scientific reports

Check for updates

OPEN Unraveling population trends in Italy (1921–2021) with spatial econometrics

Leonardo Salvatore Alaimo^{1,5}, Clio Ciaschini^{2,5}, Francesca Mariani^{2,5}, Eva Cudlinova^{3,5}, Michele Postigliola^{4,5\overline}, Donatella Strangio^{4,5\overline} & Luca Salvati^{4,5\overline}

Testing density-dependence and path-dependence in long-term population dynamics under differentiated local contexts contributes to delineate the changing role of socioeconomic forces at the base of regional disparities. Despite a millenary settlement history, such issue has been rarely investigated in Europe, and especially in highly divided countries such as those in the Mediterranean region. Using econometric modeling to manage spatial heterogeneity, our study verifies the role of selected drivers of population growth at ten times between 1921 and 2021 in more than 8000 Italian municipalities verifying density-dependent and path-dependent dynamics. Results of global and quantile (spatial) regressions highlight a differential impact of density and (lagged) population growth on demographic dynamics along the urban cycle in Italy. Being weakly significant in the inter-war period (1921–1951), econometric models totalized a high goodness-of-fit in correspondence with compact urbanization (1951–1981). Model's fit declined in the following decades (1981–2021) reflecting suburbanization and counter-urbanization. Density-dependence and path-dependence were found significant and, respectively, positive or negative, with compact urbanization, and much less intense with suburbanization and counter-urbanization. A spatial econometric investigation of density-dependent and path-dependent mechanisms of population dynamics provided an original explanation of metropolitan cycles, delineating the evolution of socioeconomic (local) systems along the urban-rural gradient.

Urban cycles have been extensively studied all over the world, and especially in advanced economies, since centuries¹⁻³. Being regarded as separate-and recurrent-stages of a long-term cycle, urbanisation (mostly driven by positive natural balances of population and internal migration) was found associated with settlement concentration and economic agglomeration-possibly stimulating residential mobility to outer areas as a response to congestion externalities⁴⁻⁶. The subsequent suburbanization wave has in turn affected metropolitan structures and socioeconomic functions, determining a (more or less intense) decline of central cities^{7–9}. Short-haul mobility, preference for specific dwellings in rural locations and sudden changes in local job markets driven by technology and accessibility gains fueled a later counter-urbanisation¹⁰⁻¹². A renewed impulse to centralised urban growth to catch the intrinsic benefits of scale economies finally characterised recent population trends in advanced countries (the so-called 're-urbanisation' wave).

Assuming demographic dynamics as one of the most relevant processes at the base of urban cycles, the analysis of local-scale population trends may clarify the recent evolution of cities and the emergence (or consolidation) of spatial disparities across regions and countries¹³⁻²⁰. In Europe, a wealth of factors has reported to affect the spatial distribution of resident population²¹⁻²⁴, including globalization, structural change of economic systems, and international migration²⁵⁻²⁸. Such trends - especially in Mediterranean Europe - have reflected intense economic downturns leading to urbanisation-reurbanisation sequences accelerated by a rapid demographic transition toward low fertility, higher life expectancy, and rising immigration^{6,11,29}.

¹Department of Social Sciences and Economics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy. ²Department of Social and Economic Sciences, Polytechnic University of Marche, Piazzale C. Martelli 8, 60121 Ancona, Italy. ³Department of Economics, University of South Bohemia, Branišovská 1645/31A, České Budějovice 2, 370 05 Ceske Budejovice, Czech Republic. ⁴Department of Methods and Models for Economics, Territory and Finance, Faculty of Economics, Sapienza University of Rome, Via del Castro Laurenziano 9, 00161 Rome, Italy. ⁵These authors contributed equally: Leonardo Salvatore Alaimo, Clio Ciaschini, Francesca Mariani, Eva Cudlinova, Michele Postigliola, Donatella Strangio and Luca Salvati. 🖄 email: leonardo.alaimo@ uniroma1.it; michele.postigliola@uniroma1.it; donatella.strangio@uniroma1.it; luca.salvati@uniroma1.it

In this context, self-regulation of population growth is a candidate driver of demographic dynamics at regional scale^{30–32}. Empirical studies have demonstrated the existence of a density-dependent regulation in human populations^{33,34}. However, density-dependent mechanisms can explain only a part of the overall variability of demographic growth rates along urban-rural gradients³⁵, being in turn mediated by individual choices/preferences, cultural, ethnic and religious factors, and exogenous processes of a stochastic nature. These factors were not always identifiable and easily modelled^{36–38}, being associated sometimes with the notion of 'path dependency'. Similarly to density-dependence, path-dependent regulation of population growth and decline exerted a variable impact on demographic dynamics depending on the local context, e.g. in correspondence with other socioeconomic processes that accelerate or limit its action^{39–42}.

Temporal volatility⁴³, spatial heterogeneity⁴⁴, and the intrinsic stochasticity⁴⁵ underlying the complex mosaic of growth and decline typical of human populations, all observed under demographic conditions of dynamic equilibrium⁴⁶⁻⁴⁸, were the characteristics of density-dependent and path-dependent mechanisms at the base of population dynamics along sufficiently long time ranges and over geographical areas large enough to be representative of short and medium-range mobility. Despite the intrinsic importance of these issues for both research and policy, empirical analyses decomposing path-dependent socioeconomic transformations from densitydependent mechanisms of population growth (and decline) were rather scarce in advanced economies^{42,49,50}. A comparative investigation of the (positive or negative) feedback mechanisms at the base of population dynamics appears indispensable for regional science and applied economics, considering together density-dependence and path-dependence, and controlling for the role of space⁵¹⁻⁵³ over time intervals long enough to investigate the intrinsic impact of distinctive background contexts^{15,50,54}. In this perspective, the sequential stages of urban cycles are the appropriate background influencing density-dependent and path-dependent mechanisms of population growth and decline⁵⁵. In other words, we assume that the individual stages of the cycle (namely, urbanisation, suburbanisation, counter-urbanisation, and re-urbanisation) may differently shape population dynamics, because of the diverging impact of density-dependent and path-dependent regulation along the urban-rural gradient⁵⁶⁻⁵⁸.

Sharing comparable demographic outcomes at the regional scale and over long time periods⁵⁹, Mediterranean countries represent appropriate cases when defining internal and external factors that may influence local-scale population dynamics^{60–62}. In this perspective, density-dependent and path-dependent regulation of population dynamics were tested at the municipal scale in Italy over a sufficiently long and homogeneous time interval (1921–2021) representative of sequential stages of a building cycle from urbanisation to re-urbanisation^{14,63,64}. We adopted an econometric specification that quantifies the impact of density-dependent and path-dependent processes on population dynamics⁶⁵, controlling for economic (agglomeration, scale, accessibility, amenities), and non-economic (e.g. spatial) effects^{42,66,67}. A comparative scrutiny of models' results will contribute regional science with a more complete understanding of metropolitan cycles - an issue of vital importance when assessing urban-rural relationships that evolve over time.

Data and methods Study area

The investigated area includes Italy (301,330 km²) geographically partitioned into three macro-regions (North, Centre, South) and 20 administrative regions⁶⁸. Italy shows evident disparities in Northern and Southern Italy as far as economic growth, social development, and land resources are concerned^{15,69}, with the latter region classified as marginal and disadvantaged⁷⁰⁻⁷². As in other Mediterranean countries, the urban-rural divide in Italy is also particularly accentuated, delineating different socioeconomic contexts from large (and mostly monocentric) metropolitan areas (Rome, Milan, Naples, Turin) to hyper-rural areas along the Apennine mountain chain, mainly in Southern Italy. Italy shows extensive socioeconomic disparities between Northern and Southern regions. Taken together, these features make Italy a paradigmatic case allowing a refined investigation of the interplay of environmental and socioeconomic dimensions at the base of urban cycles in Southern Europe.

Data and variables

As a basic element of European classification of territorial units, Local Administrative Units (LAU) have a key role in official statistics because of data availability from national censuses and relevance for implementation of local policy⁷³. Since LAUs were subjected to minor changes over long observation times, Istat disseminated a homogenized list of spatial units and boundaries for cross-region and cross-country comparisons⁵⁰. Estimates of resident population at this spatial level were made available at the municipal scale approximately every 10 years over a century. Homogenized census data were derived from Istat (1994) and updated from the warehouse released by the Italian National Statistical Institute. The most recent data (2021) were derived from the national population register (the base of the 'permanent census' progressively replacing the traditional population censuses in Italy since 2018), whose results were aligned with the 2011 (and earlier) census(es). Population size and density, as well as the annual growth rate, were the main variables in our study. Population growth rates (%) were calculated at each municipality over 10 time intervals of similar length (1921–1931, 1931–1936, 1936–1951, 1951–1961, 1961-1971, 1971-1981, 1981-1991, 1991-2001, 2001-2011, and 2011-2021). Population density (inhabitants/ km2) and population size (absolute number of resident inhabitants) were calculated at the same spatial scale for 11 time points between 1921 and 2021 and expressed as logarithms⁶³. Lagged population growth rates and population density allow an explicit test of, respectively, path-dependence and density-dependence⁶⁵. Population size was used to test the importance of agglomeration, as a measure of urban concentration⁸.

Econometric analysis

We assumed different spatial regimes of population dynamics associated with each stage of the cycle⁶⁴, modelling the variability in population growth rates (*Pop.Growth*_(t=2,1)) as a function of (i) population growth rate (*Pop.Growth*_(t=2,1)) in the previous (i.e. $lag_{(-1)}$) time interval, (ii) population density (*Dem.Density*_(t=0)), and (iii) the overall size of the resident population as a proxy of agglomeration (*Pop.Size*_(t=0)), both measured at the beginning of the related observation time. The analysis has also considered (iv) an average measure of *Elevation* for each municipality, as derived from the official source of Istat municipal atlas, (v) a dummy of closeness to the sea coastline (*Sea.Prox*) classifying each municipality as 'coastal' (code 1) or 'inland' (code 0) and (vi) a dummy separating municipalities acting as the 'head town' (*Cap.city*) of a given province (with code 1) from the remaining municipalities classified with code 0. All variables were standardised prior to analysis⁵⁰. Use of these variables in econometric models testing density-dependent and path-dependent mechanisms of population dynamics was discussed in^{42,50,63}. Model specification was summarised as follows:

$$Pop.Growth_{(t=2,1)} = \alpha + \beta_1 Pop.Growth_{(t=1,0)} + \beta_2 Dem.Density_{(t=0)} + \beta_3 Pop.Size_{(t=0)} + \beta_4 Elevation + \beta_5 Sea.Prox + \beta_6 Cap.city + \epsilon$$

where α is the regression constant (model's intercept), $\beta_1, \beta_2, \ldots, \beta_6$ are the regression coefficients (slope), and ϵ is the stochastic error of the model. Models were run controlling for time (i.e. distinguishing the impact of the four stages of the cycle mentioned above) and space (i.e. using spatial econometrics approaches whose results were compared with those from standard approaches). The adopted specification allow (i) discriminating the impact of economic from non-economic forces of population growth, (ii) distinguishing the role of density-dependent mechanisms of population growth and decline from the more general path-dependency of local population dynamics, (iii) highlighting the importance of direct spatial effects, and (iv) separating them from the indirect ones (i.e. spillovers). The individual stages of the metropolitan cycle in Italy were defined as follows⁶³: urbanisation (1951–1981), suburbanisation (1981–2001), counter-urbanisation mixed with early re-urbanisation (2001–2021); population dynamics during inter-war decades were more mixed and prepared the system to the sudden shift toward compact urbanisation. Cross-section regressions were run assuming each observation decade as a separate stage of the cycle representative of specific socioeconomic contexts and population dynamics at the local scale. A Variance Inflation Factor (VIF) was finally calculated for each time interval. Values systematically below 5 for all variables delineate a non-redundant structure of predictors' matrix, in line with the basic assumption of non-collinearity typical of most economic models.

Standard models

Assuming linear changes over time in population distribution over space, Eq. (1) was preliminary tested with a linear specification adopting global Ordinary Least Squares (OLS) regressions. The models' goodness of fit was checked by way of adjusted R^2 coefficients and the Akaike Information Criterion (AIC). Inference on regression results (i.e. Fisher-Snedecor *F* tests and Student *t* tests respectively on the overall regression fit and on individual coefficients, testing against the null hypothesis of zero coefficients with p < 0.001) provided an additional criterion for model's evaluation⁷⁴. To verify the violations of the basic assumptions of a general linear model, a Durbin-Watson (*DW*) statistic checking for serial correlation, a Breusch-Pagan (*BP*) index for heteroscedasticity, and a Moran (*M*) spatial autocorrelation coefficient for spatial dependence of residuals were run for each model, testing for significance at p < 0.05 against the null hypothesis of no serial correlation, no heteroscedasticity, and no spatial autocorrelation structure, respectively.

Spatially explicit models

Equation (1) was additionally estimated comparing the results of global models that make spatial relations explicit using spatial weights among municipalities calculated as (i) a contiguity (0 - 1) Queen matrix (Q) and (ii) a linear distance matrix (W). While presenting a variable goodness-of-fit, consistent regression outputs (i.e. the same significant predictors with comparable intensity and sign) may identify a statistically stable (and conceptually relevant) relationship between population growth rates and the selected predictors⁴². By investigating the dependence of a given variable's values on the values of the same variable recorded at neighbouring locations, spatial autocorrelation assumes outcome in one area to be affected by outcomes, covariates or errors in nearby areas, meaning that models may contain spatial lags of the outcome variable, spatial lag of covariates, and autoregressive errors, respectively⁵⁶. Regressions run in this study include a Spatial Autoregressive Model (SAR), a spatial autoregressive error term (SDE), and a Spatial Durbin Model (SDM). A flowchart of the adopted spatial models has been shown in Figure 1.

Both direct and indirect (spillover) effects between municipalities were detected. Best-fit estimation of the proposed models using empirical data was evaluated using pseudo R^2 . As in the case above, non-parametric (quantile) regressions with spatial weights separately from Q and W matrices were run to estimate Eq. 1 at four percentiles of the dependent variable assuming (i) deviation from normality, (ii) non-linear dependence between predictors and the dependent variable, and (iii) spatial relations among input variables. Model's outcomes include estimates of intercept and slope coefficients and the associated significance level testing for the null-hypothesis of non-significant regression coefficient at p < 0.05.

Results

The interwar period

Ordinary Least Square (OLS) regressions performed on standardized input variables show positive and significant values of lagged population growth rates and proximity to the sea coast despite a relatively small adjusted- R^2

(1)

(0.05) typical of the time period (1921–1951) preceding the sharp wave of urbanisation in the aftermath of World War II. The regression coefficient for head towns is also positive. Negative and significant coefficients are observed for elevation. The variance inflation factor (VIF) is systematically low and largely below 5, suggesting a nonredundant structure of the predictor matrix (Table 1). The results obtained from quantile regressions confirm the results of the OLS regression with reference to lagged population growth, population size, elevation, proximity to the sea coast and head towns. In contrast, the differences with the OLS regression emerge when referring to population density. In general, the slope coefficients of lagged population growth rates increase from the first $(\tau = 0.25)$ to the fourth $(\tau = 0.99)$ quartile. Starting from the coefficients of the variable linked to population density, the sign-in the first three quartiles—is consistent with the one performed in the OLS, while in the fourth quartile is negative. A significant and positive coefficient is also shown by the variable linked to the size of the population from the first to the third quartile, to then become negative-even if significant-if referred to the fourth quartile. With reference to the last two variables, i.e. proximity to the sea and head town, the coefficient maintains the sign of OLS model with highly significant values in the quartiles from $\tau = 0.25$ to $\tau = 0.75$ for the first variable, and no significance in $\tau = 0.99$ for the first predictor. With reference to the second predictor, no coefficient appears significant except that of the third and forth quartiles, maintaining a coherent coefficient sign with OLS model. Compared to OLS models, lower AIC values have been shown in the first three quartiles of the standard quantile regression; a higher value is shown when $\tau = 0.99$.

The results of the econometric tests indicate OLS estimations as partly biased, since tests for serial correlation, heteroscedasticity, and spatial dependence are all significant. Thus, we adopted spatial econometric techniques starting from a Spatial Durbin model (hence SDM) for the global regressions by explicitly considering the spatial structure of the input data and we compared the results with reference techniques such as Spatially Autoregressive (SAR), and Spatial Error (SDE) models. In direct and indirect SDM regressions we find positive coefficients related to the variable describing lagged population growth rates, coherently with the OLS regression. This predictor displays significant and positive coefficients for both direct and indirect effects. With reference to population size and density, elevation, as well as head town, we observe opposite signs considering direct and indirect effects. For instance, the indirect effect of population size is negative and statistically significant, while being positive but statistically insignificant when considering direct effects. Proximity to the sea coast has a positive impact (both direct and indirect) on population growth rates. Moving on to spatially quantile regressions, significant and negative coefficients were found for elevation - even if the intensity of this significance is strongest in the first three quartiles and then decreases in the fourth quartile. Positive coefficients, on average, are associated with lagged population growth and demographic density, proximity to the sea coast, and head town. Finally, the positive role of head town on population growth is positive and significant at least in the second, third and forth quartile. Positive coefficients are associated with population size in the first and second quartile, reverting to a negative coefficient in the forth quartile. Similar results were found comparing the outcomes of quantile regressions run with spatial matrices based on contiguity and linear distances among municipalities. Models based on the distance-weighted matrix tend to have lower AIC values than models based on contiguity.

		Quantile regression					
Predictor	OLS	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	VIF	
Tertemont	≈ 0.000	-0.192	0.005	0.189	1.485		
Intercept	(0.010)	(0.005)***	(0.003)	(0.004)***	(0.836)*		
	0.079	0.350	0.401	0.388	0.347	1.02	
Pop.growth	(0.011)***	(0.031)***	(0.031)***	(0.036)***	(0.392)		
D 1 1	- 0.129	- 0.011	- 0.028	- 0.039	- 0.120	1.32	
Dem.density	(0.012)***	(0.003)***	(0.004)***	(0.004)***	(0.055)**		
	- 0.004	0.046	0.033	0.015	- 0.107	1.38	
Pop.size	(0.012)	(0.004)***	(0.004)***	(0.005)	(0.048)**		
	- 0.142	- 0.045	- 0.016	- 0.005	- 0.042	1.40	
Elevation	(0.012)***	(0.003)***	(0.004)***	(0.005)	(0.075)		
	0.045	0.028	0.036	0.043	0.106	1.18	
Sea prox.	(0.011)***	(0.003)***	(0.004)***	(0.004)***	(0.115)		
	0.091	- 0.001	0.006	0.021	5.387	1.13	
Cap.city	(0.011)***	(0.003)	(0.004)	(0.004)***	(0.654)		
Lag. Pop.growth							
Lag.Dem.density							
Lag.Pop.size							
Lag.Elevation							
Lag.Sea prox.							
Lag.Cap.city							
Breusch-Pagan	5204.2***						
Durbin-Watson	1 89**						
Slope equality	1.05		10.8***				
Moran's I(z)			1010				
W spatial matrix							
A dijusted P^2	0.047	0.098	0 104	0.100	0.088		
AUG	0.017	0.090	0.101	0.100	0.000		
	11160/1	8 6 8 /	6 7 2 2	8 425	33 576		
AIC	22,604	8,684	6,722	8,425	33,576		
AIC	Contiguity-based spa	8,684 atial weights	6,722	8,425	33,576		
Predictor	Contiguity-based spa	8,684 atial weights	6,722	Quantile regression $\tau = 0.25$	33,576	$\tau = 0.75$	$\tau = 0.99$
Predictor	22,604 Contiguity-based spa SAR ≈ 0.000	8,684 atial weights SDE ≈ 0.000	6,722 SDM ≈ 0.000	Quantile regression $\tau = 0.25$ - 0.176	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
Predictor Intercept	$\frac{22,604}{\text{Contiguity-based space}}$ SAR ≈ 0.000 (0.010)	8,684 atial weights SDE ≈ 0.000 (0.011)	6,722 SDM ≈ 0.000 (0.010)	$8,425$ Quantile regression $\tau = 0.25$ -0.176 (0.015)***	$\tau = 0.50$ 0.006 (0.004)	$\tau = 0.75$ 0.152 (0.007)***	$\tau = 0.99$ 4.710 (0.657)***
Predictor Intercept	22,604 Contiguity-based spa SAR ≈ 0.000 (0.010) 0.078	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077	6,722 SDM ≈ 0.000 (0.010) 0.075	$\tau = 0.25$ $- 0.176$ $(0.015)^{***}$ 0.344	$\frac{\tau = 0.50}{0.006}$ (0.004) 0.380	$\tau = 0.75$ 0.152 (0.007)***	τ = 0.99 4.710 (0.657)*** 0.178
Predictor Intercept Pop.growth	22,004 Contiguity-based spa SAR ≈ 0.000 (0.010) 0.078 (0.010)***	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)***	6,722 SDM ≈ 0.000 (0.010) 0.075 (0.010)***	8,425 Quantile regression $\tau = 0.25$ - 0.176 $(0.015)^{***}$ 0.344 $(0.079)^{***}$	$\frac{\tau = 0.50}{0.006}$ 0.006 (0.004) 0.380 (0.043)***	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)***	τ = 0.99 4.710 (0.657)*** 0.178 (0.227)
Predictor Intercept Pop.growth	22,604 Contiguity-based spa SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130	6,722 SDM ≈ 0.000 (0.010) 0.075 (0.010)*** - 0.132	8,425 Quantile regression τ = 0.25 - 0.176 (0.015)*** 0.344 (0.079)*** - 0.010	$\begin{aligned} \mathbf{\tau} &= 0.50 \\ 0.006 \\ (0.004) \\ 0.380 \\ (0.043)^{***} \\ - 0.020 \end{aligned}$	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032	$\tau = 0.99$ 4.710 (0.657)*** 0.178 (0.227) - 0.048
Predictor Intercept Pop.growth Dem.density	22,604 Contiguity-based space SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)***	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)***	6,722 SDM ≈ 0.000 (0.010) 0.075 (0.010)*** - 0.132 (0.013)***	8,425 Quantile regression τ = 0.25 - 0.176 (0.015)*** 0.344 (0.079)*** - 0.010 (0.006)	$\begin{aligned} \mathbf{\tau} &= 0.50 \\ 0.006 \\ (0.004) \\ 0.380 \\ (0.043)^{***} \\ - 0.020 \\ (0.005)^{***} \end{aligned}$	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)***	$\tau = 0.99$ 4.710 (0.657)*** 0.178 (0.227) - 0.048 (0.519)
Predictor Intercept Pop.growth Dem.density	22,604 Contiguity-based space SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008	6,722 SDM ≈ 0.000 (0.010) 0.075 (0.010)*** - 0.132 (0.013)*** - 0.020	8,425 Quantile regression τ = 0.25 - 0.176 (0.015)*** 0.344 (0.079)*** - 0.010 (0.006) 0.042	$\begin{aligned} \mathbf{\tau} &= 0.50 \\ 0.006 \\ (0.004) \\ 0.380 \\ (0.043)^{***} \\ - 0.020 \\ (0.005)^{***} \\ 0.027 \end{aligned}$	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** ≈ 0.000	$ \tau = 0.99 4.710 (0.657)*** 0.178 (0.227) - 0.048 (0.519) - 1.666 $
AIC Predictor Intercept Pop.growth Dem.density Pop.size	22,604 Contiguity-based space SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012)	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012)	$6,722$ SDM ≈ 0.000 (0.010) 0.075 (0.010)*** - 0.132 (0.013)*** - 0.020 (0.013)	8,425 Quantile regression τ = 0.25 - 0.176 (0.015)*** 0.344 (0.079)*** - 0.010 (0.006) 0.042 (0.006)***	$\begin{aligned} \mathbf{\tau} &= 0.50 \\ \hline \mathbf{\tau} &= 0.50 \\ \hline 0.006 \\ \hline (0.004) \\ \hline 0.380 \\ \hline (0.043)^{***} \\ \hline - 0.020 \\ \hline (0.005)^{***} \\ \hline 0.027 \\ \hline (0.006)^{***} \end{aligned}$	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** ≈ 0.000 (0.006)	$\tau = 0.99$ 4.710 (0.657)*** 0.178 (0.227) - 0.048 (0.519) - 1.666 (0.528)**
AIC Predictor Intercept Pop.growth Dem.density Pop.size	22,604 Contiguity-based spr SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151	6,722 SDM ≈ 0.000 (0.010) 0.075 (0.010)*** - 0.132 (0.013)*** - 0.200 (0.013) - 0.200	8,425 Quantile regression τ = 0.25 - 0.176 (0.015)*** 0.344 (0.079)*** - 0.010 (0.006) 0.042 (0.006)*** - 0.046	$\begin{aligned} \mathbf{r} &= 0.50 \\ \hline \mathbf{r} &= 0.50 \\ \hline 0.006 \\ \hline (0.004) \\ \hline 0.380 \\ \hline (0.043)^{***} \\ \hline - 0.020 \\ \hline (0.005)^{***} \\ \hline 0.027 \\ \hline (0.006)^{***} \\ \hline - 0.019 \end{aligned}$	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** ≈ 0.000 (0.006) - 0.015	$\tau = 0.99$ 4.710 (0.657)*** 0.178 (0.227) - 0.048 (0.519) - 1.666 (0.528)** - 0.691
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation	22,604 Contiguity-based space SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143 (0.012)***	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151 (0.013)***	6,722 SDM ≈ 0.000 (0.010) 0.075 (0.010)*** - 0.132 (0.013)*** - 0.020 (0.013) - 0.200 (0.014)***	8,425 Quantile regression τ = 0.25 - 0.176 (0.015)*** 0.344 (0.079)*** - 0.010 (0.006) 0.042 (0.006)*** - 0.046 (0.005)***	$\begin{aligned} \mathbf{\tau} &= 0.50 \\ \hline \mathbf{\tau} &= 0.50 \\ \hline 0.006 \\ \hline (0.004) \\ \hline 0.380 \\ \hline (0.043)^{***} \\ \hline - 0.020 \\ \hline (0.005)^{***} \\ \hline 0.027 \\ \hline (0.006)^{***} \\ \hline - 0.019 \\ \hline (0.005)^{***} \end{aligned}$	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** ≈ 0.000 (0.006) - 0.015 (0.004)***	$\tau = 0.99$ 4.710 (0.657)*** 0.178 (0.227) - 0.048 (0.519) - 1.666 (0.528)** - 0.691 (0.770)
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation	22,604 Contiguity-based space SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143 (0.012)*** 0.042	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151 (0.013)*** 0.038	6,722 SDM ≈ 0.000 (0.010) 0.075 (0.010)*** - 0.132 (0.013)*** - 0.020 (0.013) - 0.200 (0.014)***	8,425 Quantile regression r = 0.25 - 0.176 (0.015)*** 0.344 (0.079)*** - 0.010 (0.006) 0.042 (0.006)*** - 0.046 (0.006)***	$\begin{aligned} \mathbf{\tau} &= 0.50 \\ 0.006 \\ (0.004) \\ 0.380 \\ (0.043)^{***} \\ - 0.020 \\ (0.005)^{***} \\ 0.027 \\ (0.006)^{***} \\ - 0.019 \\ (0.005)^{***} \\ 0.028 \end{aligned}$	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** ≈ 0.000 (0.006) - 0.015 (0.004)*** 0.033	r = 0.99 4.710 (0.657)*** 0.178 (0.227) - 0.048 (0.519) - 1.666 (0.528)** - 0.691 (0.770) 0.121
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox.	22,004 Contiguity-based space SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143 (0.012)*** 0.042 (0.011)***	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151 (0.013)*** 0.038 (0.011)***	$6,722$ SDM ≈ 0.000 (0.010) 0.075 (0.010)*** - 0.132 (0.013)*** - 0.020 (0.013) - 0.200 (0.014)*** 0.002 (0.012)	8,425 Quantile regression $\tau = 0.25$ - 0.176 $(0.015)^{***}$ 0.344 $(0.079)^{***}$ - 0.010 (0.006) 0.042 $(0.006)^{***}$ - 0.046 $(0.006)^{***}$ 0.026 $(0.006)^{***}$	$\begin{aligned} \mathbf{\tau} &= 0.50 \\ \hline \mathbf{\tau} &= 0.50 \\ \hline 0.006 \\ \hline (0.004) \\ \hline 0.380 \\ \hline (0.043)^{***} \\ \hline - 0.020 \\ \hline (0.005)^{***} \\ \hline 0.027 \\ \hline (0.006)^{***} \\ \hline - 0.019 \\ \hline (0.005)^{***} \\ \hline 0.028 \\ \hline (0.006)^{***} \end{aligned}$	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** ≈ 0.000 (0.006) - 0.015 (0.004)*** 0.033 (0.005)***	$\tau = 0.99$ 4.710 (0.657)*** 0.178 (0.227) - 0.048 (0.519) - 1.666 (0.528)** - 0.691 (0.770) 0.121 (1.067)
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox.	22,604 Contiguity-based space SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143 (0.012)*** 0.042 (0.011)*** 0.092	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151 (0.013)*** 0.038 (0.011)*** 0.093	6,722 SDM ≈ 0.000 (0.010) 0.075 $(0.010)^{***}$ -0.132 $(0.013)^{***}$ -0.020 (0.013) -0.200 $(0.014)^{***}$ 0.002 (0.012) 0.094	8,425 Quantile regression $\tau = 0.25$ $- 0.176$ $(0.015)^{***}$ 0.344 $(0.079)^{***}$ $- 0.010$ (0.006) 0.042 $(0.006)^{***}$ $- 0.046$ $(0.006)^{***}$ 0.026 $(0.006)^{***}$	$\begin{aligned} \mathbf{\tau} &= 0.50 \\ \hline \mathbf{\tau} &= 0.50 \\ \hline 0.006 \\ \hline (0.004) \\ \hline 0.380 \\ \hline (0.043)^{***} \\ \hline - 0.020 \\ \hline (0.005)^{***} \\ \hline 0.027 \\ \hline (0.006)^{***} \\ \hline - 0.019 \\ \hline (0.005)^{***} \\ \hline 0.028 \\ \hline (0.006)^{***} \\ \hline 0.008 \end{aligned}$	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** ≈ 0.000 (0.006) - 0.015 (0.004)*** 0.033 (0.005)***	$\tau = 0.99$ 4.710 (0.657)*** 0.178 (0.227) - 0.048 (0.519) - 1.666 (0.528)** - 0.691 (0.770) 0.121 (1.067) 0.648
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city	22,604 Contiguity-based space SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143 (0.012)*** 0.042 (0.011)*** 0.092 (0.011)***	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151 (0.013)*** 0.038 (0.011)*** 0.093	6,722 SDM ≈ 0.000 (0.010) 0.075 $(0.010)^{***}$ -0.132 $(0.013)^{***}$ -0.020 (0.013) -0.200 $(0.014)^{***}$ 0.002 (0.012) 0.094 $(0.011)^{***}$	8,425 Quantile regression $\tau = 0.25$ - 0.176 $(0.015)^{***}$ 0.344 $(0.079)^{***}$ - 0.010 (0.006) 0.042 $(0.006)^{***}$ - 0.046 $(0.006)^{***}$ 0.026 $(0.006)^{***}$ 0.000 (0.000)	$\begin{aligned} \mathbf{r} &= 0.50 \\ \hline \mathbf{r} &= 0.50 \\ \hline 0.006 \\ \hline (0.004) \\ \hline 0.380 \\ \hline (0.043)^{***} \\ \hline - 0.020 \\ \hline (0.005)^{***} \\ \hline 0.027 \\ \hline (0.006)^{***} \\ \hline - 0.019 \\ \hline (0.005)^{***} \\ \hline 0.028 \\ \hline (0.006)^{***} \\ \hline 0.008 \\ \hline (0.004)^{**} \end{aligned}$	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** ≈ 0.000 (0.006) - 0.015 (0.004)*** 0.033 (0.005)*** 0.024 (0.006)***	$\tau = 0.99$ 4.710 $(0.657)^{***}$ 0.178 (0.227) -0.048 (0.519) -1.666 $(0.528)^{**}$ -0.691 (0.770) 0.121 (1.067) 0.648 (0.246)
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city	22,604 Contiguity-based spr SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143 (0.012)*** 0.042 (0.011)*** 0.092 (0.011)***	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151 (0.013)*** 0.038 (0.011)*** 0.093 (0.011)***	6,722 SDM ≈ 0.000 (0.010) 0.075 $(0.010)^{***}$ -0.132 $(0.013)^{***}$ -0.200 (0.013) -0.200 $(0.014)^{***}$ 0.002 (0.012) 0.094 $(0.011)^{***}$ 0.012	8,425 Quantile regression τ = 0.25 - 0.176 (0.015)*** 0.344 (0.079)*** - 0.010 (0.006) 0.042 (0.006)*** - 0.046 (0.006)*** 0.026 (0.006)*** 0.000 (0.004)	33,576 τ = 0.50 0.006 (0.004) 0.380 (0.043)*** - 0.020 (0.005)*** 0.027 (0.006)*** - 0.019 (0.005)*** 0.028 (0.006)*** 0.008 (0.004)**	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** ≈ 0.000 (0.006) - 0.015 (0.004)*** 0.033 (0.005)*** 0.024 (0.006)***	$r = 0.99$ 4.710 $(0.657)^{***}$ 0.178 (0.227) $- 0.048$ (0.519) $- 1.666$ $(0.528)^{**}$ $- 0.691$ (0.770) 0.121 (1.067) 0.648 (0.246)
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth	22,604 Contiguity-based space SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143 (0.012)*** 0.042 (0.011)*** 0.092 (0.011)***	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151 (0.013)*** 0.038 (0.011)*** 0.093 (0.011)***	6,722 SDM ≈ 0.000 (0.010) 0.075 $(0.010)^{***}$ -0.132 $(0.013)^{***}$ -0.200 (0.013) -0.200 $(0.014)^{***}$ 0.002 (0.012) 0.094 $(0.011)^{***}$ 0.012 (0.010)	8,425 Quantile regression $\tau = 0.25$ - 0.176 $(0.015)^{***}$ 0.344 $(0.079)^{***}$ - 0.010 (0.006) 0.042 $(0.006)^{***}$ - 0.046 $(0.006)^{***}$ 0.026 $(0.006)^{***}$ 0.000 (0.004)	$\tau = 0.50$ 0.006 (0.004) 0.380 (0.043)*** - 0.020 (0.005)*** 0.027 (0.006)*** - 0.019 (0.005)*** 0.028 (0.006)*** 0.008 (0.004)**	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** ≈ 0.000 (0.004)*** 0.015 (0.005)*** 0.033 (0.005)*** 0.024 (0.006)***	$\tau = 0.99$ 4.710 $(0.657)^{***}$ 0.178 (0.227) $- 0.048$ (0.519) $- 1.666$ $(0.528)^{**}$ $- 0.691$ (0.770) 0.121 (1.067) 0.648 (0.246)
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth	22,604 Contiguity-based spr SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143 (0.012)*** 0.042 (0.011)*** 0.092 (0.011)***	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151 (0.013)*** 0.038 (0.011)*** 0.093 (0.011)***	6,722 SDM ≈ 0.000 (0.010) 0.075 $(0.010)^{***}$ -0.132 $(0.013)^{***}$ -0.200 (0.013) -0.200 $(0.014)^{***}$ 0.002 (0.012) 0.094 $(0.011)^{***}$ 0.012 (0.010) 0.030	8,425 Quantile regression $\tau = 0.25$ $- 0.176$ $(0.015)^{***}$ 0.344 $(0.079)^{***}$ $- 0.010$ (0.006) 0.042 $(0.006)^{***}$ $- 0.046$ $(0.006)^{***}$ 0.026 $(0.006)^{***}$ 0.000 (0.004)	33,576 τ = 0.50 0.006 (0.004) 0.380 (0.043)*** - 0.020 (0.005)*** 0.027 (0.006)*** - 0.019 (0.005)*** 0.028 (0.006)*** 0.008 (0.004)**	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** ≈ 0.000 (0.004)*** 0.033 (0.005)*** 0.024 (0.006)***	$ \tau = 0.99 4.710 (0.657)*** 0.178 (0.227) -0.048 (0.519) -1.666 (0.528)** -0.691 (0.770) 0.121 (1.067) 0.648 (0.246) $
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth	22,604 Contiguity-based spr SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143 (0.012)*** 0.042 (0.011)*** 0.092 (0.011)***	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 $(0.010)^{***}$ -0.130 $(0.012)^{***}$ -0.008 (0.012) -0.151 $(0.013)^{***}$ 0.038 $(0.011)^{***}$ 0.093 $(0.011)^{***}$	6,722 SDM ≈ 0.000 (0.010) 0.075 $(0.010)^{***}$ -0.132 $(0.013)^{***}$ -0.200 (0.013) -0.200 $(0.014)^{***}$ 0.002 (0.012) 0.094 $(0.011)^{***}$ 0.012 (0.010) 0.039 $(0.023)^{*}$	8,425 Quantile regression $r = 0.25$ $- 0.176$ $(0.015)^{***}$ 0.344 $(0.079)^{***}$ $- 0.010$ (0.006) 0.042 $(0.006)^{***}$ $- 0.046$ $(0.006)^{***}$ 0.026 (0.004)	33,576 τ = 0.50 0.006 (0.004) 0.380 (0.043)*** - 0.020 (0.005)*** 0.027 (0.006)*** - 0.019 (0.005)*** 0.028 (0.006)*** 0.008 (0.004)**	$\begin{aligned} \mathbf{r} &= 0.75 \\ 0.152 \\ (0.007)^{***} \\ 0.350 \\ (0.028)^{***} \\ - 0.032 \\ (0.006)^{***} \\ &\approx 0.000 \\ (0.006) \\ - 0.015 \\ (0.004)^{***} \\ 0.033 \\ (0.005)^{***} \\ 0.024 \\ (0.006)^{***} \end{aligned}$	$ \tau = 0.99 4.710 (0.657)*** 0.178 (0.227) - 0.048 (0.519) - 1.666 (0.528)** - 0.691 (0.770) 0.121 (1.067) 0.648 (0.246) $
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density	22,604 Contiguity-based space SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143 (0.012)*** 0.042 (0.011)*** 0.092 (0.011)***	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151 (0.013)*** 0.038 (0.011)*** 0.093 (0.011)***	6,722 SDM ≈ 0.000 (0.010) 0.075 $(0.010)^{***}$ -0.132 $(0.013)^{***}$ -0.200 (0.013) -0.200 $(0.014)^{***}$ 0.002 (0.012) 0.094 $(0.011)^{***}$ 0.012 (0.010) 0.039 $(0.023)^{*}$ 0.090	8,425 Quantile regression $r = 0.25$ $- 0.176$ $(0.015)^{***}$ 0.344 $(0.079)^{***}$ $- 0.010$ (0.006) 0.042 $(0.006)^{***}$ $- 0.046$ $(0.006)^{***}$ 0.026 $(0.006)^{***}$ 0.000 (0.004)	33,576 τ = 0.50 0.006 (0.004) 0.380 (0.043)*** - 0.020 (0.005)*** 0.027 (0.006)*** - 0.019 (0.005)*** 0.028 (0.006)*** 0.008 (0.004)**	$\begin{aligned} \mathbf{r} &= 0.75 \\ 0.152 \\ (0.007)^{***} \\ 0.350 \\ (0.028)^{***} \\ - 0.032 \\ (0.006)^{***} \\ &\approx 0.000 \\ (0.006) \\ - 0.015 \\ (0.004)^{***} \\ 0.033 \\ (0.005)^{***} \\ 0.024 \\ (0.006)^{***} \end{aligned}$	$ \tau = 0.99 4.710 (0.657)*** 0.178 (0.227) - 0.048 (0.519) - 1.666 (0.528)** - 0.691 (0.770) 0.121 (1.067) 0.648 (0.246) $
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density	22,604 Contiguity-based space SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143 (0.012)*** 0.042 (0.011)*** 0.092 (0.011)***	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151 (0.013)*** 0.038 (0.011)*** 0.093 (0.011)***	6,722 SDM ≈ 0.000 (0.010) 0.075 $(0.010)^{***}$ - 0.132 $(0.013)^{***}$ - 0.200 (0.013) - 0.200 $(0.014)^{***}$ 0.002 (0.012) 0.094 $(0.011)^{***}$ 0.012 (0.010) 0.039 $(0.023)^{*}$ 0.080 $(0.023)^{***}$	8,425 Quantile regression $r = 0.25$ $- 0.176$ $(0.015)^{***}$ 0.344 $(0.079)^{***}$ $- 0.010$ (0.006) 0.042 $(0.006)^{***}$ $- 0.046$ $(0.006)^{***}$ 0.026 $(0.006)^{***}$ 0.000 (0.004)	33,576 τ = 0.50 0.006 (0.004) 0.380 (0.043)*** - 0.020 (0.005)*** 0.027 (0.006)*** - 0.019 (0.006)*** 0.028 (0.006)*** 0.008 (0.004)**	$ \tau = 0.75 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** \approx 0.000 (0.006) - 0.015 (0.004)*** 0.033 (0.005)*** 0.024 (0.006)*** $	$ \tau = 0.99 4.710 (0.657)*** 0.178 (0.227) - 0.048 (0.519) - 1.666 (0.528)** - 0.691 (0.770) 0.121 (1.067) 0.648 (0.246) $
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size	22,004 Contiguity-based space SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143 (0.012)*** 0.042 (0.011)*** 0.092 (0.011)***	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151 (0.013)*** 0.038 (0.011)*** 0.093 (0.011)***	 6,722 SDM ≈ 0.000 (0.010) 0.075 (0.010)*** - 0.132 (0.013)*** - 0.020 (0.013) - 0.200 (0.014)*** 0.002 (0.012) 0.094 (0.012) 0.094 (0.011)*** 0.012 (0.010) 0.039 (0.023)* 0.080 (0.023)*** 0.144 	8,425 Quantile regression $\tau = 0.25$ $- 0.176$ $(0.015)^{***}$ 0.344 $(0.079)^{***}$ $- 0.010$ (0.006) 0.042 $(0.006)^{***}$ $- 0.046$ $(0.006)^{***}$ 0.026 $(0.006)^{***}$ 0.000 (0.004)	$\begin{aligned} \overline{\tau} &= 0.50 \\ 0.006 \\ (0.004) \\ 0.380 \\ (0.043)^{***} \\ - 0.020 \\ (0.005)^{***} \\ 0.027 \\ (0.006)^{***} \\ - 0.019 \\ (0.005)^{***} \\ 0.028 \\ (0.006)^{***} \\ 0.008 \\ (0.004)^{**} \end{aligned}$	$ \tau = 0.75 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** \approx 0.000 (0.006) - 0.015 (0.004)*** 0.033 (0.005)*** 0.024 (0.006)*** $	$\tau = 0.99$ 4.710 (0.657)*** 0.178 (0.227) - 0.048 (0.519) - 1.666 (0.528)** - 0.691 (0.770) 0.121 (1.067) 0.648 (0.246)
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size Lag.Pop.size	22,004 Contiguity-based space SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143 (0.012)*** 0.042 (0.011)*** 0.092 (0.011)***	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151 (0.013)*** 0.038 (0.011)*** 0.093 (0.011)***	6,722 SDM ≈ 0.000 (0.010) 0.075 $(0.010)^{***}$ -0.132 $(0.013)^{***}$ -0.200 (0.013) -0.200 $(0.014)^{***}$ 0.002 (0.012) 0.094 $(0.011)^{***}$ 0.012 (0.010) 0.039 $(0.023)^{*}$ 0.080 $(0.023)^{***}$ 0.184	8,425 Quantile regression $r = 0.25$ $- 0.176$ $(0.015)^{***}$ 0.344 $(0.079)^{***}$ $- 0.010$ (0.006) 0.042 $(0.006)^{***}$ $- 0.046$ $(0.006)^{***}$ 0.000 (0.004)	33,576 \$\mathbf{\current{r}} = 0.50 0.006 (0.004) 0.380 (0.043)*** - 0.020 (0.005)*** 0.027 (0.006)*** - 0.019 (0.005)*** 0.028 (0.006)*** 0.008 (0.004)**	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** ≈ 0.000 (0.006) - 0.015 (0.004)*** 0.033 (0.005)*** 0.024 (0.006)***	$r = 0.99$ 4.710 $(0.657)^{***}$ 0.178 (0.227) $- 0.048$ (0.519) $- 1.666$ $(0.528)^{**}$ $- 0.691$ (0.770) 0.121 (1.067) 0.648 (0.246)
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size Lag.Elevation	22,604 Contiguity-based spr SAR ≈ 0.000 (0.010) 0.078 $(0.010)^{***}$ - 0.127 $(0.012)^{***}$ - 0.007 (0.012) - 0.143 $(0.012)^{***}$ 0.042 $(0.011)^{***}$ 0.092 $(0.011)^{***}$	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151 (0.013)*** 0.038 (0.011)*** 0.093 (0.011)***	6,722 SDM ≈ 0.000 (0.010) 0.075 $(0.010)^{***}$ -0.132 $(0.013)^{***}$ -0.200 (0.013) -0.200 $(0.014)^{***}$ 0.002 (0.012) 0.094 $(0.011)^{***}$ 0.012 (0.010) 0.039 $(0.023)^{*}$ 0.080 $(0.023)^{***}$ 0.184 $(0.023)^{***}$ 0.124	8,425 Quantile regression $r = 0.25$ $- 0.176$ $(0.015)^{***}$ 0.344 $(0.079)^{***}$ $- 0.010$ (0.006) 0.042 $(0.006)^{***}$ $- 0.046$ $(0.006)^{***}$ 0.026 (0.004)	33,576 τ = 0.50 0.006 (0.004) 0.380 (0.043)*** - 0.020 (0.005)*** 0.027 (0.006)*** 0.028 (0.006)*** 0.028 (0.006)*** 0.008 (0.004)**	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** ≈ 0.000 (0.004)*** 0.033 (0.005)*** 0.024 (0.006)***	$r = 0.99$ 4.710 $(0.657)^{***}$ 0.178 (0.227) $- 0.048$ (0.519) $- 1.666$ $(0.528)^{**}$ $- 0.691$ (0.770) 0.121 (1.067) 0.648 (0.246)
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag.Pop.growth Lag.Dem.density Lag.Pop.size Lag.Pop.size Lag.Pop.size Lag.Sea prox.	22,604 Contiguity-based spr SAR ≈ 0.000 (0.010) 0.078 (0.010)*** - 0.127 (0.012)*** - 0.007 (0.012) - 0.143 (0.012)*** 0.042 (0.011)*** 0.092 (0.011)***	8,684 atial weights SDE ≈ 0.000 (0.011) 0.077 (0.010)*** - 0.130 (0.012)*** - 0.008 (0.012) - 0.151 (0.013)*** 0.038 (0.011)*** 0.093 (0.011)***	6,722 SDM ≈ 0.000 (0.010) 0.075 (0.010)*** - 0.132 (0.013)*** - 0.200 (0.013) - 0.200 (0.014)*** 0.002 (0.012) 0.094 (0.011)*** 0.012 (0.010) 0.039 (0.023)* 0.080 (0.023)*** 0.184 (0.023)*** 0.124 (0.021)***	8,425 Quantile regression τ = 0.25 - 0.176 (0.015)*** 0.344 (0.079)*** - 0.010 (0.006) 0.042 (0.006)*** - 0.046 (0.006)*** 0.026 (0.004)	33,576 τ = 0.50 0.006 (0.004) 0.380 (0.043)*** - 0.020 (0.005)*** 0.027 (0.006)*** - 0.019 (0.005)*** 0.028 (0.006)*** 0.008 (0.004)**	$\tau = 0.75$ 0.152 (0.007)*** 0.350 (0.028)*** - 0.032 (0.006)*** ≈ 0.000 (0.004)*** 0.033 (0.005)*** 0.024 (0.006)***	$\tau = 0.99$ 4.710 $(0.657)^{***}$ 0.178 (0.227) -0.048 (0.519) -1.666 $(0.528)^{**}$ -0.691 (0.770) 0.121 (1.067) 0.648 (0.246)

	Contiguity-based spa	atial weights					
				Quantile regression		-	
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
Log Con city			- 0.055				
Lag.Cap.city			(0.026)**	1			
Breusch-Pagan				1			
Durbin-Watson							
Slope equality							
Moran's I(z)				0.0304***			
W spatial matrix				ns	*	***	ns
Adjusted-R ²	0.050	0.051	0.060				
AIC	22,592	22,533	22,533				
	Distance-based spati	al weights	1				
				Quantile regression			
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
-	pprox 0.000	- 0.039	- 0.008	- 0.133	0.006	0.152	1.417
Intercept	(0.010)	(0.107)	(0.011)	(0.004)***	(0.003)*	(0.004)***	(0.288)***
	0.066	0.065	0.067	0.216	0.288	0.319	0.366
Pop.growth	(0.010)***	(0.010)***	(0.010)***	(0.080)***	(0.050)***	(0.024)***	(0.102)***
	- 0.103	- 0.136	- 0.136	0.016	0.007	- 0.015	- 0.112
Dem.density	(0.012)***	(0.013)***	(0.013)***	(0.005)***	(0.004)	(0.005)***	(0.041)***
	- 0.043	- 0.042	- 0.040	0.012	- 0.011	- 0.029	- 0.097
Pop.size	(0.012)***	(0.014)***	(0.014)***	(0.005)	(0.005)***	(0.006)***	(0.040)**
	- 0.161	- 0.213	- 0.221	- 0.064	- 0.042	- 0.041	- 0.046
Elevation	(0.013)***	(0.014)***	(0.014)***	(0.006)***	(0.005)***	(0.005)***	(0.065)
	0.015	- 0.003	- 0.004	- 0.005	0.012	0.019	0.105
Sea prox.	(0.011)	(0.012)	(0.012)	(0.004)***	(0.003)***	(0.005)***	(0.103)
	0.099	0.101	0.100	0.007	0.016	0.03	5.385
Cap.city	(0.011)***	(0.011)***	(0.011)***	(0.004)**	(0.003)***	(0.004)***	(2.654)**
		1	0.765		1		
Lag. Pop.growth			(0.196)***				
			0.236				
Lag.Dem.density			(0.062)***				
I D I			0.122				
Lag.Pop.size			(0.087)				
L			0.433				
Lag. Elevation			(0.052)***				
I			- 0.055				
Lag.Sea prox.			(0.044)	1			
Les Constitu			0.040	1			
Lag.Cap.city			(0.588)				
Breusch-Pagan							
Durbin-Watson							
Slope equality							
Moran's I(z)	1			0.0282***			
W spatial matrix	1			***	***	**	*
Adjusted-R ²	0.070	0.077	0.078				·
AIC	22,422	22,360	22,352	1			

Table 1. Results of standard (OLS, Ordinary Least Square, and quantile) regressions as well as global (SAR: Spatial Autoregressive model; SDE: Spatial Error model; SDM: Spatial Durbin model) and quantile spatial models run with both contiguity and linear distance spatial weighting matrices; population growth rate (% annual) in 1931–1936 as dependent variable; population growth rate (1921–1931), demographic density (1921), population size (1921), elevation, proximity to the sea coast and a dummy indicating municipalities that act as provincial head town as predictors (*p < 0.05; **0.001 ; ***<math>p < 0.001).

<table-container>NetwordNetwordNetwordNetwordNetwordNetwordNetwordPartialResidualResidualResidualResidualResidualResidualResidualPartialResidualResidualResidualResidualResidualResidualResidualResidualPartialResidualResid</table-container>			Quantile regression					
<table-container><table-row><table-row><table-container><table-container><table-row><table-container><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-container></table-row></table-container></table-container></table-row></table-row></table-container>	Predictor	OLS	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	VIF	
<table-container>mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmParametta100.400.400.400.400.400.400.400.40Parametta100.40</table-container>	Intercent	pprox 0.000	- 0.455	- 0.064	0.385	1.960		
<table-container>1010000000010003704000</table-container>	Intercept	(0.010)	(0.009)***	(0.008)***	(0.010)***	(0.098)***		
<table-container>respondenceResponde</table-container>	De a constat	0.171	0.460	0.466	0.466	0.462	1.03	
<table-container> 1000000000000000000000000000000000000</table-container>	Pop.growth	(0.010)***	(0.035)***	(0.023)***	(0.021)***	(0.318)		
<table-container>Dension Bana B</table-container>	D 1 1	0.012	0.114	0.100	0.062	- 0.107	1.39	
<table-container> </table-container>	Dem.density	(0.012)	(0.010)***	(0.009)***	(0.011)***	(0.080)		
<table-container>'opportiop opportiop opportiop opportiop opportiop opportBaran (iop opport0,00<td></td><td>0.091</td><td>0.141</td><td>0.063</td><td>0.008</td><td>- 0.201</td><td>1.43</td><td></td></table-container>		0.091	0.141	0.063	0.008	- 0.201	1.43	
equation 1equation 1equation 1equation 1equation 1equation 1equation 160037600376003760037600376003760037600371.14600460030.640.141.14600460030.6100.1411.14600580.6170.6170.6170.517600580.6180.6180.6180.6180.618600590.6180.6180.6180.6180.618600590.6180.6180.6180.618600590.6180.6180.6180.618600590.6180.6180.6280.628600590.6190.6190.6190.6280.628777777711111171111111111111711111111111111111111111111111111111<	Pop.size	(0.012)***	(0.008)***	(0.009)***	(0.011)	(0.076)***		
<table-container>BeamB</table-container>		- 0.094	- 0.007	- 0.017	- 0.047	- 0.375	1.44	
<table-container>8pm. 00119***0.0890.099***0.049***0.049****0.178 0$I=V=V=V=V=V=V=V=V=V=V=V=V=V=V=V=V=V=V=V$</table-container>	Elevation	(0.012)***	(0.010)	(0.009)*	(0.013)***	(0.086)***		
Sed prox.(no.11)***(no.00)***(no.00)***(no.11)**(no.11)**(no.00)**(no.11)**<		0.121	0.058	0.080	0.098	0.243	1.18	
<table-container>6040 00196036 00190.046 0039**0.44 0.035**1.4 1<br 1<br=""/>1 1<</table-container>	Sea prox.	(0.011)***	(0.009)***	(0.010)***	(0.010)***	(0.178)		
<table-container>Cncluty(0.011)(0.01)**(0.03)***(0.03)***(0.01)***(0.03)***Lag.Negroub Lag.Negroup</table-container>		0.024	≈ 0.000	0.018	0.046	0.144	1.14	
Independention LagDendieInitial Contraction LagDendieInitial Contraction LagDendieInitial Contraction LagDendieLagDendieInitial Contraction LagDendieInitial Contraction LagDendieInitial Contraction LagDendieLagDendieInitial Contraction LagDendieInitial Contraction LagDendieInitial Contraction LagDendieLagDendieInitial Contraction LagDendieInitial Contraction LagDendieInitial Contraction LagDendieLagDendieInitial Contraction LagDendieInitial Contraction LagDendieInitial Contraction LagDendieStateInitial Contraction LagDendieInitial Contraction LagDendieInitial Contraction LagDendieMarkelInitial Contraction LagDendi	Cap.city	(0.011)*	(0.006)	(0.011)	(0.010)***	(0.035)***		
Ing.Por.InterpretationIng.Por.InterpretationIng.Por.InterpretationIng.Por.InterpretationIng.Por.InterpretationIn	Lag. Pop.growth		()			()		
Lag.Byola	Lag.Dem.density							
Hag.RevinoIIag.Gapcity1Spescal-Napan14.5Darsh-Natson10.11**Spescal-Napan12.6**Morach (20)1Spescal-Napan12.6**Morach (20)12.6**Morach	Lag Pop size							
Increme-Frage74-55Durbin-Mata16**	Lag Flevation							
<table-container>IndiantInternational State<t< td=""><td>Lag Sea prov</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></table-container>	Lag Sea prov							
<table-container>Reskah-Rag Network6Sheresk-Pagn Serve5Shoreskie5Shoreskie5Morafis Lo5Shareskie5Shareskie12.5Shareskie</table-container>	Lag. Con city							
Jondy-Mature Index and the part of	Provide Dagan	74.5						
DataDistantion solutionSet*Solor all solutionSet*Set*Wanh (C) Alguade A0.090.880.800.82Alguade A0.090.1900.800.82Alguade A0.217617.690.820Set*Alguade A0.72619.520.820Set*Solor all Participation0.1900.1260.820Set*Solor all ParticipationSolor all Solor all (0.019***********************************	Dieusch-Fagan	1 (0 ***						
slope quart local for the street service s	Durbin-watson	1.60		22 (***				
Mathematic Mathemat	Slope equality			32.6***				
WatantariaAjuside.70.960.080.880.82Alica21,761,2601,2600.82Catiguity-based-seriesCatiguity-ba	Moran's I(z)							
Adjated PA0.0960.0960.0820.282AC17,4517,26919,57036,820Anticity SectorContraity SectorPredictorContraity-Sace-Sace-Sace-Sace-Sace-Sace-Sace-Sace	W spatial matrix			1	1		1	
AIC 2,76 1,769 1,927 3,830	Adjusted-R ²	0.096	0.109	0.088	0.080	0.282	-	
Contractive distribution of the series of th	AIC	22,176	17,456	17,269	19,527	36,820		
Predict Problem Partial Section Qualiferegressive Partial Section Parinterestection Partial Section		Contiguity-based spa	atial weights					
Prediction SAR SDE SDM r = 0.25 r = 0.50 r = 0.75 r = 0.99 Intercept \sim 0.000 \sim 0.000 \sim 0.000 \sim 0.000 \sim 0.003/** \sim 0.013/** \sim 0.003/** \sim 0.013/**		3. 7 1		1	1			
Intercept ≈ 0.000 ≈ 0.000 ≈ 0.000 ~ 0.000 0.000 <td></td> <td></td> <td></td> <td></td> <td>Quantile regression</td> <td></td> <td></td> <td></td>					Quantile regression			
Match (0.010) (0.013) (0.013) ^{***} (0.003) ^{****} (0.013) ^{****} (0.013) ^{****} (0.013) ^{****} (0.013) ^{*****} (0.013) ^{************************************}	Predictor	SAR	SDE	SDM	Quantile regression $\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
Phyperbody 0.162 0.163 0.164 0.427 0.464 0.421 Pendensity 0.001**********************************	Predictor	SAR ≈ 0.000	SDE ≈ 0.000	SDM ≈ 0.000	Quantile regression $\tau = 0.25$ -0.400	$\tau = 0.50$ - 0.060	$\tau = 0.75$ 0.315	τ = 0.99 1.524
Negativity (0.010)*** (0.010)*** (0.11)*** (0.068)*** (0.048)*** (0.11)*** Dendensity 0.008 -0.002 -0.012 0.095 0.092 0.055 -0.121 0.010*** (0.010**** (0.010**** (0.010**** (0.010**** (0.010**** (0.010**** (0.010**** (0.010**** (0.010**** (0.010**** (0.010**** (0.010***** (0.010***** (0.010***** (0.010***** (0.010***** (0.010****** (0.010****** (0.010**************** (0.010*****************	Predictor Intercept	SAR ≈ 0.000 (0.010)	SDE ≈ 0.000 (0.013)	SDM ≈ 0.000 (0.010)	Quantile regression τ = 0.25 - 0.400 (0.013)***	$\tau = 0.50$ - 0.060 (0.009)***	τ = 0.75 0.315 (0.018)***	τ = 0.99 1.524 (0.237)***
Definition 0.002 0.012 0.012 0.012 0.012 0.012 0.013	Predictor Intercept	SAR ≈ 0.000 (0.010) 0.162	SDE ≈ 0.000 (0.013) 0.158	SDM ≈ 0.000 (0.010) 0.156	Quantile regression τ = 0.25 - 0.400 (0.013)*** 0.425	τ = 0.50 - 0.060 (0.009)*** 0.425	τ = 0.75 0.315 (0.018)*** 0.406	τ = 0.99 1.524 (0.237)*** 0.421
Definition (0.01) (0.01) (0.01)*** (0	Predictor Intercept Pop.growth	SAR ≈ 0.000 (0.010) 0.162 (0.010)***	SDE ≈ 0.000 (0.013) 0.158 (0.010)***	SDM ≈ 0.000 (0.010) 0.156 (0.010)***	Quantile regression τ = 0.25 - 0.400 (0.013)*** 0.425 (0.131)***	$\tau = 0.50$ - 0.060 (0.009)*** 0.425 (0.068)***	τ = 0.75 0.315 (0.018)*** 0.406 (0.048)***	τ = 0.99 1.524 (0.237)*** 0.421 (0.131)***
Popsize0880.0950.0940.1380.0670.011-0.13310120.012***0.013**0.010***0.010***0.011**0.011**0.011**0.011**10120.013**0.014**0.0100.010**0.010**0.011**0.013**0.013**10120.013**0.014**0.0100.010**0.010**0.011**0.013**0.013**10120.011**0.011**0.021**0.013**0.013**0.013**0.013**0.013**10200.011**0.011**0.021**0.011**0.003**0.013**0.013**0.013**10200.011**0.011**0.021**0.011**0.003***0.013**0.013**0.013**10200.011**0.011**0.011**0.003***0.003***0.003***0.013***0.013***10200.011**0.011**0.011***0.003***0.003***0.003***0.01***0.01***10200.011**0.011***0.011***0.003***0.003***0.003***0.01***0.01***10200.011***0.011***0.010****0.003***0.003***0.01****0.01****0.01****10200.011***0.011****0.01****0.01****0.01****0.01****0.01****10200.01****0.01*****0.01*****0.01*****0.01*****0.01*****10200.01*****0.01******0.01***********************************	Predictor Intercept Pop.growth	SAR ≈ 0.000 (0.010) 0.162 (0.010)*** 0.008	SDE ≈ 0.000 (0.013) 0.158 (0.010)*** - 0.002	SDM ≈ 0.000 (0.010) 0.156 (0.010)*** - 0.012	Quantile regression τ = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095	τ = 0.50 - 0.060 (0.009)*** 0.425 (0.068)*** 0.092	τ = 0.75 0.315 (0.018)*** 0.406 (0.048)*** 0.055	τ = 0.99 1.524 (0.237)*** 0.421 (0.131)*** - 0.121
Pobsize(0.012)(0.012)***(0.013)(0.010)***(0.010)***(0.010)***(0.010)(0.011)(0.070)***Elevation-0.098-0.114-0.141-0.016-0.025-0.061-0.412(0.012)***(0.013)***(0.010)***(0.010)(0.010)(0.014)(0.079)***80.1070.1040.0860.0530.6680.8550.1390.101)***(0.011)***(0.011)***(0.022)***(0.011)***(0.09)***(0.013)***(0.354)1ag.Pogrowth0.0210.021***(0.009)**(0.011)***(0.022)***(0.09)***(0.011)***(0.022)***1ag.Pogrowth0.0560.022***0.0660.022)***(0.022)***(0.009)***(0.011)***(0.022)***1ag.Pogrowth0.0560.022***0.0660.022)***(0.022)***(0.020)***(0.020)***(0.020)***1ag.Pogrowth0.0720.0200.0202***0.020(0.000)***(0.011)***(0.020)***1ag.Pogrowth0.0720.0202***0.0202***0.0202***(0.020)***(0.020)***1ag.Pogrowth0.0720.0202***0.0202***(0.020)***(0.020)***(0.020)***1ag.Pogrowth0.0720.0202***0.0202***(0.020)***(0.020)***(0.020)***1ag.Pogrowth0.0202***0.0202***0.0202***(0.020)***(0.020)***(0.020)***1ag.Pogrowth0.0202***0.0202***0.0202***(0.0202***(0.0	Predictor Intercept Pop.growth Dem.density	SAR ≈ 0.000 (0.010) 0.162 (0.010)*** 0.008 (0.012)	SDE ≈ 0.000 (0.013) 0.158 $(0.010)^{***}$ -0.002 (0.012)	SDM ≈ 0.000 (0.010) 0.156 $(0.010)^{***}$ -0.012 (0.013)	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)***	τ = 0.50 - 0.060 (0.009)*** 0.425 (0.068)*** 0.092 (0.011)***	τ = 0.75 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)***	τ = 0.99 1.524 (0.237)*** 0.421 (0.131)*** - 0.121 (0.049)**
Performance Elevation-0.098-0.114-0.141-0.016-0.025-0.061-0.412(0.01)***(0.01)***(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)** $Bag arrow ContractContractContract0.011**(0.01)**(0.01)**(0.00)**(0.01)**(0.01)**(0.01)**Cape arrow ContractContractContract0.021**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.01)**(0.02)***(0.01)**(0.01)**(0.01)**(0.02)***(0.00)**(0.01)**(0.01)**(0.02)***(0.00)**(0.01)**(0.02)***<$	Predictor Intercept Pop.growth Dem.density	SAR ≈ 0.000 (0.010) 0.162 (0.010)*** 0.008 (0.012) 0.082	SDE ≈ 0.000 (0.013) 0.158 $(0.010)^{***}$ -0.002 (0.012) 0.095	SDM ≈ 0.000 (0.010) 0.156 $(0.010)^{***}$ -0.012 (0.013) 0.094	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138	τ = 0.50 - 0.060 (0.009)*** 0.425 (0.068)*** 0.092 (0.011)*** 0.067	τ = 0.75 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001	τ = 0.99 1.524 (0.237)*** 0.421 (0.131)*** - 0.121 (0.049)** - 0.183
Ideation(0.012)***(0.013)***(0.014)***(0.010)(0.010)(0.014)(0.079)***Bag prox.0.1070.011/**0.022)***(0.011)***(0.009)***(0.013)***(0.033)***0.0270.0240.0270.0200.0190.0440.156Cap.city0.011/**(0.011)**(0.011)**(0.009)**(0.011)***(0.032)***1ag.Pop.growth0.066 (0.022)***0.066 (0.022)***0.066 (0.022)***(0.012)***(0.012)***1ag.Pop.size0.066 (0.022)***0.066 (0.022)***0.072 (0.021)***(0.012)***(0.012)***1ag.Sea prox.0.072 (0.021)***(0.012)***(0.012)***(0.012)***1ag.Cap.city </td <td>Predictor Intercept Pop.growth Dem.density Pop.size</td> <td>SAR ≈ 0.000 (0.010) 0.162 (0.010)*** 0.008 (0.012) 0.082 (0.012)</td> <td>SDE ≈ 0.000 (0.013) 0.158 (0.010)*** - 0.002 (0.012) 0.095 (0.012)***</td> <td>SDM ≈ 0.000 (0.010) 0.156 (0.010)*** - 0.012 (0.013) 0.094 (0.013)</td> <td>Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)***</td> <td>τ = 0.50 - 0.060 (0.009)*** 0.425 (0.068)*** 0.092 (0.011)*** 0.067 (0.010)***</td> <td>τ = 0.75 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011)</td> <td>τ = 0.99 1.524 (0.237)*** 0.421 (0.131)*** - 0.121 (0.049)** - 0.183 (0.070)***</td>	Predictor Intercept Pop.growth Dem.density Pop.size	SAR ≈ 0.000 (0.010) 0.162 (0.010)*** 0.008 (0.012) 0.082 (0.012)	SDE ≈ 0.000 (0.013) 0.158 (0.010)*** - 0.002 (0.012) 0.095 (0.012)***	SDM ≈ 0.000 (0.010) 0.156 (0.010)*** - 0.012 (0.013) 0.094 (0.013)	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)***	τ = 0.50 - 0.060 (0.009)*** 0.425 (0.068)*** 0.092 (0.011)*** 0.067 (0.010)***	τ = 0.75 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011)	τ = 0.99 1.524 (0.237)*** 0.421 (0.131)*** - 0.121 (0.049)** - 0.183 (0.070)***
Sea prox.0.1070.1040.0860.0530.0680.0850.139(0.01)***(0.01)***(0.01)***(0.01)***(0.01)***(0.03)***(0.354)Cap.city0.0270.0020.0190.0440.156(0.01)**(0.01)**(0.01)**(0.009)**(0.01)***(0.03)***Lag.Pop.growth0.054 (0.024)***0.066 (0.022)***0.066 (0.022)***0.066 (0.022)***0.072 (0.021)***Lag.Pop.size0.063 (0.022)***0.072 (0.021)***0.072 (0.021)***0.072 (0.021)***Lag.Cap.city0.072 (0.021)***0.072 (0.021)***0.072 (0.021)***Breusch-Pagan0.072 (0.021)***0.012***0.127***Moran's I(z)0.017***0.127***0.127***Moran's I(z)0.011***0.127***0.127***Value Instruct0.127***1.12***Moran's I(z)0.12***0.127***Value Instruct0.12***1.12***Value Instruct0.12***Value Instruct1.12***Value	Predictor Intercept Pop.growth Dem.density Pop.size	SAR ≈ 0.000 (0.010) 0.162 (0.010)*** 0.008 (0.012) 0.082 (0.012) - 0.098	SDE ≈ 0.000 (0.013) 0.158 (0.010)*** - 0.002 (0.012) 0.095 (0.012)*** - 0.114	SDM ≈ 0.000 (0.010) 0.156 (0.010)*** - 0.012 (0.013) 0.094 (0.013) - 0.141	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016	τ = 0.50 - 0.060 (0.009)*** 0.425 (0.068)*** 0.092 (0.011)*** 0.067 (0.010)*** - 0.025	τ = 0.75 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061	$\tau = 0.99$ 1.524 (0.237)*** 0.421 (0.131)*** - 0.121 (0.049)** - 0.183 (0.070)*** - 0.412
Sea prox. (0.011)*** (0.011)*** (0.011)*** (0.022)*** (0.011)**	Predictor Intercept Pop.growth Dem.density Pop.size Elevation	$SAR \approx 0.000 (0.010) 0.162 (0.010) 0.162 (0.012) 0.082 (0.012) 0.082 (0.012) - 0.098 (0.012) - 0.098 (0.012) + ** (0.012) - 0.098 (0.012) + ** (0.0$	SDE ≈ 0.000 (0.013) 0.158 $(0.010)^{***}$ -0.002 (0.012) 0.095 $(0.012)^{***}$ -0.114 $(0.013)^{***}$	SDM ≈ 0.000 (0.010) 0.156 (0.010)*** - 0.012 (0.013) 0.094 (0.013) - 0.141 (0.014)***	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010)	$\tau = 0.50$ -0.060 $(0.009)^{***}$ 0.425 $(0.068)^{***}$ 0.092 $(0.011)^{***}$ 0.067 $(0.010)^{***}$ -0.025 (0.010)	$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.014)	τ = 0.99 1.524 (0.237)*** 0.421 (0.131)*** - 0.121 (0.049)** - 0.183 (0.070)*** - 0.412 (0.079)***
0.0270.0240.0270.0020.0190.0440.1561ag. Dop. growth(0.011)**(0.011)**(0.011)**(0.032)***(0.032)***1ag. Dem. density0.064 (0.024)***0.066 (0.022)***0.066 (0.022)***0.066 (0.022)***1ag. Elevation0.123 (0.022)***0.011 (0.022)***0.003 (0.022)***1ag. Sea prox.0.123 (0.022)***0.072 (0.021)***0.072 (0.021)***1ag. Sea prox.0.072 (0.021)***0.003 (0.025)1ag. Cap.city0.072 (0.021)***0.003 (0.025)Breuch-Pagan0.003 (0.025)1Durbin-Watson11Slope equality10.127***Moran's I(z)10.127***Washi Martin*********Table Holder***	Predictor Intercept Pop.growth Dem.density Pop.size Elevation	SAR ≈ 0.000 (0.010) 0.162 $(0.010)^{***}$ 0.008 (0.012) 0.082 (0.012) -0.098 $(0.012)^{***}$ 0.107	SDE ≈ 0.000 (0.013) 0.158 $(0.010)^{***}$ -0.002 (0.012) 0.095 $(0.012)^{***}$ -0.114 $(0.013)^{***}$ 0.104	SDM ≈ 0.000 (0.010) 0.156 $(0.010)^{***}$ -0.012 (0.013) 0.094 (0.013) -0.141 $(0.014)^{***}$ 0.086	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053	$\tau = 0.50$ -0.060 $(0.009)^{***}$ 0.425 $(0.068)^{***}$ 0.092 $(0.011)^{***}$ 0.067 $(0.010)^{***}$ -0.025 (0.010) 0.068	$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.014) 0.085	τ = 0.99 1.524 (0.237)*** 0.421 (0.131)*** - 0.121 (0.049)** - 0.183 (0.070)*** - 0.412 (0.079)*** 0.139
Cap.city (0.011)** (0.011)** (0.011)** (0.009) (0.009)** (0.011)*** (0.032)*** Lag.Dem.density 0.064 (0.024)*** 0.086 (0.022)*** 0.086 (0.022)*** 0.086 (0.022)*** 0.063 (0.023)*** 0.123 (0.022)*** 0.123 (0.022)*** 0.072 (0.021)*** 0.072 (0.021)*** 0.072 (0.021)*** 0.072 (0.021)*** 0.072 (0.021)*** 0.072 (0.021)*** 0.072 (0.025) 0.072 (0.025) 0.072 (0.025) 0.003 (0.025) 0.072 (0.025) 0.011 </td <td>Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox.</td> <td>SAR ≈ 0.000 (0.010) 0.162 $(0.010)^{***}$ 0.008 (0.012) 0.082 (0.012) -0.098 $(0.012)^{***}$ 0.107 $(0.011)^{***}$</td> <td>SDE ≈ 0.000 (0.013) 0.158 $(0.010)^{***}$ -0.002 (0.012) 0.095 $(0.012)^{***}$ -0.114 $(0.013)^{***}$ 0.104 $(0.011)^{***}$</td> <td>SDM ≈ 0.000 (0.010) 0.156 (0.010)*** - 0.012 (0.013) 0.094 (0.013) - 0.141 (0.014)*** 0.086 (0.022)***</td> <td>Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)***</td> <td>$\tau = 0.50$ -0.060 $(0.009)^{***}$ 0.425 $(0.068)^{***}$ 0.092 $(0.011)^{***}$ 0.067 $(0.010)^{***}$ -0.025 (0.010) 0.068 $(0.009)^{***}$</td> <td>$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.014) 0.085 (0.013)***</td> <td>τ = 0.99 1.524 (0.237)*** 0.421 (0.131)*** - 0.121 (0.049)** - 0.183 (0.070)*** - 0.412 (0.079)*** 0.139 (0.354)</td>	Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox.	SAR ≈ 0.000 (0.010) 0.162 $(0.010)^{***}$ 0.008 (0.012) 0.082 (0.012) -0.098 $(0.012)^{***}$ 0.107 $(0.011)^{***}$	SDE ≈ 0.000 (0.013) 0.158 $(0.010)^{***}$ -0.002 (0.012) 0.095 $(0.012)^{***}$ -0.114 $(0.013)^{***}$ 0.104 $(0.011)^{***}$	SDM ≈ 0.000 (0.010) 0.156 (0.010)*** - 0.012 (0.013) 0.094 (0.013) - 0.141 (0.014)*** 0.086 (0.022)***	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)***	$\tau = 0.50$ -0.060 $(0.009)^{***}$ 0.425 $(0.068)^{***}$ 0.092 $(0.011)^{***}$ 0.067 $(0.010)^{***}$ -0.025 (0.010) 0.068 $(0.009)^{***}$	$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.014) 0.085 (0.013)***	τ = 0.99 1.524 (0.237)*** 0.421 (0.131)*** - 0.121 (0.049)** - 0.183 (0.070)*** - 0.412 (0.079)*** 0.139 (0.354)
Lag. Pop. growth 0.064 (0.024)*** Lag.Dem.density 0.086 (0.022)*** Lag.Pop.size - 0.063 (0.023)*** Lag.Elevation 0.123 (0.022)*** Lag.Sea prox. 0.072 (0.021)*** Lag.Cap.city - 0.003 (0.025) Breusch-Pagan - 0.003 (0.025) Durbin-Watson - 0.003 (0.025) Slope equality - 0.0127** Moran's I(z) - 0.127** Washial matrix *** *** Tentor ****	Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox.	$SAR \approx 0.000 (0.010) (0.010) (0.010) (0.010) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.011) *** (0.027) (0.011) *** (0.027) (0.011) *** (0.027) (0.011) *** (0.027) (0.011) *** (0.027) (0.011) *** (0.027) (0.011) *** (0.027) (0.011) *** (0.027) (0.011) *** (0.027) (0.011) *** (0.027) (0.011) *** (0.027) (0.011) *** (0.027) (0.011) *** (0.027) (0.011) *** (0.027) (0.012) $	SDE ≈ 0.000 (0.013) 0.158 $(0.010)^{***}$ -0.002 (0.012) 0.095 $(0.012)^{***}$ -0.114 $(0.013)^{***}$ 0.104 $(0.011)^{***}$ 0.024	SDM ≈ 0.000 (0.010) 0.156 (0.010)*** - 0.012 (0.013) 0.094 (0.013) - 0.141 (0.014)*** 0.086 (0.022)*** 0.027	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)***	$\tau = 0.50$ -0.060 $(0.009)^{***}$ 0.425 $(0.068)^{***}$ 0.092 $(0.011)^{***}$ 0.067 $(0.010)^{***}$ -0.025 (0.010) 0.068 $(0.009)^{***}$ 0.019	$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.014) 0.085 (0.013)*** 0.044	$\tau = 0.99$ 1.524 $(0.237)^{***}$ 0.421 $(0.131)^{***}$ -0.121 $(0.049)^{**}$ -0.183 $(0.070)^{***}$ -0.412 $(0.079)^{***}$ 0.139 (0.354) 0.156
Lag.Dem.density 0.086 (0.022)*** Lag.Pop.size -0.063 (0.023)*** Lag.Elevation 0.123 (0.022)*** Lag.Sea prox. 0.072 (0.021)*** Lag.Cap.city -0.003 (0.025) Breusch-Pagan -0.003 (0.025) Durbin-Watson -0.003 (0.025) Slope equality -0.0127*** Moran's I(z) 0.127*** Tag.Cap.city *** *** ***	Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city	$\begin{array}{c} & S \\ & S \\ & \approx 0.000 \\ (0.010) \\ & 0.162 \\ (0.010)^{***} \\ & 0.008 \\ (0.012) \\ & 0.082 \\ (0.012) \\ & - 0.098 \\ (0.012)^{***} \\ & 0.107 \\ (0.011)^{***} \\ & 0.027 \\ (0.011)^{**} \end{array}$	SDE ≈ 0.000 (0.013) 0.158 $(0.010)^{***}$ -0.002 (0.012) 0.095 $(0.012)^{***}$ -0.114 $(0.013)^{***}$ 0.104 $(0.011)^{***}$	SDM ≈ 0.000 (0.010) 0.156 $(0.010)^{***}$ -0.012 (0.013) 0.094 (0.013) -0.141 $(0.014)^{***}$ 0.086 $(0.022)^{***}$ 0.027 $(0.011)^{**}$	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)*** 0.002 (0.009)	τ = 0.50 - 0.060 (0.009)*** 0.425 (0.068)*** 0.092 (0.011)*** 0.067 (0.010)*** - 0.025 (0.010) 0.068 (0.009)*** 0.019 (0.009)**	$\begin{aligned} \tau &= 0.75 \\ 0.315 \\ (0.018)^{***} \\ 0.406 \\ (0.048)^{***} \\ 0.055 \\ (0.012)^{***} \\ 0.001 \\ (0.011) \\ - 0.061 \\ (0.014) \\ 0.085 \\ (0.013)^{***} \\ 0.044 \\ (0.011)^{***} \end{aligned}$	$\tau = 0.99$ 1.524 $(0.237)^{***}$ 0.421 $(0.131)^{***}$ -0.121 $(0.049)^{**}$ -0.183 $(0.070)^{***}$ -0.412 $(0.079)^{***}$ 0.139 (0.354) 0.156 $(0.032)^{***}$
as Dr -0.063 (0.023)*** Lag.Elevation 0.123 (0.022)*** Lag.Sea prox. 0.072 (0.021)*** Lag.Cap.city -0.003 (0.025) Breusch-Pagan -0.003 (0.025) Durbin-Watson -0.003 (0.025) Slope equality -0.0127*** Moran's I(z) 0.127*** W spatial matrix **** ****	Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth	SAR ≈ 0.000 (0.010) 0.162 (0.010)*** 0.008 (0.012) 0.082 (0.012) - 0.098 (0.012)*** 0.107 (0.011)*** 0.027 (0.011)**	SDE ≈ 0.000 (0.013) 0.158 $(0.010)^{***}$ -0.002 (0.012) 0.095 $(0.012)^{***}$ -0.114 $(0.013)^{***}$ 0.104 $(0.011)^{***}$	SDM ≈ 0.000 (0.010) 0.156 $(0.010)^{***}$ -0.012 (0.013) 0.094 (0.013) -0.141 $(0.014)^{***}$ 0.086 $(0.022)^{***}$ 0.027 $(0.011)^{**}$ $0.064 (0.024)^{***}$	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)*** 0.002 (0.009)	τ = 0.50 - 0.060 (0.009)*** 0.425 (0.068)*** 0.092 (0.011)*** 0.067 (0.010)*** - 0.025 (0.010) 0.068 (0.009)*** 0.019 (0.009)**	$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.014) 0.085 (0.013)*** 0.044 (0.011)***	$\tau = 0.99$ 1.524 $(0.237)^{***}$ 0.421 $(0.131)^{***}$ -0.121 $(0.049)^{**}$ -0.183 $(0.070)^{***}$ -0.412 $(0.079)^{***}$ 0.139 (0.354) 0.156 $(0.032)^{***}$
Instrumt Instrumt Lag.Elevation 0.123 (0.022)*** Lag.Sea prox. 0.072 (0.021)*** Lag.Cap.city -0.003 (0.025) Breusch-Pagan -0.003 (0.025) Durbin-Watson -0.003 (0.025) Slope equality -0.003 (0.025) Moran's I(z) 0.127*** W spatial matrix **** ****	Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density	$\begin{array}{c} 8 & \text{SAR} \\ \approx 0.000 \\ (0.010) \\ 0.162 \\ (0.010)^{***} \\ 0.008 \\ (0.012) \\ 0.082 \\ (0.012) \\ - 0.098 \\ (0.012)^{***} \\ 0.107 \\ (0.011)^{***} \\ 0.027 \\ (0.011)^{**} \\ \end{array}$	SDE ≈ 0.000 (0.013) 0.158 $(0.010)^{***}$ -0.002 (0.012) 0.095 $(0.012)^{***}$ -0.114 $(0.013)^{***}$ 0.104 $(0.011)^{***}$ 0.024 $(0.011)^{**}$	SDM ≈ 0.000 (0.010) 0.156 $(0.010)^{***}$ -0.012 (0.013) 0.094 (0.013) -0.141 $(0.014)^{***}$ 0.086 $(0.022)^{***}$ 0.027 $(0.011)^{**}$ $0.064 (0.024)^{***}$ $0.086 (0.022)^{***}$	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)*** 0.002 (0.009)	τ = 0.50 - 0.060 (0.009)*** 0.425 (0.068)*** 0.092 (0.011)*** 0.067 (0.010)*** - 0.025 (0.010) 0.068 (0.009)*** 0.019 (0.009)**	r = 0.75 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.013)*** 0.044 (0.011)***	$\tau = 0.99$ 1.524 $(0.237)^{***}$ 0.421 $(0.131)^{***}$ -0.121 $(0.049)^{**}$ -0.183 $(0.070)^{***}$ -0.412 $(0.079)^{***}$ 0.139 (0.354) 0.156 $(0.032)^{***}$
Instruction 0.012 (0.021)*** Lag.Sea prox. 0.072 (0.021)*** Lag.Cap.city -0.003 (0.025) Breusch-Pagan	Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size	$\begin{array}{c} & SAR \\ \approx 0.000 \\ (0.010) \\ 0.162 \\ (0.010)^{***} \\ 0.008 \\ (0.012) \\ 0.082 \\ (0.012) \\ - 0.098 \\ (0.012)^{***} \\ 0.107 \\ (0.011)^{***} \\ 0.027 \\ (0.011)^{**} \end{array}$	SDE ≈ 0.000 (0.013) 0.158 $(0.010)^{***}$ -0.002 (0.012) 0.095 $(0.012)^{***}$ -0.114 $(0.013)^{***}$ 0.104 $(0.011)^{***}$ 0.024 $(0.011)^{**}$	SDM ≈ 0.000 (0.010) 0.156 $(0.010)^{***}$ - 0.012 (0.013) 0.094 (0.013) - 0.141 $(0.014)^{***}$ 0.086 $(0.022)^{***}$ 0.027 $(0.011)^{**}$ $0.064 (0.024)^{***}$ $0.086 (0.022)^{***}$ $- 0.063 (0.023)^{***}$	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)*** 0.002 (0.009)	$\tau = 0.50$ -0.060 $(0.009)^{***}$ 0.425 $(0.068)^{***}$ 0.092 $(0.011)^{***}$ 0.067 $(0.010)^{***}$ -0.025 (0.010) 0.068 $(0.009)^{***}$ 0.019 $(0.009)^{**}$	$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.013)*** 0.044	$\tau = 0.99$ 1.524 $(0.237)^{***}$ 0.421 $(0.131)^{***}$ -0.121 $(0.049)^{**}$ -0.183 $(0.070)^{***}$ -0.412 $(0.079)^{***}$ 0.139 (0.354) 0.156 $(0.032)^{***}$
Indicator Indicator <thindicator< th=""> Indicator <thindicator< th=""> Indicator Indit Indit Indit<td>Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size Lag.Pop.size</td><td>$SAR \approx 0.000 (0.010) 0.162 (0.010) 0.162 (0.012) 0.082 (0.012) 0.082 (0.012) - 0.098 (0.012) - 0.098 (0.012)^{***} 0.107 (0.011)^{***} 0.027 (0.011)^{***} 0.027 (0.011)^{**} 0.027 (0.011)^{**} 0.027 (0.011)^{**} 0.027 (0.0110)^{**} 0.027 (0.0110)^{**} 0.027 (0.$</td><td>SDE ≈ 0.000 (0.013) 0.158 (0.010)*** - 0.002 (0.012) 0.095 (0.012)*** - 0.114 (0.013)*** 0.104 (0.011)*** 0.024 (0.011)**</td><td>SDM ≈ 0.000 (0.010) 0.156 $(0.010)^{***}$ - 0.012 (0.013) 0.094 (0.013) - 0.141 $(0.014)^{***}$ 0.086 $(0.022)^{***}$ 0.027 $(0.011)^{**}$ $0.064 (0.024)^{***}$ $0.086 (0.022)^{***}$ $- 0.063 (0.023)^{***}$ $- 0.123 (0.022)^{***}$</td><td>Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)*** 0.002 (0.009)</td><td>$\tau = 0.50$ -0.060 $(0.009)^{***}$ 0.425 $(0.068)^{***}$ 0.092 $(0.011)^{***}$ 0.067 $(0.010)^{***}$ -0.025 (0.019) $(0.09)^{***}$</td><td>$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.013)*** 0.085 (0.013)*** 0.044</td><td>$\tau = 0.99$ 1.524 $(0.237)^{***}$ 0.421 $(0.131)^{***}$ -0.121 $(0.049)^{**}$ -0.183 $(0.070)^{***}$ -0.412 $(0.079)^{***}$ 0.139 (0.354) 0.156 $(0.032)^{***}$</td></thindicator<></thindicator<>	Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size Lag.Pop.size	$SAR \approx 0.000 (0.010) 0.162 (0.010) 0.162 (0.012) 0.082 (0.012) 0.082 (0.012) - 0.098 (0.012) - 0.098 (0.012)^{***} 0.107 (0.011)^{***} 0.027 (0.011)^{***} 0.027 (0.011)^{**} 0.027 (0.011)^{**} 0.027 (0.011)^{**} 0.027 (0.0110)^{**} 0.027 (0.0110)^{**} 0.027 (0.$	SDE ≈ 0.000 (0.013) 0.158 (0.010)*** - 0.002 (0.012) 0.095 (0.012)*** - 0.114 (0.013)*** 0.104 (0.011)*** 0.024 (0.011)**	SDM ≈ 0.000 (0.010) 0.156 $(0.010)^{***}$ - 0.012 (0.013) 0.094 (0.013) - 0.141 $(0.014)^{***}$ 0.086 $(0.022)^{***}$ 0.027 $(0.011)^{**}$ $0.064 (0.024)^{***}$ $0.086 (0.022)^{***}$ $- 0.063 (0.023)^{***}$ $- 0.123 (0.022)^{***}$	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)*** 0.002 (0.009)	$\tau = 0.50$ -0.060 $(0.009)^{***}$ 0.425 $(0.068)^{***}$ 0.092 $(0.011)^{***}$ 0.067 $(0.010)^{***}$ -0.025 (0.019) $(0.09)^{***}$	$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.013)*** 0.085 (0.013)*** 0.044	$\tau = 0.99$ 1.524 $(0.237)^{***}$ 0.421 $(0.131)^{***}$ -0.121 $(0.049)^{**}$ -0.183 $(0.070)^{***}$ -0.412 $(0.079)^{***}$ 0.139 (0.354) 0.156 $(0.032)^{***}$
Image: construction	Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size Lag.Elevation Lag.Sea prox	$SAR \approx 0.000 (0.010) (0.010) (0.010) (0.010) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012)^{***} (0.012)^{***} (0.017) (0.011)^{***} (0.027 (0.011)^{**} (0.011)^{*} (0.011)^{**} (0.011)^{*} (0.011)^$	SDE ≈ 0.000 (0.013) 0.158 $(0.010)^{***}$ -0.002 (0.012) 0.095 $(0.012)^{***}$ -0.114 $(0.013)^{***}$ 0.104 $(0.011)^{***}$ 0.024 $(0.011)^{**}$	SDM ≈ 0.000 (0.010) 0.156 (0.010)*** - 0.012 (0.013) 0.094 (0.013) - 0.141 (0.014)*** 0.086 (0.022)*** 0.027 (0.011)** 0.064 (0.024)*** 0.086 (0.022)*** - 0.063 (0.023)*** 0.123 (0.022)*** 0.027 (0.01)***	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)*** 0.002 (0.009)	$\tau = 0.50$ -0.060 $(0.009)^{***}$ 0.425 $(0.068)^{***}$ 0.092 $(0.011)^{***}$ 0.067 $(0.010)^{***}$ -0.025 (0.010) 0.068 $(0.009)^{***}$ 0.019 $(0.009)^{**}$	$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.013)*** 0.044 (0.011)***	$\tau = 0.99$ 1.524 $(0.237)^{***}$ 0.421 $(0.131)^{***}$ -0.121 $(0.049)^{**}$ -0.183 $(0.070)^{***}$ -0.412 $(0.079)^{***}$ 0.139 (0.354) 0.156 $(0.032)^{***}$
Dreaden's again Image: Constraint of the second of the secon	Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size Lag.Elevation Lag.Sea prox.	$SAR \approx 0.000 (0.010) 0.162 (0.010) 0.162 (0.012) 0.082 (0.012) - 0.098 (0.012) - 0.098 (0.012) *** 0.107 (0.011)*** 0.027 (0.011)***$	SDE ≈ 0.000 (0.013) 0.158 $(0.010)^{***}$ -0.002 (0.012) 0.095 $(0.012)^{***}$ -0.114 $(0.013)^{***}$ 0.104 $(0.011)^{***}$ 0.024 $(0.011)^{**}$	SDM ≈ 0.000 (0.010) 0.156 $(0.010)^{***}$ - 0.012 (0.013) 0.094 (0.013) - 0.141 $(0.014)^{***}$ 0.086 $(0.022)^{***}$ 0.027 $(0.011)^{**}$ $0.064 (0.024)^{***}$ $- 0.063 (0.022)^{***}$ $- 0.063 (0.023)^{***}$ $0.123 (0.022)^{***}$ - 0.003 (0.025)	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)*** 0.002 (0.009)	$\tau = 0.50$ -0.060 $(0.009)^{***}$ 0.425 $(0.068)^{***}$ 0.092 $(0.011)^{***}$ 0.067 $(0.010)^{***}$ -0.025 (0.010) 0.068 $(0.009)^{***}$ 0.019 $(0.009)^{**}$	$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.013)*** 0.044 (0.011)***	$\tau = 0.99$ 1.524 $(0.237)^{***}$ 0.421 $(0.131)^{***}$ -0.121 $(0.049)^{**}$ -0.183 $(0.070)^{***}$ -0.412 $(0.079)^{***}$ 0.139 (0.354) 0.156 $(0.032)^{***}$
Slope equality Image: Constraint of the second se	Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size Lag.Elevation Lag.Sea prox. Lag.Cap.city Brausch Parger	$SAR \approx 0.000 (0.010) 0.162 (0.010) 0.162 (0.012) 0.082 (0.012) - 0.098 (0.012) - 0.098 (0.012) *** 0.107 (0.011)*** 0.027 (0.011)*** 0.027 (0.011)**$	SDE ≈ 0.000 (0.013) 0.158 $(0.010)^{***}$ -0.002 (0.012) 0.095 $(0.012)^{***}$ -0.114 $(0.013)^{***}$ 0.104 $(0.011)^{***}$ 0.024 $(0.011)^{**}$	SDM ≈ 0.000 (0.010) 0.156 (0.010)*** - 0.012 (0.013) 0.094 (0.013) - 0.141 (0.014)*** 0.086 (0.022)*** 0.027 (0.011)** 0.064 (0.024)*** 0.086 (0.022)*** - 0.063 (0.023)*** 0.123 (0.022)*** 0.072 (0.021)*** - 0.003 (0.025)	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)*** 0.002 (0.009)	$\tau = 0.50$ -0.060 $(0.009)^{***}$ 0.425 $(0.068)^{***}$ 0.092 $(0.011)^{***}$ 0.067 $(0.010)^{***}$ -0.025 (0.010) 0.068 $(0.009)^{***}$ 0.019 $(0.009)^{**}$	$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.013)*** 0.044 (0.011)***	$\tau = 0.99$ 1.524 $(0.237)^{***}$ 0.421 $(0.131)^{***}$ $- 0.121$ $(0.049)^{**}$ $- 0.183$ $(0.070)^{***}$ $- 0.412$ $(0.079)^{***}$ 0.139 (0.354) 0.156 $(0.032)^{***}$
Stope equanty Image: Constraint of the state of the stat	Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag.Pop.growth Lag.Dem.density Lag.Pop.size Lag.Elevation Lag.Sea prox. Lag.Cap.city Breusch-Pagan Duxbin Wattorn	$SAR \approx 0.000 (0.010) 0.162 (0.010) 0.082 (0.012) 0.082 (0.012) - 0.098 (0.012) - 0.098 (0.012) *** 0.107 (0.011)*** 0.027 (0.011)***$	SDE \approx 0.000 (0.013) 0.158 (0.010)*** - - 0.002 (0.012) (0.095 (0.012)*** - 0.114 (0.013)*** 0.104 (0.011)*** 0.024 (0.011)**	SDM ≈ 0.000 (0.010) 0.156 (0.010)*** - 0.012 (0.013) 0.094 (0.013) - 0.141 (0.014)*** 0.086 (0.022)*** 0.027 (0.011)** 0.064 (0.024)*** 0.086 (0.022)*** - 0.063 (0.023)*** 0.123 (0.022)*** 0.072 (0.021)*** - 0.003 (0.025)	Quantile regression $\tau = 0.25$ $- 0.400$ $(0.013)^{***}$ 0.425 $(0.131)^{***}$ 0.095 $(0.015)^{***}$ 0.138 $(0.010)^{***}$ $- 0.016$ (0.010) 0.053 $(0.010)^{***}$ 0.002 (0.009)	$\tau = 0.50$ -0.060 $(0.009)^{***}$ 0.425 $(0.068)^{***}$ 0.092 $(0.011)^{***}$ 0.067 $(0.10)^{***}$ -0.025 (0.010) 0.068 $(0.009)^{***}$ 0.019 $(0.009)^{**}$	$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.013)*** 0.044 (0.011)***	$\tau = 0.99$ 1.524 $(0.237)^{***}$ 0.421 $(0.131)^{***}$ -0.121 $(0.049)^{**}$ -0.183 $(0.070)^{***}$ -0.412 $(0.079)^{***}$ 0.139 (0.354) 0.156 $(0.032)^{***}$
Morans I(z) 0.12/*** W spatial matrix *** *** *	Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag.Pop.growth Lag.Dem.density Lag.Rop.growth Lag.Dem.density Lag.Cap.city Breusch-Pagan Durbin-Watson	$SAR \\ \approx 0.000 \\ (0.010) \\ 0.162 \\ (0.010)^{***} \\ 0.008 \\ (0.012) \\ - 0.098 \\ (0.012) \\ - 0.098 \\ (0.012)^{***} \\ 0.107 \\ (0.011)^{***} \\ 0.027 \\ (0.011)^{**} \\ 0.027 \\ (0.027 \\ (0.027 \\ (0.027 \\ (0.027 \\$	SDE \approx 0.000 (0.013) 0.158 (0.010)*** - -0.002 (0.012) (0.095 (0.012)*** -0.114 (0.013)*** 0.104 (0.011)*** 0.024 (0.011)***	SDM ≈ 0.000 (0.010) 0.156 (0.010)*** - 0.012 (0.013) 0.094 (0.013) - 0.141 (0.014)*** 0.086 (0.022)*** 0.027 (0.011)** 0.064 (0.024)*** 0.086 (0.022)*** - 0.063 (0.023)*** 0.123 (0.022)*** - 0.003 (0.025)	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)*** 0.002 (0.009)	$\tau = 0.50$ -0.060 $(0.009)^{***}$ 0.425 $(0.068)^{***}$ 0.092 $(0.011)^{***}$ 0.067 $(0.10)^{***}$ -0.025 (0.010) 0.068 $(0.009)^{***}$ 0.019 $(0.009)^{**}$	$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.014) 0.085 (0.013)*** 0.044 (0.011)***	$\tau = 0.99$ 1.524 $(0.237)^{***}$ 0.421 $(0.131)^{***}$ -0.121 $(0.049)^{**}$ -0.183 $(0.070)^{***}$ -0.412 $(0.079)^{***}$ 0.139 (0.354) 0.156 $(0.032)^{***}$
W spatial matrix *** *** *	Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag.Pop.growth Lag.Dem.density Lag.Pop.growth Lag.Dem.density Lag.Cap.city Breusch-Pagan Durbin-Watson Slope equality	SAR ≈ 0.000 (0.010) 0.162 $(0.010)^{***}$ 0.008 (0.012) 0.082 (0.012) -0.098 $(0.012)^{***}$ 0.107 $(0.011)^{***}$ 0.027 $(0.011)^{**}$	SDE \approx 0.000 (0.013) 0.158 (0.010)*** - -0.002 (0.012) (0.095 (0.012)*** -0.114 (0.013)*** 0.104 (0.011)*** 0.024 (0.011)***	SDM ≈ 0.000 (0.010) 0.156 (0.010)*** - 0.012 (0.013) 0.094 (0.013) - 0.141 (0.014)*** 0.086 (0.022)*** 0.027 (0.011)** 0.064 (0.024)*** 0.086 (0.022)*** - 0.063 (0.023)*** 0.123 (0.022)*** 0.072 (0.021)*** - 0.003 (0.025)	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)*** 0.002 (0.009) 	$\tau = 0.50$ -0.060 $(0.009)^{***}$ 0.425 $(0.068)^{***}$ 0.092 $(0.011)^{***}$ 0.067 $(0.010)^{***}$ -0.025 (0.010) 0.068 $(0.009)^{***}$ 0.019 $(0.009)^{**}$	$\tau = 0.75$ 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.013)*** 0.044 (0.011)***	$\tau = 0.99$ 1.524 $(0.237)^{***}$ 0.421 $(0.131)^{***}$ -0.121 $(0.049)^{**}$ -0.183 $(0.070)^{***}$ -0.412 $(0.079)^{***}$ 0.139 (0.354) 0.156 $(0.032)^{***}$
	Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag.Pop.growth Lag.Pop.growth Lag.Pop.growth Lag.Pop.growth Lag.Pop.size Lag.Cap.city Breusch-Pagan Durbin-Watson Slope equality Moran's I(z)	SAR ≈ 0.000 (0.010) 0.162 $(0.010)^{***}$ 0.008 (0.012) 0.082 (0.012) -0.098 $(0.012)^{***}$ 0.107 $(0.011)^{***}$ 0.027 $(0.011)^{**}$	SDE ≈ 0.000 (0.013) 0.158 (0.010)*** - 0.002 (0.012) 0.095 (0.012)*** - 0.114 (0.013)*** 0.104 (0.011)*** 0.024 (0.011)**	SDM ≈ 0.000 (0.010) 0.156 (0.010)*** - 0.012 (0.013) 0.094 (0.013) - 0.141 (0.012)*** 0.027 (0.011)** 0.064 (0.022)*** - 0.063 (0.023)*** 0.123 (0.022)*** - 0.003 (0.025)	Quantile regression r = 0.25 - 0.400 (0.013)*** 0.425 (0.131)*** 0.095 (0.015)*** 0.138 (0.010)*** - 0.016 (0.010) 0.053 (0.011)*** 0.002 (0.009) 0.127***	τ = 0.50 - 0.060 (0.009)*** 0.425 (0.068)*** 0.092 (0.011)*** 0.067 (0.010)*** - 0.025 (0.010) 0.068 (0.009)*** 0.019 (0.009)**	τ = 0.75 0.315 (0.018)*** 0.406 (0.048)*** 0.055 (0.012)*** 0.001 (0.011) - 0.061 (0.013)*** 0.044 (0.011)***	$\tau = 0.99$ 1.524 $(0.237)^{***}$ 0.421 $(0.131)^{***}$ -0.121 $(0.049)^{**}$ -0.183 $(0.070)^{***}$ -0.412 $(0.079)^{***}$ 0.139 (0.354) 0.156 $(0.032)^{***}$

	Contiguity-based spatial weights						
				Quantile regression			
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
Adjusted-R ²	0.132	0.132	0.137				
AIC	21,941	24,094	21,901	-			
	Distance-based spati	al weights					
				Quantile regression			
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
Intercent	0.007	0.205	- 0.010	- 0.376	- 0.069	0.297	1.886
Intercept	(0.010)	(0.492)	(0.010)	(0.007)***	(0.008)***	(0.010)***	(0.112)***
Pop growth	0.145	0.142	0.141	0.265	0.342	0.325	0.458
rop.growui	(0.010)***	(0.010)***	(0.010)***	(0.109)**	(0.051)***	(0.041)***	(0.148)***
Dom donoity	0.067	0.066	0.064	0.096	0.122	0.121	- 0.095
Demidensity	(0.011)***	(0.013)***	(0.013)***	(0.012)***	(0.013)***	(0.014)***	(0.073)
Dan sina	0.043	0.080	0.086	0.132	0.053	- 0.006	- 0.200
Pop.size	(0.012)***	(0.013)***	(0.013)***	(0.010)***	(0.011)***	(0.010)	(0.083)**
Elemetica	- 0.095	- 0.120	- 0.139	- 0.042	- 0.033	- 0.059	- 0.378
Lievation	(0.012)***	(0.014)***	(0.014)***	(0.010)***	(0.009)***	(0.015)***	(0.089)***
6	0.079	0.089	0.085	0.031	0.042	0.065	0.231
sea prox.	(0.011)***	(0.012)***	(0.012)***	(0.007)***	(0.006)***	(0.012)***	(0.190)
Carrita	0.037	0.026	0.021	0.015	0.020	0.038	0.146
Cap.city	(0.010)***	(0.010)**	(0.010)**	(0.006)**	(0.008)**	(0.012)***	(0.031)***
Lag. Pop.growth			- 0.350 (0.119)**				
Lag.Dem.density			- 0.390 (0.051)***	-			
Lag.Pop.size			0.419 (0.086)***	-			
Lag.Elevation			0.345 (0.043)***				
Lag.Sea prox.	-		- 0.265 (0.040)***	_			
Lag.Cap.city	-		- 3.436 (0.550)***	-			
Breusch-Pagan	-			-			
Durbin-Watson							
Slope equality							
Moran's I(z)				0.097***			
W spatial matrix]			***	***	***	*
Adjusted-R ²	0.179	0.190	0.199				
AIC	21,424	23,353	21,240	1			

Table 2. Results of standard (OLS, Ordinary Least Square, and quantile) regressions as well as global (SAR: Spatial Autoregressive model; SDE: Spatial Error model; SDM: Spatial Durbin model) and quantile spatial models run with both contiguity and linear distance spatial weighting matrices; population growth rate (% annual) in 1936–1951 as dependent variable; population growth rate (1931–1936), demographic density (1931), population size (1931), elevation, proximity to the sea coast and a dummy indicating municipalities that act as provincial head town as predictors (* p < 0.05; ** 0.001 ; *** <math>p < 0.001).

.....

These results are in line with R^2 , which, in this case, shows greater values than contiguity-based spatial models. In particular, SDM performs the lowest value of AIC whereas SAR performs the greatest value of AIC in distance weighted models. When considering contiguity, SDE and SDM produce the lowest AIC values, while SAR performs the greatest AIC value. Generally speaking, the goodness of fit of spatial models is consistently higher than that of standard models.

The breakdown of intense urbanisation

Moving to the subsequent time interval, Table 2 illustrates the results of standard econometrics and spatial models using both contiguity and linear distance spatial weights. Here the results of OLS estimates and standard quantile regressions appear rather coherent in assigning positive and significant coefficients to lagged population growth rates, demographic density, proximity to the sea coast and head town, with increasing values of the adjusted- R^2 . Econometric diagnostics also indicate that the OLS estimate is (moderately) biased. The tests of serial correlation, heteroscedasticity and spatial dependence are all significant, suggesting the appropriateness of using spatial models. When comparing the econometric results from different spatial weighting schemes, models such as SAR and SDE give similar results with OLS as far as sign and significance of the regression coefficients. A general comparison of OLS values of AIC with that of spatial weighted models highlight that SAR and SDM seem to be more effective than OLS in explaining the variance of the phenomenon, while SDE has an

		Quantile regression					
Predictor	OLS	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	VIF	
Testamont	≈ 0.000	-0.427	-0.047	0.339	2.163		
Intercept	(0.009)	(0.009)***	(0.007)***	(0.009)***	(0.141)***	1.07	
D d	0.378	0.491	0.579	0.664	1.184		
Pop.growth	(0.010)***	(0.015)***	(0.013)***	(0.016)***	(0.194)***		
David I waited	0.202	0.167	0.159	0.155	0.387	1.41	
Dem.density	(0.011)***	(0.011)***	(0.008)***	(0.011)***	(0.120)***		
Den eler	- 0.035	pprox 0.000	- 0.036	- 0.833	- 0.312	1.47	
Pop.size	(0.011)**	(0.010)	(0.008)***	(0.010)***	(0.107)***		
	0.029	0.086	0.055	0.029	0.063	1.45	
Elevation	(0.011)*	(0.010)***	(0.009)***	(0.010)***	(0.114)		
0	0.101	0.067	0.062	0.075	0.198	1.20	
Sea prox.	(0.010)***	(0.009)***	(0.007)***	(0.010)***	(0.186)		
Curvita	0.068	0.076	0.064	0.070	0.002	1.14	
Cap.city	(0.010)***	(0.008)***	(0.007)***	(0.005)***	(0.061)		
Lag. Pop.growth							
Lag.Dem.density							
Lag.Pop.size							
Lag.Elevation							
Lag.Sea prox.							
Lag.Cap.city							
Breusch-Pagan	1760.0***						
Durbin-Watson	1.64***						
Slope equality			24.9***				
Moran's I(z)							
W spatial matrix							
Adjusted-R ²	0.225	0.178	0.220	0.239	0.227		
AIC	20,928	17,225	16,649	18,979	38,6670		
	Contiguity-based sp	atial weights					
				Quantile regression			
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
Intercent	≈ 0.000	pprox 0.000	pprox 0.000	- 0.410	- 0.047	0.348	2.104
Intercept	(0.009)	(0.012)	(0.009)	(0.012)***	(0.006)***	(0.012)***	(0.263)***
Pop growth	0.362	0.361	0.354	0.478	0.577	0.669	1.168
109.910 mil	(0.010)***	(0.010)***	(0.010)***	(0.028)***	(0.017)***	(0.016)***	(0.197)***
Dem density	0.192	0.196	0.180	0.163	0.157	0.159	0.400
Demidensity	(0.011)***	(0.011)***	(0.012)***	(0.014)***	(0.010)***	(0.012)***	(0.089)***
Pon size	- 0.024	- 0.007	0.019	0.006	- 0.036	- 0.085	- 0.286
100.3120	(0.011)**	(0.012)	(0.012)	(0.011)	(0.009)***	(0.009)***	(0.104)***
Flevation	0.024	0.022	0.004	0.085	0.055	0.033	0.093
	(0.011)**	(0.012)*	(0.013)	(0.012)***	(0.010)***	(0.016)**	(0.155)
See prov	0.098	0.107	0.111	0.065	0.062	0.076	0.227
	(0.010)***	(0.010)***	(0.011)***	(0.011)***	(0.007)***	(0.011)***	(0.159)
Can city	0.068	0.062	0.058	0.075	0.065	0.069	- 0.018
Supleity	(0.010)***	(0.010)***	(0.010)***	(0.008)***	(0.008)***	(0.007)***	(0.046)
Continued							

	Contiguity-based sp	atial weights					
				Quantile regression			
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
Lag Pop growth			0.080				
Lug. 1 op.growth			(0.020)***				
Lag Dem density			- 0.013				
Lug.Demidensity			(0.021)				
Lag.Pop.size			- 0.191	_			
81			(0.021)***	_			
Lag.Elevation			0.041	_			
			(0.021)*	_			
Lag.Sea prox.			- 0.060	-			
8			(0.019)***	_			
Lag.Cap.city			0.043	_			
			(0.023)*	-			
Breusch-Pagan							
Durbin-Watson							
Slope equality							
Moran's I(z)				0.109***	1	1	
W spatial matrix		1		ns	ns	ns	ns
Adjusted-R ²	0.242	0.244	0.257				
AIC	20,800	20,669	20,674				
	Distance-based spati	ial weights					
				Quantile regression	1		
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
Intercept	0.007	0.202	0.005	- 0.355	- 0.498	0.304	2.319
	(0.009)	(0.325)	(0.010)	(0.008)***	(0.008)***	(0.009)***	(0.173)***
Pop growth	0.334	0.346	0.337	0.424	0.514	0.618	1.247
1 op.growin	(0.010)***	(0.010)***	(0.010)***	(0.020)***	(0.018)***	(0.015)***	(0.161)***
Dem density	0.210	0.209	0.208	0.151	0.166	0.163	0.347
	(0.011)***	(0.012)***	(0.012)***	(0.012)***	(0.011)***	(0.009)***	(0.086)***
Pop size	0.013	0.070	0.079	0.093	0.017	- 0.057	- 0.345
	(0.011)	(0.012)***	(0.013)***	(0.011)***	(0.010)*	(0.011)***	(0.105)***
Elevation	0.027	0.029	0.007	0.105	0.058	0.020	0.085
	(0.011)**	(0.013)***	(0.013)	(0.010)***	(0.013)***	(0.018)	(0.164)
Sea prox.	0.097	0.130	0.126	0.081	0.062	0.073	0.209
	(0.010)***	(0.011)***	(0.011)***	(0.009)***	(0.008)***	(0.013)	(0.151)
Cap.city	0.060	0.040	0.039	0.059	0.064	0.065	0.033
	(0.010)***	(0.010)***	(0.010)***	(0.008)***	(0.007)***	(0.007)***	(0.051)
Lag. Pop.growth			- 0.137 (0.057)**	_			
Lag.Dem.density			- 0.225 (0.050)***	_			
Lag.Pop.size			- 0.210 (0.077)***	_			
Lag.Elevation			0.248 (0.039)***	_			
Lag.Sea prox.			(0.041)*** - 0.264				
Lag.Cap.city			0.916 (0.569)	_			
Breusch-Pagan							
Durbin-Watson							
Slope equality							
Moran's I(z)				0.053***	T	1	
W spatial matrix				***	***	***	***
Adjusted-R ²	0.237	0.284	0.292				
AIC	20,532	20,147	20,231				

Table 3. Results of standard (OLS, Ordinary Least Square, and quantile) regressions as well as global (SAR: Spatial Autoregressive model; SDE: Spatial Error model; SDM: Spatial Durbin model) and quantile spatial models run with both contiguity and linear distance spatial weighting matrices; population growth rate (% annual) in 1951–1961 as dependent variable; population growth rate (1936–1951), demographic density (1936), population size (1936), elevation, proximity to the sea coast and a dummy indicating municipalities that act as provincial head town as predictors (*p < 0.05; **0.001 ; ***<math>p < 0.001).

		Quantile regression					
Predictor	OLS	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	VIF	
Intercent	≈ 0.000	- 0.329	- 0.051	0.235	1.966		
Intercept	(0.008)	(0.006)***	(0.005)***	(0.007)***	(0.162)***		
Don growth	0.547	0.499	0.567	0.646	1.363	1.13	
rop.growin	(0.009)***	(0.008)***	(0.008)***	(0.010)***	(0.179)***		
Dem density	0.188	0.146	0.157	0.132	0.244	1.56	
Demidensity	(0.010)***	(0.007)***	(0.007)***	(0.008)***	(0.161)		
Popsize	- 0.029	0.039	- 0.011	- 0.048	- 0.496	1.53	
1 0p.3120	(0.010)***	(0.006)***	(0.006)*	(0.007)***	(0.116)***		
Elevation	- 0.071	- 0.08	- 0.073	- 0.090	- 0.055	1.46	
Lievation	(0.010)***	(0.004)***	(0.005)***	(0.007)***	(0.109)		
Sea prov	- 0.035	- 0.033	- 0.034	- 0.047	0.054	1.20	
Sea prox.	(0.009)***	(0.005)***	(0.004)***	(0.007)***	(0.178)		
Cancity	- 0.015	- 0.011	- 0.011	- 0.017	- 0.048	1.14	
Capleity	(0.009)*	(0.006)*	(0.003)***	(0.005)***	(0.144)		
Lag. Pop.growth							
Lag.Dem.density							
Lag.Pop.size							
Lag.Elevation							
Lag.Sea prox.							
Lag.Cap.city							
Breusch-Pagan	238.2***						
Durbin-Watson	1.83***						
Slope equality			48.1***				
Moran's I(z)							
W spatial matrix							
Adjusted-R ²	0.403	0.327	0.361	0.379	0.353		
AIC	10 021	10111					
me	10,021	12,164	11,953	14,735	37,300		
	Contiguity-based spa	12,164 atial weights	11,953	14,735	37,300		
	Contiguity-based spa	12,164 atial weights	11,953	14,735 Quantile regression	37,300		
Predictor	Contiguity-based spectrum	12,164 atial weights SDE	11,953 SDM	$\begin{array}{c} 14,735 \\ \hline \\ \textbf{Quantile regression} \\ \hline \tau = 0.25 \end{array}$	37,300 $\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
Predictor	Contiguity-based spr SAR ≈ 0.000	12,164 atial weights SDE - 0.001	11,953 SDM - 0.001	14,735Quantile regression $\tau = 0.25$ -0.310	$\tau = 0.50$ - 0.049	τ = 0 .75 0.230	τ = 0.99 1.895
Predictor Intercept	Io,021 Contiguity-based spr SAR ≈ 0.000 (0.008)	12,164 atial weights SDE - 0.001 (0.009)	11,953 SDM - 0.001 (0.008)	14,735 Quantile regression $\tau = 0.25$ $- 0.310$ $(0.006)^{***}$	37,300 τ = 0.50 - 0.049 (0.005)***	τ = 0.75 0.230 (0.007)***	τ = 0.99 1.895 (0.237)***
Predictor Intercept	Is,021 Contiguity-based spr SAR ≈ 0.000 (0.008) 0.539	12,164 atial weights SDE - 0.001 (0.009) 0.543	11,953 SDM - 0.001 (0.008) 0.534	$14,735$ Quantile regression $\tau = 0.25$ $- 0.310$ $(0.006)^{***}$ 0.492	37,300 τ = 0.50 - 0.049 (0.005)*** 0.563	τ = 0.75 0.230 (0.007)*** 0.641	τ = 0.99 1.895 (0.237)*** 1.322
Predictor Intercept Pop.growth	Io,021 Contiguity-based space SAR ≈ 0.000 (0.008) 0.539 (0.009)***	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)***	11,953 SDM - 0.001 (0.008) 0.534 (0.009)***	I4,735 Quantile regression τ = 0.25 - 0.310 (0.006)*** 0.492 (0.013)***	37,300 τ = 0.50 - 0.049 (0.005)*** 0.563 (0.011)***	τ = 0.75 0.230 (0.007)*** 0.641 (0.013)***	τ = 0.99 1.895 (0.237)*** 1.322 (0.123)***
Predictor Intercept Pop.growth	Io,021 Contiguity-based sp. SAR ≈ 0.000 (0.008) 0.539 (0.009)*** 0.178	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171	I4,735 Quantile regression τ = 0.25 - 0.310 (0.006)*** 0.492 (0.013)*** 0.140	37,300 τ = 0.50 - 0.049 (0.005)*** 0.563 (0.011)*** 0.154	τ = 0.75 0.230 (0.007)*** 0.641 (0.013)*** 0.130	τ = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218
Predictor Intercept Pop.growth Dem.density	Io,021 Contiguity-based sp. SAR ≈ 0.000 (0.008) 0.539 (0.009)*** 0.178 (0.010)***	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)***	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)***	14,735 Quantile regression τ = 0.25 - 0.310 (0.006)*** 0.492 (0.013)*** 0.140 (0.008)***	37,300 τ = 0.50 - 0.049 (0.005)*** 0.563 (0.011)*** 0.154 (0.008)***	τ = 0.75 0.230 (0.007)*** 0.641 (0.013)*** 0.130 (0.008)***	τ = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218 (0.128)*
Predictor Intercept Pop.growth Dem.density	Io,021 Contiguity-based sp. SAR ≈ 0.000 (0.008) 0.539 (0.009)*** 0.178 (0.010)*** - 0.020	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012	$14,735$ Quantile regression $\tau = 0.25$ $- 0.310$ $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041	37,300 τ = 0.50 - 0.049 (0.005)*** 0.563 (0.011)*** 0.154 (0.008)*** - 0.008	τ = 0.75 0.230 (0.007)*** 0.641 (0.013)*** 0.130 (0.008)*** - 0.046	τ = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218 (0.128)* - 0.489
Predictor Intercept Pop.growth Dem.density Pop.size	Io,021 Contiguity-based sp. SAR ≈ 0.000 (0.008) 0.539 (0.009)*** 0.178 (0.010)*** - 0.020 (0.010)*	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010)	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011)	14,735 Quantile regression τ = 0.25 - 0.310 (0.006)*** 0.492 (0.013)*** 0.140 (0.008)*** 0.041 (0.006)***	37,300 τ = 0.50 - 0.049 (0.005)*** 0.563 (0.011)*** 0.154 (0.008)*** - 0.008 (0.006)	τ = 0.75 0.230 (0.007)*** 0.641 (0.013)*** 0.130 (0.008)*** - 0.046 (0.007)***	τ = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218 (0.128)* - 0.489 (0.113)***
Predictor Intercept Pop.growth Dem.density Pop.size	Io,021 Contiguity-based spatial	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049	$14,735$ Quantile regression $\tau = 0.25$ $- 0.310$ $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ $- 0.074$	$7,300$ $\tau = 0.50$ $- 0.049$ $(0.005)^{***}$ 0.563 $(0.011)^{***}$ 0.154 $(0.008)^{***}$ $- 0.008$ (0.006) $- 0.07$	$\tau = 0.75$ 0.230 (0.007)*** 0.641 (0.013)*** 0.130 (0.008)*** - 0.046 (0.007)*** - 0.089	τ = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218 (0.128)* - 0.489 (0.113)*** - 0.115
Predictor Intercept Pop.growth Dem.density Pop.size Elevation	Io,021 Contiguity-based spatial	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.010)***	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.011)***	14,735 Quantile regression τ = 0.25 - 0.310 (0.006)*** 0.492 (0.013)*** 0.140 (0.008)*** 0.041 (0.006)*** - 0.074 (0.006)***	$7,300$ $\tau = 0.50$ $- 0.049$ $(0.005)^{***}$ 0.563 $(0.011)^{***}$ 0.154 $(0.008)^{***}$ $- 0.008$ (0.006) $- 0.07$ $(0.006)^{***}$	$ \tau = 0.75 0.230 (0.007)*** 0.641 (0.013)*** 0.130 (0.008)*** - 0.046 (0.007)*** - 0.089 (0.007)*** (0.007)*** $	τ = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218 (0.128)* - 0.489 (0.113)*** - 0.115 (0.090)
Predictor Intercept Pop.growth Dem.density Pop.size Elevation	Io,021 Contiguity-based spatial	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.010)*** - 0.023	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.011)*** 0.002	$14,735$ Quantile regression $\tau = 0.25$ $- 0.310$ $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ $- 0.074$ $(0.006)^{***}$ $- 0.031$	37,300 τ = 0.50 - 0.049 (0.005)*** 0.563 (0.011)*** 0.154 (0.008)*** - 0.008 (0.006) - 0.07 (0.006)*** - 0.031	$ \tau = 0.75 0.230 (0.007)*** 0.641 (0.013)*** 0.130 (0.008)*** - 0.046 (0.007)*** - 0.089 (0.007)*** - 0.045 $	r = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218 (0.128)* - 0.489 (0.113)*** - 0.115 (0.090) 0.072
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox.	Io,021 Contiguity-based spatial	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.010)*** - 0.023 (0.009)**	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.011)*** 0.002 (0.010)	$14,735$ Quantile regression $\tau = 0.25$ $- 0.310$ $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ $- 0.074$ $(0.006)^{***}$ $- 0.031$ $(0.006)^{***}$	37,300 τ = 0.50 - 0.049 (0.005)*** 0.563 (0.011)*** 0.154 (0.008)*** - 0.008 (0.006) - 0.07 (0.006)*** - 0.031 (0.006)***	$\tau = 0.75$ 0.230 (0.007)*** 0.641 (0.013)*** 0.130 (0.008)*** - 0.046 (0.007)*** - 0.089 (0.007)*** - 0.045 (0.006)***	τ = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218 (0.128)* - 0.489 (0.113)*** - 0.115 (0.090) 0.072 (0.119)
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Can city	Io,021 Contiguity-based space SAR ≈ 0.000 (0.008) 0.539 (0.009)*** 0.178 (0.010)*** - 0.020 (0.010)* - 0.067 (0.009)*** - 0.029 (0.009)*** - 0.015	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.010)*** - 0.023 (0.009)** - 0.018	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.011)*** 0.002 (0.010) - 0.021	$14,735$ Quantile regression $\tau = 0.25$ $- 0.310$ $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ $- 0.074$ $(0.006)^{***}$ $- 0.031$ $(0.006)^{***}$ $- 0.013$	$\begin{aligned} \mathbf{r} &= 0.50 \\ &- 0.049 \\ &(0.005)^{***} \\ &0.563 \\ &(0.011)^{***} \\ &0.154 \\ &(0.008)^{***} \\ &- 0.008 \\ &(0.006) \\ &- 0.07 \\ &(0.006)^{***} \\ &- 0.031 \\ &(0.006)^{***} \\ &- 0.012 \end{aligned}$	$\begin{aligned} \mathbf{r} &= 0.75 \\ 0.230 \\ (0.007)^{***} \\ 0.641 \\ (0.013)^{***} \\ 0.130 \\ (0.008)^{***} \\ - 0.046 \\ (0.007)^{***} \\ - 0.089 \\ (0.007)^{***} \\ - 0.045 \\ (0.006)^{***} \\ - 0.014 \end{aligned}$	τ = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218 (0.128)* - 0.489 (0.113)*** - 0.115 (0.090) 0.072 (0.119) - 0.033
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city	Io,021 Contiguity-based spr SAR ≈ 0.000 (0.008) 0.539 (0.009)*** 0.178 (0.010)*** - 0.020 (0.010)* - 0.067 (0.010)*** - 0.029 (0.009)*** - 0.015 (0.009)*	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.009)** - 0.023 (0.009)** - 0.018 (0.009)**	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.011)*** 0.002 (0.010) - 0.021 (0.009)**	$14,735$ Quantile regression $\tau = 0.25$ $- 0.310$ $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ $- 0.074$ $(0.006)^{***}$ $- 0.031$ $(0.006)^{***}$ $- 0.013$ $(0.007)^*$	37,300 τ = 0.50 - 0.049 (0.005)*** 0.563 (0.011)*** 0.154 (0.008)*** - 0.008 (0.006) - 0.07 (0.006)*** - 0.031 (0.006)*** - 0.012 (0.003)***	$\begin{aligned} \mathbf{r} &= 0.75 \\ 0.230 \\ (0.007)^{***} \\ 0.641 \\ (0.013)^{***} \\ 0.130 \\ (0.008)^{***} \\ - 0.046 \\ (0.007)^{***} \\ - 0.089 \\ (0.007)^{***} \\ - 0.045 \\ (0.006)^{***} \\ - 0.014 \\ (0.005)^{***} \end{aligned}$	τ = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218 (0.128)* - 0.489 (0.113)*** - 0.115 (0.090) 0.072 (0.119) - 0.033 (0.033)
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pape growth	Io,021 Contiguity-based spr SAR ≈ 0.000 (0.008) 0.539 (0.009)*** 0.178 (0.010)*** - 0.020 (0.010)** - 0.067 (0.009)*** - 0.029 (0.009)*** - 0.015 (0.009)*	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.010)*** - 0.023 (0.009)** - 0.118 (0.009)**	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.011)*** 0.002 (0.010) - 0.021 (0.009)** - 0.021	$14,735$ Quantile regression $\tau = 0.25$ $- 0.310$ $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ $- 0.074$ $(0.006)^{***}$ $- 0.031$ $(0.006)^{***}$ $- 0.013$ $(0.007)^*$	$\begin{aligned} \mathbf{r} &= 0.50 \\ &- 0.049 \\ &(0.005)^{***} \\ &0.563 \\ &(0.011)^{***} \\ &0.154 \\ &(0.008)^{***} \\ &- 0.008 \\ &(0.006) \\ &- 0.07 \\ &(0.006)^{***} \\ &- 0.031 \\ &(0.006)^{***} \\ &- 0.012 \\ &(0.003)^{***} \end{aligned}$	$\begin{aligned} \mathbf{r} &= 0.75 \\ 0.230 \\ (0.007)^{***} \\ 0.641 \\ (0.013)^{***} \\ 0.130 \\ (0.008)^{***} \\ - 0.046 \\ (0.007)^{***} \\ - 0.045 \\ (0.007)^{***} \\ - 0.045 \\ (0.006)^{***} \\ - 0.014 \\ (0.005)^{***} \end{aligned}$	τ = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218 (0.128)* - 0.489 (0.113)*** - 0.115 (0.090) 0.072 (0.119) - 0.033 (0.033)
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth	Tortiguity-based spr SAR ≈ 0.000 (0.008) 0.539 $(0.009)^{***}$ 0.178 $(0.010)^{***}$ -0.020 $(0.010)^{***}$ -0.067 $(0.010)^{***}$ -0.029 $(0.009)^{***}$	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.010)*** - 0.023 (0.009)** - 0.018 (0.009)**	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.011)*** 0.002 (0.010) - 0.021 (0.009)** - 0.021 (0.020)	$14,735$ Quantile regression $\tau = 0.25$ $- 0.310$ $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ $- 0.074$ $(0.006)^{***}$ $- 0.031$ $(0.006)^{***}$ $- 0.013$ $(0.007)^*$	$\begin{array}{c} 7,300 \\ \hline \mathbf{\tau} = 0.50 \\ \hline -0.049 \\ (0.005)^{***} \\ \hline 0.563 \\ (0.011)^{***} \\ \hline 0.154 \\ (0.008)^{***} \\ \hline -0.008 \\ (0.006) \\ \hline -0.07 \\ (0.006)^{***} \\ \hline -0.031 \\ (0.006)^{***} \\ \hline -0.012 \\ (0.003)^{***} \end{array}$	$ $	$ \tau = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218 (0.128)* - 0.489 (0.113)*** - 0.115 (0.090) 0.072 (0.119) - 0.033 (0.033) $
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag. Dom.density	Io,021 Contiguity-based sp. SAR ≈ 0.000 (0.008) 0.539 $(0.009)^{***}$ 0.178 $(0.010)^{***}$ -0.020 $(0.010)^*$ -0.067 $(0.009)^{***}$ -0.015 $(0.009)^*$	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.010)*** - 0.023 (0.009)** - 0.018 (0.009)**	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.011)*** 0.002 (0.010) - 0.021 (0.020) 0.022	$14,735$ Quantile regression $\tau = 0.25$ $- 0.310$ $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ $- 0.074$ $(0.006)^{***}$ $- 0.031$ $(0.006)^{***}$	$\begin{array}{c} \textbf{37,300} \\ \hline \textbf{\tau} = \textbf{0.50} \\ \hline -0.049 \\ (0.005)^{***} \\ \hline \textbf{0.563} \\ (0.011)^{***} \\ \hline \textbf{0.154} \\ (0.008)^{***} \\ \hline -0.008 \\ (0.006) \\ \hline -0.07 \\ (0.006)^{***} \\ \hline -0.031 \\ (0.006)^{***} \\ \hline -0.012 \\ (0.003)^{***} \end{array}$	$ $	$ \tau = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218 (0.128)* - 0.489 (0.113)*** - 0.115 (0.090) 0.072 (0.119) - 0.033 (0.033) $
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density	Io,021 Contiguity-based sp. SAR ≈ 0.000 (0.008) 0.539 $(0.009)^{***}$ 0.178 $(0.010)^{***}$ -0.020 $(0.010)^*$ -0.067 $(0.009)^{***}$ -0.015 $(0.009)^*$	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.010)*** - 0.023 (0.009)** - 0.018 (0.009)**	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.011)*** 0.002 (0.010) - 0.021 (0.009)** - 0.021 (0.020) 0.022 (0.020)	$14,735$ Quantile regression $\tau = 0.25$ $- 0.310$ $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ $- 0.074$ $(0.006)^{***}$ $- 0.031$ $(0.006)^{***}$	$\begin{array}{c} 7,300 \\ \hline \tau = 0.50 \\ - 0.049 \\ (0.005)^{***} \\ 0.563 \\ (0.011)^{***} \\ 0.154 \\ (0.008)^{***} \\ - 0.008 \\ (0.006) \\ - 0.07 \\ (0.006)^{***} \\ - 0.031 \\ (0.006)^{***} \\ - 0.012 \\ (0.003)^{***} \end{array}$	$ $	$\tau = 0.99$ 1.895 $(0.237)^{***}$ 1.322 $(0.123)^{***}$ 0.218 $(0.128)^*$ -0.489 $(0.113)^{***}$ -0.115 (0.090) 0.072 (0.119) -0.033 (0.033)
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density	Io,021 Contiguity-based space SAR ≈ 0.000 (0.008) 0.539 (0.009)*** 0.178 (0.010)*** - 0.020 (0.010)*** - 0.067 (0.009)*** - 0.029 (0.009)*** - 0.015 (0.009)*	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.010)*** - 0.023 (0.009)** - 0.018 (0.009)**	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.010) - 0.021 (0.009)** - 0.021 (0.020) 0.022 (0.020) - 0.119	$14,735$ Quantile regression $\tau = 0.25$ $- 0.310$ $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ $- 0.074$ $(0.006)^{***}$ $- 0.031$ $(0.006)^{***}$	$\begin{array}{c} \textbf{7},300 \\ \hline \textbf{\tau} = \textbf{0.50} \\ \hline -0.049 \\ (0.005)^{***} \\ \hline 0.563 \\ (0.011)^{***} \\ \hline 0.154 \\ (0.008)^{***} \\ \hline -0.008 \\ (0.006) \\ \hline -0.07 \\ (0.006)^{***} \\ \hline -0.031 \\ (0.006)^{***} \\ \hline -0.012 \\ (0.003)^{***} \end{array}$	$ \tau = 0.75 0.230 (0.007)*** 0.641 (0.013)*** 0.130 (0.008)*** - 0.046 (0.007)*** - 0.049 (0.007)*** - 0.045 (0.006)*** - 0.014 (0.005)*** $	$r = 0.99$ 1.895 $(0.237)^{***}$ 1.322 $(0.123)^{***}$ 0.218 $(0.128)^*$ -0.489 $(0.113)^{***}$ -0.115 (0.090) 0.072 (0.119) -0.033 (0.033)
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size	Io,021 Contiguity-based spr SAR ≈ 0.000 (0.008) 0.539 $(0.009)^{***}$ 0.178 $(0.010)^{***}$ -0.020 $(0.010)^{***}$ -0.067 $(0.009)^{***}$ -0.015 $(0.009)^{*}$	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.010)*** - 0.023 (0.009)** - 0.018 (0.009)**	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.011)*** 0.002 (0.010) - 0.021 (0.020) 0.022 (0.020) - 0.119 (0.019)***	$14,735$ Quantile regression $\tau = 0.25$ -0.310 $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ -0.074 $(0.006)^{***}$ -0.031 $(0.006)^{***}$	37,300 τ = 0.50 - 0.049 (0.005)*** 0.563 (0.011)*** 0.154 (0.008)*** - 0.008 (0.006) - 0.07 (0.006)*** - 0.031 (0.003)***	$ \tau = 0.75 0.230 (0.007)*** 0.641 (0.013)*** 0.130 (0.008)*** - 0.046 (0.007)*** - 0.089 (0.007)*** - 0.045 (0.006)*** - 0.014 (0.005)*** $	$r = 0.99$ 1.895 $(0.237)^{***}$ 1.322 $(0.123)^{***}$ 0.218 $(0.128)^*$ -0.489 $(0.113)^{***}$ -0.115 (0.090) 0.072 (0.119) -0.033 (0.033)
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size	Io,021 Contiguity-based spr SAR ≈ 0.000 (0.008) 0.539 (0.009)*** 0.178 (0.010)*** - 0.020 (0.010)*** - 0.067 (0.009)*** - 0.015 (0.009)*	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.010)*** - 0.023 (0.009)** - 0.018 (0.009)**	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.011)*** 0.002 (0.010) - 0.021 (0.020) 0.022 (0.020) - 0.119 (0.019)*** 0.047	$14,735$ Quantile regression $\tau = 0.25$ -0.310 $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ -0.074 $(0.006)^{***}$ -0.031 $(0.006)^{***}$ -0.013 $(0.007)^{*}$	$\begin{array}{c} \textbf{7},300 \\ \hline \textbf{\tau} = \textbf{0.50} \\ \hline -0.049 \\ (0.005)^{***} \\ \hline \textbf{0.563} \\ (0.011)^{***} \\ \hline \textbf{0.154} \\ (0.008)^{***} \\ \hline -0.008 \\ (0.006) \\ \hline -0.07 \\ (0.006)^{***} \\ \hline -0.031 \\ (0.006)^{***} \\ \hline -0.012 \\ (0.003)^{***} \end{array}$	$ $	$\tau = 0.99$ 1.895 $(0.237)^{***}$ 1.322 $(0.123)^{***}$ 0.218 $(0.128)^*$ -0.489 $(0.113)^{***}$ -0.115 (0.090) 0.072 (0.119) -0.033 (0.033)
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Pop.size Lag.Pop.size Lag.Pop.size	Interpretation Contiguity-based spread SAR ≈ 0.000 (0.008) 0.539 (0.009)*** 0.178 (0.010)*** - 0.020 (0.010)** - 0.067 (0.009)*** - 0.029 (0.009)***	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.009)** - 0.023 (0.009)** - 0.018 (0.009)**	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.011)*** 0.002 (0.010) - 0.021 (0.009)** - 0.021 (0.020) 0.022 (0.019)*** 0.047 (0.018)**	$14,735$ Quantile regression $\tau = 0.25$ -0.310 $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ -0.074 $(0.006)^{***}$ -0.031 $(0.007)^*$	$\begin{array}{c} \textbf{7},300 \\ \hline \textbf{r} = \textbf{0.50} \\ \hline -0.049 \\ (0.005)^{***} \\ \hline \textbf{0.563} \\ (0.011)^{***} \\ \hline \textbf{0.154} \\ (0.008)^{***} \\ \hline -0.008 \\ (0.006) \\ \hline -0.07 \\ (0.006)^{***} \\ \hline -0.031 \\ (0.006)^{***} \\ \hline -0.012 \\ (0.003)^{***} \end{array}$	$ \tau = 0.75 0.230 (0.007)*** 0.641 (0.013)*** 0.130 (0.008)*** - 0.046 (0.007)*** - 0.045 (0.007)*** - 0.045 (0.006)*** - 0.014 (0.005)*** $	$\tau = 0.99$ 1.895 $(0.237)^{***}$ 1.322 $(0.123)^{***}$ 0.218 $(0.128)^*$ -0.489 $(0.113)^{***}$ -0.115 (0.090) 0.072 (0.119) -0.033 (0.033)
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Pop.size Lag.Pop.size Lag.Pop.size Lag.Elevation	Interpretation Contiguity-based spread SAR ≈ 0.000 (0.008) 0.539 (0.009)*** 0.178 (0.010)*** - 0.020 (0.010)* - 0.067 (0.009)*** - 0.029 (0.009)*** - 0.015 (0.009)*	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.010)*** - 0.023 (0.009)** - 0.018 (0.009)**	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.011)*** 0.002 (0.010) - 0.021 (0.020) 0.022 (0.020) - 0.119 (0.018)*** - 0.106	$14,735$ Quantile regression $\tau = 0.25$ -0.310 $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ -0.074 $(0.006)^{***}$ -0.031 $(0.006)^{***}$	$\begin{array}{c} \textbf{7},300 \\ \hline \textbf{r} = \textbf{0.50} \\ \hline -0.049 \\ (0.005)^{***} \\ \hline \textbf{0.563} \\ (0.011)^{***} \\ \hline \textbf{0.154} \\ (0.008)^{***} \\ \hline -0.008 \\ (0.006) \\ \hline -0.07 \\ (0.006)^{***} \\ \hline -0.031 \\ (0.006)^{***} \\ \hline -0.012 \\ (0.003)^{***} \end{array}$	$ \tau = 0.75 0.230 (0.007)*** 0.641 (0.013)*** 0.130 (0.008)*** - 0.046 (0.007)*** - 0.045 (0.007)*** - 0.045 (0.006)*** - 0.014 (0.005)*** $	$ \tau = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218 (0.128)* - 0.489 (0.113)*** - 0.115 (0.090) 0.072 (0.119) - 0.033 (0.033) $
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size Lag.Pop.size Lag.Sea prox.	Interpretation Contiguity-based spread SAR ≈ 0.000 (0.008) 0.539 (0.009)*** 0.178 (0.010)*** - 0.020 (0.010)* - 0.067 (0.009)*** - 0.015 (0.009)*	12,164 atial weights SDE - 0.001 (0.009) 0.543 (0.009)*** 0.183 (0.010)*** - 0.016 (0.010) - 0.065 (0.010)*** - 0.023 (0.009)** - 0.018 (0.009)**	11,953 SDM - 0.001 (0.008) 0.534 (0.009)*** 0.171 (0.011)*** 0.012 (0.011) - 0.049 (0.011)*** 0.002 (0.010) - 0.021 (0.009)** - 0.021 (0.020) 0.022 (0.020) - 0.119 (0.018)** - 0.106 (0.017)***	$14,735$ Quantile regression $\tau = 0.25$ -0.310 $(0.006)^{***}$ 0.492 $(0.013)^{***}$ 0.140 $(0.008)^{***}$ 0.041 $(0.006)^{***}$ -0.074 $(0.006)^{***}$ -0.013 $(0.007)^*$	37,300 τ = 0.50 - 0.049 (0.005)*** 0.563 (0.011)*** 0.154 (0.008)*** - 0.008 (0.006) - 0.07 (0.006)*** - 0.031 (0.006)*** - 0.012 (0.003)***	$ \tau = 0.75 0.230 (0.007)*** 0.641 (0.013)*** 0.130 (0.008)*** - 0.046 (0.007)*** - 0.045 (0.007)*** - 0.045 (0.006)*** - 0.014 (0.005)*** $	$ \tau = 0.99 1.895 (0.237)*** 1.322 (0.123)*** 0.218 (0.128)* - 0.489 (0.113)*** - 0.115 (0.090) 0.072 (0.119) - 0.033 (0.033) $

	Contiguity-based spa	atial weights					
				Quantile regression		-	
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
Log Con city			0.046				
Lag.Cap.city			(0.020)**	1			
Breusch-Pagan				1			
Durbin-Watson							
Slope equality							
Moran's I(z)				0.099***			
W spatial matrix				***	***	*	ns
Adjusted-R ²	0.408	0.409	0.416				
AIC	33,100	33,015	33,011				
	Distance-based spati	al weights	I				
				Quantile regression			
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
-	0.003	0.044	0.002	- 0.295	- 0.053	0.209	1.951
Intercept	(0.008)	(0.108)	(0.008)	(0.006)***	(0.005)***	(0.007)***	(0.214)***
	0.525	0.531	0.526	0.479	0.540	0.621	1.318
Pop.growth	(0.009)***	(0.009)***	(0.009)***	(0.014)***	(0.009)***	(0.010)***	(0.155)***
	0.172	0.175	0.175	0.131	0.142	0.131	0.240
Dem.density	(0.010)***	(0.011)***	(0.011)***	(0.007)***	(0.008)***	(0.009)***	(0.142)*
	0.028	0.050	0.054	0.085	0.036	- 0.010	- 0.481
Pop.size	(0.010)***	(0.011)***	(0.012)***	(0.007)***	(0.008)***	(0.008)	(0.127)***
	- 0.042	- 0.029	- 0.036	- 0.043	- 0.049	- 0.006	- 0.084
Elevation	(0.010)***	(0.011)**	(0.012)***	(0.006)***	(0.007)***	(0.008)	(0.117)
	0.002	0.028	0.027	- 0.006	- 0.001	- 0.025	0.109
Sea prox.	(0.009)	(0.010)***	(0.010)***	(0.005)	(0.005)	(0.006)***	(0.123)
	- 0.025	- 0.035	- 0.035	- 0.018	- 0.021	- 0.015	- 0.038
Cap.city	(0.009)***	(0.009)***	(0.009)***	(0.006)***	(0.003)***	(0.006)	(0.035)
r n d		1	- 0.331		μ		
Lag. Pop.growth			(0.065)***				
			- 0.137				
Lag.Dem.density			(0.038)***				
I. D. '			- 0.154				
Lag.Pop.size			(0.061)**				
L			0.081				
Lag.Elevation			(0.035)**				
L C			- 0.115				
Lag.Sea prox.			(0.427)***	1			
Les Constitu			0.742	1			
Lag.Cap.city			(0.414)*				
Breusch-Pagan							
Durbin-Watson							
Slope equality	1						
Moran's I(z)	1			0.039***			
W spatial matrix	1			***	***	***	ns
Adjusted-R ²	0.418	0.429	0.430				·
AIC	32,948	32,741	32,796	1			

Table 4. Results of standard (OLS, Ordinary Least Square, and quantile) regressions as well as global (SAR: Spatial Autoregressive model; SDE: Spatial Error model; SDM: Spatial Durbin model) and quantile spatial models run with both contiguity and linear distance spatial weighting matrices; population growth rate (% annual) in 1961–1971 as dependent variable; population growth rate (1951–1961), demographic density (1951), population size (1951), elevation, proximity to the sea coast and a dummy indicating municipalities that act as provincial head town as predictors (*p < 0.05; **0.001 ; ***<math>p < 0.001).

higher value of AIC in comparison to OLS. These results are also consistent with the estimate of direct impacts from SDM. Indirect impacts from SDM are rather different from the structure of direct impacts, suggesting the role of spatial heterogeneity for specific predictors, such as demographic density, population size, and elevation.

In general, regressions based on a spatially weighted distance matrix seem to perform better than those based on contiguity. With distance, the three AIC values are consistent with the corresponding R^2 (lower in SAR and greater in SDM). With contiguity, SDM displays a lowest AIC value that corresponds to the greater R^2 value. Considering quantile regressions, lagged population growth, elevation, and proximity to the sea coast maintain the OLS coefficients' sign and significance almost for all quartiles. Population size coefficients were found positive for the first three quartiles, becoming negative in the fourth quartile.

Considering a subsequent time interval with intense expansion of human settlements in Italy, lagged population growth rates, demographic density, elevation, proximity to the sea coast, and head town display almost positive and significant regression coefficients both for OLS and quantile regressions, with markedly improved R^2 (Table 3). The positive coefficients estimated for demographic density and population size are antithetical to those observed for earlier time windows. Variance inflation factors (VIFs) for each predictor are systematically less than 5, suggesting a non-redundant structure of the regressors matrix. Test diagnostics for serial correlation, heteroscedasticity, and spatial dependence suggest the appropriateness of using spatial modelling. Considering both contiguity and distance weighting, SAR and SDE results are rather consistent with those of OLS with respect to the sign of the regression coefficients for demographic density and population size assume opposite signs. Spatial models, in general, have higher values of AIC than OLS. Quantile regressions provided similar outcomes irrespective of the spatial weighting scheme adopted.

From compact urbanisation to suburbanisation

Table 4 illustrates the results of econometric modeling investigating a distinctive time interval as far as population dynamics in Italy is concerned. Both OLS and quantile regressions improved their goodness-of-fit (adjusted- $R^2 > 0.4$), corresponding to contained values of AIC, at least in OLS and in the first three quartiles of standard quartile regressions. Lagged population growth rates and demographic density have a positive impact of current population growth rates; population size, elevation, proximity to the sea coast and head town have a negative–while less intense and more mixed–impact on current population growth rates. Following the results of econometric diagnostics, spatial models provide outcomes adjusted to the spatial structure of both predictors and the dependent variable. However, in the essence, global spatial models give results well aligned with those of the OLS regression; moreover, spatial quantile regressions confirm the outcomes of standard quantile regressions. Coherent results are also displayed comparing adjusted- R^2 with AIC, i.e., higher values of the first indicator correspond to lower values of the second one. Adjusted- R^2 confirms the best performance of SDM in both cases, while low performances (low adjusted- R^2 and high AIC), are found in the two specifications of SAR.

Results of both OLS and quantile regressions for the subsequent time interval (Table 5) are also aligned with the models' outcomes described for the previous decade (see above), with model's goodness-of-fit maintaining generally high. Lagged population growth rates, demographic density, and proximity to the sea coast reveal a positive and significant impact on the dependent variable. Elevation and head town show the reverse effect, while population size display more mixed results, possible associated with a higher spatial heterogeneity characteristic of this predictor. Although the non-redundant structure of predictors (VIF systematically below 2), econometric diagnostics suggested the appropriateness of spatial modelling also in this case. Improving slightly the goodness-of-fit in respect with non-spatial modeling, results of global regressions (SAR, SDE and SDM, direct effects) are mostly aligned with the OLS model. Moreover, spatial quantile regressions estimate a comparable structure of coefficients for the selected predictors, irrespective of the spatial weighting scheme. All these models show appreciable goodness-of-fit that reflects convergent results, as far as sign and significance of regression coefficients. Based on the values of AIC, the best performance is attributed to SDE and SDM weighted by distance In Table 5. Conversely, SAR model exhibits a lower value of AIC with contiguity. All outcomes are in line with adjusted- R^2 .

Moving toward counter-urbanisation

Similarly to what reported in Tables 4 and 5, modeling population growth rates between 1981 and 1991 (Table 6) with standard econometrics delineate the role of head town (negative impact) as well as lagged population growth rates and demographic density (positive impacts). In partial disagreement with what has been observed in earlier decades, population size, elevation, and proximity to the sea coast, show more heterogeneous results, with significant and non-significant coefficients and contrasting signs when moving from OLS to quantile regressions. Despite a satisfactory goodness-of-fit, econometric diagnostics suggested the use of spatial models that reached a systematically higher fit than standard models. Results of global models, irrespective of the spatial weighting scheme, confirm the role of lagged population growth rates and demographic density as predictors of current population size give more mixed, while significant, results. Quantile regressions provide useful insights when describing the latent heterogeneity associated with predictors such as population size, elevation, proximity to the sea coast and head town. For instance, the negative impact of population size is spatially polarized, i.e. higher for the forth quartile and lower moving from the third to the first quartile. A reverse pattern is observed for elevation and proximity to the sea coast.

Standard and spatial modeling explaining the variability in population growth rates (1991–2001) gain significance, with a considerable goodness-of-fit increasing further when the spatial structure of predictors is considered (Table 7). Lagged population growth rates and demographic density show a positive and highly significant coefficient irrespective of the model used. The impact of population size (negative and significant coefficients) is also homogeneous across model's specifications. The impact of elevation is also negative, although minor differences were found comparing the results of quantile regressions run with the two spatial weighting schemes.

	Quantile regression						
Predictor	OLS	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	VIF	
Interest	≈ 0.000	- 0.424	- 0.074	0.324	2.358		
Intercept	(0.009)	(0.007)***	(0.007)***	(0.010)***	(0.131)***		
Demonstel	0.0452	0.502	0.610	0.727	1.361	1.24	
Pop.growth	(0.010)***	(0.014)***	(0.014)	(0.018)***	(0.194)***		
Dans danster	0.123	0.038	0.048	0.077	0.281	1.82	
Dem.density	(0.012)***	(0.010)***	(0.010)***	(0.013)***	(0.136)***		
Damaina	0.008	0.128	0.077	- 0.029	- 0.735	1.65	
Pop.size	(0.011)	(0.008)***	(0.008)***	(0.010)***	(0.094)***		
Therest is a	- 0.115	- 0.089	- 0.069	- 0.078	- 0.253	1.45	
Elevation	(0.010)***	(0.007)***	(0.008)***	(0.010)***	(0.148)*		
0	0.040	0.003	0.015	0.035	0.074	1.15	
Sea prox.	(0.009)***	(0.007)	(0.007)**	(0.010)***	(0.113)		
0	- 0.066	- 0.083	- 0.082	- 0.055	pprox 0.000	1.14	-
Cap.city	(0.009)***	(0.011)***	(0.010)***	(0.008)***	(0.117)		
Lag. Pop.				1	1	1	
Lag.Dem.							
density Lag Pop size							
Lag.Elevation							
Lag Sea prox							
Lag Cap city							
Breusch-Pagan	2703 5***						
Durbin-Watson	1 88***						
Slope equality	1.00		52 7***				
Moran's I(z)			52.7				
W spatial							
matrix							
Adjusted-R ²	0.326	0.258	0.254	0.245	0.309		
AIC	19,799	16,600	16,412	19,228	37,343		
	Contiguity-base	ed spatial weights					
				Quantile regres	sion		
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
Intercent	pprox 0.000	pprox 0.000	pprox 0.000	- 0.418	- 0.074	0.319	2.146
intercept	(0.009)	(0.009)	(0.009)	(0.008)***	(0.007)***	(0.011)***	(0.169)***
Pop growth	0.045	0.451	0.451	0.502	0.605	0.727	1.366
r op.growth	(0.010)***	(0.010)***	(0.010)***	(0.023)***	(0.024)***	(0.253)***	(0.115)***
Dome domoitre	0.119	0.122	0.106	0.035	0.047	0.072	0.279
Dem.defisity	(0.012)***	(0.012)***	(0.013)***	(0.012)***	(0.012)***	(0.011)***	(0.118)**
Damaina	0.008	0.005	≈ 0.000	0.129	0.076	- 0.031	- 0.765
rop.size	(0.011)	(0.011)	(0.012)	(0.007)***	(0.008)***	(0.011)*	(0.066)***
Flavation	- 0.114	- 0.118	- 0.142	- 0.088	- 0.069	- 0.079	- 0.192
Elevation	(0.010)***	(0.011)***	(0.012)***	(0.007)***	(0.008)***	(0.011)***	(0.174)
C an mart	0.041	0.040	0.034	0.004	0.014	0.036	0.072
sea prox.	(0.009)***	(0.009)***	(0.010)***	(0.007)	(0.007)*	(0.011)**	(0.149)
Com aitr-	- 0.065	- 0.065	- 0.063	- 0.083	- 0.080	- 0.054	0.012
Cap.city	(0.009)***	(0.009)***	(0.009)***	(0.009)***	(0.009)***	(0.009)***	(0.028)
Continued			1	1	1		

	Contiguity-bas	ed spatial weights					
				Quantile regres	sion		
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
Lag. Pop.		•	0.028		•		
growth			(0.021)				
Lag Dem	1		0.039	1			
density			(0.023)*				
	-		0.106	1			
Lag.Pop.size			(0.022)***	-			
	-		0.100	-			
Lag.Elevation			0.109	-			
	-		(0.019)***	-			
Lag.Sea prox.			- 0.026	-			
	-		(0.018)				
Lag.Cap.city			- 0.040	_			
Lugioupieny			(0.022)*				
Breusch-Pagan							
Durbin-Watson]						
Slope equality	1						
Moran's I(z)	1			0.069***			
W spatial	-						
matrix				ns	ns	ns	ns
Adjusted-R ²	0.331	0.330	0.335				
AIC	19,784	19,763	19,761	-			
	Distance-based	spatial weights	1	1			
				Quantile regres	sion		
Predictor	SAD	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
Trealetor	~ 0.000	0.016	0.002	0.422	0.075	0.226	2 26022
Intercept	~ 0.000	0.016	0.002	- 0.423	- 0.075	0.326	2.36023
	(0.009)	(0.037)	(0.009)	(0.007)***	(0.007)***	(0.012)^^^	(0.108)***
Pop.growth	0.452	0.461	0.455	0.501	0.609	0.734	1.361
	(0.010)***	(0.010)***	(0.010)***	(0.024)***	(0.023)***	(0.023)***	(0.107)***
Dem density	0.123	0.153	0.163	0.036	0.049	0.073	0.249
Deminuenonty	(0.012)***	(0.013)***	(0.013)***	(0.012)***	(0.012)***	(0.011)***	(0.098)***
Danaina	0.008	- 0.036	- 0.046	0.128	0.075	- 0.027	- 0.763
Fop.size	(0.012)	(0.013)***	(0.013)***	(0.008)***	(0.008)***	(0.012)**	(0.071)***
	- 0.115	- 0.116	- 0.126	- 0.087	- 0.071	- 0.085	- 0.279
Elevation	(0.011)***	(0.012)***	(0.012)***	(0.008)***	(0.007)***	(0.011)***	(0.143)*
	0.040	0.040	0.038	0.006	0.013	0.031	0.066
Sea prox.	(0.010)***	(0.010)***	(0.010)***	(0.007)	(0.006)**	(0.011)***	(0.145)
	- 0.066	- 0.059	- 0.060	- 0.083	- 0.082	- 0.055	- 0.002
Cap.city	(0.000)***	(0.000)***	(0.000)***	(0.000)***	(0.002	(0.000)***	(0.027)
	(0.009)	(0.009)	(0.009)	(0.008)	(0.008)	(0.009)	(0.027)
Lag. Pop.			0.453				
giowili	-		(0.140)***	-			
Lag.Dem.			- 0.518	-			
density			(0.060)***	_			
Lag Pop size			0.743				
Lag.1 Op.312c			(0.102)***				
T TI di	1		0.227				
Lag.Elevation			(0.046)***				
	1		- 0.244				
Lag.Sea prox.			(0.041)***	1			
	-		- 1 588	1			
Lag.Cap.city			(0.454)***	-			
Danasak D	4		(0.131)	4			
Breusch-Pagan	4						
Durbin-Watson	-						
Slope equality							
Moran's I(z)				0.008***			
W spatial				ns	ns	ns	ns
matrix							1
Continued							

	Distance-based	Vistance-based spatial weights							
				Quantile regress	sion				
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$		
Adjusted-R ²	0.329	0.335	0.340						
AIC	19,801	19,676	19,676]					

Table 5. Results of standard (OLS, Ordinary Least Square, and quantile) regressions as well as global (SAR: Spatial Autoregressive model; SDE: Spatial Error model; SDM: Spatial Durbin model) and quantile spatial models run with both contiguity and linear distance spatial weighting matrices; population growth rate (% annual) in 1971–1981 as dependent variable; population growth rate (1961–1971), demographic density (1961), population size (1961), elevation, proximity to the sea coast and a dummy indicating municipalities that act as provincial head town as predictors (*p < 0.05; **0.001 ; ***<math>p < 0.001).

Global models (both standard and spatial) also suggest how proximity to the sea coast exerted a negative and significant impact on the dependent variable. Quantile regressions provide similar results, with the only exception of the forth quartile. Head town as a predictor of population growth rates is associated to mostly negative coefficients (global models). Outcomes of adjusted- R^2 and AIC, jointly confirm the better performance of distance weighted models compared to contiguity. Negative coefficients were also found in quantile regressions (both standard and spatial) for the first and the second quartiles, but not for the third and the forth quartiles.

Latent trends toward re-urbanisation

Table 8 shows the results of econometric models estimating the spatial variability of population growth rates between 2001 and 2011. All models, starting from OLS, significantly improved their goodness-of-fit compared with what has been estimated in earlier decades. Econometric diagnostics, goodness-of-fit (adjusted- R^2 or pseudo- R^2) and the Akaike Information Criterion (AIC) coherently document how spatial models performed better than standard models. Concerning spatial models, in line with adjusted- R^2 , the distance weighted scenario seems to better perform than contiguity. Lagged population growth rates and demographic density have a positive and highly significant impact on the dependent variable, irrespective of the model's specification and the spatial weighting scheme. Global and quantile models provide comparable results for these two predictors. The impact of elevation is, in turn, negative and highly significant or completely insignificant. The impact of the proximity to the sea coast and head town as predictors of population growth rates is negative - as depicted in the outcomes of global (both standard and spatial) econometric models - and more mixed in quantile regressions, being moderately significant for the first and second quartiles (proximity to the sea coast) and for the first and forth quartiles (head town).

The outcomes of regressions modeling the spatial variability of population growth rates between 2011 and 2021 indicate substantially different demographic dynamics, as far as intensity and spatial structure are concerned (Table 9). The overall estimate of model's goodness-of-fit is moderate or rather low for all econometric specifications, and improved slightly moving from standard to spatial models, despite test diagnostics were convergent in suggesting the appropriateness of using spatially explicit approaches. From the results of AIC and adjusted- R^2 in spatially weighted models, it emerges the higher fit of distance models in comparison with contiguity models. Quantile regressions performed better than global models; more specifically, results for the first and second quartiles had a satisfactory goodness-of-fit, declining for the third and forth quartiles. Among predictors, the impact of lagged population growth rates on the dependent variable is confirmed, in line with the results of estimates for previous decades, although (global) regression coefficients are less intense and significant, irrespective of the model's specification. The same (positive) impact was found in quantile regressions (first to third quartile), with the exception of the forth quartile. The impact of demographic density is really mixed and heterogeneous moving from global to quantile regressions. Population size seems to have a slightly negative impact on the dependent variable, although econometric estimates were rather mixed, as in the case of demographic density. Elevation, proximity to the sea coast and head town display almost insignificant and close-to-zero regression coefficients, apart from few exceptions (mainly in quantile regressions).

Discussion

The present study illustrates a diachronic analysis of demographic dynamics at the municipal scale in Italy, verifying density-dependence, path-dependence, agglomeration/scale impacts, and spatial effects over a complete (demographic-urban) cycle from urbanisation to re-urbanisation. The approach developed in this study was based on the comparison of different statistical models, both parametric (global econometrics) and non-parametric (quantile regressions). This approach allowed a precise identification of the factors underlying processes of demographic growth and decline, in turn consolidating complex urban-rural hierarchies in advanced economies⁷⁵. While global models provide a gross assessment of the impact of various predictors of population growth rate at a sufficiently detailed spatial scale⁷⁶, quantile regressions allow an even more accurate inspection of the trends characteristic of specific parts of the statistical distribution of the dependent variable⁷⁷. These statistical loci correspond to specific demographic behaviours, which reflect diversified but internally homogeneous territorial contexts. Examples include demographically dynamic contexts with positive and sustained growth rates, and demographically shrinking contexts having systematically negative growth rates. While non-spatial models (both global and quantile) provided the baseline knowledge to a refined understanding of population

dynamics and the underlying factors and contexts, spatial models proved to be innovative tools analysing regional variability in the dependent variable. Moreover, the comparison between the results of global and quantile models specifying the geographical structure of the elementary units adopted in this study allows a more accurate examination of the role of spatial heterogeneity in population dynamics⁷⁸. As far as the case study, while global models have satisfactorily explained population growth rates at a sufficiently detailed spatial level, the outcomes of quantile models often were in line with the results of global models. These outcomes were characteristic of the 'urbanisation' phase (1951–1961, 1961–1971, 1971–1981) with medium-high growth rates in Italy⁷⁹. On the contrary, during the 'counter-urbanisation' and 're-urbanisation' waves (1991-2001, 2001-2011, 2011-2021), global models fitted the dependent variable less effectively. At such times, quantile regressions provided likely more accurate indications of demographic behaviours in conditions of spatial heterogeneity⁸⁰. This may highlight latent spatial patterns that are characteristic of territories with systematically high or low population growth rates⁶⁴, in turn corresponding with specific quartiles of the statistical distribution of the dependent variable. Taken together, the results of the econometric models document how density-dependence has been observed in correspondence with urbanisation, suggesting a role for economic agglomeration and immigration²⁴. Densitydependence was less significant over both suburbanisation and counter-urbanisation, when population tends to be more dispersed across regions⁴⁴. In these contexts, the role of agglomeration and scale reduced proportionally, and path-dependent factors regulating population growth took the lead. With re-urbanisation, the positive rate of population growth observed in rural areas counterbalanced the stable (or negative) pattern observed in urban areas, indicating a relationship with population growth that reflects congestion externalities and subtle processes of peri-urbanisation intensifying in recent decades⁵. The outcomes of quantile regressions have more specifically delineated the existence of a non-linear relationship between population growth and density for all time intervals, although with important differences as far as the impact of individual factors is concerned. Results of quantile regressions document a positive effect of density on population growth rates, being stronger at higher levels of urban concentration, while declining slightly over time. Such findings are in line with the documented outcomes of sequential waves of urbanization, suburbanization and re-urbanization typical of postwar Italy^{11,49,53}. In other words, the density-growth relationship is indicative of sequential stages characteristic of the metropolitan cycle in Mediterranean Europe⁷³. All in all, our study demonstrates how sequential waves of concentration and de-concentration of urban and rural locations were associated with density-dependent mechanisms of population growth and decline. This process, shaping the expansion of rural/accessible districts, and the abandonment of marginal districts, accentuated the divide in high-density and low-density areas^{63,81,82}. The flexibility of this approach justifies an extended use of global econometric models and quantile regressions analysing the drivers of population growth in socioeconomic contexts distinct from the one studied in this application, and at vastly differentiated (spatial and temporal) scales. An extensive use of spatial panel techniques applied to both global and quantile models is also recommended when sufficiently long time series of predictors are available at homogeneous and stable spatial units⁷⁷. In addition, comparing the results of econometric models specifying multiple spatial weighting schemes (e.g. based on different contiguity and distance metrics) seems to be an appropriate tool⁸³ when inferring about the stability of regression coefficients (sign and significance) across models⁸⁴ and when taking decisions about the best performing models⁸⁵. In this last case, diagnostics such as Akaike Information Criterion can easily and effectively complement such approaches⁸⁶. Future studies should also investigate the appropriateness of local techniques (e.g. the Geographically Weighted Regression, GWR) to the investigation of regional variability and local heterogeneity in population dynamics⁸⁷, considering both cross-section approaches and panel extensions, when input data allow such improvements. Although the process of demographic growth and decline at a local scale seem to follow similar underlying logics in various regions of Europe (for instance, in the Mediterranean countries⁸⁸), a more accurate examination of the latent factors at the base of formation (and/or consolidation) of regional disparities in the geographical distribution and density of resident population may support a spatial planning aimed at a balanced, polycentric, and sustainable development of territories and local communities⁸⁹. While identifying distinctive (demographic) regimes at the local scale, the empirical results of our study outline the intrinsic characteristics of local contexts and the differences in the relationship between population growth and density over time¹⁵, corroborating the assumption that density-dependent regulation was intrinsically associated with exogenous dynamics depending on urban cycles. In this perspective, long-term demographic processes in Mediterranean Europe⁵⁹ can be seen as representative of more general dynamics at the continental scale. Based on a comparative approach⁷⁶, our study definitely offers an exploratory econometric perspective to regional studies of population dynamics that can be easily adapted to different spatial scales (from local to regional levels), temporal schedule (from decadal to annual windows), and variables, e.g. moving from strictly demographic indicators to economic predictors of leading and lagging contexts in the old continent and beyond.

Conclusions

A spatial econometric investigation of density-dependent and path-dependent mechanisms of population dynamics provided an original explanation of metropolitan cycles, delineating the evolution of socioeconomic (local) systems along the urban-rural gradient. With accelerated population dynamics, empirical results delineate compact urbanisation (1951–1981) as the main factor consolidating spatial disparities in Italy. As a matter of fact, econometric models-being only weakly significant in the inter-war period (1921–1951) - showed a high goodness-of-fit in correspondence with compact urbanisation that declined moderately with suburbanisation and counter-urbanisation (1981–2021). Density-dependence and path-dependence were found significant and, respectively, positive and negative, with compact urbanisation, and much less intense with suburbanisation and counter-urbanisation. The results of our study justify a renewed (diachronic and spatially explicit) analysis of

		Quantile regr	ession				
Predictor	OLS	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	VIF	
•	pprox 0.000	- 0.344	- 0.043	0.280	1.819		
Intercept	(0.009)	(0.007)***	(0.006)***	(0.009)***	(0.120)***		
_	0.528	0.459	0.521	0.604	1.092	1.27	
Pop.growth	(0.010)***	(0.009)***	(0.009)***	(0.012)***	(0.134)***		
	0.084	0.041	0.065	0.092	0.281	1.94	
Dem.density	(0.012)***	(0.008)***	(0.007)***	(0.008)***	(0.109)**		
	- 0.078	0.047	- 0.038	- 0.135	- 0.566	1.87	
Pop.size	(0.012)***	(0.007)***	(0.007)***	(0.007)***	(0.080)***		
	- 0.027	- 0.014	0.020	0.028	0.179	1.43	
Elevation	(0.011)*	(0.005)***	(0.005)***	(0.007)***	(0.058)***		
	0.010	- 0.006	0.019	0.035	0.114	1.19	
Sea prox.	(0.010)	(0.006)	(0.005)***	(0.008)***	(0.043)***		
	- 0.029	- 0.051	- 0.027	- 0.019	0.062	1.15	
Cap.city -	(0.009)**	(0.009)***	(0.005)***	(0.003)***	(0.189)		
Lag. Pop.growth		. ,	. ,	. ,	. ,		
Lag.Dem.density							
Lag.Pop.size							
Lag.Elevation							
Lag Sea prox							
Lag Cap city							
Breusch-Pagan	376 9***						
Durbin-Watson	1 94**						
Slope equality	1.94		95 1***			·	
Moran's I(z)			55.1				
W spatial matrix							
vv spatiai matrix			0.051	0.256	0.205		
Adjusted D2	0 300	0.260	0.254	1 11 / 30			
Adjusted-R ²	0.309	0.260	0.254	16 412	0.295		
Adjusted- <i>R</i> ² AIC	0.309 20,006	0.260 14,525 sed spatial we	0.254 13,873	16,413	35,423		
Adjusted- <i>R</i> ² AIC	0.309 20,006 Contiguity-b a	0.260 14,525 ased spatial we	0.254 13,873 ights	0.256 16,413 Quantile regr	35,423		
Adjusted- <i>R</i> ² AIC Predictor	0.309 20,006 Contiguity-ba	0.260 14,525 ased spatial we	0.254 13,873 ights	Quantile regr $\tau = 0.25$	35,423 ession $\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
Adjusted-R ² AIC Predictor	0.309 20,006 Contiguity-ba SAR ≈ 0.000	0.260 14,525 ased spatial we SDE ≈ 0.000	0.254 13,873 ights SDM ≈ 0.000	0.256 16,413 Quantile regr $\tau = 0.25$ -0.325	$\frac{0.293}{35,423}$ ession $\tau = 0.50$ -0.042	$\tau = 0.75$ 0.266	$\tau = 0.99$ 1.600
Adjusted-R ² AIC Predictor Intercept	0.309 20,006 Contiguity-ba SAR ≈ 0.000 (0.009)	0.260 14,525 ased spatial we SDE ≈ 0.000 (0.009)	0.254 13,873 ights SDM ≈ 0.000 (0.009)	$\begin{array}{c} 0.236\\ \hline 16,413\\ \hline \\ \hline \mathbf{v} = 0.25\\ \hline -0.325\\ \hline (0.008)^{***} \end{array}$	$\frac{0.295}{35,423}$ ession $\frac{\tau = 0.50}{-0.042}$ (0.006)***	$\tau = 0.75$ 0.266 (0.010)***	$\tau = 0.99$ 1.600 (0.173)***
Adjusted-R ² AIC Predictor Intercept	0.309 20,006 Contiguity-ba SAR ≈ 0.000 (0.009) 0.526	0.260 14,525 ssed spatial wer SDE ≈ 0.000 (0.009) 0.527	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523	0.236 16,413 Quantile regr $\tau = 0.25$ -0.325 $(0.008)^{***}$ 0.459	$\frac{0.295}{35,423}$ ession $\tau = 0.50$ $- 0.042$ $(0.006)^{***}$ 0.519	τ = 0.75 0.266 (0.010)*** 0.597	τ = 0.99 1.600 (0.173)*** 1.093
Adjusted-R ² AIC Predictor Intercept Pop.growth	0.309 20,006 Contiguity-base SAR ≈ 0.000 (0.009) 0.526 (0.010)***	0.260 14,525 seed spatial we SDE ≈ 0.000 (0.009) 0.527 (0.010)***	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 (0.010)***	0.236 16,413 Quantile regr $\tau = 0.25$ -0.325 $(0.008)^{***}$ 0.459 $(0.015)^{***}$	$\frac{0.293}{35,423}$ ession $\frac{\tau = 0.50}{-0.042}$ (0.006)*** 0.519 (0.014)***	$\tau = 0.75$ 0.266 (0.010)*** 0.597 (0.019)***	τ = 0.99 1.600 (0.173)*** 1.093 (0.113)***
Adjusted-R ² AIC Predictor Intercept Pop.growth	0.309 20,006 Contiguity-ba ⊗ 0.000 (0.009) 0.526 (0.010)*** 0.078	0.260 14,525 ssed spatial we SDE ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 $(0.010)^{***}$ 0.064	0.236 16,413 Quantile regr $\tau = 0.25$ $- 0.325$ $(0.008)^{***}$ 0.459 $(0.015)^{***}$ 0.030	$\frac{0.293}{35,423}$ ession $\frac{\tau = 0.50}{-0.042}$ (0.006)*** 0.519 (0.014)*** 0.062	τ = 0.75 0.266 (0.010)*** 0.597 (0.019)*** 0.084	τ = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231
Adjusted-R ² AIC Predictor Predictor Pop.growth Pop.gr	0.309 20,006 Contiguity-ba SAR ≈ 0.000 (0.009) 0.526 (0.010)*** 0.078 (0.012)***	0.260 14,525 ssed spatial we ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)***	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 $(0.010)^{***}$ 0.064 $(0.013)^{***}$	$\begin{array}{c} \textbf{0.236} \\ \textbf{16,413} \\ \hline \\ \textbf{Quantile regr} \\ \hline \textbf{\tau} = \textbf{0.25} \\ \hline \textbf{-} \textbf{0.325} \\ (\textbf{0.008})^{***} \\ \hline \textbf{0.459} \\ (\textbf{0.015})^{***} \\ \hline \textbf{0.030} \\ (\textbf{0.011})^{**} \end{array}$	$\frac{0.293}{35,423}$ ession $\frac{\tau = 0.50}{-0.042}$ (0.006)*** 0.519 (0.014)*** 0.062 (0.010)***	τ = 0.75 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)***	τ = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)*
Adjusted-R ² AIC Predictor Intercept Pop.growth Dem.density	0.309 20,006 Contiguity-ba SAR ≈ 0.000 (0.009) 0.526 (0.010)*** 0.078 (0.012)*** - 0.078	0.260 14,525 sed spatial wei SDE ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080	$\begin{array}{c} 0.254 \\ \hline 13,873 \\ \hline ights \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$\begin{array}{c} \textbf{0.236} \\ \textbf{16,413} \\ \hline \\ \textbf{Quantile regr} \\ \textbf{\tau} = \textbf{0.25} \\ - 0.325 \\ (0.008)^{***} \\ \textbf{0.459} \\ (0.015)^{***} \\ \textbf{0.030} \\ (0.011)^{**} \\ \textbf{0.049} \end{array}$	$\frac{0.293}{35,423}$ ession $\frac{\tau = 0.50}{-0.042}$ (0.006)*** 0.519 (0.014)*** 0.062 (0.010)*** -0.039	τ = 0.75 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138	τ = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537
Adjusted-R ² AIC Predictor Intercept Pop.growth Dem.density	0.309 20,006 Contiguity-ba SAR ≈ 0.000 (0.009) 0.526 (0.010)*** 0.078 (0.012)*** - 0.078 (0.012)***	0.260 14,525 sed spatial we SDE ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080 (0.012)***	$\begin{array}{c} 0.254 \\ \hline 13,873 \\ \hline 10,000 \\ \hline 10,00$	$\begin{array}{c} 0.236\\ \hline 0.236\\ \hline 16,413\\ \hline \\ \hline \mathbf{v} = 0.25\\ \hline -0.325\\ \hline (0.008)^{***}\\ \hline 0.459\\ \hline (0.015)^{***}\\ \hline 0.030\\ \hline (0.011)^{**}\\ \hline 0.049\\ \hline (0.010)^{***}\\ \end{array}$	$\frac{0.293}{35,423}$ ession $\frac{\tau = 0.50}{-0.042}$ (0.006)*** 0.519 (0.014)*** 0.062 (0.010)*** -0.039 (0.008)***	τ = 0.75 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)***	τ = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537 (0.090)***
Adjusted-R ² AIC Predictor Intercept Pop.growth Dem.density Pop.size	0.309 20,006 Contiguity-base SAR ≈ 0.000 (0.009) 0.526 (0.010)*** 0.078 (0.012)*** - 0.078 (0.012)*** - 0.027	0.260 14,525 sed spatial weights ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080 (0.012)*** - 0.030	$\begin{array}{c} 0.254 \\ \hline 13,873 \\ \hline 10,000 \\ \hline 10,00$	$\begin{array}{c} 0.236\\ \hline 0.236\\ \hline 16,413\\ \hline \\ \hline$	$\frac{0.293}{35,423}$ ession $\frac{\tau = 0.50}{- 0.042}$ (0.006)*** 0.519 (0.014)*** 0.062 (0.010)*** - 0.039 (0.008)*** 0.020	$\tau = 0.75$ 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)*** 0.026	$\tau = 0.99$ 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537 (0.090)*** 0.127
Adjusted-R ² AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation	0.309 20,006 Contiguity-base SAR ≈ 0.000 (0.009) 0.526 (0.010)*** 0.078 (0.012)*** - 0.078 (0.012)*** - 0.027 (0.011)**	0.260 14,525 ssed spatial we ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.011)**	$\begin{array}{c} 0.254 \\ \hline 13,873 \\ \hline 13,873 \\ \hline 3 \\ \hline 3 \\ \hline 3 \\ \hline 5 \\ \hline 6 \\ \hline 7 \hline$	$\begin{array}{c} 0.236\\ \hline 0.236\\ \hline 16,413\\ \hline \\ \hline \mathbf{v} = 0.25\\ \hline - 0.325\\ \hline (0.008)^{***}\\ \hline 0.459\\ \hline (0.015)^{***}\\ \hline 0.030\\ \hline (0.011)^{**}\\ \hline 0.049\\ \hline (0.010)^{***}\\ \hline - 0.016\\ \hline (0.005)^{***}\\ \end{array}$	$\frac{0.293}{35,423}$ ession $\frac{\tau = 0.50}{- 0.042}$ (0.006)*** 0.519 (0.014)*** 0.062 (0.010)*** - 0.039 (0.008)*** 0.020 (0.006)***	$\tau = 0.75$ 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)*** 0.026 (0.005)***	$\tau = 0.99$ 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537 (0.090)*** 0.127 (0.102)
Adjusted-R ² AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation	0.309 20,006 Contiguity-ba SAR ≈ 0.000 (0.009) 0.526 (0.010)*** 0.078 (0.012)*** - 0.078 (0.012)*** - 0.027 (0.011)** 0.011	0.260 14,525 ssed spatial wer ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.011)** 0.010	$\begin{array}{c} 0.254 \\ \hline 13,873 \\ \hline 13,873 \\ \hline 3 \\ \hline 5 \\ \hline 6 \\ \hline 7 \hline$	$\begin{array}{c} 0.236\\ \hline 16,413\\ \hline \\ \hline \\ \mathbf{Quantile\ regr}\\ \hline \mathbf{\tau} = 0.25\\ \hline \\ - 0.325\\ \hline \\ (0.008)^{***}\\ \hline \\ 0.459\\ \hline \\ (0.015)^{***}\\ \hline \\ 0.030\\ \hline \\ (0.011)^{**}\\ \hline \\ 0.049\\ \hline \\ (0.010)^{***}\\ \hline \\ - 0.016\\ \hline \\ (0.005)^{***}\\ \hline \\ - 0.006\\ \end{array}$	$\begin{array}{c} 0.293 \\ \hline 0.293 \\ \hline 0.293 \\ \hline 35,423 \\ \hline \end{array}$ ession $\begin{array}{c} \tau = 0.50 \\ \hline - 0.042 \\ \hline (0.006)^{***} \\ \hline 0.519 \\ \hline (0.014)^{***} \\ \hline 0.062 \\ \hline (0.010)^{***} \\ \hline - 0.039 \\ \hline (0.008)^{***} \\ \hline 0.020 \\ \hline (0.006)^{***} \\ \hline 0.021 \\ \hline \end{array}$	τ = 0.75 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)*** 0.026 (0.005)*** 0.037	τ = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537 (0.090)*** 0.127 (0.102) 0.094
Adjusted-R ² AIC Predictor Intercept Pop.growth Dem.density Elevation Sea prox.	0.309 20,006 Contiguity-ba ⊗ 0.000 (0.009) 0.526 (0.010)*** 0.078 (0.012)*** - 0.078 (0.012)*** - 0.027 (0.011)** 0.011 (0.010)	0.260 14,525 ssed spatial we ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.011)** 0.010 (0.010)	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 $(0.010)^{***}$ 0.064 $(0.013)^{***}$ - 0.080 $(0.013)^{***}$ - 0.052 $(0.012)^{***}$ 0.022 (0.010)	$\begin{array}{c} 0.236\\ \hline 0.236\\ \hline 16,413\\ \hline \\ \hline 7 = 0.25\\ \hline - 0.325\\ \hline (0.008)^{***}\\ \hline 0.459\\ \hline (0.015)^{***}\\ \hline 0.030\\ \hline (0.011)^{**}\\ \hline 0.049\\ \hline (0.010)^{***}\\ \hline - 0.016\\ \hline (0.005)^{***}\\ \hline - 0.006\\ \hline (0.005)\\ \hline \end{array}$	0.293 35,423 ession τ = 0.50 - 0.042 (0.006)*** 0.519 (0.014)*** 0.062 (0.010)*** - 0.039 (0.008)*** 0.020 (0.006)*** 0.021 (0.005)***	τ = 0.75 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)*** 0.026 (0.005)*** 0.037 (0.009)***	τ = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537 (0.090)*** 0.127 (0.102) 0.094 (0.073)
Adjusted-R ² AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox.	0.309 20,006 Contiguity-ba SAR ≈ 0.000 (0.009) 0.526 (0.010)*** 0.078 (0.012)*** - 0.078 (0.012)*** - 0.027 (0.011)** 0.011 (0.010) - 0.029	0.260 14,525 ssed spatial we ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.011)** 0.010 (0.010) - 0.029	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 $(0.010)^{***}$ 0.064 $(0.013)^{***}$ -0.080 $(0.013)^{***}$ -0.052 $(0.012)^{***}$ 0.022 (0.010) -0.027	$\begin{array}{c} 0.236\\ \hline 0.236\\ \hline 16,413\\ \hline \\ \hline$	0.293 35,423 ession τ = 0.50 - 0.042 (0.006)*** 0.519 (0.014)*** 0.062 (0.010)*** - 0.039 (0.008)*** 0.020 (0.006)*** 0.021 (0.005)*** - 0.028	τ = 0.75 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)*** 0.026 (0.005)*** 0.037 (0.009)*** - 0.118	τ = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537 (0.109)*** 0.127 (0.102) 0.094 (0.073) 0.038
Adjusted-R ² AIC Predictor Intercept Pop.growth Dem.density Elevation Sea prox. Cap.city	0.309 20,006 Contiguity-base SAR ≈ 0.000 (0.009) 0.526 $(0.010)^{***}$ 0.078 $(0.012)^{***}$ - 0.078 $(0.012)^{***}$ - 0.027 $(0.011)^{**}$ 0.011 (0.010) - 0.029 $(0.009)^{***}$	0.260 14,525 solution solution solution ≈ 0.000 (0.009) 0.527 $(0.010)^{***}$ 0.082 $(0.013)^{***}$ - 0.080 $(0.012)^{***}$ - 0.030 $(0.011)^{**}$ 0.010 (0.010) - 0.029 $(0.009)^{***}$	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 $(0.010)^{***}$ 0.064 $(0.013)^{***}$ -0.080 $(0.013)^{***}$ -0.052 $(0.012)^{***}$ 0.022 (0.010) -0.027 $(0.009)^{***}$	$\begin{array}{c} 0.236\\ \hline 0.236\\ \hline 16,413\\ \hline \\ \hline 0.413\\ \hline \hline r = 0.25\\ \hline - 0.325\\ \hline (0.008)^{***}\\ \hline 0.459\\ \hline (0.015)^{***}\\ \hline 0.030\\ \hline (0.011)^{**}\\ \hline 0.049\\ \hline (0.010)^{***}\\ \hline - 0.016\\ \hline (0.005)^{***}\\ \hline - 0.006\\ \hline (0.005)\\ \hline - 0.052\\ \hline (0.007)^{***}\\ \end{array}$	0.293 35,423 τ = 0.50 - 0.042 (0.006)*** 0.519 (0.014)*** 0.062 (0.010)*** - 0.039 (0.008)*** 0.020 (0.006)*** 0.021 (0.005)*** - 0.028 (0.005)***	$\tau = 0.75$ 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)*** 0.026 (0.005)*** 0.037 (0.009)*** - 0.018 (0.003)***	$ \tau = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537 (0.090)*** 0.127 (0.102) 0.094 (0.073) 0.038 (0.043) $
Adjusted-R ² AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city	0.309 20,006 Contiguity-ba SAR ≈ 0.000 (0.009) 0.526 (0.010)*** - 0.078 (0.012)*** - 0.078 (0.012)*** 0.011 (0.011)** 0.011 (0.010) - 0.029 (0.009)***	0.260 14,525 sped spatial weils ≈ 0.000 (0.009) 0.527 $(0.010)^{***}$ 0.082 $(0.013)^{***}$ - 0.080 $(0.012)^{***}$ - 0.030 $(0.011)^{**}$ 0.010 (0.010) - 0.029 $(0.009)^{***}$	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 $(0.010)^{***}$ 0.064 $(0.013)^{***}$ - 0.080 $(0.013)^{***}$ - 0.052 $(0.012)^{***}$ 0.022 (0.010) - 0.027 $(0.009)^{***}$ 0.022	$\begin{array}{c} 0.236\\ \hline 0.236\\ \hline 16,413\\ \hline \\ \hline \mathbf{Quantile regr}\\ \hline \pmb{\tau} = 0.25\\ \hline - 0.325\\ \hline (0.008)^{***}\\ \hline 0.459\\ \hline (0.015)^{***}\\ \hline 0.030\\ \hline (0.011)^{**}\\ \hline 0.049\\ \hline (0.010)^{***}\\ \hline - 0.016\\ \hline (0.005)^{***}\\ \hline - 0.006\\ \hline (0.005)\\ \hline - 0.052\\ \hline (0.007)^{***}\\ \hline \end{array}$	0.293 35,423 ession τ = 0.50 - 0.042 (0.006)*** 0.519 (0.014)*** 0.062 (0.010)*** - 0.039 (0.008)*** 0.020 (0.005)*** - 0.028 (0.005)***	$\tau = 0.75$ 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)*** 0.026 (0.005)*** 0.037 (0.003)***	$ \overline{r} = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537 (0.090)*** 0.127 (0.102) 0.094 (0.073) 0.038 (0.043) (0.043) $
Adjusted-R ² I AIC I Predictor I Intercept I Pop.growth I Dem.density I Elevation I Sea prox. I Cap.city I Lag. Pop.growth I	0.309 20,006 Contiguity-ba SAR ≈ 0.000 (0.009) 0.526 (0.010)*** 0.078 (0.012)*** - 0.078 (0.012)*** - 0.027 (0.011)** 0.011 (0.010) - 0.029 (0.009)***	0.260 14,525 sed spatial wei SDE ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.011)** 0.010 (0.010) - 0.029 (0.009)***	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 (0.010)*** 0.064 (0.013)*** - 0.080 (0.013)*** - 0.052 (0.012)*** 0.022 (0.010) - 0.027 (0.009)*** 0.022 (0.009)***	$\begin{array}{c} 0.236\\ \hline 0.236\\ \hline 16,413\\ \hline \\ \hline \mathbf{Quantile regr}\\ \hline \pmb{\tau} = 0.25\\ \hline - 0.325\\ \hline (0.008)^{***}\\ \hline 0.459\\ \hline (0.015)^{***}\\ \hline 0.030\\ \hline (0.011)^{**}\\ \hline 0.049\\ \hline (0.010)^{***}\\ \hline - 0.016\\ \hline (0.005)^{***}\\ \hline - 0.006\\ \hline (0.005)\\ \hline - 0.052\\ \hline (0.007)^{***}\\ \hline \end{array}$	$\begin{array}{c} 0.293 \\ \hline 0.293 \\ \hline 0.293 \\ \hline 35,423 \\ \hline \\ ession \\ \hline \tau = 0.50 \\ \hline 0.042 \\ \hline (0.006)^{***} \\ \hline 0.519 \\ \hline (0.014)^{***} \\ \hline 0.062 \\ \hline (0.010)^{***} \\ \hline - 0.039 \\ \hline (0.008)^{***} \\ \hline 0.020 \\ \hline (0.006)^{***} \\ \hline 0.021 \\ \hline (0.005)^{***} \\ \hline - 0.028 \\ \hline (0.005)^{***} \\ \hline \end{array}$	$\tau = 0.75$ 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)*** 0.026 (0.005)*** 0.037 (0.009)*** - 0.018 (0.003)***	$ \tau = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537 (0.090)*** 0.127 (0.102) 0.094 (0.073) 0.038 (0.043) $
Adjusted-R ² I AIC I Predictor I Predictor I Intercept I Pop.growth I Dem.density I Pop.size I Elevation I Sea prox. I Cap.city I Lag. Pop.growth I	0.309 20,006 Contiguity-bs SAR ≈ 0.000 (0.009) 0.526 (0.010)*** 0.078 (0.012)*** - 0.078 (0.012)*** - 0.027 (0.011)** 0.011 (0.010) - 0.029 (0.009)***	0.260 14,525 ssed spatial wei SDE ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.011)** 0.010 (0.010) - 0.029 (0.009)***	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 (0.010)*** 0.064 (0.013)*** - 0.080 (0.013)*** - 0.052 (0.012)*** 0.022 (0.010) - 0.027 (0.009)*** 0.022 (0.009)***	$\begin{array}{c} 0.236\\ \hline 0.236\\ \hline 16,413\\ \hline \\ \hline$	0.293 35,423 ession τ = 0.50 - 0.042 (0.006)*** 0.519 (0.014)*** 0.062 (0.010)*** - 0.039 (0.008)*** 0.020 (0.006)*** - 0.028 (0.005)***	$\tau = 0.75$ 0.266 $(0.010)^{***}$ 0.597 $(0.019)^{***}$ 0.084 $(0.011)^{***}$ - 0.138 $(0.011)^{***}$ 0.026 $(0.005)^{***}$ 0.037 $(0.009)^{***}$ - 0.18 $(0.003)^{***}$	$ \tau = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537 (0.090)*** 0.127 (0.102) 0.094 (0.073) 0.038 (0.043) $
Adjusted-R ² I AIC I Predictor I Predictor I Intercept I Pop.growth I Dem.density I Elevation I Sea prox. I Cap.city I Lag.Pop.growth I	0.309 20,006 Contiguity-ba SAR ≈ 0.000 (0.009) 0.526 (0.010)*** 0.078 (0.012)*** - 0.078 (0.012)*** - 0.027 (0.011)** 0.011 (0.010) - 0.029 (0.009)***	0.260 14,525 ssed spatial wei SDE ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.011)** 0.010 (0.010) - 0.029 (0.009)***	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 (0.010)*** 0.064 (0.013)*** - 0.080 (0.013)*** - 0.052 (0.012)*** 0.022 (0.010) - 0.027 (0.009)*** 0.022 (0.024) 0.055 (0.024)**	$\begin{array}{c} 0.236\\ \hline 0.236\\ \hline 16,413\\ \hline \\ \hline$	$\begin{array}{c} 0.293 \\ \hline 0.293 \\ \hline 35,423 \\ \hline \\ ession \\ \hline \tau = 0.50 \\ \hline 0.042 \\ \hline (0.006)^{***} \\ \hline 0.519 \\ \hline (0.014)^{***} \\ \hline 0.062 \\ \hline (0.010)^{***} \\ \hline - 0.039 \\ \hline (0.008)^{***} \\ \hline 0.020 \\ \hline (0.006)^{***} \\ \hline 0.021 \\ \hline (0.005)^{***} \\ \hline - 0.028 \\ \hline (0.005)^{***} \\ \hline \end{array}$	τ = 0.75 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)*** 0.026 (0.005)*** 0.037 (0.009)*** - 0.118 (0.003)***	$\tau = 0.99$ 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537 (0.090)*** 0.127 (0.102) 0.094 (0.073) 0.038 (0.043)
Adjusted-R ² I AIC I Predictor I Intercept I Pop.growth I Dem.density I Pop.size I Elevation I Sea prox. I Cap.city I Lag.Pop.growth I	0.309 20,006 Contiguity-base SAR ≈ 0.000 (0.009) 0.526 $(0.010)^{***}$ 0.078 $(0.012)^{***}$ - 0.078 $(0.012)^{***}$ - 0.027 $(0.011)^{**}$ 0.011 (0.010) - 0.029 $(0.009)^{***}$	0.260 14,525 ssed spatial we ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.011)** 0.010 (0.010) - 0.029 (0.009)***	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 (0.010)*** 0.064 (0.013)*** - 0.080 (0.013)*** - 0.052 (0.012)*** 0.022 (0.010) - 0.027 (0.009)*** 0.022 (0.009)*** 0.022 (0.024) 0.055 (0.024)** 0.051	$\begin{array}{c} 0.236\\ \hline 0.236\\ \hline 16,413\\ \hline \\ \hline$	0.293 35,423 ession τ = 0.50 - 0.042 (0.006)*** 0.519 (0.014)*** 0.062 (0.010)*** - 0.039 (0.008)*** 0.020 (0.006)*** 0.021 (0.005)*** - 0.028 (0.005)***	r = 0.75 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)*** 0.026 (0.005)*** 0.037 (0.009)*** - 0.118 (0.003)***	$ \tau = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537 (0.090)*** 0.127 (0.102) 0.094 (0.073) 0.038 (0.043) $
Adjusted-R ² I AIC I Predictor I Intercept I Pop.growth I Dem.density I Pop.size I Elevation I Sea prox. I Cap.city I Lag.Pop.growth I Lag.Pop.size I	0.309 20,006 Contiguity-ba ≈ 0.000 (0.009) 0.526 $(0.010)^{***}$ 0.078 $(0.012)^{***}$ - 0.078 $(0.012)^{***}$ - 0.027 $(0.011)^{**}$ 0.011 (0.010) - 0.029 $(0.009)^{***}$	0.260 14,525 ssed spatial we ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.011)** 0.010 (0.010) - 0.029 (0.009)***	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 $(0.010)^{***}$ 0.064 $(0.013)^{***}$ -0.080 $(0.013)^{***}$ -0.052 $(0.012)^{***}$ 0.022 (0.010) -0.027 $(0.009)^{***}$ 0.022 $(0.024)^{**}$ 0.055 $(0.024)^{**}$ 0.051 $(0.024)^{**}$	$\begin{array}{c} 0.236\\ \hline 0.236\\ \hline 16,413\\ \hline \\ \hline \mathbf{Quantile regr}\\ \hline \pmb{\tau} = 0.25\\ \hline - 0.325\\ \hline (0.008)^{***}\\ \hline 0.459\\ \hline (0.015)^{***}\\ \hline 0.030\\ \hline (0.011)^{**}\\ \hline 0.049\\ \hline (0.010)^{***}\\ \hline - 0.016\\ \hline (0.005)^{***}\\ \hline - 0.006\\ \hline (0.005)\\ \hline - 0.052\\ \hline (0.007)^{***}\\ \hline \end{array}$	0.293 35,423 ession $\tau = 0.50$ - 0.042 $(0.006)^{***}$ 0.519 $(0.014)^{***}$ 0.062 $(0.010)^{***}$ - 0.039 $(0.008)^{***}$ 0.020 $(0.006)^{***}$ 0.021 $(0.005)^{***}$ - 0.028 $(0.005)^{***}$	τ = 0.75 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)*** 0.026 (0.005)*** 0.037 (0.009)*** - 0.018 (0.003)***	$ $
Adjusted-R ² I AIC I Predictor I Intercept I Pop.growth I Dem.density I Elevation I Sea prox. I Cap.city I Lag.Pop.growth I Lag.Pop.size I	0.309 20,006 Contiguity-ba SAR ≈ 0.000 (0.009) 0.526 $(0.010)^{***}$ 0.078 $(0.012)^{***}$ - 0.078 $(0.012)^{***}$ - 0.027 $(0.011)^{**}$ 0.011 (0.010) - 0.029 $(0.009)^{***}$	0.260 14,525 sed spatial we ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.011)** 0.010 (0.010) - 0.029 (0.009)***	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 $(0.010)^{***}$ 0.064 $(0.013)^{***}$ -0.080 $(0.013)^{***}$ -0.052 $(0.012)^{***}$ 0.022 (0.010) -0.027 $(0.009)^{***}$ 0.022 $(0.009)^{***}$ 0.022 $(0.024)^{**}$ 0.055 $(0.024)^{**}$ 0.051 $(0.024)^{**}$ 0.090	$\begin{array}{c} 0.236\\ \hline 0.236\\ \hline 16,413\\ \hline \\ \hline$	0.293 35,423 τ = 0.50 - 0.042 (0.006)*** 0.519 (0.014)*** 0.062 (0.010)*** - 0.039 (0.008)*** 0.020 (0.006)*** 0.021 (0.005)*** - 0.028 (0.005)***	r = 0.75 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)*** 0.026 (0.005)*** 0.037 (0.003)***	$ \tau = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537 (0.090)*** 0.127 (0.102) 0.094 (0.073) 0.038 (0.043) $
Adjusted-R ² I AIC I Predictor I Intercept I Pop.growth I Dem.density I Elevation I Sea prox. I Cap.city I Lag.Pop.growth I Lag.Pop.size I Lag.Pop.size I Lag.Pop.size I Lag.Pop.size I	0.309 20,006 Contiguity-bs SAR ≈ 0.000 (0.009) 0.526 (0.010)*** - 0.078 (0.012)*** - 0.078 (0.012)*** - 0.027 (0.011)** 0.011 (0.010) - 0.029 (0.009)***	0.260 14,525 solution solution solution ≈ 0.000 (0.009) 0.527 $(0.010)^{***}$ 0.082 $(0.013)^{***}$ - 0.080 $(0.012)^{***}$ - 0.030 $(0.011)^{**}$ 0.010 (0.010) - 0.029 $(0.009)^{***}$	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 (0.010)*** 0.064 (0.013)*** - 0.080 (0.013)*** - 0.052 (0.012)*** 0.022 (0.010) - 0.027 (0.009)*** 0.022 (0.024) ** 0.055 (0.024)** 0.051 (0.024)** 0.090 (0.020)***	$\begin{array}{c} 0.236\\ \hline 16,413\\ \hline \\ \hline \mathbf{Quantile regr}\\ \hline \pmb{\tau} = 0.25\\ \hline -0.325\\ \hline (0.008)^{***}\\ \hline 0.459\\ \hline (0.015)^{***}\\ \hline 0.030\\ \hline (0.011)^{**}\\ \hline 0.049\\ \hline (0.010)^{***}\\ \hline -0.016\\ \hline (0.005)^{***}\\ \hline -0.006\\ \hline (0.005)\\ \hline -0.052\\ \hline (0.007)^{***}\\ \hline \end{array}$	$\begin{array}{c} 0.293 \\ \hline 0.293 \\ \hline 35,423 \\ \hline \\ \hline \\ ession \\ \hline \\ \tau = 0.50 \\ \hline \\ - 0.042 \\ \hline \\ (0.006)^{***} \\ \hline \\ 0.519 \\ \hline \\ (0.014)^{***} \\ \hline \\ 0.062 \\ \hline \\ (0.010)^{***} \\ \hline \\ - 0.039 \\ \hline \\ (0.008)^{***} \\ \hline \\ 0.020 \\ \hline \\ (0.006)^{***} \\ \hline \\ - 0.028 \\ \hline \\ (0.005)^{***} \\ \hline \\ - 0.028 \\ \hline \\ (0.005)^{***} \\ \hline \end{array}$	τ = 0.75 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)*** 0.026 (0.005)*** 0.037 (0.003)***	$ \overline{r} = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* -0.537 (0.090)*** 0.127 (0.102) 0.094 (0.073) 0.038 (0.043) $
Adjusted-R ² I AIC I Predictor I Intercept I Pop.growth I Dem.density I Elevation I Sea prox. I Cap.city I Lag.Pop.growth I Lag.Pop.size I Lag.Pop.size I	0.309 20,006 Contiguity-ba SAR ≈ 0.000 (0.009) 0.526 (0.010)*** - 0.078 (0.012)*** - 0.078 (0.012)*** 0.011 (0.010) - 0.029 (0.009)***	0.260 14,525 sed spatial weiler ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.011)** 0.010 (0.010) - 0.029 (0.009)***	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 (0.010)*** 0.064 (0.013)*** - 0.080 (0.013)*** - 0.052 (0.012)*** 0.022 (0.010) - 0.027 (0.009)*** 0.022 (0.009)*** 0.022 (0.024)* 0.055 (0.024)** 0.051 (0.024)** 0.090 (0.020)*** 0.011	$\begin{array}{c} 0.236\\ \hline 16,413\\ \hline \\ \hline$	0.293 35,423 ession τ = 0.50 - 0.042 (0.006)*** 0.519 (0.014)*** 0.062 (0.010)*** - 0.039 (0.008)*** 0.020 (0.005)*** - 0.028 (0.005)***	τ = 0.75 0.266 (0.010)*** 0.597 (0.019)*** 0.084 (0.011)*** - 0.138 (0.011)*** 0.026 (0.005)*** 0.037 (0.003)***	$ $
Adjusted-R ² I AIC I Predictor I Predictor I Intercept I Pop.growth I Dem.density I Pop.size I Elevation I Sea prox. I Cap.city I Lag.Pop.growth I Lag.Pop.size I Lag.Sea prox. I	0.309 20,006 Contiguity-ba SAR ≈ 0.000 (0.009) 0.526 (0.010)*** - 0.078 (0.012)*** - 0.078 (0.012)*** 0.011 (0.010) - 0.029 (0.009)***	0.260 14,525 sed spatial wei SDE ≈ 0.000 (0.009) 0.527 (0.010)*** 0.082 (0.013)*** - 0.080 (0.012)*** 0.010 (0.011)** 0.010 (0.010) - 0.029 (0.009)***	0.254 13,873 ights SDM ≈ 0.000 (0.009) 0.523 (0.010)*** 0.064 (0.013)*** - 0.080 (0.013)*** - 0.052 (0.012)*** 0.022 (0.010) - 0.027 (0.009)*** 0.022 (0.024) ** 0.055 (0.024)** 0.051 (0.024)** 0.051 (0.024)** 0.090 (0.020)*** 0.011 (0.018)	$\begin{array}{c} 0.236\\ \hline 16,413\\ \hline \\ \hline$	$\begin{array}{c} 0.293 \\ \hline 0.293 \\ \hline 35,423 \\ \hline \\ ession \\ \hline \tau = 0.50 \\ \hline 0.042 \\ \hline (0.006)^{***} \\ \hline 0.519 \\ \hline (0.014)^{***} \\ \hline 0.062 \\ \hline (0.010)^{***} \\ \hline - 0.039 \\ \hline (0.008)^{***} \\ \hline 0.020 \\ \hline (0.006)^{***} \\ \hline 0.021 \\ \hline (0.005)^{***} \\ \hline - 0.028 \\ \hline (0.005)^{***} \\ \hline \end{array}$	$\tau = 0.75$ 0.266 $(0.010)^{***}$ 0.597 $(0.019)^{***}$ 0.084 $(0.011)^{***}$ - 0.138 $(0.011)^{***}$ 0.026 $(0.005)^{***}$ 0.037 $(0.009)^{***}$ - 0.18 $(0.003)^{***}$	$ \tau = 0.99 1.600 (0.173)*** 1.093 (0.113)*** 0.231 (0.121)* - 0.537 (0.090)*** 0.127 (0.102) 0.094 (0.073) 0.038 (0.043) $

	Contiguity-based spatial weights								
				Quantile regression					
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$		
Log Cop city		_	- 0.024		_				
Lag.Cap.city			(0.022)						
Breusch-Pagan									
Durbin-Watson									
Slope equality									
Moran's I(z)				0.057***					
W spatial matrix				***	***	***	*		
Adjusted-R ²	0.311	0.310	0.313						
AIC	19,988	19,976	19,976						
	Distance-ba	sed spatial weig	ghts						
				Quantile reg	gression				
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$		
Interest	≈ 0.000	- 0.004	- 0.006	- 0.337	- 0.043	0.278	1.859		
Intercept	(0.009)	(0.035)	(0.009)	(0.007)***	(0.006)***	(0.010)***	(0.122)***		
Don mouth	0.528	0.530	0.526	0.459	0.522	0.604	1.052		
Pop.growin	(0.010)***	(0.010)***	(0.010)***	(0.013)***	(0.013)***	(0.017)***	(0.127)***		
Dury longitur	0.083	0.090	0.088	0.036	0.064	0.092	0.270		
Dem.density	(0.012)***	(0.014)***	(0.014)***	(0.010)***	(0.009)***	(0.009)***	(0.101)***		
D .	- 0.078	- 0.103	- 0.106	0.046	- 0.038	- 0.137	- 0.508		
Pop.size	(0.012)***	(0.013)***	(0.014)***	(0.008)***	(0.009)***	(0.011)***	(0.101)***		
Elevation	- 0.026	- 0.055	- 0.072	- 0.012	0.019	0.028	0.198		
	(0.011)**	(0.012)***	(0.013)***	(0.005)**	(0.006)***	(0.008)***	(0.115)*		
	0.012	0.001	- 0.003	- 0.002	0.020	0.036	0.124		
Sea prox.	(0.010)	(0.011)	(0.011)	(0.006)	(0.005)***	(0.008)***	(0.072)*		
a 1	- 0.026	- 0.025	- 0.026	- 0.015	- 0.027	- 0.019	0.020		
Cap.city	(0.009)***	(0.009)**	(0.009)**	(0.007)***	(0.004)***	(0.004)***	(0.053)		
I. D. d			0.123				I		
Lag. Pop.growth			(0.150)						
			- 0.126	_					
Lag.Dem.density			(0.050)**	-					
			0.442	_					
Lag.Pop.size			(0.87)***						
I DI C			0.335						
Lag.Elevation			(0.051)***						
			- 0.189	_					
Lag.Sea prox.			(0.045)***	-					
			- 0.839	-					
Lag.Cap.city			(0.439)*	_					
Breusch-Pagan	-			_					
Durbin-Watson	-								
Slope equality	1								
Moran's I(z)	1			0.003***					
W spatial matrix	1			**	ns	ns	ns		
Adjusted-R ²	0.309	0.313	0.3416		1		1		
AIC	20.008	19.926	19,928	-					

Table 6. Results of standard (OLS, Ordinary Least Square, and quantile) regressions as well as global (SAR: Spatial Autoregressive model; SDE: Spatial Error model; SDM: Spatial Durbin model) and quantile spatial models run with both contiguity and linear distance spatial weighting matrices; population growth rate (% annual) in 1981–1991 as dependent variable; population growth rate (1971–1981), demographic density (1971), population size (1971), elevation, proximity to the sea coast and a dummy indicating municipalities that act as provincial head town as predictors (*p < 0.05; **0.001 ; ***<math>p < 0.001).

socioeconomic development vis à vis demographic transition processes aimed at providing a more comprehensive interpretation of metropolitan transformations and the related evolution of local contexts.

		Quantile regression					
Predictor	OLS	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	VIF	
Tertemont	≈ 0.000	- 0.431	- 0.030	0.402	2.069		
Intercept	(0.009)	(0.009)***	(0.008)***	(0.010)***	(0.100)***		
D	0.455	0.601	0.718	0.822	0.969	1.13	
Pop.growth	(0.009)***	(0.016)***	(0.014)***	(0.017)***	(0.126)***		
	0.204	0.102	0.099	0.114	0.181	2.04	
Dem.density	(0.013)***	(0.012)***	(0.011)***	(0.011)***	(0.114)		
_	- 0.126	0.005	- 0.074	- 0.195	- 0.669	2.03	
Pop.size	(0.013)***	(0.011)	(0.010)***	(0.010)***	(0.097)***		
	- 0.128	- 0.097	- 0.076	- 0.088	- 0.309	1.44	
Elevation	(0.011)***	(0.008)***	(0.008)***	(0.011)***	(0.098)***		
	- 0.103	- 0.105	- 0.095	- 0.090	- 0.053	1.18	
Sea prox.	(0.010)***	(0.009)***	(0.008)***	(0.009)***	(0.119)		
	- 0.030	- 0.030	- 0.015	0.005	0.088	1.13	
Cap.city	(0.009)**	(0.004)***	(0.004)***	(0.004)	(0.082)		
Lag. Pop.growth							
Lag.Dem.density							
Lag.Pop.size							
Lag.Elevation				·			
Lag.Sea prox.							
Lag.Cap.city							
Breusch-Pagan	6,326.6***						
Durbin-Watson	1 70***						
Slope equality	1		78 7***				
Moran's I(z)							
W spatial matrix							
A dijusted P^2	0.368	0.236	0.242	0.252	0 305		
Ацизиси-К	0.500	0.250	0.212	0.252	0.505		
AIC	21 703	20.470	10 487	21 374	35 767		
AIC	21,793	20,470 atial weights	19,487	21,374	35,767		
AIC	21,793 Contiguity-based spa	20,470 atial weights	19,487	21,374 Quantile regression	35,767		
AIC	21,793 Contiguity-based spa	20,470 atial weights	19,487	$\begin{array}{c} 21,374 \\ \hline \\ \textbf{Quantile regression} \\ \textbf{r} = 0.25 \\ \end{array}$	35,767	$\tau = 0.75$	$\tau = 0.99$
AIC Predictor	21,793 Contiguity-based spa SAR - 0.001	20,470 atial weights SDE - 0.002	19,487 SDM - 0.001	$\begin{array}{c} 21,374\\ \hline \\ \textbf{Quantile regression}\\ \hline \textbf{\tau} = 0.25\\ \hline -0.377 \end{array}$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$
AIC Predictor Intercept	21,793 Contiguity-based spa SAR - 0.001 (0.009)	20,470 atial weights SDE - 0.002 (0.012)	19,487 SDM - 0.001 (0.008)	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$	$\frac{\tau = 0.50}{(0.008)^{***}}$	$\tau = 0.75$ 0.353 (0.011)***	$\tau = 0.99$ 1.826 (0.168)***
AIC Predictor Intercept	21,793 Contiguity-based spa SAR - 0.001 (0.009) 0.445	20,470 atial weights SDE - 0.002 (0.012) 0.445	19,487 SDM - 0.001 (0.008) 0.447	21,374 Quantile regression $\tau = 0.25$ - 0.377 (0.012)*** 0.596	35,767 τ = 0.50 - 0.029 (0.008)*** 0.702	τ = 0.75 0.353 (0.011)***	$\tau = 0.99$ 1.826 (0.168)***
AIC Predictor Intercept Pop.growth	21,793 Contiguity-based spectrum SAR - 0.001 (0.009) 0.445 (0.009)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)***	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$	$\frac{\tau = 0.50}{(0.008)^{***}}$ 0.702 (0.018)^{***}	$\tau = 0.75$ 0.353 (0.011)*** 0.812 (0.020)***	τ = 0.99 1.826 (0.168)*** 0.951 (0.110)***
AIC Predictor Intercept Pop.growth	21,793 Contiguity-based spa SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078	$\frac{\tau = 0.50}{-0.029}$ (0.008)*** 0.702 (0.018)*** 0.081	$\tau = 0.75$ 0.353 (0.011)*** 0.812 (0.020)*** 0.090	$\tau = 0.99$ 1.826 (0.168)*** 0.951 (0.110)*** 0.173
AIC Predictor Intercept Pop.growth Dem.density	21,793 Contiguity-based spectrum SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)***	21,374 Quantile regression τ = 0.25 - 0.377 (0.012)*** 0.596 (0.022)*** 0.078 (0.014)***	$\frac{\tau = 0.50}{-0.029}$ (0.008)*** 0.702 (0.018)*** 0.081 (0.012)***	$\tau = 0.75$ 0.353 (0.011)*** 0.812 (0.020)*** 0.090 (0.014)***	$\tau = 0.99$ 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)*
AIC Predictor Intercept Pop.growth Dem.density	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084	21,374 Quantile regression τ = 0.25 - 0.377 (0.012)*** 0.596 (0.022)*** 0.078 (0.014)*** 0.023	$\frac{\tau = 0.50}{-0.029}$ (0.008)*** 0.702 (0.018)*** 0.081 (0.012)*** -0.058	$\tau = 0.75$ 0.353 (0.011)*** 0.812 (0.020)*** 0.090 (0.014)*** - 0.179	$\tau = 0.99$ 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641
AIC Predictor Intercept Pop.growth Dem.density Pop.size	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.013)***	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$	$\begin{aligned} \mathbf{\tau} &= 0.50 \\ &- 0.029 \\ (0.008)^{***} \\ &0.702 \\ (0.018)^{***} \\ &0.081 \\ (0.012)^{***} \\ &- 0.058 \\ (0.012)^{***} \end{aligned}$	$\tau = 0.75$ 0.353 (0.011)*** 0.812 (0.020)*** 0.090 (0.014)*** - 0.179 (0.012)***	$\tau = 0.99$ 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)***
AIC Predictor Intercept Pop.growth Dem.density Pop.size	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.106	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.013)*** - 0.080	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072	$\frac{\tau = 0.50}{-0.029}$ (0.008)*** 0.702 (0.018)*** 0.081 (0.012)*** -0.058 (0.012)*** -0.051	$\tau = 0.75$ 0.353 (0.011)*** 0.812 (0.020)*** 0.090 (0.014)*** - 0.179 (0.012)*** - 0.089	$\tau = 0.99$ 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.106 (0.011)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.013)*** - 0.080 (0.012)***	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$	35,767 τ = 0.50 - 0.029 (0.008)*** 0.702 (0.018)*** 0.081 (0.012)*** - 0.058 (0.012)*** - 0.061 (0.008)***	$\tau = 0.75$ 0.353 (0.011)*** 0.812 (0.020)*** 0.090 (0.014)*** - 0.179 (0.012)*** - 0.089 (0.013)***	r = 0.99 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)**
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)*** - 0.073	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.106 (0.011)*** - 0.061	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.013)*** - 0.080 (0.012)*** - 0.030	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$ - 0.077	$\begin{array}{c} 35,767 \\ \hline \tau = 0.50 \\ - 0.029 \\ (0.008)^{***} \\ 0.702 \\ (0.018)^{***} \\ 0.081 \\ (0.012)^{***} \\ - 0.058 \\ (0.012)^{***} \\ - 0.061 \\ (0.008)^{***} \\ - 0.067 \end{array}$	$\tau = 0.75$ 0.353 (0.011)*** 0.812 (0.020)*** 0.090 (0.014)*** - 0.179 (0.012)*** - 0.089 (0.013)*** - 0.070	$\tau = 0.99$ 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)** 0.043
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox.	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)*** - 0.073 (0.009)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.106 (0.011)*** - 0.061 (0.010)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.010)***	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$ - 0.077 $(0.009)^{***}$	35,767 τ = 0.50 - 0.029 (0.008)*** 0.702 (0.018)*** 0.081 (0.012)*** - 0.058 (0.012)*** - 0.061 (0.008)*** - 0.067 (0.008)***	$\tau = 0.75$ 0.353 (0.011)*** 0.812 (0.020)*** 0.090 (0.014)*** - 0.179 (0.012)*** - 0.089 (0.013)*** - 0.070 (0.012)***	$\tau = 0.99$ 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)** 0.043 (0.102)
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox.	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)*** - 0.073 (0.009)*** - 0.032	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.104 (0.013)*** - 0.061 (0.010)*** - 0.061 (0.010)*** - 0.036	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.010)*** - 0.037	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$ - 0.077 $(0.009)^{***}$ - 0.031	35,767 τ = 0.50 - 0.029 (0.008)*** 0.702 (0.018)*** 0.081 (0.012)*** - 0.058 (0.012)*** - 0.061 (0.008)*** - 0.067 (0.008)***	$\tau = 0.75$ 0.353 (0.011)*** 0.812 (0.020)*** 0.090 (0.014)*** - 0.179 (0.012)*** - 0.089 (0.013)*** - 0.070 (0.012)*** 0.003	$\tau = 0.99$ 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)** 0.043 (0.102) 0.065
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)*** - 0.073 (0.009)*** - 0.032 (0.009)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.106 (0.011)*** - 0.061 (0.010)*** - 0.036 (0.009)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.010)*** - 0.037 (0.009)***	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$ - 0.077 $(0.009)^{***}$ - 0.031 $(0.006)^{***}$	$\frac{\tau = 0.50}{-0.029}$ (0.008)*** 0.702 (0.018)*** 0.081 (0.012)*** -0.058 (0.012)*** -0.061 (0.008)*** -0.067 (0.008)*** -0.019 (0.005)***	$\tau = 0.75$ 0.353 (0.011)*** 0.812 (0.020)*** 0.090 (0.014)*** - 0.179 (0.012)*** - 0.089 (0.013)*** - 0.070 (0.012)*** 0.003 (0.006)	$\tau = 0.99$ 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)** 0.043 (0.102) 0.065 (0.037)*
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)*** - 0.073 (0.009)*** - 0.032 (0.009)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.104 (0.013)*** - 0.106 (0.011)*** - 0.061 (0.010)*** - 0.036 (0.009)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.013)*** - 0.084 (0.012)*** - 0.080 (0.012)*** - 0.030 (0.010)*** - 0.037 (0.009)***	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$ - 0.077 $(0.009)^{***}$ - 0.031 $(0.006)^{***}$	35,767 τ = 0.50 - 0.029 (0.008)*** 0.702 (0.018)*** 0.081 (0.012)*** - 0.058 (0.012)*** - 0.061 (0.008)*** - 0.067 (0.008)*** - 0.019 (0.005)***	$\tau = 0.75$ 0.353 (0.011)*** 0.812 (0.020)*** 0.090 (0.014)*** - 0.179 (0.012)*** - 0.089 (0.013)*** - 0.070 (0.012)*** 0.003 (0.006)	$ \tau = 0.99 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)** 0.043 (0.102) 0.065 (0.037)* $
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)*** - 0.073 (0.009)*** - 0.032 (0.009)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.104 (0.013)*** - 0.106 (0.011)*** - 0.061 (0.010)*** - 0.036 (0.009)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.013)*** - 0.084 (0.012)*** - 0.080 (0.012)*** - 0.030 (0.010)*** - 0.037 (0.009)*** 0.009	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$ - 0.077 $(0.009)^{***}$ - 0.031 $(0.006)^{***}$	$\begin{array}{c} \textbf{$\tau = 0.50$} \\ \hline \textbf{$\tau = 0.029$} \\ \hline (0.008)^{***} \\ \hline 0.702$ \\ \hline (0.018)^{***} \\ \hline 0.081$ \\ \hline (0.012)^{***} \\ \hline - 0.058$ \\ \hline (0.012)^{***} \\ \hline - 0.061$ \\ \hline (0.008)^{***} \\ \hline - 0.067$ \\ \hline (0.008)^{***} \\ \hline - 0.019$ \\ \hline (0.005)^{***} \end{array}$	$ \tau = 0.75 0.353 (0.011)*** 0.812 (0.020)*** 0.090 (0.014)*** - 0.179 (0.012)*** - 0.089 (0.013)*** - 0.070 (0.012)*** 0.003 (0.006) $	$ \tau = 0.99 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)** 0.043 (0.102) 0.065 (0.037)* $
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)*** - 0.073 (0.009)*** - 0.032 (0.009)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.104 (0.011)*** - 0.061 (0.010)*** - 0.036 (0.009)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.013)*** - 0.084 (0.012)*** - 0.080 (0.012)*** - 0.030 (0.010)*** - 0.037 (0.009)*** 0.009 (0.025) 0.030	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$ - 0.077 $(0.009)^{***}$ - 0.031 $(0.006)^{***}$	$\begin{array}{c} \textbf{$\tau = 0.50$} \\ \hline \textbf{$\tau = 0.029$} \\ \hline (0.008)^{***} \\ \hline 0.702$ \\ \hline (0.018)^{***} \\ \hline 0.081$ \\ \hline (0.012)^{***} \\ \hline - 0.058$ \\ \hline (0.012)^{***} \\ \hline - 0.061$ \\ \hline (0.008)^{***} \\ \hline - 0.067$ \\ \hline (0.008)^{***} \\ \hline - 0.019$ \\ \hline (0.005)^{***} \end{array}$	$ $	$ \tau = 0.99 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)** 0.043 (0.102) 0.065 (0.037)* $
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)*** - 0.073 (0.009)*** - 0.032 (0.009)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.106 (0.011)*** - 0.061 (0.010)*** - 0.036 (0.009)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.012)*** - 0.080 (0.012)*** - 0.030 (0.010)*** - 0.037 (0.009)*** 0.009 (0.025) - 0.029	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$ - 0.077 $(0.009)^{***}$ - 0.031 $(0.006)^{***}$	$\begin{array}{c} \textbf{$\tau = 0.50$} \\ \hline \textbf{$\tau = 0.029$} \\ \hline (0.008)^{***} \\ \hline 0.702$ \\ \hline (0.018)^{***} \\ \hline 0.081$ \\ \hline (0.012)^{***} \\ \hline - 0.058$ \\ \hline (0.012)^{***} \\ \hline - 0.061$ \\ \hline (0.008)^{***} \\ \hline - 0.067$ \\ \hline (0.008)^{***} \\ \hline - 0.019$ \\ \hline (0.005)^{***} \end{array}$	$ $	$ \tau = 0.99 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)** 0.043 (0.102) 0.065 (0.037)* $
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)*** - 0.073 (0.009)*** - 0.032 (0.009)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.106 (0.011)*** - 0.061 (0.010)*** - 0.036 (0.009)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.012)*** - 0.080 (0.012)*** - 0.030 (0.010)*** - 0.037 (0.009)*** 0.009 (0.025) - 0.029 (0.024)	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$ - 0.077 $(0.009)^{***}$ - 0.031 $(0.006)^{***}$	$\begin{array}{c} \hline \tau = 0.50 \\ \hline -0.029 \\ \hline (0.008)^{***} \\ \hline 0.702 \\ \hline (0.018)^{***} \\ \hline 0.081 \\ \hline (0.012)^{***} \\ \hline -0.058 \\ \hline (0.012)^{***} \\ \hline -0.061 \\ \hline (0.008)^{***} \\ \hline -0.067 \\ \hline (0.008)^{***} \\ \hline -0.019 \\ \hline (0.005)^{***} \end{array}$	$ $	$ \tau = 0.99 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)** 0.043 (0.102) 0.065 (0.037)* $
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)*** - 0.073 (0.009)*** - 0.032 (0.009)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.106 (0.011)*** - 0.061 (0.010)*** - 0.036 (0.009)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.012)*** - 0.030 (0.010)*** - 0.037 (0.009)*** 0.009 (0.025) - 0.029 (0.024) - 0.058	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$ - 0.077 $(0.009)^{***}$ - 0.031 $(0.006)^{***}$	35,767 τ = 0.50 - 0.029 (0.008)*** 0.702 (0.018)*** 0.081 (0.012)*** - 0.058 (0.012)*** - 0.061 (0.008)*** - 0.067 (0.008)*** - 0.019 (0.005)***	$\tau = 0.75$ 0.353 $(0.011)^{***}$ 0.812 $(0.020)^{***}$ 0.090 $(0.014)^{***}$ $- 0.179$ $(0.012)^{***}$ $- 0.089$ $(0.013)^{***}$ $- 0.070$ $(0.012)^{***}$ 0.003 (0.006)	$ \tau = 0.99 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)** 0.043 (0.102) 0.065 (0.037)* $
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)*** - 0.073 (0.009)*** - 0.032 (0.009)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.104 (0.013)*** - 0.061 (0.010)*** - 0.036 (0.009)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.010)*** - 0.037 (0.009)*** 0.009 (0.025) - 0.029 (0.024) - 0.058 (0.024)**	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$ - 0.077 $(0.009)^{***}$ - 0.031 $(0.006)^{***}$	35,767 τ = 0.50 - 0.029 (0.008)*** 0.702 (0.018)*** 0.081 (0.012)*** - 0.058 (0.012)*** - 0.061 (0.008)*** - 0.067 (0.008)*** - 0.019 (0.005)***	$ \tau = 0.75 0.353 (0.011)*** 0.812 (0.020)*** 0.090 (0.014)*** - 0.179 (0.012)*** - 0.089 (0.013)*** - 0.070 (0.012)*** 0.003 (0.006) $	$ \tau = 0.99 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)** 0.043 (0.102) 0.065 (0.037)* $
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size Lag.Elevation	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)*** - 0.073 (0.009)*** - 0.032 (0.009)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.104 (0.013)*** - 0.106 (0.011)*** - 0.061 (0.009)*** - 0.036 (0.009)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.010)*** - 0.037 (0.009)*** 0.009 (0.025) - 0.029 (0.024) - 0.058 (0.024)** - 0.074	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$ - 0.077 $(0.009)^{***}$ - 0.031 $(0.006)^{***}$	35,767 τ = 0.50 - 0.029 (0.008)*** 0.702 (0.018)*** 0.081 (0.012)*** - 0.058 (0.012)*** - 0.061 (0.008)*** - 0.067 (0.008)*** - 0.019 (0.005)***	$ \tau = 0.75 0.353 (0.011)*** 0.812 (0.020)*** 0.090 (0.014)*** - 0.179 (0.012)*** - 0.089 (0.013)*** - 0.070 (0.012)*** 0.003 (0.006) $	$\tau = 0.99$ 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)** 0.043 (0.102) 0.065 (0.037)*
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag.Pop.growth Lag.Dem.density Lag.Pop.size Lag.Elevation	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)*** - 0.073 (0.009)*** - 0.032 (0.009)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** 0.196 (0.013)*** - 0.104 (0.013)*** - 0.104 (0.013)*** - 0.061 (0.010)*** - 0.061 (0.009)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.012)*** - 0.037 (0.009)*** 0.009 (0.025) - 0.029 (0.024) - 0.058 (0.024)** - 0.074 (0.019)*** 0.001 (0.029)***	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$ - 0.077 $(0.009)^{***}$ - 0.031 $(0.006)^{***}$	35,767 τ = 0.50 - 0.029 (0.008)*** 0.702 (0.018)*** 0.081 (0.012)*** - 0.058 (0.012)*** - 0.061 (0.008)*** - 0.067 (0.008)*** - 0.019 (0.005)***	$ \tau = 0.75 0.353 (0.011)*** 0.812 (0.020)*** 0.090 (0.014)*** - 0.179 (0.012)*** - 0.089 (0.013)*** - 0.070 (0.012)*** 0.003 (0.006) $	$ \tau = 0.99 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)** 0.043 (0.102) 0.065 (0.037)* $
AIC Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag.Pop.growth Lag.Dem.density Lag.Pop.size Lag.Elevation Lag.Sea prox.	21,793 Contiguity-based space SAR - 0.001 (0.009) 0.445 (0.009)*** 0.181 (0.013)*** - 0.106 (0.012)*** - 0.109 (0.010)*** - 0.073 (0.009)*** - 0.032 (0.009)***	20,470 atial weights SDE - 0.002 (0.012) 0.445 (0.009)*** - 0.104 (0.013)*** - 0.104 (0.013)*** - 0.106 (0.011)*** - 0.061 (0.010)*** - 0.036 (0.009)***	19,487 SDM - 0.001 (0.008) 0.447 (0.009)*** 0.178 (0.014)*** - 0.084 (0.013)*** - 0.080 (0.012)*** - 0.030 (0.010)*** - 0.037 (0.009) (0.025) - 0.029 (0.024)** - 0.074 (0.019)***	21,374 Quantile regression $\tau = 0.25$ - 0.377 $(0.012)^{***}$ 0.596 $(0.022)^{***}$ 0.078 $(0.014)^{***}$ 0.023 $(0.011)^{**}$ - 0.072 $(0.008)^{***}$ - 0.077 $(0.009)^{***}$ - 0.031 $(0.006)^{***}$	35,767 τ = 0.50 - 0.029 (0.008)*** 0.702 (0.018)*** 0.081 (0.012)*** - 0.058 (0.012)*** - 0.061 (0.008)*** - 0.067 (0.005)***	$ $	$ \tau = 0.99 1.826 (0.168)*** 0.951 (0.110)*** 0.173 (0.089)* - 0.641 (0.067)*** - 0.274 (0.124)** 0.043 (0.102) 0.065 (0.037)* $

	Contiguity-based spatial weights							
				Quantile regression				
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	
Lag Cap city			0.046					
Lag.Cap.city			(0.021)**					
Breusch-Pagan								
Durbin-Watson								
Slope equality								
Moran's I(z)				0.153***				
W spatial matrix				***	***	***	ns	
Adjusted-R ²	0.337	0.336	0.350					
AIC	21,544	21,406	21,383	-				
	Distance-based spati	al weights		1				
				Quantile regression				
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	
• · · ·	- 0.004	- 0.012	- 0.005	- 0.369	- 0.038	0.317	2.053	
Intercept	(0.008)	(0.131)	(0.009)	(0.009)***	(0.006)***	(0.011)***	(0.121)***	
	0.457	0.452	0.449	0.635	0.733	0.819	0.980	
Pop.growth	(0.009)***	(0.009)***	(0.009)***	(0.024)***	(0.017)***	(0.025)***	(0.097)***	
D 1 1	0.164	0.193	0.195	0.028	0.043	0.107	0.174	
Dem.density	(0.013)***	(0.013)***	(0.014)***	(0.013)**	(0.012)***	(0.016)***	(0.103)*	
	- 0.056	- 0.069	- 0.073	0.071	- 0.027	- 0.159	- 0.654	
Pop.size	(0.012)***	(0.014)***	(0.014)***	(0.011)***	(0.011)**	(0.013)***	(0.082)***	
- (- 0.046	- 0.042	- 0.047	- 0.025	- 0.011	- 0.015	- 0.292	
Elevation	(0.010)***	(0.012)***	(0.012)***	(0.009)***	(0.008)	(0.015)	(0.126)**	
	0.005	0.011	0.011	- 0.013	0.005	0.013	- 0.049	
Sea prox.	(0.009)	(0.010)***	(0.010)	(0.010)	(0.009)	(0.014)	(0.111)	
	- 0.043	- 0.046	- 0.045	- 0.039	- 0.023	0.004	0.085	
Cap.city	(0.009)***	(0.009)***	(0.009)***	(0.005)***	(0.005)***	(0.008)	(0.042)**	
I. D. d		1	- 0.521		1			
Lag. Pop.growth			(0.168)****					
			- 0.274	1				
Lag.Dem.density			(0.058)***	1				
I D I	1		0.237	1				
Lag.Pop.size			(0.082)**	-				
L			0.113					
Lag.Elevation			(0.037)***					
I			- 0.176					
Lag.Sea prox.			(0.047)***					
Les Constitu			- 0.200					
Lag.Cap.city			(0.397)					
Breusch-Pagan	1							
Durbin-Watson								
Slope equality								
Moran's I(z)	1			0.094***				
W spatial matrix	1			***	***	***	ns	
Adjusted-R ²	0.368	0.374	0.376		·			
AIC	21,097	20,969	21,008	1				

Table 7. Results of standard (OLS, Ordinary Least Square, and quantile) regressions as well as global (SAR: Spatial Autoregressive model; SDE: Spatial Error model; SDM: Spatial Durbin model) and quantile spatial models run with both contiguity and linear distance spatial weighting matrices; population growth rate (% annual) in 1991–2001 as dependent variable; population growth rate (1981–1991), demographic density (1981), population size (1981), elevation, proximity to the sea coast and a dummy indicating municipalities that act as provincial head town as predictors (*p < 0.05; ** 0.001 ; *** <math>p < 0.001).

		Quantile regression								
Predictor	OLS	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	VIF				
Intercent	pprox 0.000	- 0.407	- 0.077	0.315	2.093					
Intercept	(0.008)	(0.008)***	(0.007)***	(0.010)***	(0.102)***					
Don growth	0.614	0.576	0.635	0.669	0.862	1.17				
1 op.growin	(0.008)***	(0.008)***	(0.008)***	(0.012)***	(0.101)***					
Dem density	0.111	0.066	0.102	0.135	0.412	2.20				
Demidensity	(0.011)***	(0.009)***	(0.009)***	(0.014)***	(0.101)***					
Popsize	- 0.054	0.073	- 0.017	- 0.114	- 0.733	2.15				
1 00.3120	(0.011)***	(0.008)***	(0.009)*	(0.012)***	(0.097)***					
Elevation	- 0.125	- 0.086	- 0.084	- 0.128	- 0.162	1.45				
Lievation	(0.009)***	(0.007)***	(0.008)***	(0.012)***	(0.046)***					
Sea prov	- 0.046	- 0.054	- 0.041	- 0.041	0.030	1.20				
Sea prox.	(0.008)***	(0.006)***	(0.007)***	(0.010)***	(0.055)					
Cancity	- 0.001	- 0.010	- 0.001	0.014	0.133	1.12				
Capleity	(0.008)	(0.004)**	(0.005)	(0.007)*	(0.070)*					
Lag. Pop.growth										
Lag.Dem.density										
Lag.Pop.size										
Lag.Elevation										
Lag.Sea prox.										
Lag.Cap.city										
Breusch-Pagan	2262.1***									
Durbin-Watson	1.88***									
Slope equality			47.9***							
Moran's I(z)										
W spatial matrix										
Adjusted-R ²	0.475	0.335	0.326	0.308	0.290					
AIC					1					
AIC	24,803	22,731	22,607	25,025	40,706					
AIC	Contiguity-based spa	22,731 atial weights	22,607	25,025	40,706					
AIC	24,803 Contiguity-based spa	22,731 atial weights	22,607	25,025 Quantile regression	40,706					
Predictor	24,803 Contiguity-based spa	22,731 atial weights SDE	22,607	$25,025$ Quantile regression $\tau = 0.25$	40,706 $\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$			
Predictor	24,803 Contiguity-based spa SAR ≈ 0.000	22,731 atial weights SDE ≈ 0.000	22,607 SDM ≈ 0.000	$25,025$ Quantile regression $\tau = 0.25$ $- 0.371$	40,706 τ = 0.50 - 0.071	τ = 0.75 0.278	τ = 0.99 1.916			
Predictor Intercept	24,803 Contiguity-based spa SAR ≈ 0.000 (0.003)	22,731 atial weights SDE ≈ 0.000 (0.009)	22,607 SDM ≈ 0.000 (0.007)	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$	40,706 τ = 0.50 - 0.071 (0.007)***	τ = 0.75 0.278 (0.011)***	τ = 0.99 1.916 (0.155)***			
Predictor Intercept Pop growth	24,803 Contiguity-based spa SAR ≈ 0.000 (0.003) 0.598	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605	22,607 SDM ≈ 0.000 (0.007) 0.584	25,025 Quantile regression τ = 0.25 - 0.371 (0.008)*** 0.549	40,706 τ = 0.50 - 0.071 (0.007)*** 0.607	τ = 0.75 0.278 (0.011)*** 0.641	τ = 0.99 1.916 (0.155)*** 0.855			
Predictor Intercept Pop.growth	24,803 Contiguity-based space SAR ≈ 0.000 (0.003) 0.598 (0.008)***	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)***	22,607 SDM ≈ 0.000 (0.007) 0.584 (0.008)***	25,025 Quantile regression τ = 0.25 - 0.371 (0.008)*** 0.549 (0.014)***	40,706 τ = 0.50 - 0.071 (0.007)*** 0.607 (0.011)***	τ = 0.75 0.278 (0.011)*** 0.641 (0.016)***	τ = 0.99 1.916 (0.155)*** 0.855 (0.080)***			
Predictor Intercept Pop.growth	24,803 Contiguity-based space SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** 0.109	22,607 SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060	40,706 τ = 0.50 - 0.071 (0.007)*** 0.607 (0.011)*** 0.093	τ = 0.75 0.278 (0.011)*** 0.641 (0.016)*** 0.116	r = 0.99 1.916 (0.155)*** 0.855 (0.080)*** 0.346			
Predictor Intercept Pop.growth Dem.density	24,803 Contiguity-based space SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)***	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** 0.109 (0.012)***	22,607 SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094 (0.012)***	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$	40,706 τ = 0.50 - 0.071 (0.007)*** 0.607 (0.011)*** 0.093 (0.010)***	τ = 0.75 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)***	r = 0.99 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)***			
Predictor Intercept Pop.growth Dem.density	24,803 Contiguity-based spr SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** 0.109 (0.012)*** - 0.047	22,607 SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094 (0.012)*** - 0.022	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ 0.083	40,706 τ = 0.50 - 0.071 (0.007)*** 0.607 (0.011)*** 0.093 (0.010)*** - 0.003	$\tau = 0.75$ 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** - 0.095	τ = 0.99 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710			
Predictor Intercept Pop.growth Dem.density Pop.size	24,803 Contiguity-based spr SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)***	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** 0.109 (0.012)*** - 0.047 (0.011)***	22,607 SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094 (0.012)*** - 0.022 (0.012)*	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ 0.083 $(0.009)^{***}$	40,706 τ = 0.50 - 0.071 (0.007)*** 0.607 (0.011)*** 0.093 (0.010)*** - 0.003 (0.010)	$\tau = 0.75$ 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** - 0.095 (0.014)***	τ = 0.99 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)***			
Predictor Intercept Pop.growth Dem.density Pop.size	24,803 Contiguity-based space SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.113	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** 0.109 (0.012)*** - 0.047 (0.011)*** - 0.125	22,607 SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094 (0.012)*** - 0.022 (0.012)* - 0.118	25,025 Quantile regression τ = 0.25 - 0.371 (0.008)*** 0.549 (0.014)*** 0.060 (0.011)*** 0.083 (0.009)*** - 0.069	40,706 τ = 0.50 - 0.071 (0.007)*** 0.607 (0.011)*** 0.093 (0.010)*** - 0.003 (0.010) - 0.076	$\tau = 0.75$ 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** - 0.095 (0.014)*** - 0.112	$\tau = 0.99$ 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation	24,803 Contiguity-based space SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.113 (0.009)***	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** 0.109 (0.012)*** - 0.047 (0.011)*** - 0.125 (0.010)***	22,607 SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094 (0.012)*** - 0.022 (0.012)* - 0.118 (0.011)***	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ 0.083 $(0.009)^{***}$ - 0.069 $(0.009)^{***}$	$\begin{array}{c} 40,706\\ \hline \hline \tau = 0.50\\ - 0.071\\ (0.007)^{***}\\ \hline 0.607\\ (0.011)^{***}\\ \hline 0.093\\ (0.010)^{***}\\ - 0.003\\ (0.010)\\ - 0.076\\ (0.010)^{***}\\ \hline \end{array}$	$\begin{aligned} \mathbf{r} &= 0.75 \\ 0.278 \\ (0.011)^{***} \\ 0.641 \\ (0.016)^{***} \\ 0.116 \\ (0.016)^{***} \\ - 0.095 \\ (0.014)^{***} \\ - 0.112 \\ (0.011)^{***} \end{aligned}$	$\tau = 0.99$ 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147 (0.068)**			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation	24,803 Contiguity-based space SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.042 (0.011)*** - 0.013 (0.009)*** - 0.028	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** 0.109 (0.012)*** - 0.047 (0.011)*** - 0.047 (0.011)*** - 0.125 (0.010)*** - 0.037	22,607 SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094 (0.012)*** - 0.022 (0.012)* - 0.118 (0.011)*** - 0.009	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ 0.083 $(0.009)^{***}$ - 0.069 $(0.009)^{***}$ - 0.035	$\begin{array}{c} 40,706 \\ \hline \tau = 0.50 \\ - 0.071 \\ (0.007)^{***} \\ 0.607 \\ (0.011)^{***} \\ 0.093 \\ (0.010)^{***} \\ - 0.003 \\ (0.010) \\ - 0.076 \\ (0.010)^{***} \\ - 0.022 \end{array}$	$ $	$\tau = 0.99$ 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147 (0.068)** 0.085			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox.	24,803 Contiguity-based space SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.113 (0.009)*** - 0.028 (0.008)***	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** 0.109 (0.012)*** - 0.047 (0.011)*** - 0.125 (0.010)*** - 0.037 (0.008)***	22,607 SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094 (0.012)*** - 0.022 (0.012)* - 0.118 (0.011)*** - 0.009 (0.009)	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ 0.083 $(0.009)^{***}$ - 0.069 $(0.009)^{***}$ - 0.035 $(0.007)^{***}$	40,706 τ = 0.50 - 0.071 (0.007)*** 0.607 (0.011)*** 0.093 (0.010)*** - 0.003 (0.010) - 0.076 (0.010)*** - 0.022 (0.007)***	$\tau = 0.75$ 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** - 0.095 (0.014)*** - 0.112 (0.011)*** - 0.016 (0.009)*	τ = 0.99 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147 (0.068)** 0.085 (0.073)			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox.	24,803 Contiguity-based space SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.042 (0.009)*** - 0.028 (0.008)*** - 0.004	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** 0.109 (0.012)*** - 0.047 (0.011)*** - 0.125 (0.010)*** - 0.037 (0.008)*** - 0.004	22,607 SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094 (0.012)*** - 0.022 (0.012)* - 0.118 (0.011)*** - 0.009 (0.009) - 0.008	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ 0.083 $(0.009)^{***}$ - 0.069 $(0.009)^{***}$ - 0.035 $(0.007)^{***}$ - 0.016	40,706 τ = 0.50 - 0.071 (0.007)*** 0.607 (0.011)*** 0.093 (0.010)*** - 0.003 (0.010) - 0.076 (0.007)*** - 0.022 (0.007)*** - 0.005	$\tau = 0.75$ 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** - 0.095 (0.014)*** - 0.112 (0.011)*** - 0.016 (0.009)* 0.009	$\tau = 0.99$ 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147 (0.068)** 0.085 (0.073) 0.118			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city	24,803 Contiguity-based space SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.113 (0.009)*** - 0.028 (0.008)*** - 0.004 (0.008)	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** - 0.047 (0.011)*** - 0.125 (0.010)*** - 0.037 (0.008)*** - 0.004 (0.008)	22,607 SDM ≈ 0.000 (0.007) 0.584 (0.008)*** - 0.022 (0.012)** - 0.118 (0.011)*** - 0.009 (0.009) - 0.008 (0.008)	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ 0.083 $(0.009)^{***}$ - 0.069 $(0.009)^{***}$ - 0.035 $(0.007)^{***}$ - 0.016 $(0.006)^{**}$	40,706 τ = 0.50 - 0.071 (0.007)*** 0.607 (0.011)*** 0.093 (0.010)*** - 0.003 (0.010) - 0.076 (0.007)*** - 0.022 (0.007)*** - 0.005 (0.006)	$\tau = 0.75$ 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** - 0.095 (0.014)*** - 0.112 (0.011)*** - 0.016 (0.009)* 0.009 (0.006)	r = 0.99 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147 (0.068)** 0.085 (0.073) 0.118 (0.039)***			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city	24,803 Contiguity-based space SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.113 (0.009)*** - 0.028 (0.008)*** - 0.004 (0.008)	$22,731$ atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** 0.109 (0.012)*** - 0.047 (0.011)*** - 0.125 (0.010)*** - 0.037 (0.008)*** - 0.004 (0.008)	22,607 SDM ≈ 0.000 (0.007) 0.584 (0.008)*** - 0.022 (0.012)*** - 0.118 (0.011)*** - 0.009 (0.009) - 0.008 (0.008) 0.0076	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ 0.083 $(0.009)^{***}$ - 0.069 $(0.009)^{***}$ - 0.035 $(0.007)^{***}$ - 0.016 $(0.006)^{**}$	$\begin{array}{c} \mathbf{\tau} = 0.50 \\ - 0.071 \\ (0.007)^{***} \\ 0.607 \\ (0.011)^{***} \\ 0.093 \\ (0.010)^{***} \\ - 0.003 \\ (0.010) \\ - 0.076 \\ (0.010)^{***} \\ - 0.022 \\ (0.007)^{***} \\ - 0.005 \\ (0.006) \end{array}$	$ \tau = 0.75 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** - 0.095 (0.014)*** - 0.112 (0.011)*** - 0.016 (0.009)* 0.009 (0.006) (0.006) $	r = 0.99 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147 (0.068)** 0.085 (0.073) 0.118 (0.039)***			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth	24,803 Contiguity-based spr SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.042 (0.009)*** - 0.028 (0.008)*** - 0.004 (0.008)	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** 0.109 (0.012)*** - 0.047 (0.011)*** - 0.125 (0.010)*** - 0.037 (0.008)*** - 0.004 (0.008)	22,607 SDM ≈ 0.000 (0.007) 0.584 (0.008)*** - 0.022 (0.012)** - 0.118 (0.011)*** - 0.009 (0.009) - 0.008 (0.008) 0.076 (0.021)***	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ 0.083 $(0.009)^{***}$ - 0.069 $(0.009)^{***}$ - 0.035 $(0.007)^{***}$ - 0.016 $(0.006)^{**}$	$\begin{array}{c} \mathbf{\tau} = 0.50 \\ - 0.071 \\ (0.007)^{***} \\ 0.607 \\ (0.011)^{***} \\ 0.093 \\ (0.010)^{***} \\ - 0.003 \\ (0.010) \\ - 0.076 \\ (0.010)^{***} \\ - 0.022 \\ (0.007)^{***} \\ - 0.005 \\ (0.006) \end{array}$	$ \tau = 0.75 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** - 0.095 (0.014)*** - 0.112 (0.011)*** - 0.016 (0.009)* 0.009 (0.006) $	$ \tau = 0.99 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147 (0.068)** 0.085 (0.073) 0.118 (0.039)*** $			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth	24,803 Contiguity-based spr SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.113 (0.009)*** - 0.028 (0.008)*** - 0.004 (0.008)	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** 0.109 (0.012)*** - 0.047 (0.011)*** - 0.125 (0.010)*** - 0.037 (0.008)*** - 0.004 (0.008)	$22,607$ SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094 (0.012)*** - 0.022 (0.012)* - 0.118 (0.011)*** - 0.009 (0.009) - 0.008 (0.008) 0.076 (0.021)*** - 0.003	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ - 0.069 $(0.009)^{***}$ - 0.035 $(0.007)^{***}$ - 0.016 $(0.006)^{**}$	$\begin{array}{c} 40,706 \\ \hline \tau = 0.50 \\ - 0.071 \\ (0.007)^{***} \\ 0.607 \\ (0.011)^{***} \\ 0.093 \\ (0.010)^{***} \\ - 0.003 \\ (0.010) \\ - 0.076 \\ (0.010)^{***} \\ - 0.022 \\ (0.007)^{***} \\ - 0.005 \\ (0.006) \end{array}$	$\tau = 0.75$ 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** -0.095 (0.014)*** -0.112 (0.011)*** -0.016 (0.009)* 0.009 (0.006)	$ \tau = 0.99 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147 (0.068)** 0.085 (0.073) 0.118 (0.039)*** $			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density	24,803 Contiguity-based spr SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.113 (0.009)*** - 0.028 (0.008)*** - 0.004 (0.008)	$22,731$ atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** 0.109 (0.012)*** - 0.047 (0.011)*** - 0.125 (0.010)*** - 0.037 (0.008)*** - 0.004 (0.008)	$22,607$ SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094 (0.012)*** - 0.022 (0.012)* - 0.118 (0.011)*** - 0.009 (0.009) - 0.008 (0.008) 0.076 (0.021)*** - 0.003 (0.022)	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ - 0.069 $(0.009)^{***}$ - 0.035 $(0.007)^{***}$ - 0.016 $(0.006)^{**}$	$\begin{array}{c} 40,706 \\ \hline \tau = 0.50 \\ - 0.071 \\ (0.007)^{***} \\ 0.607 \\ (0.011)^{***} \\ 0.093 \\ (0.010)^{***} \\ - 0.003 \\ (0.010) \\ - 0.076 \\ (0.010)^{***} \\ - 0.022 \\ (0.007)^{***} \\ - 0.005 \\ (0.006) \end{array}$	$\tau = 0.75$ 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** - 0.095 (0.014)*** - 0.112 (0.011)*** - 0.016 (0.009)* 0.009 (0.006)	$\tau = 0.99$ 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147 (0.068)** 0.0855 (0.073) 0.118 (0.039)***			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density	24,803 Contiguity-based spr SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.042 (0.009)*** - 0.028 (0.008)*** - 0.004 (0.008)	$22,731$ atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** 0.109 (0.012)*** - 0.047 (0.011)*** - 0.125 (0.010)*** - 0.037 (0.008)*** - 0.004 (0.008)	$22,607$ SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094 (0.012)*** - 0.022 (0.012)* - 0.118 (0.011)*** - 0.009 (0.009) - 0.008 (0.008) 0.076 (0.021)*** - 0.003 (0.022) - 0.058	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ - 0.069 $(0.009)^{***}$ - 0.035 $(0.007)^{***}$ - 0.016 $(0.006)^{**}$	$\begin{array}{c} 40,706 \\ \hline \tau = 0.50 \\ - 0.071 \\ (0.007)^{***} \\ 0.607 \\ (0.011)^{***} \\ 0.093 \\ (0.010)^{***} \\ - 0.003 \\ (0.010) \\ - 0.076 \\ (0.010)^{***} \\ - 0.022 \\ (0.007)^{***} \\ - 0.005 \\ (0.006) \end{array}$	$\tau = 0.75$ 0.278 $(0.011)^{***}$ 0.641 $(0.016)^{***}$ 0.116 $(0.016)^{***}$ - 0.095 $(0.014)^{***}$ - 0.112 $(0.011)^{***}$ - 0.016 $(0.009)^*$ 0.009 (0.006)	$\tau = 0.99$ 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147 (0.068)** 0.085 (0.073) 0.118 (0.039)***			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density	24,803 Contiguity-based space SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.042 (0.009)*** - 0.028 (0.008)*** - 0.004 (0.008)	$22,731$ atial weights $SDE \\ \approx 0.000 \\ (0.009) \\ 0.605 \\ (0.008)^{***} \\ - 0.047 \\ (0.011)^{***} \\ - 0.047 \\ (0.010)^{***} \\ - 0.037 \\ (0.008)^{***} \\ - 0.004 \\ (0.008)$	$22,607$ SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094 (0.012)*** - 0.022 (0.012)* - 0.118 (0.011)*** - 0.009 (0.009) - 0.008 (0.009) - 0.008 (0.008) 0.076 (0.021)*** - 0.003 (0.022) - 0.058 (0.022)***	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ - 0.069 $(0.009)^{***}$ - 0.035 $(0.007)^{***}$ - 0.016 $(0.006)^{**}$	$\begin{array}{c} 40,706 \\ \hline \tau = 0.50 \\ \hline -0.071 \\ (0.007)^{***} \\ \hline 0.607 \\ (0.011)^{***} \\ \hline 0.093 \\ (0.010)^{***} \\ \hline -0.003 \\ (0.010) \\ \hline -0.076 \\ (0.010)^{***} \\ \hline -0.022 \\ (0.007)^{***} \\ \hline -0.005 \\ (0.006) \end{array}$	$\tau = 0.75$ 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** - 0.095 (0.014)*** - 0.112 (0.011)*** - 0.016 (0.009)* 0.009 (0.006)	$ \tau = 0.99 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147 (0.068)** 0.085 (0.073) 0.118 (0.039)*** $			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size	24,803 Contiguity-based space SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.113 (0.009)*** - 0.028 (0.008)*** - 0.004 (0.008)	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** - 0.047 (0.011)*** - 0.125 (0.010)*** - 0.037 (0.008)*** - 0.004 (0.008)	$22,607$ SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094 (0.012)*** - 0.022 (0.012)* - 0.118 (0.011)*** - 0.009 (0.009) - 0.008 (0.009) - 0.008 (0.008) 0.076 (0.021)*** - 0.003 (0.022) - 0.058 (0.022)*** 0.023	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ 0.083 $(0.009)^{***}$ - 0.069 $(0.009)^{***}$ - 0.035 $(0.007)^{***}$ - 0.016 $(0.006)^{**}$	40,706 τ = 0.50 - 0.071 (0.007)*** 0.607 (0.011)*** 0.093 (0.010)*** - 0.003 (0.010) - 0.076 (0.010)*** - 0.022 (0.007)*** - 0.005 (0.006)	$ \tau = 0.75 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** - 0.095 (0.014)*** - 0.112 (0.011)*** - 0.016 (0.009)* 0.009 (0.006) $	$ \tau = 0.99 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.710 (0.068)** 0.0685 (0.073) 0.118 (0.039)*** $			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size Lag.Elevation	24,803 Contiguity-based spr SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.042 (0.009)*** - 0.028 (0.008)*** - 0.004 (0.008)	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** - 0.047 (0.011)*** - 0.125 (0.010)*** - 0.037 (0.008)*** - 0.004 (0.008)	$22,607$ SDM ≈ 0.000 (0.007) 0.584 (0.008)*** 0.094 (0.012)*** - 0.022 (0.012)* - 0.118 (0.011)*** - 0.009 (0.009) - 0.008 (0.009) - 0.008 (0.008) 0.076 (0.021)*** - 0.003 (0.022) - 0.058 (0.022)*** 0.023 (0.017)	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ - 0.069 $(0.009)^{***}$ - 0.035 $(0.007)^{***}$ - 0.016 $(0.006)^{**}$	40,706 τ = 0.50 - 0.071 (0.007)*** 0.607 (0.011)*** 0.093 (0.010)*** - 0.003 (0.010) - 0.076 (0.007)*** - 0.005 (0.006)	$ \tau = 0.75 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** - 0.095 (0.014)*** - 0.112 (0.011)*** - 0.016 (0.009)* 0.009 (0.006) $	$\tau = 0.99$ 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147 (0.068)** 0.085 (0.073) 0.118 (0.039)***			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size Lag.Elevation	24,803 Contiguity-based spr SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.113 (0.009)*** - 0.028 (0.008)*** - 0.004 (0.008)	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** - 0.047 (0.011)*** - 0.125 (0.010)*** - 0.037 (0.008)*** - 0.004 (0.008)	22,607 SDM ≈ 0.000 (0.007) 0.584 $(0.008)^{***}$ 0.094 $(0.012)^{***}$ - 0.022 $(0.012)^{*}$ - 0.118 $(0.011)^{***}$ - 0.118 $(0.011)^{***}$ - 0.009 (0.009) - 0.008 (0.009) - 0.008 $(0.021)^{***}$ - 0.003 (0.022) - 0.058 $(0.022)^{***}$ 0.023 (0.017) - 0.088	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ - 0.069 $(0.009)^{***}$ - 0.035 $(0.007)^{***}$ - 0.016 $(0.006)^{**}$	40,706 τ = 0.50 - 0.071 (0.007)*** 0.607 (0.011)*** 0.093 (0.010)*** - 0.003 (0.010) - 0.076 (0.007)*** - 0.005 (0.006)	$ \tau = 0.75 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** - 0.095 (0.014)*** - 0.112 (0.011)*** - 0.016 (0.009)* 0.009 (0.006) $	$\tau = 0.99$ 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147 (0.068)** 0.085 (0.073) 0.118 (0.039)***			
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag.Pop.growth Lag.Dem.density Lag.Pop.size Lag.Pop.size Lag.Pop.size Lag.Sea prox.	24,803 Contiguity-based spr SAR ≈ 0.000 (0.003) 0.598 (0.008)*** 0.101 (0.011)*** - 0.042 (0.011)*** - 0.113 (0.009)*** - 0.028 (0.008)*** - 0.004 (0.008)	22,731 atial weights SDE ≈ 0.000 (0.009) 0.605 (0.008)*** - 0.047 (0.010)*** - 0.125 (0.010)*** - 0.037 (0.008)*** - 0.004 (0.008)	22,607 SDM ≈ 0.000 (0.007) 0.584 $(0.008)^{***}$ 0.094 $(0.012)^{***}$ - 0.022 $(0.012)^{*}$ - 0.118 $(0.011)^{***}$ - 0.009 (0.009) - 0.008 (0.009) - 0.008 (0.008) 0.076 $(0.021)^{***}$ - 0.003 (0.022) - 0.058 $(0.022)^{***}$ 0.023 (0.017) - 0.088 $(0.016)^{***}$	25,025 Quantile regression $\tau = 0.25$ - 0.371 $(0.008)^{***}$ 0.549 $(0.014)^{***}$ 0.060 $(0.011)^{***}$ - 0.083 $(0.009)^{***}$ - 0.069 $(0.009)^{***}$ - 0.035 $(0.007)^{***}$ - 0.016 $(0.006)^{**}$	40,706 τ = 0.50 - 0.071 (0.007)*** 0.607 (0.011)*** - 0.093 (0.010)*** - 0.003 (0.010) - 0.076 (0.007)*** - 0.022 (0.007)*** - 0.005 (0.006)	$ \tau = 0.75 0.278 (0.011)*** 0.641 (0.016)*** 0.116 (0.016)*** - 0.095 (0.014)*** - 0.112 (0.011)*** - 0.016 (0.009)* 0.009 (0.006) $	r = 0.99 1.916 (0.155)*** 0.855 (0.080)*** 0.346 (0.129)*** - 0.710 (0.100)*** - 0.147 (0.068)** 0.085 (0.073) 0.118 (0.039)***			

	Contiguity-based spatial weights							
				Quantile regression				
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	
Log Con city			0.034					
Lag.Cap.city			(0.019)*					
Breusch-Pagan	1							
Durbin-Watson]							
Slope equality]							
Moran's I(z)]			0.163***				
W spatial matrix	1			***	***	***	ns	
Adjusted-R ²	0.483	0.478	0.488					
AIC	17,681	17,604	17,600	-				
	Distance-based spati	al weights	1					
				Quantile regression		·		
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	
T	- 0.002	- 0.023	0.005	- 0.393	- 0.083	0.288	2.110	
Intercept	(0.007)	(0.067)	(0.008)	(0.007)***	(0.006)***	(0.010)***	(0.095)***	
D d	0.58	0.574	0.571	0.520	0.584	0.618	0.862	
Pop.growth	(0.008)***	(0.008)***	(0.008)***	(0.015)***	(0.010)***	(0.012)***	(0.080)***	
Dave landte	0.102	0.105	0.110	0.060	0.089	0.141	0.390	
Dem.density	(0.011)***	(0.013)***	(0.013)***	(0.012)***	(0.011)***	(0.012)***	(0.131)**	
	- 0.020	- 0.020	- 0.023	0.113	0.013	- 0.095	- 0.718	
Pop.size	(0.011)***	(0.012)	(0.013)*	(0.009)***	(0.010)	(0.012)***	(0.102)***	
- 0.087	- 0.087	- 0.108	- 0.121	- 0.040	- 0.055	- 0.085	- 0.176	
Elevation	(0.010)***	(0.010)***	(0.011)***	(0.008)***	(0.010)***	(0.012)***	(0.080)**	
	0.004	pprox 0.000	- 0.001	- 0.007	0.013	0.016	0.016	
Sea prox.	(0.009)	(0.009)	(0.009)	(0.008)	(0.008)	(0.010)	(0.076)	
Constitut	- 0.011	- 0.014	- 0.014	- 0.029	- 0.009	0.006	0.128	
Cap.city	(0.008)	(0.010)***	(0.008)*	(0.005)***	(0.008)	(0.007)	(0.041)***	
L. D. D. Martin		1	0.529					
Lag. Pop.growth			(0.186)***					
L. D. L. L.	1		- 0.204					
Lag.Dem.density			(0.061)***					
Luperde	1		0.006					
Lag.Pop.size			(0.084)					
Lag Elevation]		0.281					
Lag. Elevation			(0.042)***					
Log Soo prov]		- 0.072					
Lag.sea prox.			(0.050)					
Log Con city]		0.716					
Lag.Cap.city			(0.456)					
Breusch-Pagan]							
Durbin-Watson	1							
Slope equality]							
Moran's I(z)]			0.115***				
W spatial matrix]			***	***	***	ns	
Adjusted-R ²	0.489	0.492	0.494		•		·	
AIC	24,040	23,906	23,932	1				

Table 8. Results of standard (OLS, Ordinary Least Square, and quantile) regressions as well as global (SAR: Spatial Autoregressive model; SDE: Spatial Error model; SDM: Spatial Durbin model) and quantile spatial models run with both contiguity and linear distance spatial weighting matrices; population growth rate (% annual) in 2001–2011 as dependent variable; population growth rate (1991–2001), demographic density (1991), population size (1991), elevation, proximity to the sea coast and a dummy indicating municipalities that act as provincial head town as predictors (*p < 0.05; ** 0.001 ; ***<math>p < 0.001).

		Quantile regression							
Predictor	OLS	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	VIF			
Intercent	≈ 0.000	- 0.135	- 0.052	0.041	1.398				
Intercept	(0.011)	(0.001)***	(0.001)***	(0.002)***	(0.149)***				
Dop growth	0.108	0.111	0.121	0.130	0.027	1.21			
rop.growin	(0.012)***	(0.002)***	(0.002)***	(0.002)***	(0.080)				
Dem density	- 0.007	0.021	0.026	0.030	- 0.069	2.29			
Demidensity	(0.016)	(0.002)***	(0.002)***	(0.002)***	(0.126)				
Popsize	- 0.051	0.050	0.020	- 0.010	- 0.460	2.23			
1 0p.312c	(0.016)**	(0.002)***	(0.002)***	(0.003)***	(0.148)***				
Flevation	- 0.009	- 0.003	0.001	0.006	- 0.035	1.48			
Lievation	(0.013)	(0.001)*	(0.001)	(0.002)***	(0.114)				
Sea prov	0.006	- 0.002	0.002	0.007	- 0.020	1.20			
Sea plox.	(0.012)	(0.001)	(0.001)	(0.001)***	(0.090)				
Cancity	0.023	- 0.002	0.003	0.009	0.155	1.11			
Capleity	(0.011)*	(0.000)**	(0.001)	(0.002)***	(0.092)*				
Lag. Pop.growth									
Lag.Dem.density									
Lag.Pop.size									
Lag.Elevation									
Lag.Sea prox.									
Lag.Cap.city									
Breusch-Pagan	144.9***								
Durbin-Watson	1.98								
Slope equality			136.5***						
Moran's I(z)									
W spatial matrix									
Adjusted-R ²	0.011	0.226	0.198	0.129	0.083				
AIC	44.075								
1110	44,275	20,402	20,681	25,805	61,907				
	Contiguity-based spa	20,402 atial weights	20,681	25,805	61,907				
	Contiguity-based spa	20,402 atial weights	20,681	25,805 Quantile regression	61,907				
Predictor	Contiguity-based spa	20,402 atial weights SDE	20,681	$25,805$ Quantile regression $\tau = 0.25$	61,907 τ = 0.50	$\tau = 0.75$	$\tau = 0.99$		
Predictor	Contiguity-based spa SAR ≈ 0.000	20,402 atial weights SDE ≈ 0.000	20,681 SDM ≈ 0.000	$\frac{25,805}{\mathbf{Quantile regression}}$ $\frac{\mathbf{\tau} = 0.25}{-0.120}$	$\tau = 0.50$ - 0.046	τ = 0 .75 0.039	τ = 0.99 1.394		
Predictor Intercept	44,275 Contiguity-based spa SAR ≈ 0.000 (0.011)	20,402 atial weights SDE ≈ 0.000 (0.011)	20,681 SDM ≈ 0.000 (0.011)	25,805 Quantile regression $\tau = 0.25$ - 0.120 $(0.003)^{***}$	$\frac{\tau = 0.50}{(0.002)^{***}}$	$\tau = 0.75$ 0.039 (0.002)***	τ = 0.99 1.394 (0.213)***		
Predictor Intercept	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107	20,681 SDM ≈ 0.000 (0.011) 0.096	25,805 Quantile regression τ = 0.25 - 0.120 (0.003)*** 0.108	$\begin{aligned} \hline \tau &= 0.50 \\ \hline &- 0.046 \\ \hline &(0.002)^{***} \\ \hline &0.117 \end{aligned}$	τ = 0.75 0.039 (0.002)*** 0.123	τ = 0.99 1.394 (0.213)*** 0.025		
Predictor Intercept Pop.growth	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)***	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)***	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)***	25,805 Quantile regression τ = 0.25 - 0.120 (0.003)*** 0.108 (0.002)***	τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)***	τ = 0.75 0.039 (0.002)*** 0.123 (0.003)***	τ = 0.99 1.394 (0.213)*** 0.025 (0.066)		
Predictor Intercept Pop.growth	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009	25,805 Quantile regression τ = 0.25 - 0.120 (0.003)*** 0.108 (0.002)*** 0.018	τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022	τ = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025	τ = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074		
Predictor Intercept Pop.growth Dem.density	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016)	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016)	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018)	25,805 Quantile regression τ = 0.25 - 0.120 (0.003)*** 0.108 (0.002)*** 0.018 (0.003)***	τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)***	<pre>τ = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)***</pre>	τ = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052)		
Predictor Intercept Pop.growth Dem.density	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038	25,805 Quantile regression τ = 0.25 - 0.120 (0.003)*** 0.108 (0.002)*** 0.018 (0.003)*** 0.018	τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024	<pre>r = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006</pre>	τ = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451		
Predictor Intercept Pop.growth Dem.density Pop.size	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)***	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)***	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)**	25,805 Quantile regression $\tau = 0.25$ - 0.120 (0.003)*** 0.108 (0.002)*** 0.018 (0.003)*** 0.018 (0.003)*** 0.053 (0.002)***	τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)***	τ = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.003)*	τ = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)***		
Predictor Intercept Pop.growth Dem.density Pop.size	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)*** - 0.009	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000	25,805 Quantile regression τ = 0.25 - 0.120 (0.003)*** 0.108 (0.002)*** 0.018 (0.003)*** 0.053 (0.002)*** ≈ 0.000	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002	τ = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.003)* 0.007	τ = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)*** - 0.027		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009 (0.013)	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)*** - 0.009 (0.013)	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000 (0.015)	25,805 Quantile regression $\tau = 0.25$ - 0.120 $(0.003)^{***}$ 0.108 $(0.002)^{***}$ 0.018 $(0.003)^{***}$ 0.053 $(0.002)^{***}$ ≈ 0.000 (0.001)	61,907 r = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001)	τ = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.003)* 0.007 (0.002)***	τ = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)*** - 0.027 (0.052)		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation	44,275 Contiguity-based spr SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009 (0.013) 0.007	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)*** - 0.009 (0.013) 0.007	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000 (0.015) 0.023	25,805 Quantile regression $\tau = 0.25$ - 0.120 $(0.003)^{***}$ 0.108 $(0.002)^{***}$ 0.018 $(0.003)^{***}$ 0.053 $(0.002)^{***}$ ≈ 0.000 (0.001) ≈ 0.000	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001) 0.004	τ = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.003)* 0.007 (0.002)*** 0.014	r = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)*** - 0.027 (0.052) - 0.019		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox.	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009 (0.013) 0.007 (0.012)	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)*** - 0.009 (0.013) 0.007 (0.012)	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000 (0.015) 0.023 (0.013)*	25,805 Quantile regression $\tau = 0.25$ - 0.120 $(0.003)^{***}$ 0.108 $(0.002)^{***}$ 0.018 $(0.003)^{***}$ 0.053 $(0.002)^{***}$ ≈ 0.000 (0.001) ≈ 0.000 (0.001)	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001) 0.004 (0.001)***	τ = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.002)*** 0.007 (0.002)*** 0.014 (0.002)***	τ = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)*** - 0.027 (0.052) - 0.019 (0.030)		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox.	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016) - 0.050 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000 (0.015) 0.023 (0.013)* 0.020	25,805 Quantile regression τ = 0.25 - 0.120 (0.003)*** 0.108 (0.002)*** 0.018 (0.003)*** 0.053 (0.002)*** ≈ 0.000 (0.001) ≈ 0.000 (0.001) - 0.001	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001) 0.004 (0.001)*** 0.003	τ = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.002)*** 0.007 (0.002)*** 0.014 (0.002)*** 0.007	$ \tau = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)*** - 0.027 (0.052) - 0.019 (0.030) 0.153 $		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000 (0.015) 0.023 (0.013)* 0.020 (0.011)*	25,805 Quantile regression τ = 0.25 - 0.120 (0.003)*** 0.108 (0.002)*** 0.018 (0.002)*** 0.053 (0.002)*** ≈ 0.000 (0.001) ≈ 0.000 (0.001) - 0.001 (0.001)	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001) 0.004 (0.001)*** 0.003 (0.001)***	τ = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.002)*** 0.007 (0.002)*** 0.014 (0.002)*** 0.007 (0.001)***	r = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)*** - 0.027 (0.052) - 0.019 (0.030) 0.153 (0.033)***		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	$20,681$ $\hline SDM \\ \approx 0.000 \\ (0.011) \\ 0.096 \\ (0.012)^{***} \\ - 0.009 \\ (0.018) \\ - 0.038 \\ (0.017)^{**} \\ \approx 0.000 \\ (0.015) \\ 0.023 \\ (0.013)^* \\ 0.020 \\ (0.011)^* \\ 0.032 \\ \hline$	25,805 Quantile regression $\tau = 0.25$ - 0.120 $(0.003)^{***}$ 0.108 $(0.002)^{***}$ 0.018 $(0.003)^{***}$ 0.053 $(0.002)^{***}$ ≈ 0.000 (0.001) - 0.001 (0.001)	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001) 0.004 (0.001)*** 0.003 (0.001)***	τ = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.003)* 0.007 (0.002)*** 0.014 (0.002)*** 0.007 (0.001)***	$ \tau = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)*** - 0.027 (0.052) - 0.019 (0.030) 0.153 (0.033)*** $		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000 (0.015) 0.023 (0.013)* 0.020 (0.011)* 0.022 (0.024)	25,805 Quantile regression $\tau = 0.25$ - 0.120 $(0.003)^{***}$ 0.108 $(0.002)^{***}$ 0.018 $(0.003)^{***}$ 0.053 $(0.002)^{***}$ ≈ 0.000 (0.001) - 0.001 (0.001)	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001) 0.004 (0.001)*** 0.003 (0.001)***	$ \tau = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.003)* 0.007 (0.002)*** 0.014 (0.002)*** 0.007 (0.001)*** 0.007 (0.001)*** $	r = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)*** - 0.027 (0.052) - 0.019 (0.030) 0.153 (0.033)***		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000 (0.015) 0.023 (0.013)* 0.020 (0.011)* 0.032 (0.024) - 0.012	25,805 Quantile regression r = 0.25 - 0.120 $(0.003)^{***}$ 0.108 $(0.002)^{***}$ 0.018 $(0.003)^{***}$ 0.053 $(0.002)^{***}$ ≈ 0.000 (0.001) ~ 0.001 (0.001)	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001) 0.004 (0.001)*** 0.003 (0.001)***	r = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.003)* 0.007 (0.002)*** 0.014 (0.002)*** 0.014 (0.002)*** 0.007 (0.001)***	$ \tau = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)*** - 0.027 (0.052) - 0.019 (0.030) 0.153 (0.033)*** $		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000 (0.015) 0.023 (0.013)* 0.023 (0.013)* 0.020 (0.011)* 0.032 (0.024) - 0.012 (0.030)	25,805 Quantile regression $\tau = 0.25$ - 0.120 $(0.003)^{***}$ 0.108 $(0.002)^{***}$ 0.018 $(0.002)^{***}$ ≈ 0.000 (0.001) ≈ 0.000 (0.001) - 0.001 (0.001)	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001) 0.004 (0.001)*** 0.003 (0.001)***	$ \tau = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.003)* 0.007 (0.002)*** 0.014 (0.002)*** 0.007 (0.001)*** 0.007 (0.001)*** $	$r = 0.99$ 1.394 $(0.213)^{***}$ 0.025 (0.066) $- 0.074$ (0.052) $- 0.451$ $(0.086)^{***}$ $- 0.027$ (0.052) $- 0.019$ (0.030) 0.153 $(0.033)^{***}$		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000 (0.015) 0.023 (0.013)* 0.023 (0.013)* 0.020 (0.011)* 0.032 (0.024) - 0.012 (0.030) - 0.037	25,805 Quantile regression $\tau = 0.25$ - 0.120 $(0.003)^{***}$ 0.108 $(0.002)^{***}$ 0.018 $(0.003)^{***}$ 0.053 $(0.002)^{***}$ ≈ 0.000 (0.001) ≈ 0.000 (0.001) - 0.001 (0.001)	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001) 0.004 (0.001)*** 0.003 (0.001)***	$ \tau = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.003)* 0.007 (0.002)*** 0.014 (0.002)*** 0.007 (0.001)*** $	$r = 0.99$ 1.394 $(0.213)^{***}$ 0.025 (0.066) $- 0.074$ (0.052) $- 0.451$ $(0.086)^{***}$ $- 0.027$ (0.052) $- 0.019$ (0.030) 0.153 $(0.033)^{***}$		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000 (0.015) 0.023 (0.013)* 0.020 (0.013)* 0.020 (0.011)* 0.032 (0.024) - 0.012 (0.030) - 0.037 (0.031)	25,805 Quantile regression $\tau = 0.25$ - 0.120 $(0.003)^{***}$ 0.108 $(0.002)^{***}$ 0.018 $(0.003)^{***}$ 0.053 $(0.002)^{***}$ ≈ 0.000 (0.001) - 0.001 (0.001)	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001) 0.004 (0.001)*** 0.003 (0.001)***	$ \tau = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.003)* 0.007 (0.002)*** 0.014 (0.002)*** 0.007 (0.001)*** $	r = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)*** - 0.027 (0.052) - 0.019 (0.030) 0.153 (0.033)***		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016) - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000 (0.015) 0.023 (0.013)* 0.020 (0.011)* 0.020 (0.011)* 0.032 (0.024) - 0.012 (0.030) - 0.037 (0.031) - 0.025	25,805 Quantile regression $\tau = 0.25$ - 0.120 $(0.003)^{***}$ 0.108 $(0.002)^{***}$ 0.053 $(0.002)^{***}$ ≈ 0.000 (0.001) ≈ 0.000 (0.001) - 0.001 (0.001)	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001) 0.004 (0.001)*** 0.003 (0.001)***	$ \tau = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.003)* 0.007 (0.002)*** 0.014 (0.002)*** 0.007 (0.001)*** 0.007 (0.001)*** $	$ \tau = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)*** - 0.027 (0.052) - 0.019 (0.030) 0.153 (0.033)*** $		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Dem.density Lag.Pop.size Lag.Pop.size Lag.Pop.size	<pre>44,275 Contiguity-based spa SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**</pre>	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016) - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000 (0.015) 0.023 (0.013)* 0.020 (0.013)* 0.020 (0.011)* 0.032 (0.024) - 0.012 (0.030) - 0.037 (0.031) - 0.025 (0.024)	25,805 Quantile regression $\tau = 0.25$ - 0.120 $(0.003)^{***}$ 0.108 $(0.002)^{***}$ 0.053 $(0.002)^{***}$ ≈ 0.000 (0.001) - 0.001 (0.001)	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001) 0.004 (0.001)*** 0.003 (0.001)***	$ \tau = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.003)* 0.007 (0.002)*** 0.014 (0.002)*** 0.007 (0.001)*** 0.007 (0.001)*** $	$ \tau = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)*** - 0.027 (0.052) - 0.019 (0.030) 0.153 (0.033)*** $		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag. Pop.growth Lag.Pop.size Lag.Pop.size Lag.Pop.size	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000 (0.015) 0.023 (0.013)* 0.020 (0.011)* 0.022 (0.011)* 0.032 (0.024) - 0.012 (0.030) - 0.037 (0.031) - 0.025 (0.024) - 0.051	25,805 Quantile regression $\tau = 0.25$ - 0.120 $(0.003)^{***}$ 0.108 $(0.002)^{***}$ 0.018 $(0.003)^{***}$ 0.053 $(0.002)^{***}$ ≈ 0.000 (0.001) - 0.001 (0.001)	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001) 0.004 (0.001)*** 0.003 (0.001)***	$ \tau = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.003)* 0.007 (0.002)*** 0.014 (0.002)*** 0.007 (0.001)*** $	$ \tau = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)*** - 0.027 (0.052) - 0.019 (0.030) 0.153 (0.033)*** $		
Predictor Intercept Pop.growth Dem.density Pop.size Elevation Sea prox. Cap.city Lag.Pop.growth Lag.Dem.density Lag.Pop.size Lag.Pop.size Lag.Pop.size Lag.Pop.size Lag.Pop.size Lag.Pop.size Lag.Pop.size Lag.Pop.size Lag.Pop.size Lag.Sea prox.	44,275 Contiguity-based space SAR ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.005 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,402 atial weights SDE ≈ 0.000 (0.011) 0.107 (0.012)*** - 0.007 (0.016) - 0.050 (0.016)*** - 0.009 (0.013) 0.007 (0.012) 0.023 (0.011)**	20,681 SDM ≈ 0.000 (0.011) 0.096 (0.012)*** - 0.009 (0.018) - 0.038 (0.017)** ≈ 0.000 (0.015) 0.023 (0.013)* 0.023 (0.013)* 0.020 (0.011)* 0.022 (0.011)* 0.022 (0.024) - 0.037 (0.031) - 0.025 (0.024) - 0.051 (0.023)**	25,805 Quantile regression $\tau = 0.25$ - 0.120 $(0.003)^{***}$ 0.108 $(0.002)^{***}$ 0.018 $(0.003)^{***}$ 0.053 $(0.002)^{***}$ ≈ 0.000 (0.001) - 0.001 (0.001)	61,907 τ = 0.50 - 0.046 (0.002)*** 0.117 (0.002)*** 0.022 (0.002)*** 0.024 (0.002)*** 0.002 (0.001) 0.004 (0.001)*** 0.003 (0.001)***	τ = 0.75 0.039 (0.002)*** 0.123 (0.003)*** 0.025 (0.003)*** - 0.006 (0.002)*** 0.007 (0.002)*** 0.014 (0.002)*** 0.007 (0.001)***	τ = 0.99 1.394 (0.213)*** 0.025 (0.066) - 0.074 (0.052) - 0.451 (0.086)*** - 0.027 (0.052) - 0.019 (0.030) 0.153 (0.033)***		

	Contiguity-based spatial weights							
				Quantile regression				
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	
Les Canaita		1	- 0.005			l		
Lag.Cap.city			(0.026)					
Breusch-Pagan	1			1				
Durbin-Watson	1							
Slope equality	1							
Moran's I(z)	1			0.016***				
W spatial matrix	1			***	***	***	ns	
Adjusted-R ²	0.012	0.011	0.013					
AIC	44,274	44,273	44,272					
	Distance-based spati	al weights	1					
				Quantile regression				
Predictor	SAR	SDE	SDM	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.99$	
• • •	0.002	0.007	- 0.004	- 0.126	- 0.050	0.037	1.226	
Intercept	(0.011)	(0.025)	(0.011)	(0.001)***	(0.001)***	(0.002)***	(0.145)***	
D 1	0.096	0.094	0.090	0.102	0.109	0.117	- 0.016	
Pop.growth	(0.012)***	(0.012)***	(0.012)***	(0.003)***	(0.003)***	(0.003)***	(0.044)	
D 1 1	- 0.014	- 0.017	- 0.021	0.017	0.020	0.023	- 0.070	
Dem.density	(0.016)	(0.018)	(0.018)	(0.002)***	(0.002)***	(0.002)***	(0.033)**	
	- 0.036	- 0.034	- 0.028	0.060	0.031	0.003	- 0.357	
Pop.size	(0.016)	(0.017)*	(0.018)	(0.002)***	(0.002)***	(0.002)	(0.079)***	
- 0	- 0.001	- 0.001	pprox 0.000	0.003	0.005	0.013	- 0.035	
Elevation	(0.013)	(0.014)	(0.015)	(0.001)**	(0.001)***	(0.002)***	(0.036)	
	0.021	0.023	0.030	0.005	0.009	0.020	0.021	
Sea prox.	(0.012)*	(0.013)*	(0.013)**	(0.001)***	(0.002)***	(0.002)***	(0.020)	
	0.020	0.020	0.018	- 0.004	pprox 0.000	0.006	0.089	
Cap.city	(0.011)*	(0.011)*	(0.011)	(0.001)***	(0.001)	(0.002)***	(0.026)***	
I. D. d		1	0.184					
Lag. Pop.growth			(0.103)					
T D 1 1	1		- 0.014					
Lag.Dem.density			(0.090)					
L D	1		0.039					
Lag.Pop.size			(0.115)					
Les Elevation]		0.019					
Lag. Elevation			(0.057)					
Les Con mon	1		- 0.016					
Lag.Sea prox.			(0.064)					
Les Constitue	1		- 0.509					
Lag.Cap.city			(0.598)					
Breusch-Pagan	1							
Durbin-Watson	1							
Slope equality	1							
Moran's I(z)]			0.007***				
W spatial matrix]			***	***	***	***	
Adjusted-R ²	0.013	0.013	0.014			•		
AIC	44,261	44,265	44,266	1				

Table 9. Results of standard (OLS, Ordinary Least Square, and quantile) regressions as well as global (SAR: Spatial Autoregressive model; SDE: Spatial Error model; SDM: Spatial Durbin model) and quantile spatial models run with both contiguity and linear distance spatial weighting matrices; population growth rate (% annual) in 2011–2021 as dependent variable; population growth rate (2001–2011), demographic density (2001), population size (2001), elevation, proximity to the sea coast and a dummy indicating municipalities that act as provincial head town as predictors (*p < 0.05; ** 0.001 < p < 0.05; ***p < 0.001).

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Received: 9 May 2023; Accepted: 7 November 2023 Published online: 21 November 2023

References

- 1. Reher, D. S. The demographic transition revisited as a global process. Popul. Space Place 10, 19-41 (2004).
- 2. Lerch, M. The role of migration in the urban transition: A demonstration from albania. *Demography* **51**, 1527–1550 (2014).
- Salvati, L., Zambon, I., Chelli, F. M. & Serra, P. Do spatial patterns of urbanization and land consumption reflect different socioeconomic contexts in europe?. Sci. Total Environ. 625, 722–730 (2018).
- 4. Kabisch, N. & Haase, D. Diversifying european agglomerations: Evidence of urban population trends for the 21st century. *Popul. Space Place* 17, 236–253 (2011).
- 5. Gkartzios, M. 'leaving athens': Narratives of counterurbanisation in times of crisis. J. Rural. Stud. 32, 158-167 (2013).
- Bayona-I-Carrasco, J., Gil-Alonso, F. & Pujadas-I-Rúbies, I. Suburbanisation versus recentralisation: Changes in the effect of international migration inflows on the largest spanish metropolitan areas (2000–2010). *Quetelet J.* 2, 93–118 (2014).
- Henrie, C. J. & Plane, D. A. Exodus from the california core: Using demographic effectiveness and migration impact measures to examine population redistribution within the western united states. *Popul. Res. Policy Rev.* 27, 43–64 (2008).
- Carlucci, M., Chelli, F. M. & Salvati, L. Toward a new cycle: Short-term population dynamics, gentrification, and re-urbanization of milan (italy). Sustainability 10, 3014 (2018).
- 9. Duvernoy, I., Zambon, I., Sateriano, A. & Salvati, L. Pictures from the other side of the fringe: Urban growth and peri-urban agriculture in a post-industrial city (toulouse, france). *J. Rural. Stud.* 57, 25–35 (2018).
- 10. Allen, J., Barlow, J., Leal, J., Maloutas, T. & Padovani, L. *Housing and welfare in Southern Europe*, vol. 610 (Wiley Online Library, 2004).
- 11. Cuadrado-Ciuraneta, S., Durà-Guimerà, A. & Salvati, L. Not only tourism: Unravelling suburbanization, second-home expansion and "rural" sprawl in catalonia, spain. Urban Geogr. 38, 66–89 (2017).
- 12. Rubiera-Morollon, F., ViÃuela, A. *et al.* Heterogeneity in the determinants of population growth at the local level. *Int. Reg. Sci. Rev.* 40, 211–240 (2017).
- 13. Alados, C. L., Errea, P., Gartzia, M., Saiz, H. & Escós, J. Positive and negative feedbacks and free-scale pattern distribution in rural-population dynamics. *PLoS ONE* **9**, e114561 (2014).
- Gavalas, V. S., Rontos, K. & Salvati, L. Who becomes an unwed mother in greece? sociodemographic and geographical aspects of an emerging phenomenon. *Popul. Space Place* 20, 250–263 (2014).
- Ciommi, M., Chelli, F. M., Carlucci, M. & Salvati, L. Urban growth and demographic dynamics in southern europe: Toward a new statistical approach to regional science. *Sustainability* 10, 2765 (2018).
- Alaimo, L. S. & Maggino, F. Sustainable development goals indicators at territorial level: Conceptual and methodological issues-the italian perspective. Soc. Indic. Res. 147, 383–419 (2020).
- 17. Alaimo, L. Ŝ., Ivaldi, E., Landi, S. & Maggino, F. Measuring and evaluating socio-economic inequality in small areas: An application to the urban units of the municipality of genoa. *Socioecon. Plann. Sci.* 83, 101170 (2022).
- Alaimo, L. S., Ciommi, M., Vardopoulos, I., Nosova, B. & Salvati, L. The medium-term impact of the covid-19 pandemic on population dynamics: The case of italy. Sustainability 14, 13995 (2022).
- Giacalone, M., Turco, R., Mosconi, E. M., Alaimo, L. S. & Salvati, L. The way toward growth: A time-series factor decomposition of socioeconomic impulses and urbanization trends in a pre-crisis european region. Soc. Indic. Res. 1–22 (2023).
- Alaimo, L. S., Nosova, B. & Salvati, L. Did covid-19 enlarge spatial disparities in population dynamics? a comparative, multivariate approach for italy. Qual. Quant. 1-30 (2023).
- 21. Avdeev, A. et al. Populations and demographic trends of european countries, 1980-2010. Population 66, 9-129 (2011).
- 22. Arapoglou, V. P. Diversity, inequality and urban change. Eur. Urban Reg. Stud. 19, 223-237 (2012).
- 23. Brombach, K., Jessen, J., Siedentop, S. & Zakrzewski, P. Demographic patterns of reurbanisation and housing in metropolitan regions in the us and germany. *Comp. Popul. Stud.-Zeitschrift für Bevölkerungswissenschaft* **42**, 281–317 (2017).
- 24. Bocquier, P. & Brée, S. A regional perspective on the economic determinants of urban transition in 19th-century france. *Demogr. Res.* 38, 1535–1576 (2018).
- Cheshire, P. A new phase of urban development in western europe? The evidence for the 1980s. Urban Stud. 32, 1045–1063 (1995).
 Champion, A. G. A changing demographic regime and evolving poly centric urban regions: Consequences for the size, composi-
- tion and distribution of city populations. Urban stud. 38, 657–677 (2001).
- 27. Oueslati, W., Alvanides, S. & Garrod, G. Determinants of urban sprawl in european cities. Urban Stud. 52, 1594-1614 (2015).
- Haase, A., Bernt, M., Großmann, K., Mykhnenko, V. & Rink, D. Varieties of shrinkage in European cities. *Eur. Urban Reg. Stud.* 23, 86–102 (2016).
- 29. López-Gay, A. Population growth and re-urbanization in spanish inner cities: The role of internal migration and residential mobility. *Revue Quetelet* **1**, 67–92 (2014).
- 30. Lee, R. D. Population dynamics of humans and other animals. Demography 443-465 (1987).
- Lutz, W., Testa, M. R. & Penn, D. J. Population density is a key factor in declining human fertility. *Popul. Environ.* 28, 69–81 (2006).
 Lima, M. & Berryman, A. A. Positive and negative feedbacks in human population dynamics: Future equilibrium or collapse?. *Oikos* 120, 1301–1310 (2011).
- 33. Åström, M., Lundberg, P. & Lundberg, S. Population dynamics with sequential density-dependencies. Oikos 174–181 (1996).
- 34. Baldini, R. The importance of population growth and regulation in human life history evolution. *PLoS ONE* 10, e0119789 (2015).
- 35. Cohen, J. E. Human population: The next half century. Science 302, 1172-1175 (2003).
- Getz, W. M. A hypothesis regarding the abruptness of density dependence and the growth rate of populations. *Ecology* 77, 2014–2026 (1996).
- Mathur, V. K., Stein, S. H. & Kumar, R. A dynamic model of regional population growth and decline. J. Reg. Sci. 28, 379–395 (1988).
 Millward, H. Evolution of population densities: Five canadian cities, 1971–20011. Urban Geogr. 29, 616–638 (2008).
- Gross, E. The role of density as a factor in metropolitan growth in the United States of America. *Popul. Stud.* 8, 113–120 (1954).
- Hamilton, M. J. *et al.* Population stability, cooperation, and the invasibility of the human species. *Proc. Natl. Acad. Sci.* 106, 12255–12260 (2009).
- 41. Turchin, P. Long-term population cycles in human societies. Ann. N. Y. Acad. Sci. 1162, 1-17 (2009).
- 42. Benassi, F. *et al.* Population trends and desertification risk in a mediterranean region, 1861–2017. *Land Use Policy* **95**, 104626 (2020).
- Nowicki, P., Bonelli, S., Barbero, F. & Balletto, E. Relative importance of density-dependent regulation and environmental stochasticity for butterfly population dynamics. *Oecologia* 161, 227–239 (2009).

- Ciommi, M. et al. Population dynamics and agglomeration factors: A non-linear threshold estimation of density effects. Sustainability 12, 2257 (2020).
- Fauteux, D., Stien, A., Yoccoz, N. G., Fuglei, E. & Ims, R. A. Climate variability and density-dependent population dynamics: Lessons from a simple high arctic ecosystem. Proc. Natl. Acad. Sci. 118, e2106635118 (2021).
- 46. Reher, D. S. Economic and social implications of the demographic transition. *Popul. Dev. Rev.* 37, 11–33 (2011).
- Lesthaeghe, R. The second demographic transition: A concise overview of its development. Proc. Natl. Acad. Sci. 111, 18112–18115 (2014).
- 48. Rees, P. *et al.* The impact of internal migration on population redistribution: An international comparison. *Popul. Space Place* 23, e2036 (2017).
- Zambon, I., Serra, P., Sauri, D., Carlucci, M. & Salvati, L. Beyond the 'mediterranean city': Socioeconomic disparities and urban sprawl in three southern european cities. *Geografiska Annaler: Series B, Human Geogr.* 99, 319–337 (2017).
- Salvia, R., Salvati, L. & Quaranta, G. Beyond the transition: Long-term population trends in a disadvantaged region of southern europe, 1861–2017. Sustainability 13, 6636 (2021).
- 51. Turchin, P. Rarity of density dependence or population regulation with lags?. Nature 344, 660-663 (1990).
- Soutullo, A. *et al.* Density-dependent regulation of population size in colonial breeders: Allee and buffer effects in the migratory montagu's harrier. *Oecologia* 149, 543–552 (2006).
- Salvati, L. & Carlucci, M. Urban growth, population, and recession: Unveiling multiple spatial patterns of demographic indicators in a mediterranean city. *Popul. Space Place* 23, e2079 (2017).
- Salvati, L. & Serra, P. Estimating rapidity of change in complex urban systems: A multidimensional, local-scale approach. *Geogr. Anal.* 48, 132–156 (2016).
- Salvati, L. & Gargiulo Morelli, V. Unveiling urban sprawl in the m editerranean region: Towards a latent u rban transformation?. Int. J. Urban Reg. Res. 38, 1935–1953 (2014).
- Partridge, M. D., Rickman, D. S., Ali, K. & Olfert, M. R. Do new economic geography agglomeration shadows underlie current population dynamics across the urban hierarchy?. *Pap. Reg. Sci.* 88, 445–466 (2009).
- 57. Kroll, F. & Kabisch, N. The relation of diverging urban growth processes and demographic change along an urban-rural gradient. *Popul. Space Place* **18**, 260–276 (2012).
- Osterhage, F. The end of reurbanisation? phases of concentration and deconcentration in migratory movements in north rhinewestphalia. Comp. Popul. Stud.-Zeitschrift für Bevölkerungswissenschaft 43, 131–156 (2018).
- Carlucci, M., Grigoriadis, E., Rontos, K. & Salvati, L. Revisiting a hegemonic concept: Long-term 'mediterranean urbanization'in between city re-polarization and metropolitan decline. *Appl. Spat. Anal. Policy* 10, 347–362 (2017).
- 60. Leichenko, R. M. Growth and change in us cities and suburbs. Growth Chang. 32, 326-354 (2001).
- 61. Larramona, G. Out-migration of immigrants in spain. Population 68, 213-235 (2013).
- Lande, R., Engen, S. & Sæther, B.-E. Evolution of stochastic demography with life history tradeoffs in density-dependent agestructured populations. Proc. Natl. Acad. Sci. 114, 11582–11590 (2017).
- Morelli, V. G., Rontos, K. & Salvati, L. Between suburbanisation and re-urbanisation: Revisiting the urban life cycle in a mediterranean compact city. Urban Res. Pract. 7, 74–88 (2014).
- Zambon, I., Colantoni, A. & Salvati, L. Horizontal vs vertical growth: Understanding latent patterns of urban expansion in large metropolitan regions. Sci. Total Environ. 654, 778–785 (2019).
- Salvati, L. Density-dependent population growth in southern europe (1961–2011): A non-parametric approach using smoothing splines. *Reg. Stat.* 10, 27–41 (2020).
- Serra, P., Vera, A., Tulla, A. F. & Salvati, L. Beyond urban-rural dichotomy: Exploring socioeconomic and land-use processes of change in spain (1991–2011). *Appl. Geogr.* 55, 71–81 (2014).
- 67. Salvati, L., Ciommi, M. T., Serra, P. & Chelli, F. M. Exploring the spatial structure of housing prices under economic expansion and stagnation: The role of socio-demographic factors in metropolitan rome, italy. *Land Use Policy* **81**, 143–152 (2019).
- Salvati, L. & Zitti, M. Assessing the impact of ecological and economic factors on land degradation vulnerability through multiway analysis. *Ecol. Ind.* 9, 357–363 (2009).
- 69. Ciommi, M., Gigliarano, C., Emili, A., Taralli, S. & Chelli, F. M. A new class of composite indicators for measuring well-being at the local level: An application to the equitable and sustainable well-being (bes) of the italian provinces. *Ecol. Ind.* **76**, 281–296 (2017).
- Lanfredi, M. et al. Early identification of land degradation hotspots in complex bio-geographic regions. Remote Sens. 7, 8154–8179 (2015).
- Delfanti, L. et al. Solar plants, environmental degradation and local socioeconomic contexts: A case study in a mediterranean country. Environ. Impact Assess. Rev. 61, 88–93 (2016).
- 72. Quaranta, G. *et al.* Long-term impacts of grazing management on land degradation in a rural community of southern italy: Depopulation matters. *Land Degrad. Dev.* **31**, 2379–2394 (2020).
- Di Feliciantonio, C. & Salvati, L. Southern' alternatives of urban diffusion: Investigating settlement characteristics and socioeconomic patterns in three m editerranean regions. *Tijdschr. Econ. Soc. Geogr.* 106, 453–470 (2015).
- Zambon, I., Benedetti, A., Ferrara, C. & Salvati, L. Soil matters? a multivariate analysis of socioeconomic constraints to urban expansion in mediterranean europe. *Ecol. Econ.* 146, 173–183 (2018).
- Ferrara, A. et al. Shaping the role of 'fast'and'slow'drivers of change in forest-shrubland socio-ecological systems. J. Environ. Manage. 169, 155–166 (2016).
- 76. LeSage, J. P. What regional scientists need to know about spatial econometrics. Rev. Reg. Stud. 44, 13-32 (2014).
- 77. McMillen, D. P. Quantile regression for spatial data (Springer Science & Business Media, 2012).
- Gutiérrez-Posada, D., Rubiera-Morollon, F. & Viñuela, A. Heterogeneity in the determinants of population growth at the local level: Analysis of the spanish case with a gwr approach. *Int. Reg. Sci. Rev.* 40, 211–240 (2017).
- 79. Masini, E. *et al.* Urban growth, land-use efficiency and local socioeconomic context: A comparative analysis of 417 metropolitan regions in europe. *Environ. Manage.* **63**, 322–337 (2019).
- 80. Kostov, P. & Le Gallo, J. Convergence: A story of quantiles and spillovers. Kyklos 68, 552-576 (2015).
- 81. Duncan, S., Duncan, C. & Scott, S. Human population dynamics. Ann. Hum. Biol. 28, 599-615 (2001).
- Crescenzi, R., Luca, D. & Milio, S. The geography of the economic crisis in europe: National macroeconomic conditions, regional structural factors and short-term economic performance. *Camb. J. Reg. Econ. Soc.* 9, 13–32 (2016).
- Cartone, A., Postiglione, P. & Hewings, G. J. Does economic convergence hold? a spatial quantile analysis on european regions. Econ. Model. 95, 408-417 (2021).
- Billé, A. G., Benedetti, R. & Postiglione, P. A two-step approach to account for unobserved spatial heterogeneity. Spat. Econ. Anal. 12, 452–471 (2017).
- Panzera, D. & Postiglione, P. The impact of regional inequality on economic growth: A spatial econometric approach. *Reg. Stud.* 56, 687–702 (2022).
- Kubara, M. & Kopczewska, K. Akaike information criterion in choosing the optimal k-nearest neighbours of the spatial weight matrix. Spatial Econ. Anal. 1–19 (2023).
- Salvati, L., Ferrara, A. & Chelli, F. Long-term growth and metropolitan spatial structures: An analysis of factors influencing urban patch size under different economic cycles. *Geografisk Tidsskrift-Danish J. Geogr.* 118, 56–71 (2018).

- Salvati, L., Morelli, V. G., Rontos, K. & Sabbi, A. Latent exurban development: City expansion along the rural-to-urban gradient in growing and declining regions of southern europe. Urban Geogr. 34, 376–394 (2013).
- Salvati, L. Towards a polycentric region? the socio-economic trajectory of rome, an 'eternally mediterranean'city. *Tijdschr. Econ.* Soc. Geogr. 105, 268–284 (2014).

Author contributions

L.S.A. writing and formatting C.C. models and statistics F.M. models and statistics E.C. Tables and bibliographic analysis M.P. writing D.S. funding and writing revisions L.S. writing and the general idea of the work.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to L.S.A., M.P., D.S. or L.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023