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Inverse methods in aeroacoustic three-dimensional

volumetric noise source localization and quantification

G. Battistaa,∗, P. Chiariottia, M. Martarellia, P. Castellinia

aUniversità Politecnica delle Marche Via Brecce Bianche 12,60131, Ancona, Italy

Abstract

Acoustic source mapping usually involves planar microphone arrays and cal-

culation points located on a surface at a certain distance with respect to

the array. An implicit assumption that sources are located on this surface

is therefore performed. However, in some application, such as aeroacoustic

source identification, this assumption may be wrong and produce mislead-

ing results. For this reason, it is interesting to extend the common acoustic

mapping techniques to three-dimensional volumetric mapping. Direct beam-

forming techniques are not suited for volumetric imaging due to poor spatial

resolution in radial direction from the array centre. Therefore, more refined

algorithms, like deconvolution techniques or inverse methods, are required to

obtain intelligible and accurate results.

This paper describes the use of inverse methods in the context of aeroa-

coustic three-dimensional volumetric noise imaging. An Equivalent Source

Method is formulated, based on Iteratively Reweighted Least Squares and on

Bayesian Regularization. Moreover, a novel approach based on CLEAN-SC

as decomposition tool of Cross-Spectral-Matrix in coherent source compo-
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nents is presented.

The method proposed is applied on an aircraft model in wind tunnel.

Performance are preliminary assessed with simulated test cases. A compara-

tive investigation in exploiting a single planar array or multiple planar arrays

observing noise sources from different directions is performed.

Keywords:

1. Introduction

Aeroacoustic measurements are usually performed using phased-microphone

array techniques to ease the noise source identification and quantification

tasks. A general review of acoustic mapping techniques based is available in

[1]. The most common configuration is to define the Region Of Interest (ROI)

as a plane representing the object and calculate the map on it. This entails

the implicit assumption that all noise sources are located on this plane. How-

ever, in several applications this is may not be true, especially in aeroacoustic

ones. Some approaches in literature consider a three-dimensional surface that

adheres to the object, therefore, considering also different source array dis-

tances [2, 3, 4]. However, the hypothesis of sources confined in a surface still

must be fulfilled to not produce misleading maps. The aim of this paper is

to analyse the problem of volumetric acoustic mapping, thus removing this

hypothesis, and formulate a method that addresses all the issues arising in

this challenging context. Aeroacoustic source mapping will gain the major

benefit from this approach.

Literature provides some studies on this kind of applications. Despite

2
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their simplicity and robustness, simple beamforming algorithms, like Con-

ventional Beamforming (CB), suffer of poor dynamics and poor spatial res-

olution, which lead to difficult interpretation of maps, especially when deal-

ing with volumetric imaging. Therefore, more refined techniques must be

adopted. Over the years, deconvolution techniques (e.g. DAMAS [5], CLEAN-

SC [6]) of beamforming maps have been developed in order to improve result

accuracy in terms of spatial resolution and quantification of source strengths.

The goal of these methods is to remove the effect of array spatial response, i.e.

the Point Spread Function (PSF), from the map and return the real source

distribution that has generated the original map and hence pressure data

measured at microphone locations. Deconvolution of CB maps is needed

to achieve useful results as explained by Sarradj in [7], where CLEAN-SC

is chosen due to its low computational cost and applicability to problems

of large size. Instead, an attempt in using DAMAS for three-dimensional

applications is provided in [8]. Porteus et al. [9] discussed the need to com-

pensate different source-array distances to avoid a bias of source levels on

the map. Padois et al. [10] compared the behaviour of different acoustic

mapping methods using one or two planar arrays, showing as a second array

on orthogonal plane with respect to the first greatly improves the perfor-

mance of all imaging methods. In addition, this work focuses the attention

also on the computation time of different techniques. In [11], Battista et

al. described and compared different inverse methods for three-dimensional

acoustic mapping using a single planar array, while Ning et al. [12] adopted

compressive sensing techniques with the same purpose.

3
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The aim of this paper is to present a novel approach for tackling volumet-

ric acoustic source reconstruction problem. The method proposed grounds

on two building blocks.

• CLEAN-SC is used as pre-processing step for extracting coherent source

components from array microphone Cross-Spectral Matrix (CSM). Each

component can be used as input data in an inverse approach for local-

izing and quantifying the relevant acoustic sources. Being a coherence

based decomposition method it outperforms the standard orthogonal

decomposition approach especially when dealing with coherent and spa-

tially distributed aeroacoustic sources.

• Equivalent Source Method (ESM) is used to model the inverse acoustic

problem which is then solved through an Iterative Reweighted Least

Squares (IRLS) approach specifically tailored to volumetric acoustic

source mapping.

The paper is organized as follows: Section 2 introduces the volumetric acous-

tic source identification problem and the issues related to this topic; Section

3 discusses the IRLS based solver tailored to volumetric mapping; Section 4

provides a detailed description of the CSM decomposition based on CLEAN-

SC; Section 5 shows the performance of the approach on simulated and ex-

perimental data; Section 6 draws the main conclusions of the work.

4
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2. Formulation and analysis of volumetric acoustic source identifi-

cation problem

2.1. Acoustic direct and inverse problem formulations

In this paper, a frequency domain approach is adopted. Acoustic imag-

ing techniques rely on Wave Superposition Method [13], which states that the

acoustic field of a complex radiating source can be approximated by a finite

number of elementary sources enclosed within the real one. This principle can

be adopted to make the source-receiver propagation problem discrete, assum-

ing a set of elementary sources (monopoles, dipoles, plane waves, spherical

harmonics, etc.) which can be used to reproduce the actual acoustic field.

Therefore, in frequency domain, the discrete acoustic direct problem can be

described, for each frequency, by the following linear relationship:

Gq = p (1)

where q is the vector of complex source strengths of S elementary sources of

assumed spatial distribution, p is the vector containing the complex pressures

at M receiver locations and the complex matrix G represents the discrete

acoustic propagator. The calculation of p for given source coefficients q and

propagator G is known as direct acoustic problem. This is a well-determined

problem having a unique solution. Conversely, the calculation of q for given

G and p stands for the inverse acoustic problem: this is the aim of in-

verse acoustic imaging techniques. This problem results to be ill-posed in

Hadamard sense, i.e. existence, uniqueness and stability of solution are not

guaranteed [14]. Also acoustic inverse problems can be expressed as linear

5
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transformation

q̂ = Tp . (2)

The main difference between direct and inverse problem is that, while the

direct operator G is well-defined, the inverse operator T can assume different

forms depending on the approach adopted. For this reason, the estimated

source coefficients q̂(T) depend on how the source field is considered (e.g.

assumptions made, a priori information, etc.). A detailed review about dif-

ferent inverse operators is provided by Leclere et al. in [15]. Beamforming

techniques consider each potential source singularly, thus having a scalar in-

verse problem, where the inverse operator is a column. In this case, the

inverse operator is known as steering-vector. Contrarily, the idea of inverse

methods is to take into account all potential sources at once, covering the

whole ROI (Region Of Interest) with a set of elementary sources. For this

reason, inverse problems are generally under-determined. In fact, the number

of microphones (i.e. the number of equations) is limited by practical aspects,

while the number of potential sources (i.e. the number of unknowns) is com-

monly larger. Therefore, in order to define a particular inverse operator,

some assumptions on the nature of the source field must be done.

2.2. Analysis of three-dimensional volumetric acoustic inverse problem

The concepts described so far are general and regards any acoustic map-

ping technique and any kind of ROI (planes, 3D surfaces, volumes, etc.).

However, the extension of the spatial domain from surfaces to volumes im-

plicates further considerations. The analysis of volumetric imaging reveals

three critical points:

6
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P1. potential sources located at very different distances from the array cen-

tre;

P2. poor spatial resolution of arrays in radial direction from the array cen-

tre;

P3. increase of the number of potential sources with no contribution to the

acoustic field.

These issues may affect acoustic imaging techniques in several applications,

however, the volumetric approach enhances their effects, therefore, it de-

mands to address all of them properly.

The first one (P1 ) requires balancing energy needed by each potential

source to produce the same pressure on microphones, therefore, the different

source-receiver distances must be somehow compensated. When this aspect

is not considered, imaging approaches based on source field energy minimiza-

tion would produce biased solutions, systematically penalising the farthest

sources. Some applications of the same concept are given in [9, 16].

The second item of the list (P2 ) regards the ability to distinguish sources

closely spaced in radial direction. This is critical since variations of the source

distance produce very small variations of measured pressure at the array loca-

tion. Conversely, lateral displacement of a source produces more meaningful

variation of amplitude and phase on microphones([7]). The lateral size of

the mainlobe is much smaller than the radial size, due to the reasons just

explained. Mainly two factors affect the spatial resolution. The first one is

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

the ratio between the array diameter and the wavelength, i.e. the Helmholtz

number (He). The second factor is source-array distance. A reduction of the

Helmholtz number and/or an increment of the source distance cause the re-

duction of amplitude and phase difference at microphone. In fact, the higher

is the source-array, the more pressure field at microphones is similar to a

plane wave (i.e. source at infinite distance). This reduces the sensitivity in

retrieving the real source-array distance. This effect is particularly evident

when a single planar array is used. However, even when multiple planar

arrays are combined together this issue may happen.

The last issue (P3 ) concerns the fact that the size of the region of interest

grows. This causes the increment of number of potential sources necessary

to cover the ROI but the number of sources to approximate the source field

remain almost unaltered. Direct beamformer are affected only by an incre-

ment of calculation time, while deconvolution techniques and inverse methods

suffer also the increment of unknowns.

3. Sparse approximation of source field with IRLS approach tai-

lored to volumetric mapping

The previous section analyzed those issues related to acoustic imaging

that become critical in case of volumetric approach. This paper aims at

facing these issues by inverse methods. Indeed, in this section, the algorithm

developed by the authors to fulfill this task is presented in a step-by-step

mode.

8
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3.1. Assumptions on source field

Due to the lack of information in inverse acoustic problems (commonly

under-determined), source reconstruction process requires the introduction

of some a priori information and making assumptions on source field. Two

different hypotheses on the source field are discussed here: minimum energy

source field and sparse source field.

Inverse methods based on minimization of source field energy, i.e. the

common Least-Squares (LS) approaches, return maps qualitatively similar

to CB, therefore, having poor spatial resolution (P2 ) and poor dynamics. In

fact, minimizing the L2-norm solution causes a split of the energy associated

to a real source into several equivalent sources, thus introducing a sort of

”blurring” effect [17]. If this kind of results might be satisfying in terms of

source localization, the equivalent sources returned by this approach have a

directivity pattern towards the array [16], thus producing severely underes-

timation of the source strength. However, these techniques are useful for the

availability of analytic formulae to calculate the solution. In addition, they

are related to well-known regularization mechanisms, that are mandatory for

inverse problems, such as Tikhonov Regularization (TR) [18] and Bayesian

Approach to sound source reconstruction (BA) [19].

Since the assumption of minimum energy source field does not produce

satisfying results, the other possible choice discussed here is the hypothesis

of sparse source field. Real sources can be represented by few non-zero ele-

ments in a given representation (monopoles, dipoles, plane waves, spherical

9
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harmonics, etc.), as explained in [15]. This can be thought as the research for

the simplest combination of elementary sources that matches pressure data

measured by the microphones. The choice of the type of elementary sources

is equivalent to an a priori assumption on the source field in which sparsity

is assumed. Therefore, the more this a priori information corresponds to

the reality the more accurate is the sparse approximation of the source field.

The assumption of sparsity helps to retrieve correct source strengths and im-

proves localization ability. When dealing with volumetric mapping, sparsity

gains much more relevance. In fact, size and shape of real sources do not

change, while only the number of potential sources grows (P3 ). Therefore,

the need of this hypothesis grows. In addition, the sparsity constraint helps

in reducing the lobe-effect (P2 ) experienced with direct beamformers and LS

approaches.

As regards the choice of representation basis, only monopoles are adopted

in this work. However, the method described hereafter is general enough to

consider also different elementary source types.

3.2. Sparsity constraint

Hereinafter, the theory about sparse approximation is briefly provided.

Given the direct model of Eq. 1, sparse approximation of the source field

can be found minimizing the following cost function:

q̂(η2, p) = arg min
q

(
‖Gq− p‖22 + η2‖q‖pp

)
(3)

where ‖ · ‖pp is the Lp-norm of a vector. The main three terms of this cost

function are:

10
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• ‖q‖pp is the Lp-norm of of the solution, where 0 ≤ p ≤ 2. Adjusting the

exponent of the norm different sparsity constraint are applied.

• ‖Gq− p‖22 is the fitting error. This term represents the fidelity of the

solution with respect to measured data.

• η2 ≥ 0 is the regularization parameter. This controls controls the

trade-off between the two terms above.

The optimization problem in Eq. 3 has no general analytic solution. The

only exception is when p = 2. In fact, the problem boils down to a regularized

LS problem, such as TR or the equivalent case from BA. However, in this

case no sparsity is enforced on solution. The measure of sparsity is given by

the L0-norm, often referred to as ”pseudo-norm”, which counts the number

of non-zeros element of a vector. This optimization problem (p = 0) is

hard to solve exactly, since it is a non-convex optimization problem that

can have multiple solutions. However, an approximation of the exact sparse

representation can be achieved by using greedy algorithms like (Orthogonal)

Matching Pursuit [20, 21]. Due to the difficulty in finding a solution to a non-

convex optimization, the problem is reformulated as L1-norm minimization

(p = 1), which, under some conditions, returns solutions equivalent to L0-

norm minimization [22]. The advantages are that convex optimization has a

unique solution and can be exactly solved using different approaches, such as

Basis Pursuit Denoising [23] or the LASSO (Least Absolute Shrinkage and

Selection Operator) [24].

A method to approximate the solution of Eq. 3 for 0 ≤ p < 2 arises from

11
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the following consideration:

‖q‖pp =
N∑
n=1

|qn|p =
N∑
n=1

w2
sp,n|qn|2 = ‖Wspq‖22 . (4)

This leads to the Iteratively Reweighted Least Squares (IRLS) [25] algorithm,

which makes use of a diagonal weighting matrix Wsp to converge to a sparse

solution solving a Weighted Least-Squares (WLS) problem at each iteration.

The idea is to inject a penalty at each iteration to converge to the minimum

solution Lp-norm. Weights of the current step depend on the result of the

previous iteration, according to the following expression:

w(it)
sp,nn =

∣∣q̂(it−1)n

∣∣ p−2
2 (5)

where (it) identifies the current iteration and wsp,nn is the n-th generic di-

agonal element. As the exponent of weights is negative for p < 2, division

by null elements must be somehow avoided to have an invertible weighting

matrix. At the first iteration, W
(0)
sp = I, thus boiling down to a simple LS

problem.

3.3. Weighted Least Squares and Bayesian Regularization

The solution of Weighted Least-Squares problem can be seen as a partic-

ular case of a more general approach to inverse problems based on Bayesian

inference. In [19], Antoni exploited Bayesian framework for developing a

method specific for acoustic inverse problems, which is able to:

• include a priori information on source distribution to better condition

the problem and ease the reconstruction task;
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• identify the optimal basis functions which minimize the reconstruction

error, given the topology of the specific acoustic problem and the a

priori information;

• provide a robust regularization criterion.

The core idea of BA is to endow all unknown quantities with a probability

density function (pdf) to reflect the lack of knowledge about them. The likeli-

hood function encodes measurement errors and describes the direct probabil-

ity to measure certain pressure values, given the propagation model and the

probability density function of measurement noise. Instead, prior probability

density function reflects the a priori knowledge on source field. A particular

solution and regularization mechanism come from maximization of the pos-

terior probability density function, thus leading to a Maximum A Posteriori

(MAP) estimate of source coefficients. When complex normal distribution

is assumed for both source coefficients (prior) and noise, the maximization

of the posterior probability ”mechanically” produces a regularized solution

similar to the general form of TR. Otherwise, cost function of Eq. 3 can

be derived from BA when a p-generalized normal distribution is assumed as

prior pdf [26].

The cost function of a Weighted (Regularized) Least-squares problem is

in the following form:

q̂(η2,W) = arg min
q

(
‖Gq− p‖22 + η2‖Wq‖22

)
. (6)

The matrix W is square and invertible. It includes a priori information on

source coefficients in the form of its covariance. In this work only diagonal

13
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matrices are used, meaning that the sources are assumed uncorrelated. In

this case the inverse operator is calculated as:

T = W−1(GW−1)+η = W−2GH(GW−2GH + η2I)−1 (7)

where the notation (·)+η stands for regularized pseudo-inverse with the reg-

ularization parameter η2. The estimation of this value is equivalent to the

determination of the amount of regularization. This is a challenging task

since it depends on data, but also on the specific problem and a priori in-

formation included with W. Tikhonov Regularization does not provide an

internal method for this, but was often used in combination with different

criteria to estimate η2, such as L-curve or Generalized Cross-Validation [27].

However, these methods suffer the presence of multiple local minima, that

may bring to random fails in the regularization task, thus having no gen-

eral automatic and reliable criterion. Bayesian Approach to acoustic source

reconstruction explicitly identifies the regularization parameter as the Noise-

to-Signal Ratio (NSR), i.e. as the ratio between noise energy and source

field energy. Bayesian inference can be exploited also for the estimation of η2

directly from data, problem formulation and a priori information. Bayesian

Regularization (BR) provides different cost functions to fulfil this task, hav-

ing several advantages with respect to other regularization criteria [28]. The

most important is the presence of unique global minimum under some condi-

tions that are generally fulfilled in common applications. The criterion used

in this work is the MAP estimate of regularization parameter, selecting the

value with maximum probability of occurrence, given the measurements. The

definition of the cost function requires the Singular Value Decomposition of

14
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GW−1 = USVH :

JMAP (η2) =
M∑
k=1

ln(s2k + η2) + (M − 2) ln

(
1

M

M∑
k=1

|yk|2

s2k + η2

)
(8)

where sk are the singular values of GW−1, while the terms yk = uHk p are the

Fourier coefficients, calculated from the columns of U and the pressure data

p. The minimization of JMAP with respect to η2 returns the MAP estimate

η2MAP = arg min
η2

JMAP (η2) . (9)

Other cost functions can be obtained from Bayesian framework allowing to

include a priori information of noise energy and/or source field energy.

3.4. IRLS tailored to volumetric acoustic mapping

This section describes the IRLS-based method used in this paper to calcu-

late sparse approximation of source fields for volumetric mapping purposes.

The algorithm makes use of fixed-point formulation for Eq. 3 which con-

verges to a minimum of the cost function. The minimum is surely global for

convex problems (p ≥ 1), but it may be global or local for non-convex prob-

lems (0 ≤ p < 1). The Bayesian interpretation of IRLS is an Expectation-

Maximization algorithm which converges to a MAP solution [29].

The fixed-point scheme can be expressed as:

q̂(it) = F
(
q̂(it−1),W(it), η2 (it),G(it),p, p

)
, (10)

where the function F is given by Eq. 7. The following procedure is used:
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1. Set the weighting diagonal matrix for the current iteration as

W(it) =
W0

‖W0‖∞
· W

(it)
sp

‖W(it)
sp ‖∞

(11)

where the diagonal elements of W
(it)
sp are calculated using Eq. 5.

2. Estimate the regularization parameter η2 (it) for the current iteration

using Eq. 9.

3. Calculate the solution q̂(it) with the inverse operator of Eq. 7, updated

at current iteration.

4. Apply a threshold to discard potential sources that do not contribute

significantly to the acoustic field. The set of indices n of potential

sources to discard is found using the following criterion:{
n : 10 log10

(
|q̂n|(it)

‖q̂(it)‖∞

)
< THRdB

}
. (12)

The value of THRdB must be negative to keep the most energetic

sources. The guidelines on how to properly set this value are pro-

vided further on the paper. Discarded sources are set to zero in the

final map and correspondent columns of G(it) are removed.

5. Evaluate a convergence criterion; if not fulfilled go back to step 1,

otherwise stop the iterative procedure.

This is the procedure adopted to obtain a sparse approximation of source

field. Hereinafter, a discussion about the most important aspects is provided.

Balance of energy among potential sources. Since the first step is always

a LS solution, the issue of balancing the energy among potential sources

16
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(P1) must be taken into account. Two strategies can be adopted with this

purpose. The first one has been described in [16]. The common strength-to-

pressure (Q2P) acoustic propagator can be adopted in combination with a

weighting strategy. In case of monopoles as potential sources, we have:

Gmn =
e−jkrmn

4πrmn
, wnn =

1

r0n
(13)

where k is the wavenumber. The terms rmn represent the propagation dis-

tances between microphones and the potential sources. The terms r0n are

the propagation distances between the reference point ”0” and the location of

potential sources. The reference point (indicated further on with r0) can be

chosen arbitrarily, avoiding the coincidence with a potential source location.

The weighting matrix for this correction is diagonal as the others adopted in

this paper. The elements of weighted propagation matrix GW−1 becomes:

Gmnw
−1
nn =

r0n
rmn

e−jkrmn

4π
. (14)

This weighting strategy must be adopted in addition to any other a priori

information introduced in W0 and W
(it)
sp . The other approach to balance the

energy among potential sources consists of adopting a pressure-to-pressure

(P2P) propagator to define the direct operator G. For monopoles, the prop-

agator is in the following form:

Gmn =
r0n
rmn

e−jk(rmn−r0n) . (15)

This propagator relates the pressure in the reference point ”0”, generated

by a monopole located in n, with the pressure induced on microphone m.

Solutions returned by the two formulations of propagator are expressed in

17
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different physical quantities (volume acceleration for Q2P and pressure in-

duced in the reference point for P2P). Despite of this, they are equivalent in

terms of solution of inverse problem when expressed in the same unit. How-

ever, the P2P formulation is adopted in this work to avoid adopting further

weighting strategies.

Sparsity constraint. The norm exponent can be set in the range 0 ≤ p ≤ 2

to adjust the strength of sparsity constraint. As already reported before,

p = 2 means no sparsity. In this case, the calculation needs no iterations

since the solution is exact. In the range 1 < p < 2, weak sparsity is enforced

and the minimization process still gains advantage in spreading energy of

a single source over several potential sources. Convergence is fast and spa-

tial resolution and dynamics are slightly improved. Conversely, in the range

0 ≤ p < 1, strong sparsity constraint is imposed. The norm minimization

gains advantage in squeezing the total energy of source field in few equivalent

sources. The convergence is faster when p tends to 0, however, it is slower

than 1 < p < 2, since it generally requires more iterations. The advan-

tages of this sparsity constraint are huge in terms of spatial resolution and

dynamics. However, some drawbacks may occur. For instance, the repre-

sentation of spatially extended source may be split into a certain number of

non-contiguous equivalent sources. The value p = 1 recovers the maximum

sparse approximation attainable with convex optimization. It stands for a

neutral condition that tends to preserve the real source shape and results are

satisfying also in terms of dynamics. This is the case with slowest conver-

gence. Sparse approximation of real source field with equivalent monopoles
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have some drawbacks in localization. In fact, when spatial resolution of grid

of potential monopoles is fine enough, the maximum error in source local-

ization is limited to half grid step. Instead, when the grid is coarse, it may

happen that a source is mapped on more than one equivalent source. In this

case, the real source location is somewhere in between the equivalent sources.

Discarding strategy of potential sources. After the calculation of solution

at current iteration, discarding of potential sources is performed. This step

has two reasons: avoid division by zero when weights of W
(it)
sp are calculated

and speed up the calculation reducing the system size, i.e. the columns of

G(it). The value of THRdB adopted in this work is −100 dB as suggested

in [30]. This value has been verified to not affect the results in almost any

condition. In fact, higher values may produce the early discarding of sources,

that affect the source quantification, leading to underestimation of source

strengths.

Convergence criterion. The convergence criterion has a crucial impor-

tance in iterative methods, since it guarantees uniformity of convergence in

any condition (number and characteristics of real sources, frequency, noise,

p, etc.). The one adopted here was derived by [30] and improved by Battista

et al. in [11]:

MSR =
〈∣∣q̂(it)n /q̂(it−1)n

∣∣〉
ε(it) = 10 log10

(
MSR(it) −

∣∣∆(MSR)(it)
∣∣− ∣∣∆2(MSR)(it)

∣∣) (16)

where MSR stands for Mean Source Ratio, the operator 〈·〉 refers to the
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spatial average and the operators ∆(·) and ∆2(·) are the backwards finite

differences of first and second order respectively. This criterion can be eval-

uated only for it > 2 (given the second order finite difference) and requires

solution variation to be small over three last iterations. The algorithm stops

when ε(it) ≥ −0.1 dB.

A priori information on source distribution. Usually, the experimenter

has some a priori information on source locations. Even though this infor-

mation is vague, the introduction in the calculation process improves the

localization and quantification task. Indeed, an example of vague a priori

information is the fact that the sources are less likely close to edges of the

calculation volume. More reliable information can be retrieved, for instance,

from CB maps, similarly to [31]. All knowledge of this kind can be included

in W0. In this algorithm, the choice of reintroducing W0 in each iteration

is made. This is not strictly necessary (and actually represents an arbitrary

choice) since after the first iteration, this information would be embedded in

W
(it)
sp . However, it has been experienced that this may help in reducing the

risk of artefacts in the map.

3.5. Example of ESM-IRLS volumetric application

The last part of this section is dedicated to an application example of the

algorithm just described. Since it is an inverse method, the results strongly

depend on several factors, such as array shape, ROI and its discretization,

background noise level and others. Therefore, this part should not to be

intended as a comprehensive study on the behaviour of ESM-IRLS, but just

an example to get more familiar with this technique. The simulated setup
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consists of a monopole emitting white noise at 1 m distance from the array

plane. The ROI is a cube of 1 m on each dimension as depicted in Fig. 1(a).

This volume is discretized with a regular grid of monopoles of 2 cm step,

thus having 132651 potential sources. The frequency of analysis used for

the following examples is 2816 Hz, corresponding to an Helmholtz number

He = 8. The CB map depicted in Fig. 1(b) is obtained with the steering

vector formulation IV described in [7], that is the same adopted throughout

the paper for CB. This formulation gives the correct source location at cost of

a small error on source level. Commonly, acoustic maps returned by inverse

methods are depicted as source strength (volume velocity or acceleration).

A different choice is made here because this is the direct output of ESM-

IRLS since P2P formulation is adopted for G. In fact, acoustic maps in

this paper show the pressure induced by each source at the reference point

(20 log10(p/pref ) with pref = 20 µPa).

(a) (b)

Figure 1: Example of volumetric mapping. (a) Simulated setup, (b) CB map.
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Two aspects are discussed here: the choice of sparsity constraint and the

choice of the reference point. As regard the amount of sparsity constraint,

Fig. 2 depicts the results obtained with three values. The map returned

from L2-norm minimization is qualitatively similar to a CB map. Instead,

the results achieved with strong sparsity constraint are the ones desired in

volumetric imaging. When p is set equals to 1, the monopole is mapped into

very few equivalent sources, while p = 0 makes it possible to reconstruct the

actual source field. In this case, the hypothesis of sparsity perfectly matches

with actual source field, therefore, the condition is ideal.
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(a) (b)

(c)

Figure 2: Example of volumetric mapping. ESM-IRLS with different levels of sparsity

constraint. (a) p = 2, (b) p = 1, (c) p = 0.

The other important aspect treated here is the choice of the location

of the reference point. The maps in Fig. 2 have the reference point at

the array centre r0 = 0. Figures 3 and 4 show the results obtained with

different choices. The maps of first IRLS iteration (L2 minimization) show
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artefacts in different positions depending on the reference point. However,

the sparse approximation obtained is the same with any r0. The different

level noticeable in Fig. 4 is due to the greater distance between the source

and the reference point. It has been experienced that the choice of the

reference point does not affect significantly the final map, especially with

strong sparsity constraints.

(a) (b)

Figure 3: Example of volumetric mapping. ESM-IRLS with reference point in front of the

array and on the other side of the ROI w.r.t. the array, r0 = (0, 0,−2). (a) p = 2, (b)

p = 0.
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(a) (b)

Figure 4: Example of volumetric mapping. ESM-IRLS with reference point laterally to

the ROI, r0 = (−1, 0,−1). (a) p = 2, (b) p = 0.

4. Cross-Spectral Matrix decomposition based on CLEAN-SC

The usual input of acoustic imaging techniques in frequency domain is

the estimate of Cross-Spectral Matrix P. Many techniques directly handle

the full CSM to provide the final map, such as CB and other methods based

on it (e.g. DAMAS). Also some inverse methods use the whole CSM, such as

sparse acoustical holography based on iterated Bayesian focusing (IBF) [32]

and Covariance Matrix Fitting (CMF) [33]. Instead, other imaging methods

rely on decomposition of CSM in coherent source components. The problem

of source separation has been treated by Dong et al. in [34]. In these cases,

the full acoustic map is the sum of single mapped components. The IRLS

approach described in the previous section solves the inverse problem in the

linear formulation Eq. 1, therefore, pressure data must be in the form of

complex pressure p vector.

25



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Techniques like Orthogonal Beamforming [35] or Generalized Inverse Beam-

forming (GIBF). [17] make use of the Eigenmode Decomposition (ED) of

CSM, which is Hermitian and non-negative definite by construction. Given

these properties, the CSM can be decomposed as follows

P = Evec Eval E
H
vec , (17)

where Evec is a unitary square matrix of M orthonormal eigenvectors and Eval

is a diagonal matrix containing the corresponding real positive eigenvalues.

It is possible to define the eigenmode ei as the eigenvector including its

amplitude

ei =
√
eval,i evec,i i = 1, . . . ,M (18)

where evec,i is the i-th eigenvector and eval,i is the corresponding eigenvalue.

Each eigenmode represents a coherent signal across the microphones, under

the constraint of orthogonality.

This decomposition is exploited by OB assuming that each eigenmode

contains only one coherent point source. In this way, the CB map of each

eigenmode has its maximum at the real source location. Then, all peak loca-

tions and powers of each partial CB map are added on the full map. When

the assumption is verified, the OB final map is the perfect deconvolution

of CB map. However, it commonly happens to have different conditions.

Firstly, more than one real source component is present in each eigenmode.

Secondly, more than one correlated or spatially extended sources may be

present. In these cases, the OB map is incomplete in terms of source loca-

tions but it is still correct in terms of total power. The complete map of
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the ”content” of each eigenmode can be achieved with GIBF, that defines an

inverse problem for each eigenmode:

Gqi = ei i = 1, . . . , C (19)

where C ≤ M is the number of relevant eigenmodes. Each problem defined

in such way is equivalent to the problem of Eq. 1, In this way, each coherent

signal is mapped revealing possible multiple coherent sources or spatially ex-

tended radiators. Full map is obtained from the energetic sum of solutions

obtained from each component q̂i. A limit of ED, especially when dealing

with aeroacoustic measurements, the trend of CSM eigenvalues is typically

smooth, thus making difficult to properly set C for each frequency. A pos-

sible solution is to map all eigenmodes without checking the relevant ones.

Another drawback of ED is that, in real applications, each eigenmode is a

mixture of several contributions, therefore, it is not able to achieve a sufficient

component separation, except for rare cases.

Another popular acoustic mapping technique, based on CSM decomposi-

tion, is the CLEAN based on spatial source coherence (CLEAN-SC) [6]. This

deconvolution technique make use of the concept of spatial source coherence

explained in [36] to separate source components and build the so called ”clean

map”. Basically, this is a greedy deconvolution algorithm which identifies the

maximum on CB map, the so called ”dirty map”, and extracts the source

component that is coherent with the peak, exploiting the fact that side lobes

of single source map are spatially coherent with the main lobe. Then the

peak is added on the clean map and the CSM is updated subtracting the last

component extracted. At this point the new dirty map is calculated and the
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procedure restarts again. The complete algorithm is reported here:

1. Initialize the clean-map Q as S×1 vector, setting all S potential source

powers of the ROI equal to 0.

2. Initialize the degraded CSM: D
(0)

= P (overline stands for removing

diagonal elements setting them to zero).

3. Begin the new iteration calculating the CB map (the so called ”dirty

map”) using the degraded CSM of previous iteration D
(it−1)

.

4. Find the maximum peak location on the current dirty map. Identify

the source power P
(it−1)
max and the steering-vector w

(it)
max associated to the

peak.

5. Calculate the single coherent source component h(it) solving the follow-

ing equation

h(it) =
1(

1 + w
H (it)
max H(it) w

(it)
max

)1/2
(

D
(it−1)

w
(it)
max

P
(it−1)
max

+ H(it)w(it)
max

)
,

(20)

where H(it) contains the diagonal elements of h(it)hH (it). This is an

implicit expression that can be solved iteratively staring with h(it) =

w
(it)
max.

6. Update the degraded CSM:

D
(it)

= D
(it−1)− ϕP (it−1)

max h(it)hH (it) , (21)

where the parameter 0 < ϕ ≤ 1 is the loop-gain.

7. Update the clean-map:

Qs = Qs + ϕP (it−1)
max , (22)

where s is the source index where P
(it−1)
max is detected.
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8. Go back to step 3 and iterate until the following stop criterion is not

satisfied

‖D(it)‖1≥ ‖D
(it−1)‖1 . (23)

The clean map obtained in this way represents the deconvolution of the CB

map. The spatial source coherence adopted by CLEAN-SC in source compo-

nent separation outperforms the assumption of orthogonality adopted in ED.

This technique is widely used in aeroacoustic applications due to its capabil-

ity of achieving high accuracy and dynamics. This method is also suitable for

volumetric mapping due to the good accuracy and low computational cost

[37, 10]. However, some drawbacks must be taken into accounts. In case of

close sources the peak location in the dirty map is somewhere in between

actual source locations, therefore the extracted component is a combination

of these sources. Then the residual energy of these is extracted in the compo-

nents of following iterations. This behaviour has been improved in a newer

version of the method, i.e. High Resolution CLEAN-SC [38]. Similarly to

OB, multiple coherent sources or extended coherent radiators are mapped as

a single point source. This is due to the fact that only the information of

peaks P
(it−1)
max in CB maps are transferred to the clean map. This drawback

is partially mitigated from the use of a loop gain ϕ < 1 that splits a coherent

component in more than one. Despite of this, the optimal value of ϕ depends

on the application. Lastly, the accuracy in retrieving correct source location

is strictly linked to CB.
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4.1. CLEAN-SC Decomposition procedure

Given the overview above on how to handle the CSM. A novel approach

presented in this paper makes use of CLEAN-SC as a tool to extract coherent

source components from CSM. As mentioned above, a loss of spatial infor-

mation happens in standard CLEAN-SC when distributed and/or coherent

sources are present. In these cases, phase difference and relative amplitude

information of coherent/distributed sources are actually contained in h(it),

but they are not exploited except for CSM degradation. The original idea

presented here is to use all informations extracted to build coherent source

components ci similarly to eigenmodes

ci =

√
P

(i−1)
max h(i) i = 1, . . . , IT (24)

where IT is the number of iterations for each frequency. The CSM decompo-

sition procedure described below is named here CLEAN-SC Decomposition

(CSCD) to differentiate it from the original deconvolution algorithm. This

simplified procedure considers ϕ = 1 to minimize the number of extracted

components and the calculation of clean-map is avoided since it is not needed

for decomposition purposes. Similarly to GIBF, an inverse problem can be

set and solved for each component

Gqi = ci i = 1, . . . , C (25)

One advantage of this decomposition is that the number of relevant compo-

nents C for each frequency is directly given by the number of iterations IT ,

which corresponds to the number of components extracted. The full map is

obtained, also in this case, from the energetic sum of all contributes.
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The steps of CSCD are reported here:

1. Initialize the degraded CSM: D
(0)

= P.

2. Begin the new iteration calculating the dirty map using the degraded

CSM of previous iteration D
(it−1)

.

3. Find the maximum peak location of the current dirty map. Identify

the source power P
(it−1)
max and the steering-vector w

(it)
max associated to the

peak.

4. Calculate the single coherent source component h(it) solving the follow-

ing equation

h(it) =
1(

1 + w
H (it)
max H(it) w

(it)
max

)1/2
(

D
(it−1)

w
(it)
max

P
(it−1)
max

+ H(it)w(it)
max

)
,

(26)

where H(it) contains the diagonal elements of h(it)hH (it). This implicit

expression can be solved iteratively staring with h(it) = w
(it)
max.

5. Update the degraded CSM

D
(it)

= D
(it−1)− P (it−1)

max h(it)hH (it). (27)

6. Go back to step 2 and iterate until the following stop criterion is not

satisfied

‖D(it)‖1≥ ‖D
(it−1)‖1 . (28)

These are the steps needed for CSM decomposition. It is worth noticing that

it is possible to use also lower values for ϕ, however, the number of compo-

nents increases, thus requiring more computation to solve inverse problems.
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4.2. Difference between deconvolution with CLEAN-SC and imaging with

CLEAN-SC decomposition

Results on a simple simulated experiment are provided to highlight the

issues of deconvolution with CLEAN-SC and the advantage in using CSCD

in combination with ESM-IRLS (or other imaging techniques). The same

concept is valid for ED and OB. Three monopoles emitting white noise are

simulated. Source 1 and 3 are driven with the same signals. Source coor-

dinates and levels are reported in Table 1, while Fig. 5 depicts the array

and the CB map. The latter clearly reveals three sources. However, Fig.6

shows that CLEAN-SC misses the third source. This happens because the

maximum peak is on source 1 and the component extracted contains what-

ever is coherent with it. The map obtained with ESM-IRLS correctly shows

three monopoles as equivalent sources. Figure 7 shows the CB maps of the

first two components extracted via CSCD. Map of first component reveals

the source 3 correlated with the strongest one.

x y z Level

Source 1 0.20 0.20 -1.0 0 dB

Source 2 -0.20 0.10 -1.0 -3 dB

Source 3 0.20 -0.20 -1.0 -6 dB

Table 1: Three monopoles example. Source coordinates (m) and levels (dB). Source 1

produces 1 Pa rms at 1 m distance.
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(a) (b)

Figure 5: Three monopoles example. (a) 64 microphone array, (b) CB map.

(a) (b)

Figure 6: Three monopoles example. Comparison between standard CLEAN-SC and

ESM-IRLS with CSCD. (a) CLEAN-SC ϕ = 0.6, (b) ESM-IRLS p = 0 with CSCD.
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(a) (b)

Figure 7: Three monopoles example. CB maps of first two components extracted with

CSCD. (a) Component 1, (b) Component 2.

5. Application results

5.1. Reference set-up

The test program was conducted at the Pininfarina Aerodynamic and

Aeroacoustic Research Center in Turin, Italy, within the EU WENEMOR

project. Pininfarina’s facility contains a test section of 8 m × 9.6 m × 4.2

m (see Figure 8(a)). The wind tunnel was specifically acoustically treated in

order to reduce reverberation and background noise. Two planar microphone

arrays were installed at Pininfarina Wind Tunnel (WT), as depicted in Figure

8(b): a 78 microphone wheel array (3 m diameter) placed at the ceiling of

the WT at a distance of 2.5 m from the model axis and a 66 microphone half-

wheel array (3 m diameter) located broadside, parallel to the axis of the open

rotor and 4.2 m far from the longitudinal axis of the model. Signals were

synchronously sampled at a sample rate of 32768 Hz for a total observation
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(a) (b)

Figure 8: (a) Test set-up in Pininfarina WT (front view of the aircraft model). (b)

Microphone array layout with respect to WT and aircraft model (green dots: top wheel

array, orange dots: side half-wheel array)

length of 10 s. Time data has been processed to estimate CSM using Welch’s

method (block size: 1024 samples, overlap: 50%, window: Hanning).

The CROR tested featured two rotors of 12 blades each. Both left and

right engines of the aircraft model were driven from a single power supply and

controlled by dedicated control systems (one per motor). Strouhal number

scaling was performed to represent flight conditions of the full scale aircraft.

Different design configurations of the model were tested during the whole test

campaign (different tails, rotors in pusher and tractor configuration, different

distances of the CRORs with respect to the model fuselage, etc.) at differ-

ent flow speeds and angles of attack. Angle of attacks (AoA) differed also

with respect to the take-off or approach model configuration. However, all

the results discussed in this paper refer to the T-tailed model, in approach

condition with CRORs in pusher configuration for AoA = 8 deg and flow
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speed of 28 m/s. The flow direction is considered to be the X positive axis of

the coordinate system represented in Figure 8(b) (red arrow). Assumption of

propagation through uniform flow field is done [39]. For this reason, propaga-

tion distances are calculated as virtual distances corresponding to the actual

travelling time for a given flow field and speed of sound, thus leading to the

following expression for rmn:

rmn =
‖rn − rm‖2

−Cmn +
√
C2
mn −M2

a + 1
, Cmn = (rn − rm) · f̂ Ma (29)

where f̂ is the flow direction and Ma is the Mach number. Both for simulated

and experimental cases, the reference point is set at the origin of coordinate

system, i.e. r0 = 0. Equation 29 is also used to calculate terms r0n.

Before analysing the experimental data recorded, some simulated test

cases are presented. The aim of simulated data is to better understand

performance of methods in terms of source localization, quantification and

dynamics achievable. Same frequency range in considered in both simulated

and experimental tests, i.e. acoustic maps reported hereinafter refers to one-

third octave band at 2500 Hz. In addition, same arrays, ROI and algorithm

settings are adopted.

5.2. Simulated data

Each simulated test case consists of four monopoles emitting uncorrelated

white noise and located in the four spots depicted in Figure 9. Monopole

levels and coordinates are chosen in order to simulate typical sources of noise

expected in a real setup. Source 1 is the loudest (1 Pa rms at 1 m distance)

and represents the CROR noise, sources 2 and 3 represent the wing tip noise
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(a) (b)

Figure 9: Position of simulated sources (black diamonds) with respect to the aircraft

model. The black dots represent microphone locations of the two arrays - (a) Rear view.

(b) Front view.

and are 10 dB weaker than source 1, finally, source 4 is positioned on the

front landing gear and is 20 dB weaker than source 1. During measurement

campaign, time signals of real WT noise were acquired by the arrays without

the model in the test section at flow speed of 28 m/s. These signals have

been used as background noise (BGN), in the synthesis of simulated signals,

to obtain more realistic simulations. The idea of such simulation is to have a

background noise with a spatial distribution and not the ideal spatially white

noise. In fact, the real BGN produces well-structured artefacts on maps and

it may come outer of the ROI considered. What it is not taken into account in

these simulations is the sensor calibration uncertainty and phase mismatch.

Indeed, these can deteriorate performance of imaging techniques. Some array

calibration procedures were developed to reduce the effect of these issues

[40, 41]. As regard inverse methods, sensor calibration uncertainty can be
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Figure 10: Average microphone auto-spectra - (a) Top array, (b) Side and top arrays

relevant in the amount of regularization, therefore, this problem should be

considered when measurements are performed.

Synthetic microphone signals are produced as sample-by-sample sum of

two contributions: simulated source signals and recorded BGN. Therefore,

simulated total pressure ptot,m(t) on each microphone is obtained as follows

ptot,m(t) = psig,m(t) +G · pbgn,m(t) m = 1, . . . ,M (30)

where psig,m(t) is the contribution of all simulated sources on each microphone

and pbgn,m(t) is the real WT noise recorded by each m-th microphone. Since

the real BGN has not flat spectrum, the value of the gain G must be set to

properly scale BGN signals to get the desired Signal-to-Noise Ratio (SNR)

in the band of interest. The proper value of G has been calculated using

microphone auto-spectra, averaged over all microphones, of both simulated

and real WT noise signals. Once selected the frequency band of interest

(2500 Hz one-third octave band here), the overall band power Psig and Pbgn

are estimated and used to calculate G as

G =

√
Psig
Pbgn

10(−SNRdB/20) (31)
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where SNRdB is the target SNR, expressed in dB. In this way, data pro-

duced have the desired overall SNR for the band of interest. Two different

test cases are studied in this section: noise-free and SNR 0 dB. Figure 10

shows the average microphone auto-spectrum induced by simulated source

noise compared with average microphone auto-spectrum of background noise

added for the noisy test case.

The volume of interest, depicted in Figure 9, contains the whole model

and it is discretized with a regular grid of monopoles using a step of 0.06

m, thus having 464508 potential sources in the volume. Grid step has been

chosen to be less than half wavelength that is approximately 0.138 m for the

centre frequency of the band. Maximum sparsity enforced by setting p = 0.

Both ED and CSCD are used to map noise sources and then compared in

terms of localization and robustness to noise. All CSCD components are

mapped while the number of relevant eigenmodes is set to C = 20. Diagonal

removal is not performed with ED since it does not produce any meaningful

advantage, while it is adopted with CSCD. Maps obtained with standard

CLEAN-SC are reported to make a comparison with ESM-IRLS. In addition,

the use of CB map of each component as a priori information W0 has been

evaluated and compared with the results without a priori information. When

dual array is used, microphone signals are processed together as it were a

unique array. All maps are represented using a dynamic range of 50 dB. As

regards source quantification, volume acceleration of reconstructed sources

are calculated integrating the maps over a sphere of 0.25 m radius having the

centre in the exact source position. Results are depicted as the ratio between
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reconstructed and exact source volume acceleration.

(a) (b)

Figure 11: Noise-free simulation. Top array and ESM-IRLS. (a) CSCD, (b) ED.

(a) (b)

Figure 12: Noise-free simulation. Top array and ESM-IRLS with CB map as a priori

information. (a) CSCD, (b) ED.
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(a) (b)

Figure 13: Noise-free simulation. Top array and CLEAN-SC. (a) ϕ = 1, (b) ϕ = 0.6.

(a) (b)

Figure 14: Noise-free simulation. Side and top arrays and ESM-IRLS. (a) CSCD, (b) ED.

(a) (b)

Figure 15: Noise-free simulation. Side and top arrays and ESM-IRLS with CB map as a

priori information. (a) CSCD, (b) ED.
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(a) (b)

Figure 16: Noise-free simulation. Side and top arrays and CLEAN-SC. (a) ϕ = 1, (b)

ϕ = 0.6.

(a) (b)

Figure 17: Simulation with SNR = 0 dB. Top array and ESM-IRLS. (a) CSCD, (b) ED.

42



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(a) (b)

Figure 18: Simulation with SNR = 0 dB. Top array and ESM-IRLS with CB map as a

priori information. (a) CSCD, (b) ED.

(a) (b)

Figure 19: Simulation with SNR = 0 dB. Top array and CLEAN-SC. (a) ϕ = 1, (b)

ϕ = 0.6.
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(a) (b)

Figure 20: Simulation with SNR = 0 dB. Side and top arrays and ESM-IRLS. (a) CSCD,

(b) ED.

(a) (b)

Figure 21: Simulation with SNR = 0 dB. Side and top arrays and ESM-IRLS with CB

map as a priori information. (a) CSCD, (b) ED.
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(a) (b)

Figure 22: Simulation with SNR = 0 dB. Side and top arrays and CLEAN-SC. (a) ϕ = 1,

(b) ϕ = 0.6.
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Figure 23: Noise-free simulation. Error of reconstructed source spectra using top array

(dB references are the exact source spectra). Solid lines: ESM-IRLS (black crosses: ED,

grey circles: CSCD). Dotted lines: CLEAN-SC (blue squares: ϕ = 0.6, purple diamonds:

ϕ = 1). (a) ESM-IRLS without a priori information, (b) ESM-IRLS with CB as a priori

information.
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Figure 24: Noise-free simulation. Error of reconstructed source spectra using side and

top arrays (dB references are the exact source spectra). Solid lines: ESM-IRLS (black

crosses: ED, grey circles: CSCD). Dotted lines: CLEAN-SC (blue squares: ϕ = 0.6,

purple diamonds: ϕ = 1). (a) ESM-IRLS without a priori information, (b) ESM-IRLS

with CB as a priori information.

46



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2300 2400 2500 2600 2700
-6

-4

-2

0

2

Q
  
(d

B
)

Source 1

2300 2400 2500 2600 2700
-6

-4

-2

0

2

Q
  
(d

B
)

Source 2

2300 2400 2500 2600 2700
-6

-4

-2

0

2

Q
  
(d

B
)

Source 3

2300 2400 2500 2600 2700

Frequency (Hz)

-6

-4

-2

0

2

Q
  
(d

B
)

Source 4

(a)

2300 2400 2500 2600 2700
-6

-4

-2

0

2

Q
  
(d

B
)

Source 1

2300 2400 2500 2600 2700
-6

-4

-2

0

2

Q
  
(d

B
)

Source 2

2300 2400 2500 2600 2700
-6

-4

-2

0

2

Q
  
(d

B
)

Source 3

2300 2400 2500 2600 2700

Frequency (Hz)

-6

-4

-2

0

2

Q
  
(d

B
)

Source 4

(b)

Figure 25: Simulation with SNR = 0 dB. Error of reconstructed source spectra using

top array (dB references are the exact source spectra). Solid lines: ESM-IRLS (black

crosses: ED, grey circles: CSCD). Dotted lines: CLEAN-SC (blue squares: ϕ = 0.6,

purple diamonds: ϕ = 1). (a) ESM-IRLS without a priori information, (b) ESM-IRLS

with CB as a priori information.
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Figure 26: Simulation with SNR = 0 dB. Error of reconstructed source spectra using side

and top arrays (dB references are the exact source spectra). Solid lines: ESM-IRLS (black

crosses: ED, grey circles: CSCD). Dotted lines: CLEAN-SC (blue squares: ϕ = 0.6, purple

diamonds: ϕ = 1). (a) ESM-IRLS without a priori information, (b) ESM-IRLS with CB

as a priori information.

These results show how it is possible to properly produce volumetric map-

ping, even in case of strong background noise (Figures from 11 to 16). Noise-

free case shows that ESM-IRLS does not reveal the weakest source (20 dB

below the loudest), unless a priori information are provided. This happens

independently from the use of single or dual array. Conversely, CLEAN-SC

always reveals the weakest source without BGN. As regard quantification of

sources, Figures 23 and 24 shows that both methods are able to recover the

source strength with an error of about 2 dB. Generally, CLEAN-SC overesti-

mates source level, except for the weakest source that is underestimated of 4
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dB. Instead, ESM-IRLS always produces an underestimation of about 0.5 dB

for the strongest source and a a bit higher for the others. The introduction

of a priori information with CB of each component makes more stable the

quantification and enables the estimation of the weakest source strength. In

this case, any meaningful difference is noticeable between ED and CSCD.

Test case with background noise (Figures from 17 to 22) shows that vol-

umetric imaging is feasible also in this severe condition. The first three

sources are detected in almost all conditions (array and algorithm). Instead,

the weakest source is revealed only by CLEAN-SC. In all maps, the wind

tunnel noise is visible on the top left part of the volume. This is due to fan

noise coming outside the ROI. It is worth noticing to further analyze Fig.

17. In this case, ESM-IRLS is combined with ED, where only the top array

is used and no a priori information is included. These hard conditions makes

that the source reconstruction process fail, thus producing a solution where

great part of the energy is concentrated in the layers of potential sources

near the array. In similar conditions, this phenomenon does not occur when

CSCD is utilized, due to better separation of source signal from noise. Even

with a priori information, ED returns worse map than CSCD. In fact, more

random artefacts are present in the map and sources 2 and 3 are not well

concentrated at the right source-array distance but they are blurred along

the radial direction from the array centre. Results of source quantification

remains the same only for the strongest source. Instead, reconstructed spec-

tra of sources 2 and 3 suffer of major instability with ESM-IRLS especially

without a priori information and only top array is used, while CLEAN-SC
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has much more stable behaviour in this case.

Therefore, both quantification and localization gain benefit from the in-

jection of a priori information in calculation, resulting in more stable and

better addressed problem. The use of a second array is particularly useful in

presence of background noise, as it increases localization accuracy and the

capability of suppressing noise and artefacts. Reconstructed source spectra

with CLEAN-SC are almost independent from ϕ in this application.

5.3. Experimental data

Experimental data were acquired both with CRORs turned-on and turned-

off. An estimate of SNR in both test conditions can be retrieved using

the average microphone auto-power spectrum (Fig. 27). When rotors are

functioning, the difference of band power between test condition and WT

background noise is about 15 dB. Instead, when rotors are not running, the

difference shrinks to 8 dB. In the band of interest In the band of interest also

an harmonic of CROR rotation speed is present (approximately 2624 Hz).

Even the experimental test are mapped with ESM-IRLS (combined with

CSCD and ED) and CLEAN-SC. The number of relevant eigenmodes was

empirically set to C = 20 because otherwise the noise spoils excessively

the CSM eigenmodes. The maximum number of CSCD components was

limited to 20, but it results a lower number for all spectral lines in the band

of analysis. Diagonal removal is not performed with ED since it does not

produce any meaningful advantage even in this noisy environment, while it

is adopted with CSCD. The volume of interest is the same of the simulated
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test case. Two values of loop gain are adopted for CLEAN-SC (ϕ = 1 and

ϕ = 0.6). Figures from 28 to 33 show the result of acoustic mapping on

the test case with the CRORs switched-on. Figures from 34 to 39 show the

acoustic maps with the CRORs switched-off.
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Figure 27: Average microphone spectra of three test condition: CRORs switched-on (red

line), CRORs switched-off (blue line) and background noise (black line). Vertical dashed

lines represent the band analyzed in this paper.

(a) (b)

Figure 28: CROR turned-on. Top array and ESM-IRLS. (a) CSCD, (b) ED.
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(a) (b)

Figure 29: CROR turned-on. Top array and ESM-IRLS with CB map as a priori infor-

mation. (a) CSCD, (b) ED.

(a) (b)

Figure 30: CROR turned-on. Top array and CLEAN-SC. (a) ϕ = 1, (b) ϕ = 0.6.

(a) (b)

Figure 31: CROR turned-on. Side and top arrays and ESM-IRLS. (a) CSCD, (b) ED.
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(a) (b)

Figure 32: CROR turned-on. Side and top arrays and ESM-IRLS with CB map as a priori

information. (a) CSCD, (b) ED.

(a) (b)

Figure 33: CROR turned-on. Side and top arrays and CLEAN-SC. (a) ϕ = 1, (b) ϕ = 0.6.

(a) (b)

Figure 34: CROR turned-off. Top array and ESM-IRLS. (a) CSCD, (b) ED.
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(a) (b)

Figure 35: CROR turned-off. Top array and ESM-IRLS with CB map as a priori infor-

mation. (a) CSCD, (b) ED.

(a) (b)

Figure 36: CROR turned-off. Top array and CLEAN-SC. (a) ϕ = 1, (b) ϕ = 0.6.

(a) (b)

Figure 37: CROR turned-off. Side and top array and ESM-IRLS. (a) CSCD, (b) ED.
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(a) (b)

Figure 38: CROR turned-off. Side and top array and ESM-IRLS with CB map as a priori

information. (a) CSCD, (b) ED.

(a) (b)

Figure 39: CROR turned-off. Side and top arrays and CLEAN-SC. (a) ϕ = 1, (b) ϕ = 0.6.

The maps obtained from experimental data are quite different depending

on the method. The main reasons are analyzed here. Maps returned by

CLEAN-SC are the most reliable and the dependence on loop gain is low.

As mentioned above, a value of ϕ < 1 may reveal some more information

of source extension, as it happens here. However, the maps obtained with

ESM-IRLS return more complete maps than CLEAN-SC. Indeed, a part of

these additional equivalent sources are related to artefacts due to the BGN

and/or instabilities, but it is also noticeable the increase of the extension of
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sources in the zones of CRORs or the leading-edge. Another important aspect

to consider is that many solutions of inverse problem presents instabilities

already mentioned about simulated experiments. It is possible to notice this

especially when no a priori information is introduced and/or ED is adopted

to decompose the CSM (Figures 28, 31(b), 34, 37(b)). Ill-posedness of the

problem, high level of noise and bad source/noise separation are the main

causes of this issue. In fact, introducing CB maps as a priori information this

issues is avoided in this application. Results on experimental data clearly

highlight the huge difference between ED and CSCD. In fact, even when

instability of solution is avoided, maps obtained with ED are severely spoiled

by noise (Figures 29, 35, 38). This difference is rooted in the fact that

eigenmodes are a mixture of several contribution, while CSCD achieves better

separation . Therefore, the latter better reflects the assumption of sparsity,

thus making it possible better noise suppression and accuracy of localization.

In general, the main source of noise is always detected even in presence

of low SNR. In fact, when CRORs are active, the aerodynamic noise is only

slightly visible in the maps, while it clearly appears when the rotor are turned-

off. The use of two arrays gives an improvement in the localization of rotors

noise, while it brings no advantage in revealing aeroacoustic noise when the

rotor is active. Indeed, only in Figure 29(a), some aeroacoustic sources are

clearly visible in addition to the CROR sources. When CRORs are turned-

off, some sources close to the wings, that might hint to wing tip noise, starts

to appear on the maps, even if the background noise remains the same.
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In this case the second array improves the compactness of localization of

aeroacoustic sources.

Last aspect treated here is the calculation time needed for volumetric

mapping of these test cases with ESM-IRLS. Since it is an inverse method,

calculation time is strongly dependant on the settings and the content of

data. Therefore, only some general considerations are provided here. The

average calculation time per each frequency line of all calculations presented

in this section about experimental data is 0.152 hours, while the minimum is

0.064 hours and the maximum is 0.282 hours. The worst case is with the dual

array, ED and no a priori information. In fact, the latter better addresses

the problem and speeds up the discard of potential sources. While CSCD

automatically returns the number of relevant components, thus reducing the

number of components to map. In addition, the better source separation

achieved by CSCD enhances the reduction of computation time needed with

respect to ED. Obviously, the lower is number of microphones the lower is

the computation demand. Computation demand of CLEAN-SC is clearly

much smaller than ESM-IRLS, thus making it the best candidate for a ”first

attempt map” to better set the inverse problem.
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6. Conclusions

This work described how to exploit inverse methods in the context of vol-

umetric mapping targeted to aeroacoustic applications. Firstly, the analysis

of volumetric mapping problems is discussed, noticing that some well-known

issues of acoustic imaging are strongly enhanced in these applications. An

inverse method, named ESM-IRLS, has been formulated, presenting step-by-

step the assumptions and the strategies at its basis. The inverse method pre-

sented here aims at returning a sparse approximation of the source field mak-

ing use of Iterative Reweighted Least-Squares and Bayesian Regularization.

The choice of these two fulfils the requirements of sparsity constraint and

reliable regularization. However, other strategies must be adopted for volu-

metric imaging. The issue of balancing the energy among potential sources

has been addressed, adopting the proper formulation of acoustic propaga-

tor. Also some algorithmic strategies have been implemented to make the

method faster and more accurate, such as a thresholding step and a robust

convergence criterion. It has also been demonstrated that the introduction

of a priori information hugely improves localization and quantification abili-

ties, especially in presence of strong background noise. Genrerally, input of

acoustic imaging method is the Cross-Spectral-Matrix of microphone array.

A novel approach proposed in this paper makes the use of CLEAN-SC as

decomposition tool of CSM. Similarly to classic Eigenmode Decomposition,

this tool is able to extract coherent source components from CSM. These can

be used to set separate inverse problems and retrieve the full map from the

energetic sum of maps of all components. This approach gives two advan-

tages: lower amount of noise is present in data used to set the problem and
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the assumption of sparsity can be better fulfilled. The CLEAN-SC decom-

position has been combined with ESM-IRLS. On the other hand, ESM-IRLS

has been combined also with the standard ED, showing that the latter is

outperformed by the approach based on CSCD, especially with experimental

aeroacoustic data. On the one hand, the same method has been compared

with the standard CLEAN-SC deconvolution approach. Despite the robust-

ness of maps returned by CLEAN-SC, ESM-IRLS combined with the CSCD

is able to reveal much more spatial information about spatially extended or

coherent sources.

Results from both simulated and experimental data demonstrated that is

possible to use a single planar array to map aeroacoustic noise sources with

fair accuracy. The use of a second array is suggested when localization accu-

racy is crucial. However, the downside of combining multiple arrays looking

at the acoustic scene from different point of view, is that one of them may

not detect enough signal from some sources acting in the scenario (e.g. due

to masking effect of the target object or excessive source directivity) thus

deteriorating the reconstruction of these sources. Moreover, the introduction

of CB map for each component as a priori information in the inverse problem

makes it possible to correctly reconstruct even sources 20 dB weaker than

the strongest one. Source quantification is accurate especially for the main

source, but the reconstructed level suffers of slightly underestimation. As the

background noise level increases the error in reconstructed spectra becomes

more relevant. Independently on the use of one or two arrays, results showed

that the algorithm and the strategies described in this work can lead to accu-
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rate volumetric source localization and good quantification even in presence

of strong background noise.
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Français d’Acoustique, Poitiers, France, 2014, pp. –. URL: https:

//hal.archives-ouvertes.fr/hal-01006192.

[27] Q. Leclère, Acoustic imaging using under-determined inverse ap-

proaches: Frequency limitations and optimal regularization, Journal

of Sound and Vibration 321 (2009) 605–619. doi:10.1016/j.jsv.2008.

10.022.

[28] A. Pereira, J. Antoni, Q. Leclère, Empirical bayesian regularization

of the inverse acoustic problem, Applied Acoustics 97 (2015) 11–29.

doi:10.1016/j.apacoust.2015.03.008.

[29] F. Champagnat, J. Idier, A connection between half-quadratic criteria

and EM algorithms, IEEE Signal Processing Letters 11 (2004) 709–712.

doi:10.1109/lsp.2004.833511.

64

http://dx.doi.org/10.1111/j.1467-9868.2011.00771.x
http://dx.doi.org/10.1111/j.1467-9868.2011.00771.x
http://dx.doi.org/10.1109/icassp.2008.4518498
http://dx.doi.org/10.1109/icassp.2008.4518498
https://hal.archives-ouvertes.fr/hal-01006192
https://hal.archives-ouvertes.fr/hal-01006192
http://dx.doi.org/10.1016/j.jsv.2008.10.022
http://dx.doi.org/10.1016/j.jsv.2008.10.022
http://dx.doi.org/10.1016/j.apacoust.2015.03.008
http://dx.doi.org/10.1109/lsp.2004.833511


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[30] B. Oudompheng, A. Pereira, C. Picard, Q. Leclère, B. Nicolas, A

theoretical and experimental comparison of the iterative equivalent

source method and the generalized inverse beamforming, in: 5th

BeBec, 2014. URL: http://bebec.eu/Downloads/BeBeC2014/Papers/

BeBeC-2014-12.pdf.

[31] T. Padois, P.-A. Gauthier, A. Berry, Inverse problem with beamforming

regularization matrix applied to sound source localization in closed wind-

tunnel using microphone array, Journal of Sound and Vibration 333

(2014) 6858–6868.

[32] J. Antoni, T. L. Magueresse, Q. Leclère, P. Simard, Sparse acousti-

cal holography from iterated bayesian focusing, Journal of Sound and

Vibration 446 (2019) 289–325. doi:10.1016/j.jsv.2019.01.001.

[33] T. Yardibi, J. Li, P. Stoica, L. N. Cattafesta, Sparsity constrained

deconvolution approaches for acoustic source mapping, The Jour-

nal of the Acoustical Society of America 123 (2008) 2631–2642.

URL: http://scitation.aip.org/content/asa/journal/jasa/123/

5/10.1121/1.2896754. doi:http://dx.doi.org/10.1121/1.2896754.

[34] B. Dong, J. Antoni, E. Zhang, Blind separation of sound sources from

the principle of least spatial entropy, Journal of Sound and Vibration

333 (2014) 2643–2668.

[35] E. Sarradj, C. Schulze, A. Zeibig, Identification of noise source mecha-

nisms using orthogonal beamforming, Noise and Vibration: Emerging

Methods (2005).

65

http://bebec.eu/Downloads/BeBeC2014/Papers/BeBeC-2014-12.pdf
http://bebec.eu/Downloads/BeBeC2014/Papers/BeBeC-2014-12.pdf
http://dx.doi.org/10.1016/j.jsv.2019.01.001
http://scitation.aip.org/content/asa/journal/jasa/123/5/10.1121/1.2896754
http://scitation.aip.org/content/asa/journal/jasa/123/5/10.1121/1.2896754
http://dx.doi.org/http://dx.doi.org/10.1121/1.2896754


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[36] S. Oerlemans, P. Sijtsma, Determination of Absolute Levels from

Phased Array Measurements Using Spatial Source Coherence, in: 8th

AIAA/CEAS Aeroacoustics Conference and Exhibit, Breckenridge, Col-

orado, June 17-19, 2002, 2002.

[37] E. Sarradj, Three-dimensional acoustic source mapping, in: 4th Bebec,

2012.

[38] S. Luesutthiviboon, A. M. Malgoezar, R. Merino-Martinez, M. Snellen,

P. Sijtsma, D. G. Simons, Enhanced HR-CLEAN-SC for resolving multi-

ple closely spaced sound sources, International Journal of Aeroacoustics

18 (2019) 392–413. doi:10.1177/1475472x19852938.

[39] R. K. Amiet, Correction of open jet wind tunnel measurements for shear

layer refraction, AIAA Journal (1975).

[40] A. Lauterbach, K. Ehrenfried, Procedure for the Accurate Phase

Calibration of a Microphone Array, in: 15th AIAA/CEAS Aeroa-

coustics Conference, 2009. URL: http://pdf.aiaa.org/preview/

CDReadyMAERO09_2131/PV2009_3122.pdf. doi:10.2514/6.2009-3122.

[41] M. Mosher, M. E. Watts, S. Jovic, S. M. Jaeger, Calibration of micro-

phone arrays for phased array processing, in: 3rd AIAA/CEAS Aeroa-

coustics Conference, 1997. URL: http://pdf.aiaa.org/preview/

1997/PV1997_1678.pdf.

66

http://dx.doi.org/10.1177/1475472x19852938
http://pdf.aiaa.org/preview/CDReadyMAERO09_2131/PV2009_3122.pdf
http://pdf.aiaa.org/preview/CDReadyMAERO09_2131/PV2009_3122.pdf
http://dx.doi.org/10.2514/6.2009-3122
http://pdf.aiaa.org/preview/1997/PV1997_1678.pdf
http://pdf.aiaa.org/preview/1997/PV1997_1678.pdf



