs = 10−3/(14 ∗ 2µ) is the average OFDM symbol
duration in a subframe for numerology µ (µ = 2 in our
case) assuming normal cyclic prefix. Except for Nmod and
R, which are determined as per the below three steps,
all other parameters are predefined according to the radio
access capabilities:

SINR measurement : The UE u ∈ Nue measures the
SINR value for a reference signal coming from its associ-
ated gNodeB m ∈ Ngnb.mec using equation 16,

sinr(u,m) =

Fm
|loc(u)−loc(m)|α∑

m′ 6=m
Fm′

|loc(u)−loc(m′)|α +N
(16)

where |loc(u)− loc(m)| is the distance between the UE
u and its associated gNodeB m, |loc(u) − loc(m′)| is the
distance between the UE u and the neighbouring gNodeBs
of m (m′), α is a path loss exponent between 2 and 6, Fm
and Fm′ are fading random variables of some distribution,
and N is a constant noise term [31].

CQI report : The UE u ∈ Nue maps the SINR value
measured in step 1 to a CQI index from the mapping table
in [32], which is expected to be reported to the scheduler of
its associated gNodeB m ∈ Ngnb.mec. It is to be noted that
these mappings are not defined in 3GPP but are vendor
specific.

CQI to MCS mapping : The scheduler is now expected
to map the reported CQI index to an MCS index and de-
termine the best combination of modulation order (Nmod)

12

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

and code rate (R) to be used from the mapping table
in [33], resulting in a BLER target of 10−5.

Therefore, we have all the necessary parameters in
equation 15 to determine the number of PRBs that must
be assigned for an SFC s ∈ Nsfc requested by the UE
u ∈ Nue to meet its data rate requirements. If the number
of PRBs that needs to be assigned are not available in
a particular TTI, they will be assigned during the next
TTI and so forth, adding up to the total tq latency (i.e.,
tpktcon = no. of TTIs to schedule SFC packets * TTI
duration).

(ii) Backhaul delay (DXn,NG
bh) is the sum of Xn

propagation delay (tpropXn), Xn transmission delay (ttxXn),
NG propagation delay (tpropNG), and NG transmission
delay (ttxNG), given by equation 17,

DXn,NG
bh = tpropXn + ttxXn + tpropNG + ttxNG (17)

where for a link emn ∈ Enet, tpropXn refers to the prop-
agation time required to transmit SFC packets from node
m ∈ Ngnb.mec to node n ∈ Ngnb.mec while tpropNG refers to
the propagation time required to transmit SFC packets
from node m ∈ Ngnb.mec to node n ∈ Nap.mec|N5gc.mec.
Similarly, ttxXn and ttxNG refers to the transmission time
required to transfer SFC packets from node m ∈ Ngnb.mec
and node m ∈ Nap.mec|N5gc.mec, to the outgoing link emn,
respectively.

(iii) SFC processing delay (Dsfc
mec) is the time re-

quired for all VxFs in an SFC s ∈ Nsfc to apply a specific
network operation on the arriving packets.

Therefore, DE2E is computed according to equation 18.

DE2E = Due,air,gnb
radio +DXn,NG

bh +Dsfc
mec (18)

It is to be noted that the same delay model can be used
for both downlink and uplink direction.

6. Problem Formulation

Once, a batch of UE associations and its SFC requests
arrive at the substrate network, it is either approved and
embedded onto the network or it is denied. The embedding
process includes both node and link mapping and is gen-
erally referred to as virtual network embedding problem
which is proven to be NP-hard [34]. In the node mapping
stage, each virtual node (i.e., UEs, VxFs in the SFCs
requested by UEs) is mapped to a substrate node (i.e.,
gNodeBs, MEC nodes) while in the link mapping stage,
each virtual link (i.e., the link between the UE and its
requested SFC) is mapped to a single substrate path (i.e.
the path between the gNodeB hosting the UE and MEC
nodes hosting the VxFs in the SFC). In both stages, the
constraints imposed on substrate nodes and substrate links
must be satisfied.

6.1. Integer Linear Programming

The proposed joint UE association and SFC place-
ment problem is formulated employing ILP techniques.
Before starting the actual problem formulation, for each
UE u ∈ Nue, we first determine the set of candidate gN-
odeBs (Ngnb.mec(u)) using equation 19,

Ngnb.mec(u) = {m ∈ Ngnb.mec|(|loc(u)− loc(m)|)
≤ cov(m)}

(19)

Then, we find neighboring gNodeBs for each gNodeB
m ∈ Ngnb.mec and neighboring MEC nodes for each MEC
node m ∈ Nnet using equations 20 and 21, respectively.

nbr gnbs(m) = {m′ ∈ Ngnb.mec|em,m
′
∈ Enet} (20)

nbr nodes(m) = {m′ ∈ Ngnb.mec,m′′ ∈ Nap.mec,

m′′′ ∈ N5gc.mec|em,m
′
, em,m

′′
, em

′′,m′′′ ∈ Enet}
(21)

Next, we find the candidate MEC nodes that can
host VxFs of SFC requested by UEs. For each VxF v of
SFC s from the UE u, the set of candidate MEC Nodes
(Nnet(u, v, s)) can be defined according to equation 22.

Nnet(u, v, s) = {m ∈ Ngnb.mec(u),

m′ ∈ nbr gnbs(m),m′′ ∈ Nap.mec,

m′′′ ∈ N5gc.mec|em,m
′
, em,m

′′
, em

′′,m′′′ ∈ Enet}
(22)

Thus, in our ILP model, either the UEs candidate
gNodeB MEC node, or the gNodeB MEC node connected
to the candidate gNodeB MEC node, or the aggregation
point MEC node connected to the candidate gNodeB MEC
node, or the 5GC MEC node connected to the aggregation
point MEC node serving the candidate gNodeB MEC node
can host UEs SFC.

Now, we formulate the SFC placement problem with
three binary decision variables, χum, Υu,v,s

m , and Ψu,s
m,n, as

represented in Table 8.

Notation Definition

χum To show if u ∈ Nue is associated to
gNodeB m ∈ Ngnb.mec.

Υu,v,s
m To show if v ∈ Nvnfs of s ∈ Nsfc from

u ∈ Nue is assigned to m ∈ Nnet.
Ψu,s
m,n To show if virtual link between u ∈ Nue

and s ∈ Nsfc is assigned to substrate
link between m ∈ Nnet and n ∈
nbr nodes(m).

Table 8: Binary decision varibles.

13

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

The objective function of the ILP, given in equation 23,
is to minimize the overall end-to-end latency from all users
to their respective SFCs.

ILP : min[
∑
u∈Nue

∑
m∈Ngnb.mec

χum ∗D
ue,air,gnb
radio (u,m)

+
∑
u∈Nue

∑
v∈Nvnfs

∑
s∈Nsfc

∑
m∈Nnet

Υu,v,s
m ∗Dsfc

mec(u, v, s,m)+

∑
u∈Nue

∑
s∈Nsfc

∑
m∈Nnet

∑
n∈nbr nodes(m)

Ψu,s
m,n∗D

Xn,NG
bh (u, s,m, n)]

(23)

In equation 23, Due,air,gnb
radio (u,m) depends on the

number of UEs that need to be scheduled in a given
time slot by gNodeB m. For each UE u, we first find
the sinr(u,m) from equation 16 and then calculate the
needed Nprb(u, s,m) from equation 15 to transmit packets
of SFC s with a particular size at a requested data
rate (Thrreq(s)). If the total required PRBs exceed the
maximum available PRBs in the gNodeB, some UEs are
scheduled in the next time slot, thus increasing the Radio
delay for those UEs. Since the backhaul links, Xn and
NG, in the mobile network, DXn,NG

bh (u, s,m, n) depends
on the the number of UEs sharing the same backhaul
link.

We will now describe all node and link constraints im-
posed in our problem formulation. Constraint (24) ensures
that each UE is associated to only one gNodeB from its
candidate set. ∑

m∈Ngnb.mec(u)

χum = 1,∀u ∈ Nue (24)

Constraint (25) guarantees that each VxF of SFC re-
quested from each UE is hosted by only one substrate MEC
node from its candidate set.

∑
m∈Nnet(u,s)

Υu,v,s
m = 1,∀u ∈ Nue∀s ∈ Nu

sfc∀v ∈ Ns
vnfs

(25)
Constraint (26) guarantees that each VxF is at most

shared by vnfsharedmax number of UEs.

∑
v∈Nvnfs

Υu,v,s
m ≤ vnfsharedmax ,∀u ∈ Nue∀s ∈ Nu

sfc

∀m ∈ Nnet(u, s) (26)

Constraint (27) ensures that the amount of CPU re-
sources allocated to VxFs of SFCs adheres to the available
CPU capabilities on the substrate node.

∑
u∈Nue

∑
s∈Nusfc

∑
v∈Nsvnfs

Υu,v,s
m ≤ wnetcpu(m),∀m ∈ Nnet (27)

Constraint (28) makes sure that in each time slot gN-
odeBs can associate UEs only if they have enough PRBs
to meet the data rate demand of the requested SFC by the
UE.

∑
u∈Nue

∑
s∈Nsfc

Nprb(u, s,m) ∗ χum ≤ w
gnb.mec
prb (m),

∀m ∈ Ngnb.mec
(28)

Flow constraint (29) enforces for each virtual link be-
tween UE u ∈ Nue and its SFC s ∈ Nsfc there exists a
continuous path established between the gNodeB to which
the UE is associated and the MEC node hosting the VxFs
of SFC s.

∑
n∈nbr nodes(m)

(Ψu,s
n,m −Ψu,s

m,n) = Υu,s
m − χum,

∀m ∈ Nnet,∀eu,s ∈ Ereq (29)

Constraint (30) makes sure that virtual links are
mapped onto the backhaul substrate links in the mobile
network, if and only if it has enough bandwidth capacity
to meet the link demand of virtual links.

∑
u∈Nue

∑
s∈Nsfc

Thrreq(u, s)(Ψ
u,s
n,m + Ψu,s

m,n) ≤ wnetbw (enm),

∀m ∈ Nnet,∀n ∈ nbr nodes(m), n < m (30)

Constraint (31) ensures that the end-to-end latency
from the UEs to its associated SFCs does not exceed the
maximum acceptable latency as requested by the UEs.∑

m∈Ngnb.mec

χum ∗D
ue,air,gnb
radio (u,m)

+
∑

m∈Nnet

∑
v∈Nsvnfs

Υu,v,s
m ∗Dsfc

mec(u, v, s,m)

+
∑

m∈Nnet

∑
n∈nbr nodes(m)

Ψu,s
m,n ∗D

Xn,NG
bh (u, s,m, n)

≤ DE2E,max(u, s),∀u ∈ Nue,∀s ∈ Nu
sfc (31)

6.2. Heuristic

The above ILP formulation took 44 hours to associate
300 UEs including their latency-sensitive SFC requests
composed of a number of VxFs on a mobile network com-
prised of six gNodeBs, two aggregation points, and one 5G
core. The ILP was solved using ILOG CPLEX solver on
an Intel Core i7 laptop with 3GHz CPU and 16 GB RAM.
To address the issue of scalability in ILP, we propose a
heuristic algorithm, as seen in Algorithm 1, that can solve
the above association/mapping problem in a couple of
seconds. Similar to the ILP-based algorithm, the objective
of our heuristic algorithm is to minimize the overall end-
to-end latency from all UEs to their requested SFCs.

14

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

Algorithm 1 Heuristic

Require: Gnet, Greq, and SFC latency budget [Nsfc(rt),
Nsfc(near rt), Nsfc(non rt)].

Ensure: User association and latency-optimal SFC placement.
Step 1. Find candidate gNodeBs for each UE and

perform UE association.
1: for u in Nue do
2: cand gnb(u)← 0
3: map gnb(u)← 0
4: for m in Ngnb.mec do
5: if |loc(u)− loc(m)| <= cov(m) then
6: cand gnb(u)← m
7: end if
8: end for
9: map gnb(u) ← m from the list of cand gnb(u) with

max(sinr(u,m)) and enough PRBs available.
10: end for

Step 2. Find candidate MEC nodes for VxFs of each
SFC from each UE.

11: for u in Nue do
12: for s in Nsfc do
13: for v in Nsfc(u) do
14: cand mec(u, s, v)← 0
15: for m in neighbours(map gnb(u)) do
16: cand mec(u, s, v)← m
17: end for
18: end for
19: end for
20: end for

Step 3. Perform SFC placement for each UE.
21: for u in Nue do
22: for s in Nsfc(rt) do /* real-time SFCs. */
23: for v in Nsfc(u) do
24: map mec(u, s, v)← 0
25: for m in cand mec(u, s, v) do
26: compute(DE2E(u, s,m))
27: if DE2E(u, s,m) <= DE2E,max then
28: if inst(v) not in m or neighbours(m)

then
29: map mec(u, s, v)← m
30: end if
31: end if
32: alocate continuous path(u, s,m)
33: update node and link resources()
34: end for
35: end for
36: end for
37: end for
38: Repeat Step 3 for s in Nsfc(near rt) and Nsfc(non rt).

In the first step (lines 1 − 10), the algorithm loops
through all the UEs to determine a set of candidate gN-
odeBs considering the location of the UE, location of the
gNodeB, and the coverage area of the gNodeB, and then
creates a list of cand gnb(u) for each UE. Next, each UE
is mapped to the gNodeB, among the cand gnb(u), that
measures the best signal quality (i.e., SINR) and also has
sufficient PRBs to host the UE.

In the second step (lines 11− 20), the algorithm finds
the candidate MEC nodes for each VxF of SFC requests

received from all UEs, which is nothing but the union
of the MEC node collocated with the host gNodeB of
UE (determined from step 1) and all other MEC nodes
connected directly or indirectly to the host gNodeB of UE
through backhaul links. Another list of cand mec(u, s, v)
is created for each VxF of the SFC received from all UEs.

In the third step (lines 21 − 38), the algorithm be-
gins mapping all VxFs of SFC requests with real-time
latency requirements considering cand mec(u, s) for each
SFC, starting from gnb.mec nodes. Once they run out of
computing resources, the algorithm moves on to ap.mec
nodes, and finally on to 5gc.mec nodes, if and only if the
computed end-to-end latency (DE2E(u, s,m)) is less than
the maximum acceptable end-to-end latency for that SFC
(DE2E,max). Moreover, if an instance of VxF is already
mapped to the candidate MEC Node the UE shares this
VxF to realize its SFC instead of instantiating a new VxF.
The heuristic then uses the shortest path algorithm to map
the virtual link between the UE and its requested SFC
onto the substrate link between the gNodeB that the UE
is associated to and the MEC node that the SFC is being
hosted on. The VxFs of a single SFC might be mapped
on different MEC nodes, and therefore further caution is
exercised during link mapping. The node and link com-
putational resources are updated after each mapping. The
same process is repeated for other SFC requests with near-
real-time and non-real-time latency requirements until all
SFC requests are mapped.

7. ILP and Heuristic Evaluation

The performance of the latency-optimal SFC
placement ILP model is evaluated based on the
simulations implemented in Python. We then compare
it to the implemented heuristic algorithms performance.
Real-operator network topology and realistic latency
values are used when modeling the simulation environment
to produce realistic simulation results, which can better
illustrate the benefits of placing SFCs composed of VxFs
at the network edges closer to the end-user.

7.1. Simulation Environment

A small cluster of 5G mobile network composed of 9
network nodes is considered in our simulation, as depicted
in Fig. 9. A set of 3 gNodeBs are connected to each other
through 20 Gbps Xn backhaul links, while each of the
three gNodeBs is connected to the aggregation point using
20 Gbps NG backhaul links which in turn is connected to
the 5G core network using 50 Gbps backhaul links. The
number of aggregated component carriers is set to 4, and
each carrier has a bandwidth capacity of 20 MHz. We as-
sume that the gNodeBs support 4x4 MIMO configuration.
We then introduce MEC nodes at each of these 9 network
nodes capable of hosting a limited number of VxFs. The
MEC nodes collocated with gNodeBs each have 50 CPUs,
the MEC nodes collocated with aggregation points each

15

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

have 100 CPUs, and the MEC node collocated with 5GC
has 500 CPUs.

Our simulations are carried out for two scenarios. In
the first scenario, we consider that SFC requests arrive in
batches of 30 UEs (equally divided among real-time, near-
real-time, and non-real-time) with each batch correspond-
ing to 1 timeslot. In every timeslot, the ILP considers the
SFC requests received in previous batches and associates
all the UEs and their SFC requests onto the mobile net-
work, considering the latency and data rate requirements
of each SFC. We consider 10 batches of SFC requests corre-
sponding to 300 UEs. In the second scenario, we consider
that SFC requests arrive according to the predicted number
of UPF instances from our MLP neural-network model,
as illustrated in Section 4. The performance of ILP is
compared with our heuristic algorithm in both scenarios.
Additionally, in both scenarios, we assume that each UPF
instance corresponds to one UE and each SFC is composed
of 2 or 3 VxFs (1 UPF and 1 or 2 VMAF as depicted in
Fig. 9) with 1 CPU required to instantiate every VxF.
Furthermore, each UPF is shared with 5 UEs while each
VMAF is shared among 2 UEs. Since the UEs considered
in our model are URLLC UEs, we assume three categories
of user-to-SFC one-way delay requirements, i.e., 1ms, 2ms,
and 5ms. We assume that each UE is transmitting short
packets of size 15Kb every TTI and requests a minimum
data rate of 200Mbps. In Section 5, we discussed on how
we calculate Due,air,gnb

Radio . We calculate DXn,NG
bh by dividing

the total packet size generated from all the UEs that are
using the same backhaul link with the bandwidth capacity
of the link [35]. Finally, we calculate Dsfc

mec by dividing the
packet size that the VxFs of the SFC should process by
the CPU speed. We consider a CPU speed of 3GHz with
64 bit processor.

7.2. Simulation Results

CPU Utilization: The CPU utilization is computed
by dividing the number of CPUs utilized in gnb.mec
nodes or ap.mec nodes or 5gc.mec nodes once the VxFs
are mapped to the total number of CPUs available in all
gnb.mec nodes or all ap.mec nodes or all 5gc.mec nodes,
respectively.

Fig. 10 illustrates the CPU utilization of MEC nodes
with respect to the number of UEs for simulations carried
out in scenario 1. We observe that up to≈ 90 UEs, the ILP
places most of the VxFs on gnb.mec nodes because of its
proximity to UEs, irrespective of the SFC latency require-
ments, while some non-real-time VxFs that are shared
by UEs associated with cluster 1 (gNodeB1, gNodeB2 or
gNodeB3) and cluster 2 (gNodeB4, gNodeB5 or gNodeB6)
are placed on 5gc.mec nodes. Only after gnb.mec nodes are
depleted with their CPU resources (after 90 UEs), the ILP
starts moving VxFs with near-real-time and non-real-time
latency requirements initially placed in gnb.mec nodes to
ap.mec nodes and starts placing new SFCs with real-time
latency requirements on gnb.mec nodes. Similarly, when
CPU resources of ap.mec nodes are depleted (≈ 180 UEs)

the ILP starts moving VxFs with non-real-time latency
requirements initially placed in gnb.mec or ap.mec nodes
to 5gc.mec nodes. On the other hand, heuristic algorithm
follows a similar pattern to that of ILP, but instead of plac-
ing non-real-time VxFs that are shared by UEs associated
to cluster 1 and cluster 2 on 5gc.mec nodes, those VxFs are
initially placed on gnb.mec nodes, then on ap.mec nodes
and finally on 5gc.mec nodes(in this order depending on
the MEC nodes resource availability). This is evident from
Fig. 10, where CPU utilization of gnb.mec nodes is always
higher in heuristic compared to that of ILP. However, this
results in the increase of overall latency for heuristic due
to the users taking a long path to access their SFC services
(e.g., if a user is associated to gNodeB2 and its VxFs are
placed in gNB6.mec, the path mapping could be gNodeB2
→ AP1 → 5GC → AP2 → gNodeB6). Consequently, up
to 180 UEs, the CPU utilization of ap.mec and 5gc.mec
nodes are lower in heuristic compared to ILP.

30 60 90
120 150 180 210 240 270 300

10

20

30

40

50

60

70

80

90

100

Number of Users

C
P

U
u

ti
li

za
ti

o
n

(%
)

gnb.mec(ILP) ap.mec(ILP) 5gc.mec(ILP)

gnb.mec(H) ap.mec(H) 5gc.mec(H)

Fig. 10. CPU utilization of MEC nodes (Scenario 1).

Fig. 11 illustrates the CPU utilization of MEC nodes
with respect to time over one full day for the network
considered in the MLP neural-network model (scenario 2).
We observe that the CPU utilization of gnb.mec nodes
are always full, the ap.mec nodes are most of the time
full except from 2:00 to 8:00 and 5gc.mec nodes have low
utilization during early morning (2:00 to 8:00) due to the
low number of UEs being active and the utilization grad-
ually increases during the day peaking late in the night
(≈ 22:00). The heuristic follows a similar pattern to that
of ILP, but as discussed earlier VxFs shared by UEs be-
longing to different clusters are initially placed on gnb.mec
nodes rather than on 5gc.mec nodes like in ILP. Therefore,
CPU utilization for gnb.mec nodes are always higher in
heuristic compared to that of ILP, with a tradeoff being
the increase in overall latency.

Link utilization: Link utilization is calculated by
dividing the usage of either Xn or NG backhaul links by
UEs for utilizing SFCs in the MEC nodes to the total
available capacity of the respective links.

Fig. 12 and Fig. 13 illustrates, respectively, the Xn link
utilization and the NG link utilization as a function of
the number of UEs for experiments carried out in scenario
1. In Fig. 12, we observe that in ILP, irrespective of the

16

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

00
:0
0

02
:0
0

04
:0
0

06
:0
0

08
:0
0

10
:0
0

10

20

30

40

50

60

70

80

90

100

Time (HH:MM)

C
P

U
U

ti
li

za
ti

on
(%

)
gnb.mec(ILP) ap.mec(ILP) 5gc.mec(ILP)

gnb.mec(H) ap.mec(H) 5gc.mec(H)

Fig. 11. CPU utilization of MEC nodes (Scenario 2).

number of UEs, the Xn link utilization remains almost
the same (< 3%), which is attributed to the fact that
ILP principally places the VxFs of UEs on the gnb.mec
that is currently serving the corresponding UE over the
air interface in order to minimize the end-to-end latency.
However, we observe that heuristic algorithm places VxFs
of some UEs on gnb.mec nodes that are currently not
serving the corresponding UE over the air interface, which
leads to the usage of Xn links. After a certain point (≈ 90
UEs in Fig. 12), the Xn link utilization remains almost
the same for heuristic since the capacity of all gnb.mec
nodes are depleted, and VxFs are placed on ap.mec or
5gc.mec nodes there on. In Fig. 13, we can observe that
both in ILP and heuristic NG links are least utilized up
to ≈ 90 UEs since most VxFs of SFCs, irrespective of
their latency demands, are always placed on gnode.mec
nodes until then. Once gnode.mec nodes are out of CPU
resources, the VxFs of SFCs are moved to ap.mec nodes
and later to 5gc.mec nodes considering the latency re-
quirements of SFCs, resulting in the significant usage of
NG backhaul links. However, the reason for higher NG
link utilization in heuristic is attributed to the fact that
some UEs take longer routes, from cluster 1 to cluster 2
or viceversa, in order to access their SFC which is not the
case in ILP.

30 60 90
120 150 180 210 240 270 300

0

10

20

30

40

50

Number of Users

X
n

li
n

k
u

ti
li

za
ti

on
(%

)

ILP Heuristic

Fig. 12. Xn-link (gNodeB-to-gNodeB) utilization (Scenario 1).

Fig. 14 and Fig. 15 illustrates, respectively, the Xn
link utilization and the NG link utilization with respect

30 60 90
120 150 180 210 240 270 300

0

20

40

60

80

100

Number of Users

N
G

li
n

k
u

ti
li

za
ti

on
(%

)

ILP Heuristic

Fig. 13. NG-link (gNodeB-to-AP-to-5GC) utilization (Scenario
1).

to time over one full day based on the network considered
in the MLP neural-network model (Scenario 2). Since the
number of UEs is always more than 90, we observe that
both ILP and heuristic algorithm places VxFs of some
UEs on gnb.mec nodes that are currently not serving the
corresponding UE over the air interface which leads to
the usage of Xn links as already explained in Scenario 1.
Likewise, NG link utilization for both ILP and heuristic
is lowest during early morning (2:00 to 8:00) due to the
low number of UEs being active and the utilization grad-
ually increases during the day peaking late in the night
(≈ 22:00). However, both Xn and NG link utilizations in
heuristic are higher compared to ILP because of the long
path the UEs take to access SFC like we discussed before.

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

00
:0
0

02
:0
0

04
:0
0

06
:0
0

08
:0
0

10
:0
0

10

20

30

40

50

Time (HH:MM)

X
n

li
n

k
u
ti

li
za

ti
on

(%
)

ILP Heuristic

Fig. 14. Xn-link (gNodeB-to-gNodeB) utilization (Scenario 2).

Average end-to-end latency: Fig. 16 compares the
average user-to-sfc end-to-end delay for ILP and heuristic
for Scenario 2 experiments. Like we already discussed,
UEs belonging to different clusters share some VxFs. The
ILP produces an optimal solution by placing such VxFs
at 5gc.mec nodes to minimize the overall user-to-sfc delay,
but the heuristic initially places such VxFs on gnb.mec
nodes, and therefore some UEs take the longer path (e.g.,
from cluster 1 to cluster 2) to access their SFC resulting
in increased latency. Therefore, ILP performs better than
heuristic in terms of average end-to-end delay between, as
seen in Fig 16.

17

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

00
:0
0

02
:0
0

04
:0
0

06
:0
0

08
:0
0

10
:0
0

10

20

30

40

50

60

70

80

90

100

Time (HH:MM)

N
G

li
n

k
u

ti
li

za
ti

on
(%

)

ILP Heuristic

Fig. 15. NG-link (gNodeB-to-AP-to-5GC) utilization (Scenario
2).

00
:0
0

02
:0
0

04
:0
0

06
:0
0

08
:0
0

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

0.6

0.8

1

1.2

1.4

Time (HH:MM)

A
ve

ra
ge

en
d

-t
o-

en
d

la
te

n
cy

(m
s)

ILP Heuristic

Fig. 16. Average DE2E based on the predicted number of UPFs
from the MLP classifier model (Scenario 2).

Execution time: The above ILP formulation took
44 hours to associate 300 UEs including their latency-
sensitive SFC requests composed of a number of VxFs on
a mobile network comprised of six gNodeBs, two aggre-
gation points, and one 5G core. Therefore, we proposed
a heuristic algorithm that performs a comparable asso-
ciation and mapping in a couple of seconds except with
sub-optimal outcomes. Both ILP and heuristic were solved
using CLOG IPLEX solver on an Intel Core i7 laptop with
3GHz CPU and 16 GB RAM.

8. Conclusions

The first part of the paper aims at applying machine
learning techniques to optimize network management
operations. Towards this end, we proposed two
neural-network based MLP models (i.e., a classifier
and a regressor) to facilitate proactive auto-scaling
of VNFs, based on the traffic traces obtained from
a commercial operator. We evaluated the proposed
models for its effectiveness in accurately predicting the
amount of UPF instances required as a function of the
network traffic it should process. For MLP classifier,
we measured accuracy, precision, recall, F-measure, and
finally reported confusion matrix, while for MLP regressor
we measured MSE, MAE, RMSE, and R2-score. Our

results show that both MLP classifier and MLP regressor
models have strong predicting capability for auto-scaling.
However, MLP regressor outperforms MLP classifier in
terms of accuracy.

In the second part of the paper, we solve a joint UE as-
sociation and SFC placement problem aiming to minimize
the overall user-to-sfc end-to-end latency. We have seen
that the ILP improves QoS of all UEs by initially placing
their SFCs in MEC nodes closer to gNodeBs (gnb.mec)
and thereby reducing NG backhaul link usage. Once the
gnb.mec node CPU resources are depleted, near-real-time
and non-real-time SFCs are moved/placed in MEC nodes
closer to aggregation points and 5GC which results in
increased usage of Xn and NG backhaul links. We evalu-
ated the proposed model using simulations based on real-
operator network topology and real-world latency values.
Our results show that the average end-to-end latency re-
duces significantly when SFCs are placed at the MEC
nodes according to their latency and data rate demands.
Furthermore, we propose an heuristic algorithm to address
the issue of scalability in ILP, that can solve the above as-
sociation/mapping problem in seconds rather than hours.

References

[1] A. Gupta, R. K. Jha, A survey of 5g network: Architecture and
emerging technologies, IEEE access 3 (2015) 1206–1232.

[2] Q.-V. Pham, F. Fang, V. N. Ha, M. Le, Z. Ding, L. B. Le,
W.-J. Hwang, A survey of multi-access edge computing in 5g
and beyond: Fundamentals, technology integration, and state-
of-the-art, arXiv preprint arXiv:1906.08452.

[3] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,
R. Boutaba, Network function virtualization: State-of-the-art
and research challenges, IEEE Communications Surveys &
Tutorials 18 (1) (2015) 236–262.

[4] I. F. Akyildiz, S. Nie, S.-C. Lin, M. Chandrasekaran, 5g
roadmap: 10 key enabling technologies, Computer Networks
106 (2016) 17–48.

[5] MEC in 5G networks, Whitepaper, ETSI (Jun 2018).
[6] Network Functions Virtualization (NFV), Whitepaper, ETSI

(Feb 2017).
[7] I. Farris, T. Taleb, H. Flinck, A. Iera, Providing ultra-

short latency to user-centric 5g applications at the mobile
network edge, Transactions on Emerging Telecommunications
Technologies 29 (4) (2018) e3169.

[8] E. Casalicchio, L. Silvestri, Mechanisms for sla provisioning in
cloud-based service providers, Computer Networks 57 (3) (2013)
795–810.

[9] A. Alleg, T. Ahmed, M. Mosbah, R. Riggio, R. Boutaba,
Delay-aware vnf placement and chaining based on a flexible
resource allocation approach, in: 13th International Conference
on Network and Service Management (CNSM), IEEE, 2017, pp.
1–7.

[10] T. Subramanya, R. Riggio, Machine learning-driven scaling and
placement of virtual network functions at the network edges, in:
5th International Conference on Network Softwarization, 2019,
2019.

[11] S. Dutta, T. Taleb, A. Ksentini, Qoe-aware elasticity support
in cloud-native 5g systems, in: IEEE International Conference
on Communications (ICC), IEEE, 2016, pp. 1–6.

[12] G. A. Carella, M. Pauls, L. Grebe, T. Magedanz, An extensible
autoscaling engine (ae) for software-based network functions,
in: 2016 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), IEEE, 2016, pp.
219–225.

18

https://doi.org/10.1016/j.comnet.2019.106980

To cite this article please refer to: https://doi.org/10.1016/j.comnet.2019.106980

[13] M. M. Murthy, H. Sanjay, J. Anand, Threshold based auto
scaling of virtual machines in cloud environment, in: IFIP
International Conference on Network and Parallel Computing,
Springer, 2014, pp. 247–256.

[14] C. H. T. Arteaga, F. Rissoi, O. M. C. Rendon, An adaptive
scaling mechanism for managing performance variations in
network functions virtualization: A case study in an nfv-based
epc, in: 2017 13th International Conference on Network and
Service Management (CNSM), IEEE, 2017, pp. 1–7.

[15] T. Lorido-Botran, J. Miguel-Alonso, J. A. Lozano, A review
of auto-scaling techniques for elastic applications in cloud
environments, Journal of grid computing 12 (4) (2014) 559–592.

[16] A. Bilal, T. Tarik, A. Vajda, B. Miloud, Dynamic cloud resource
scheduling in virtualized 5g mobile systems, in: 2016 IEEE
Global Communications Conference (GLOBECOM), IEEE,
2016, pp. 1–6.

[17] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings,
R. Boutaba, Topology-aware prediction of virtual network
function resource requirements, IEEE Transactions on Network
and Service Management 14 (1) (2017) 106–120.

[18] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros,
E. Alarcón, M. Solé, V. Muntés-Mulero, D. Meyer, S. Barkai,
M. J. Hibbett, et al., Knowledge-defined networking, ACM
SIGCOMM Computer Communication Review 47 (3) (2017)
2–10.

[19] S. Agarwal, F. Malandrino, C.-F. Chiasserini, S. De, Joint vnf
placement and cpu allocation in 5g, in: IEEE INFOCOM 2018-
IEEE Conference on Computer Communications, IEEE, 2018,
pp. 1943–1951.

[20] H. Hawilo, M. Jammal, A. Shami, Orchestrating network func-
tion virtualization platform: Migration or re-instantiation?, in:
2017 IEEE 6th International Conference on Cloud Networking
(CloudNet), IEEE, 2017, pp. 1–6.

[21] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi,
N. Shahriar, F. Estrada-Solano, O. M. Caicedo, A compre-
hensive survey on machine learning for networking: evolution,
applications and research opportunities, Journal of Internet
Services and Applications 9 (1) (2018) 16.

[22] S. Basterrech, G. Rubino, V. Snášel, Sensitivity analysis of
echo state networks for forecasting pseudo-periodic time series,
in: 2015 7th International Conference of Soft Computing and
Pattern Recognition (SoCPaR), IEEE, 2015, pp. 328–333.

[23] Theano.
URL http://deeplearning.net/software/theano/

[24] Tensorflow.
URL https://www.tensorflow.org/

[25] Keras 2018.
URL https://keras.io/

[26] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, B. Mukherjee,
Auto-scaling vnfs using machine learning to improve qos and
reduce cost, in: 2018 IEEE International Conference on
Communications (ICC), IEEE, 2018, pp. 1–6.

[27] Feasibility study for Further Advancements for E-UTRA (LTE-
Advanced), 3gpp tr 36.912, (Oct 2012).

[28] 5G Frame Structure, Whitepaper, Nomor (Aug 2017).
[29] UP Latency in NR, 3gpp contribution r2-1711550, (Oct 2017).
[30] 5G; NR; User Equipment (UE) radio access capabilities, 3gpp

ts 38.306 version 15.3.0 release 15, (Oct 2017).
[31] F. Massimo, M. Ronald, Random networks for communication:

from statistical physics to information systems, Vol. 24,
Cambridge University Press, 2008.

[32] A. Othman, S. Y. Ameen, H. Al-Rizzo, A new channel quality
indicator mapping scheme for high mobility applications in lte
systems, Journal of Modeling and Simulation of Antennas and
Propagation 1 (2) (2015) 38–43.

[33] Physical layer procedures for data, 3gpp ts 38.214 version 15.3.0
release 15, (Oct 2018).

[34] A. Schrijver, Theory of linear and integer programming, John
Wiley & Sons, 1998.

[35] D. Harutyunyan, S. Nashid, B. Raouf, R. Riggio, Latency–
aware service function chain placement in 5g mobile networks,
in: IEEE Conference on Network Softwarization, 2019.

19

https://doi.org/10.1016/j.comnet.2019.106980
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/
https://keras.io/

	Introduction
	Background: 5G Mobile Network
	State of the Art
	Virtual Network Function auto-scaling.
	Service Function Chain placement.

	Machine Learning-driven Proactive 'UPF' Auto-scaling
	Problem Description
	Multilayer Perceptron (MLP)
	Modeling MLP in Keras
	Collecting Data and Feature Engineering
	Data Collection
	Feature Extraction
	Definition of classes or real-valued quantity 'Y'
	Feature Subset Selection
	Dataset Decomposition

	Classification and regression using neual networks
	MLP model evaluation

	Latency-optimal SFC Placement Problem Description and Network Model
	Problem Statement
	5G Mobile Network Model
	Service Function Chain Request Model
	UE Association, Scheduling and Delay Model

	Problem Formulation
	Integer Linear Programming
	Heuristic

	ILP and Heuristic Evaluation
	Simulation Environment
	Simulation Results

	Conclusions

