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ABSTRACT 

The mechanical behaviour of polymers is strongly influenced by temperature and strain rate 

conditions. Their effects are clearly observed in the Young modulus and Yield strength assessment. 

In some cases, a change in material failure mode can be noted, which can be both ductile and brittle. 

For polymers exhibiting shear bands during compression loading, test conditions may enhance or 

diminish this effect. In this study, isotactic Polypropylene has been considered due to its strong 

sensitivity to test conditions; with some combinations of strain rate and temperature, the material is 

able to undergo large compression with nearly uniform strain distribution, whereas significant shear 

bands can be observed with other strain rate and temperature combinations. This paper proposes a 

constitutive law for the mechanical characterization of polymers that show shear banding in 

compression loading. The proposed law extends a visco-plastic model present in literature, allowing 

to predict the onset or not of micro-shear banding compression instability. The dependence of 

constitutive parameters with test conditions is determined by applying the Ree-Eyring equation. The 

model parameters have been calibrated analytically according to experimental data obtained from 

compression tests performed in a wide range of strain rates (10-3 to 103 1/s) and temperatures (253 to 

313 K). In addition, the constitutive model has been implemented in a commercial FEM code by 

means of a user-defined subroutine. Results show a good correspondence between experimental 

observations and numerical calculations, regarding both stress-strain relationship and shear band 

formation. 
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INTRODUCTION 

Polymers are well-known materials having a mechanical behaviour strongly dependent on the test 

conditions. In fact, small temperature changes or strain rate variations affect the mechanical response. 

The cause of this variability can be found in the structure of polymers. In general, the relative motion 

of polymer chains is favoured by an increment of temperature whereas it is harder in the case of rapid 

deformation. While a deformation is applied, intermolecular interactions take place and prevent the 

molecular rearrangement, causing an increase in the material resistance. When the strain rate 

increases, this effect is more pronounced. On the other hand, molecular mobility also depends on 

temperature, to which the thermal energy of molecules is associated. Therefore, an increment of 

temperature increases the thermal energy and aids the arrangement of molecular segments [1], with a 

consequent reduction of resistance. 

The effects of these factors are clearly observable on mechanical properties such as Young 

modulus and Yield stress. In particular, the change in Young modulus can be measured by means of 

viscoelastic property measurement techniques such as Dynamic Mechanical Analysis (DMA) [2–4] 

or Molecular Dynamics (MD) [5]. On the other hand, the Yield stress is identified by static and 

dynamic mechanical tests. Many authors [6–9] studied the relationship between Yield stress, strain 

rate and temperature, obtaining analytical expressions correlating experimental data. The most 

commonly used constitutive equations for Yield stress modelling are the two-term power-law, the 

Ree-Eyring, the cooperative, and modified Eyring equations [10]. In particular, the Ree-Eyring based 

models are quite common in polymers characterization, because they include both strain rate and 

temperature. To mention some examples, there are applications for PC, PMMA and PAI in the study 

by Richeton et al [6], for PEEK in El-Qoubaa and Othman [11], for epoxy resins in Gómez-del Río 

and Rodríguez [12] and Tamrakar et al [13]. 

The mechanical behaviour of polymers, after an applied deformation, depends on their internal 

structure: referring to room temperature and quasi-static conditions, they are classified as brittle 

(epoxy resins, PS), semi-ductile (PMMA), ductile (PET, PC, PP) or elastomeric (urethane) [14]. 

When commonly ductile polymers are subjected to dynamic loads it is sometimes possible to observe 

a ductile-brittle transition, as in the studies of Li and Lambros for PMMA [15], Plaseied and Fatemi 

for vinyl ester resin [16], Brown et al for PCTFE [17], etc. The material can still exhibit a ductile 

response at high temperatures in the dynamic range. This behaviour is typically reported in fracture 

studies, such as those of Newmann and William on ABS [18], Gaymans et al. on PC [19], Kitao on 

LDPE, LLDPE, MDPE, and HDPE [20].  
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Some polymers exhibit unique rupture mechanisms when subjected to compression loads. Shear 

bands are one of the most frequently observed in the literature. In particular, when glassy polymers 

undergo large plastic deformations, inhomogeneity and strain localization occur [21]. This 

phenomenon causes the material to become unstable and lose its mechanical ability to withstand an 

applied load. In addition, some investigators have reported the dependence of the shear bands 

occurrence on external conditions such as ambient temperature [22] and strain rate [23]. At high strain 

rate tests the plastic deformation work is converted into heat and is internally dissipated. This happens 

because of the very low thermal diffusivity of polymers compared to metals (10−7 m2/s vs 10−4 m2/s 

respectively) [24]. In this case, the test is adiabatic, and heat determines an increase in specimen 

temperature that can lead to a localized failure of the material. Reasoning by orders of magnitude, a 

polymeric specimen of 10 mm length should be subjected to a strain rate higher than 10−3 1/s to ensure 

adiabatic conditions. This means that only under quasi-static test conditions the material is in 

isothermal state. Therefore, in the dynamic regime, this failure mechanism is commonly known as 

Adiabatic Shear Bands (ASB). 

A unique position regarding the effective mechanisms of shear band formation is absent in the 

literature. At first, these bands were commonly assumed as a form of instability caused by thermal 

softening effects (induced by adiabatic plastic work) dominating the strain and strain rate hardening 

ones. Conversely, new assumptions have been carried out in metals, as in Medyanik et al. [25] and 

Rittel [26], where ASB are considered a microstructural rearrangement caused by dynamic 

recrystallization (DRX) occurring at the onset of deformation. Since polymeric materials are strongly 

sensitive to temperature changes, and high rate loadings can be considered adiabatic, thermal 

softening is the main cause of possible unstable growth of localised shear bands [27]. 

The formation criteria for ASB have been widely discussed in the literature, mainly following two 

kinds of approach [25]. In the former, an analytical solution for the description of the propagation of 

shear bands is derived from momentum and energy balances, as in Wright [28], but only through 

model approximations. The second approach found more application since it is based on the 

simulation of shear banding by constitutive equations capable of highlighting this phenomenon in 

thermo-mechanical numerical models. An advantage of this method is the possibility of studying the 

formation and propagation of ASB. Based on this approach, the material constitutive model has a 

local maximum in the flow curve, induced by the temperature softening effect [27, 29]. 

This paper shows an analysis of the effects of temperature and strain rate on the adiabatic shear 

banding of polymers that undergo compressive loading. In particular, the present work has been 

conducted on an injection moulded Polypropylene. The study focuses on the implementation of a 
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constitutive model to assess the experimental findings. Polypropylene exhibited a significant 

dependence of its properties on varying test conditions, both in terms of stiffness and strength. In 

addition, experimental results revealed a ductile-to-brittle transition of the mechanical response and 

the formation of shear bands as the main failure mechanism. The proposed constitutive model 

considers both the formation of shear bands and the variation of the mechanical properties of the 

material with strain rate and temperature. This last was integrated into the model by calibrating the 

Ree-Eyring equation on Yield stress and Young modulus. A numerical model of the compression test 

has been employed as a validating method of the constitutive law for ASB prediction. 

 

EXPERIMENTAL PROCEDURE 

The material used in the experiments is an isotactic Polypropylene (iPP, Borealis®-HF136MO), 

by which cylindrical specimens (D = L = 10 mm) for compression tests have been manufactured by 

the injection molding process [30]. Samples have been obtained by different molding process 

conditions [31]; however, in this work only those obtained at 75 °C of mold temperature have been 

taken into account.  

Compression tests have been performed at different strain rates and temperatures, ranging from 

10-3 to 103 1/s and from 253 to 313 K, respectively. Quasi-static tests have been carried out using a 

standard electromechanical machine (model Zwick/Roell® Z050) at two different crosshead speeds, 

i.e. 0.6 mm/min and 600 mm/min. Specimen’s displacement has been measured by means of a 

mechanical contacting extensometer, whereas the applied force has been measured with a 50 kN 

load cell. Dynamic tests have been performed by means of a Split Hopkinson Bar, a machine 

commonly used for material testing in tension/compression [32–34]. In this study, titanium alloy 

(Ti6Al4V) bars have been used to achieve high strain rates. The test speed has been set by adjusting 

the preload in the pre-stressed bar, whereas specimen’s strain rate and stress have been calculated 

from the bars’ strain signals acquired with strain gauges. The temperature has been set by hot or 

cold air jets using Vortec® airguns. Dynamic tests have also been recorded by means of a high-

speed camera, model Photron® SA4 at 100 kfps. More details on the adopted Hopkinson bar 

system and temperature control are reported in Appendix 1. 

Strain rate and temperature ranges have been divided into 4 levels, and a full factorial DOE plan 

with 42=16 tests has been carried out.  

Table 1 shows the parameter values of each DOE level. 
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Table 1 – Levels of the full factorial 2-parameters DOE table 

 Levels 

 1 2 3 4 

Strain Rate [s-1]  10-3 100 102 103 

Test Temperature [K] 253 273 293 313 

 

ANALYSIS OF EXPERIMENTAL RESULTS AND OBSERVATIONS 

Effects of strain rate and temperature on mechanical properties of iPP 

As already presented in the aforementioned paper [31], the mechanical behaviour of iPP is highly 

dependent on strain rate and temperature conditions. The first aspect to notice is the different material 

response to strain rate. In fact, the material passes from ductile to brittle behaviour as strain rate 

increases, as shown in Figure 1. On the other hand, the temperature has the opposite effect, and in the 

case of 40 °C no brittle failure is observed during tests (Figure 2). 

 

Figure 1 - Specimens after compression test 
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Figure 2 - Temperature effect on the failure behaviour of iPP (the video of the test at 253K 103 s-1 

can be found in the supplementary material) 

The results of the compression tests are reported in Figure 3a and Figure 3b, in terms of 

engineering and true stress-strain curves, respectively. The true data were computed from the 

engineering ones in the simplified hypothesis of constant volume and uniform deformation. The 

experimental curves show that, for each temperature level, the strain rate influences both the material 

stiffness and the Yield point; note that the latter is intended here as the value obtained at the end of 

the linear-elastic portion of the curve, while the ISO 527 standard defines the yield as the peak stress. 

During quasi-static tests, no specimen failure was observed, and hence the ultimate strain refers to 

test interruption. On the contrary, the material response in dynamic tests is brittle, except for the 313 

K case, and the failure strain decreases with increasing strain rate. When the material remains ductile 

under dynamic conditions, the maximum strain reached is dependent on the maximum available 

stroke in the Hopkinson bar test. In general, the main effect of temperature is the lowering of both 

Young modulus and Yield strength. In addition, the curves in Figure 3 show a marked fall in material 

stress at high specimen strains, despite compression conditions, suggesting the occurrence of a 

material internal failure, which will be discussed in the following sections. The experimental values 

of Young modulus and Yield stress are summarized in Table 2. The crosshead speed has been reported 

for quasi-static tests, whereas the initial impact velocity has been considered for dynamic ones. It 

should be pointed out that the strain rate is not constant in the dynamic tests, hence only the order of 

magnitude has been reported. 
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a) 

 

b) 

 

Figure 3 - Stress-strain curves at different temperature and strain rates: a) engineering; b) true 
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Table 2 - Elastic modulus (𝐸) and Yield strength (𝜎𝑦) at different strain rates and temperatures 

 253 K 273 K 293 K 313 K 

𝜺̇  

[1/s] 

𝑬 

[MPa] 

𝝈𝒚 

[MPa] 

𝑬 

[MPa] 

𝝈𝒚 

[MPa] 

𝑬 

[MPa] 

𝝈𝒚 

[MPa] 

𝑬 

[MPa] 

𝝈𝒚 

[MPa] 

10-3 1706.8 48.32 1450.1 38.28 1151.2 28.71 775.9 19.60 

100 2079.4 63.56 1836.7 56.21 1479.7 44.84 1169.3 35.82 

102 2810.2 106.5 2322.6 87.13 2004.2 73.62 1705.1 58.23 

103 3273.6 148.6 2865.4 132.0 2515.8 105.5 2038.2 78.21 

 

Application of Ree-Eyring model for modelling the elastic properties of iPP 

The time-temperature dependent behaviour of polymers is often described by the so-called Time-

Temperature Superposition principle (TTS), especially in the case of viscoelasticity [14]. Such 

phenomenological approach has been successfully applied also in describing the large deformations 

of transparent polyurethane at intermediate [35] and high strain rate [36]. From a physically-based 

point of view, polypropylene deformation is known to involve two relaxation processes (referred to 

as α and β) in the deformation mechanisms of the material; this behaviour can be effectively described 

by the Ree-Eyring model [10], which has been adopted in this work. It is assumed that Yield stress is 

characterized by the occurrence of multiple processes and that it can be calculated additively for each 

contribution [37]: 

 y y y

   = +   (1) 

where ln(2 )y

Q
A T C

RT

 
  

 
= + 

 
 and 

1sinh

Q

RT
y A T C e





  −
 
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 

. Although this model is generally 

applied for Yield stress characterization [38–40], in this work its application is also assumed for the 

Young modulus. Hence, the following equations are used to correlate these characteristics depending 

on the strain rate and temperature:  

 
1ln(2 ) sinh

Q

RT
y y y

Q
A T C A T C e

RT




     −

  
= + +        

  (2a) 

 
1ln(2 ) sinh

Q

RT
E E

Q
E A T C A T C e

RT




    −

  
= + +        

  (2b) 

In these equations the terms ,Q Q 
 represent the activation energies of α,β-relaxations, R  is the 

universal gas constant, 
y  the Yield stress and E  the Young modulus at a specific temperature T . 
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The parameters , , ,y yA C A C   
 are here considered as material constants but have also a physical 

interpretation in accordance with the Ree-Eyring theory.  

Since the values of , , ,C C Q Q   
 have already been identified in [31], here they are assumed as 

known terms. The determination of , , ,y E y EA A A A   
 coefficients has therefore been obtained by 

correlating the data of Table 2 using equations (2a) and (2b), through the minimization of a Root 

Mean Square (RMS) error function. Calibration results are shown in Figure 4a and Figure 4b. Note 

that while the figure labels show the rounded strain rate decade for the sake of readability, the Ree-

Eyring model was calibrated using the actual average strain rates measured in the tests (i.e. the 

average of strain rate computed with equation A2, converted into true strain rate). The values of the 

calibrated coefficients are shown in Table 3. 

a 
  

b 

 

 
Figure 4 - Ree-Eyring calibration for: a) Yield Stress; b) Young Modulus 

 

Table 3 - Ree-Eyring parameters for iPP 

yA
 

[MPa/K] 
yA

[MPa/K]  C  [s] Q [kJ/mol] 

0.0066 0.0799 1.3245e-33 237.78 

    

EA  

[MPa/K] 
EA

[MPa/K]  C
 [s] Q

[kJ/mol] 

0.2247 0.8067 8.7202e-09 31.37 

 

The obtained calibration values can be interpreted in the Ree-Eyring theory. In fact, the term y

  

can be rewritten in accordance with Eyring's expression [41] as: 
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0

0 0

lnB
y

k T

V

 

 


 



 
= +  

 
  (3) 

where Bk  is the Boltzmann constant, 
0

  is the Yield stress at strain rate 
0

  and 
0V   is the activation 

volume, which is a measure of the scales of the thermally activated process of plastic flow. Comparing 

the parameters of Table 3 and the terms of Equation (3), it results in the following relationships: 

 
0 0

1
   ;   

2

B
y

k
A C

V
  
= =   (4) 

from which it is derived 𝑉0
𝛼 =2.10 nm3, 𝜀0̇

𝛼 =3.775 · 1032 1/s. A comparable activation volume is 

found in the study of Li and Cheung (3 nm3) [42], while comparable activation energies in those of 

Porzucek et al. (240 kJ/mol) [43] and Gao et al. (272 kJ/mol) [44].  

The second term of Equation (1) becomes significant at high strain rates. Moreover, recalling that 

for high values of a variable 𝑥 it is possible to approximate sinh−1(𝑥) ≈ ln(2𝑥), the expression of 

yield contribution for β-relaxation becomes formally the same as the first term y

 : 

 
1sinh ln 2 ln(2 )

Q Q

RT RT
y

Q
A T C e A T C e A T C

RT

 



        −
     

=  = +        
    

 (5) 

Hence, it is possible to write: 

 
0

0 0

lnB
y

k T

V

 

 


 



 
= +  

 
  (6) 

where 
0

  is the Yield stress at strain rate 
0

  and 
0V   is the activation volume, both related to the 

only β-relaxation mechanism. Similarly, comparing the parameters of Table 3 and the terms of 

Equation (6), it results in the analogous relationships: 

 
0 0

1
   ;   

2

B
y

k
A C

V
  
= =   (7) 

from which it is derived 𝑉0
𝛽
=0.17 nm3, 𝜀0̇

𝛽
= 5.734 · 107 1/s. 

 

Shear bands observation 

Dynamic compression tests did not allow any optical analysis of the specimens, as they were 

destroyed or reduced to very small fragments (Figure 5). For an understanding of the failure 
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mechanism, a displacement control has been set in subsequent trials. Therefore, rings were interposed 

(Figure 6) to prevent specimens' destruction and to allow optical analysis.  

 

Figure 5 - Specimen after test without bar displacement control 

 

 

Figure 6 - Bar stroke control system with supporting rings 

The analysis of the fracture surfaces has been performed using a Leica DMi8 optical microscope 

(OM), more details in the methods can be found in [45]. Focusing on Figure 7, it can be noted that 

the principal direction of rupture is the main shear one. According to Wang et al. [46], the morphology 

of broken specimen (Figure 5) shows an explosive manner of failure, which can be caused by shear 

banding and crazing mechanisms [47, 48]. These effects cause a decrease in stress, as shown in the 

curves of Figure 3, from strain rate 100 1/s, where the adiabatic test condition is ensured. Moreover, 

post-mortem analyses performed with an optical microscope systematically showed the presence of 

striations and fragments characterized by an angle of approximately 45°, which is an indicator of 

shear bands; Figure 7 shows an example of specimen failed by shear banding at 273K, 102 s-1, partially 

recomposed after the test. 
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Figure 7 - Specimen failure by compression and shear bands 

 

A MODIFIED CONSTITUTIVE MODEL FOR iPP 

A brief recall on constitutive models applied to Polypropylene 

In recent years, several complex models have been proposed for Polypropylene, in relation to 

mechanical loadings or material’s microstructure. For instance, O’Connor et al. [49] developed a 

physically-based model for large displacements, high temperatures and multiaxial stretching of a PP 

manufactured by thermoforming, calibrating the constitutive parameters by means of biaxial tests in 

tension. Moreover, studies by Zrida et al. [50] resulted in the development of a phenomenologically-

based three-dimensional model for the characterization of tensile and torsional behaviour of an 

injection-molded Polypropylene. This model was also verified under conditions of cyclic loading and 

different strain rates. 

A common feature of constitutive models for Polypropylene is the description of its elasto-visco-

plastic behaviour. In fact, several models can be found in literature, such as those of Drozdov and 

Gupta [51], Balieu et al. [52] or Okereke and Akpoyomare [53]. The former has been applied to an 

isotactic polypropylene for injection molding and involves eight parameters connected to the semi-

crystalline morphology of the material. The second one determined the constitutive parameters of a 

mineral filled Polypropylene by means of tensile and compression tests at different strain rates. 

Conversely, the latter developed a three-dimensional physical-based model for the compression 

behaviour of the material at different temperatures and across a wide range of strain rates.  
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The Nowak-Peçherski model 

In this paper, a visco-plastic model, considering a micro-shear banding mechanism, has been 

adopted to evaluate the response of the iPP after deformation. The reasons for this choice are related 

to the experimental observations described in the previous section and to the similarities found in the 

literature. Moreover, this behaviour has been observed by other researchers, such as Pieczyska et al. 

[54] who studied a glass fiber reinforced PP. They used a constitutive model for Polypropylene, based 

on the work of Nowak and Peçherski [55], who discussed the identification of a shear banding 

contribution function as a cause of the low hardening in compression of polycrystalline copper.  

The model relates the true stress to true plastic strain, in dependence of strain rate, with the 

following expression: 

 ( )0

0

1 1
1 p

D

SB n

pa b

f
A B

e



 


−

   
= − + +   

+      

  (8) 

where 
0

( , , , , , , )SBf a b A B n D  are material constants and 𝜀0̇ is a reference strain rate. In Equation (8), 

the increase in 
0SBf  results in a relevant stress softening caused by shear banding, whereas coefficients 

a  and b  define the onset point of stress collapse due to instability, modifying both stress and strain. 

In general, this point is delayed at high values of a  and low values of b . The remaining coefficients 

, ,A B n  relate to a classical strain hardening described by a power-law function, while 0  and D  are 

the coefficients of Cowper-Symonds [56] model for the strain rate dependence. 

 

Model modification and calibration 

The Ree-Eyring model has been applied to some of the constitutive parameters to predict the 

behaviour of the material at different temperatures and strain rates. Firstly, the linear elastic part has 

been replaced by Equation (2b). Then, a proportionality function 𝐾𝑅𝐸 has been defined as the ratio 

between the Yield strength given by Equation (2a) and the Yield strength at the reference condition 

of 293K temperature and 10-3 s-1 strain rate. This function allows replacing the Cowper-Symonds 

term valid only for strain rate dependency. Hence, it can be written: 

 ( ) 0,y REK T  =   (9) 

In addition, a qualitative analysis of the curves in Figure 3 shows that the drop in resistance after 

the first peak of the stress-strain curve changes considerably in each test. Thus, the 
0SBf  factor has 
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been imposed to vary with the 𝐾𝑅𝐸 function as well: 
0

( , ) ( , )SB SB REf T f K T = . Therefore, the 

modified constitutive law comprising the behaviour even at different temperatures becomes, for the 

elastic and plastic parts respectively: 

 ( ),           for      < yE T    =  (10a) 

 
( ) ( ) ( )TKBA
e

Tf
RE

n

pba

SB

p
,

1

,
1 








+









+
−=

−
 (10b) 

The calibration of material constitutive parameters has been performed by the minimisation of an 

RMS error function between the engineering experimental data and the analytical curves obtained by 

equation 10b (converted back into engineering values). It is worth noting that a more rigorous 

calibration would require an inverse FEM approach, due to the occurrence of deformation 

inhomogeneities. However, it will be shown that the analytical calibration is able to provide an 

acceptable accuracy. Furthermore, applying inverse FEM over such a large test campaign would 

require the iterative minimization of a global error function (which should be a weighted average of 

16 RMS errors), comprising the risks of computational instabilities associated with strain or 

temperature concentrations. The goodness of this analytical calibration will be shown in the 

subsequent FEM validation. 

The results of calibration are shown in Figure 8, where it is possible to observe an overall excellent 

agreement among the calculated and experimental engineering stress-strain curves. The material 

parameters are reported in Table 4. The average error in the calibration, i.e. the RMS deviation 

between experimental and numerical stress curves, is 5.06 MPa. 

It is worth noting that the analytical stress calculation has been implemented following an 

incremental approach, where the stiffness of the stress-strain curve is computed at any time point. 

This approach coincides with the FEM implementation described in the next section and permits to 

account for the effective strain rate (which is not constant during the test) and temperature variations 

(due to self-heating). However, while FEM can account for eventual non-uniform distributions, the 

strain rate and temperature are considered uniformly distributed in the analytical model calibration. 

 

Table 4 - Modified Nowak-Peçherski parameters for iPP 

a  b  
0SBf  B [MPa] n  

1.6706 12.6730 0.024 511.1 0.00515 
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The parameter 𝐴 does not appear in Table 4 since it is implicitly defined by the other parameters. 

Indeed, being 𝜎0 a constant, from Equations (9) and (10b) it is inferred that the parameter 𝐴 must 

vary with strain rate and temperature. At the Yield point, it results 0=p  and the two equations must 

coincide, thus resulting: 

 ( )
( )

0

,
, / 1

1 p

SB

a b

f T
A T

e



 

−

 
= − 

+ 
  (11) 

In any case, substituting the parameter values of Table 4 into (11), 𝐴 is found to be in the range 

36.6-37.1 MPa for the investigated strain rate and temperature intervals. 

 

 

Figure 8 - Calibration results at different strain rates and temperatures (red curve: experimental, 

black curve: analytical). The test temperature, the strain rate and the RMS error (in MPa) are 

reported above each chart 

 

Prediction of shear bands formation 

As aforementioned, the first multiplicative term in the stress equations (8) and (10b) is responsible 

of the shape of the stress-strain curve at constant strain rate and temperature, and may describe the 

stress softening after the initial yielding or peak. In particular, the 𝑓𝑆𝐵 parameter that governs the 

amplitude of the stress drop is found to vary with strain rate and temperature as shown in Figure 9. 
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Figure 9 - Contour map of fSB as a function of strain rate and temperature 

 

It is noted that the 𝑓𝑆𝐵 term is small for lower strain rate and higher temperature; hence, it is likely 

to determine small deviation of the true stress-strain curve from the classic power law shape. On the 

other hand, 𝑓𝑆𝐵 increases at higher strain rate and/or lower temperature, so that the shape of true 

stress-strain may change significantly, showing a local peak after the yielding followed by a stress 

decrease. This behaviour of the true-stress strain curve can be considered as an instability that occurs 

internally in the material itself. While in tensile stress states the necking phenomenon occurs [30], in 

compression states the decrease of material strength determines a global instability in the form of a 

shear band. The onset of macroscopic shear bands is a global instability that derives precisely from 

this peculiar behaviour of the true stress-strain curve. 

In addition, it should be recalled that the proposed model can predict the onset of macroscopic 

shear bands. In the simplifying hypothesis of constant volume and uniform deformation, as well 

known, the expression of the load as a function of true stress, true strain and initial cross-section 𝐴0 

holds:  

 0( ) p

pP A e


 =   (12) 

The derivative of the load with respect to the plastic deformation, normalized by 𝐴0 becomes: 
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Basically, 𝐻 represents a hardening function computed on the engineering stress. Substituting 

(10b) into (13), it is achieved: 

 ( , ) ( )p

RE pH e K T C


   = +    (14) 

where 𝐶 stands for the derivative of the first two terms in (10b): 
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  (15) 

The condition of global instability, associated with the onset of shear band, occurs if 𝑑𝑃/𝑑𝜀𝑝 ≤ 0 

or, in other words, if 𝐻 ≤ 0. 𝐻 depends on the strain rate and temperature and varies along with 𝜀𝑝. 

Figure 10 shows the contour map of the minimum value of 𝐻 computed at different strain rates and 

temperatures in the strain interval 0 < 𝜀𝑝 < 0.5. The contour level 𝐻 = 0 discriminates the strain 

rate-temperature field in two areas: in the yellow region, where 𝐻 > 0, the load-deformation curve 

has always a positive slope and no shear bands are to be expected. On the contrary, in the regions 

below the contour level 𝐻 = 0, the load-deformation curves do have a negative slope, and shear band 

instability is likely to occur after a local peak. 
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Figure 10 - Contour map of the minimum hardening function given by (14) computed in the strain 

interval 0-0.5. The markers denote the experimental observation 

 

FEM Analyses 

Finite element simulations of the compression tests have been carried out to compare experimental 

and numerical results after the analytical calibration of the constitutive model. A similar approach 

can be found in Deng et al. [57] for PMMA at strain rates from 10-4 up to 10-2 1/s. Thus, the FE model 

was realized in Abaqus®/Explicit software, using the Lagrangian solver. The model, meshed with 

bidimensional axisymmetric elements (CAX4R), is shown in Figure 11. Displacement boundary 

conditions at each side (specimen supports or input/output bars) have been set equal to those measured 

during real tests. The input and output bar interfaces at the specimen ends were modelled as rigid. 

The contact and friction algorithms used in the simulations were surface-to-surface contact, with 

“hard” normal behaviour and frictional tangential behaviour, implemented with the penalty method . 

A low friction coefficient (0.04) has been set at the specimen interfaces, since lubrication was used 

in the experiments. 
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Figure 11 - Axisymmetric FE model of the specimen 

 

The modified Nowak-Peçherski constitutive model described in the previous section has been 

implemented by means of a user-defined subroutine (Vumat). The coefficients adopted are those 

reported in Table 4. Young modulus and Yield stress dependences on strain rate and temperature have 

been considered in accordance with the calibrated Ree-Eyring models, using the coefficients given in 

Table 3. The standard von Mises equivalent stress and the isotropic hardening were used as yield 

criterion and plastic flow rule, respectively, in the Vumat subroutine. Details about the 

implementation of the user-defined material within the framework of large strain are given in 

Appendix 2. 

 

Stress and strain behaviour 

In Figure 12, the FE results are shown together with the experimental ones, in terms of engineering 

stress-strain curves. The red curves are the experimental ones, while the blue curves are the numerical 

ones. It can be noted that the numerical simulations at 102 and 103 s-1 reached deformations that are 

higher than those experienced by the real samples (represented in blue dashed line); nevertheless, 

when the load-bearing capability decreases too much, the simulations suffer from convergence 

problem and stop. However, a very good matching can be observed in general, validating the 

implemented procedure.  

According to Figure 12, the FEM curves show that the load is monotonically increasing for tests 

conducted at strain rate from 10-3 to 100 s-1, at temperature from 293K to 313K. The samples tested 
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in these conditions were deformed uniformly, exception made for a limited barrelling, up to the 

maximum load. 

The conditions of 10-3 s-1 strain rate at 293K and 102 s-1 at 313K are close to the frontier 𝐻 = 0, 

as their load-displacement curve have a nearly flat portion. The samples tested in these conditions 

showed a slightly inhomogeneous deformation, meaning that a sort of weak shear band started, but 

did not develop completely. 

All other combinations of strain rate and temperature that are characterized by 𝐻 < 0 show a 

relevant decrement of the load-bearing capacity computed by FEM. This is the case of all the tests at 

102 and 103 s-1, and all the tests at 273 K, which were indeed characterized by clear shear bands 

formation, as shown in Figure 1.  

It is worth reminding that the proposed model can predict the shear bands to form even in absence 

of friction, and nearly identical load-displacement curves have been obtained with different friction 

coefficients varying from 0.0 to 0.04 and 0.08. This is a good point, since it means that the shear 

bands initiation occurs due to the material behaviour, even in uniaxial stress state, and does not need 

necessarily an external trigger, such as frictional shear stresses. However, it must be admitted that in 

real tests friction may play a role and can favour the shear bands initiation. Indeed, some points falling 

in the region 𝐻 > 0 of Figure 10 showed a certain inhomogeneous deformation due to limited shear 

band formation. 

Figure 13 shows the contour map of von Mises stress computed by the FEM at the instant of 

maximum strain experimentally measured. It is seen that in the three upper-left pictures the stress 

distribution is quite uniform, despite some barrelling occurred; other simulations show less uniform 

deformation and stress distribution. The tests characterized by brittle failure of the samples, i.e. those 

at strain rate 102-103 s-1 and T<313K, show clear shear bands at the final instant of the test, after with 

specimens separate in pieces. 
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Figure 12 - Comparison between experimental (red) and numerical (blue) results 
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Figure 13 - Von Mises stress contour maps computed by at the maximum experimental strain value 

for each test. The black arrows highlight the regions characterized by the formation of shear bands 

(see also the strain contour maps in Figure 16).  

Self-heating effect 

As aforementioned, only the tests at 10-3 s-1 can be considered isothermal, whereas tests at strain 

rate 100 s-1 or higher are to be considered adiabatic and self-heating in the sample takes place due to 

plastic work. Moreover, since the deformation is uniform only for a few tests, all other conditions are 

likely to induce largely non-uniform temperature distribution.  

The entire plastic work has been considered to be converted into heat; then, the current temperature 

can be computed by 
pCdTT += 0

, where T0 is the initial temperature, and ρ and Cp are the 

material density (908 kg·m-3) and specific heat (1800 J·kg-1·K-1) respectively. The temperature 

distribution maps obtained at the last converged step by FEM analyses are shown in Figure 14. 
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Figure 14 - Temperature contour maps 

It is noted that the temperature increases significantly in the zones where the shear strain localizes; 

however, the increment in the average temperature of the samples is much more limited. Figure 15 

shows the temperature evolution computed by FEM for all tests as a function of engineering strain. 

The solid lines describe the temperature of the material point that will exhibit the maximum shear 

strain at the last significant instant of the test; the dashed lines represent the temperature averaged 

over all section nodes. 
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Figure 15 - Temperature evolution. Dashed line: section average, solid line: point of maximum 

shear 

In the tests that achieved 0.5 of engineering strain, the maximum temperature rise was about 100K 

or even more in some cases; the tests at high strain rate characterized by lower engineering strain at 

the final instant before failure showed lower temperature increment, in the order of 50-70 degrees in 

the regions of maximum shear strain. In all cases, the average temperature increase due to the 

conversion of plastic work into heat is much lower. 

 

Shear strain to failure analysis  

The shear bands formation and a quantitative evaluation of shear strain are better understood by 

observing the contour maps of logarithmic shear strain (LE12) shown in Figure 16. The higher values 

of shear strain originate from the most external contact region of the sample with the rigid surfaces. 

However, whereas the maximum shear strain distributes over a certain area for the samples 

characterized by nearly uniform deformation, the maximum shear strain localizes in narrow bands, 

clearly distinguished by those red and blue “tongues” in all the tests at 253K and all tests at high 

strain rate. Moreover, the tests at 102-103 s-1 at temperature T≤293K experienced a brittle failure. The 

failure initiates, as observed in videos recorded by the high-speed camera, with shear bands 
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formation; then, the combinations of low temperature and/or high strain rate reduces the strain to 

failure of the material.  

 

Figure 16 - Shear strain maps showing adiabatic shear bands under dynamic conditions 

 

CONCLUSIONS 

This study shows the development of a constitutive model capable of describing the compressive 

behaviour of polymers showing the shear bands instability. This phenomenon has been observed on 

an isotactic Polypropylene, tested in a wide range of strain rates and temperatures.  

The model is inspired by the Nowak-Peçherski law for describing the non-linear relation between 

stress and strain. Since mechanical properties of Polypropylene show a significant dependence on 

strain rate and temperature, their effects have been introduced by using a factor inspired by the Ree-

Eyring law. Such a factor affects both the material strength and the shape of the stress-strain curve. 

Consequently, the model can be used to predict the occurrence of shear bands for specific values of 

strain rate and temperature combinations.  
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The constitutive parameters have been evaluated by an analytical calibration performed on 

experimental data obtained in a recent work. The proposed constitutive model has been validated 

numerically, implementing it within a commercial FEM code by means of a user-defined subroutine. 

The results of the simulations are in excellent agreement with the experimental measurements; the 

numerical model captured very well not only the global stress-strain behaviour but also the shear 

bands formation (that govern the failure mode) observed in real experiments. 
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APPENDIX 1 – SHB technique 

The dynamic tests have been carried out by a Split Hopkinson Bar. The experiments have been also 

recorded with a high-speed camera, model Photron® SA4 at 105 fps, in order to investigate the 

behaviour of the specimen at high velocities. SHB is the most commonly used apparatus for dynamic 

testing on metals and engineering materials, from tension to compression and torsion. Only the basics 

of the Hopkinson Bar method, which is relevant for understanding the present work, is reported here; 

more details on this technique can be found in [32]. 

The Hopkinson bar method exploits the elastic pressure waves that travel in straight long bars with 

the sample that is sandwiched between two bars. Typically, the pressure wave is generated by the 

impact that occurs between a “striker bar” and an “input bar”; alternatively, the stress wave can be 

generated by preloading and fast releasing a portion of the input bar. Then, the wave propagates at 

sound speed along the input bar until it reaches the sample. At this point, the latter is dynamically 

loaded, while the pressure waves are partially reflected back in the input bar and partially transmitted 

in the output one (Figure A1).  

 

 

Figure A1 - Scheme of a direct SHB  

 

By measuring the strain amplitudes of the waves travelling along the bars (e.g. by means of strain 

gauges), it is possible to evaluate the engineering strain rate, strain and stress histories experienced 

by specimen material with the following equations: 

𝜀̇(𝑡) = −
2𝐶0
𝐿𝑆

𝜀𝑅(𝑡) (A1) 
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where Ls and As represent the specimen length and cross-section area, Ab, Eb and C0 represent the 

cross-section, Young modulus and material sound speed of the bars. 

Whereas the tested specimen deforms significantly up to large strain or even failure, the bars are made 

to remain well below their elastic limit. The pre-stressed, input and output bars are 3.0, 7.5 and 4.0 m 

long, respectively; the diameter is 18 mm for all bars. Strain measurements are performed by strain 

gauges glued at half of the input bar and 0.10 m away from the specimen in the output bar. The full 

Wheatstone bridge configuration was used for all strain gauges. A NI® 6120 acquisition card at the 

sampling frequency of 1 MHz acquires the voltage signals coming from the two Wheatstone bridges 

simultaneously. A picture of the SHB with the sample is shown in Figure A2.  

The temperature is set by means of Vortec® compressed air guns adopting the following method; the 

sample is mounted between the bars and closed inside an external casing to form a small chamber, 

while adjustable jets of hot or cold air are directed inside the casing for a sufficient time (i.e. 

approximately 15 minutes) to reach a stable temperature. The temperature is evaluated continuously 

by means of 2 thermocouples glued to opposite sides of the lateral surface of the specimen as shown 

in Figure A2c (reproduced from [31]), while the casing is removed a few seconds before the test. 
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Figure A2 - Tension-Compression Split Hopkinson Bar with sample 

  

Input bar (7.5 m) Output bar (4 m)Pre-stressed bar (3 m)
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APPENDIX 2 – Vumat implementation 

The developed user-defined material has been implemented in a routine written in Fortran 

programming language (Vumat). At each time increment, the routine receives from Abaqus the 

deformation gradient tensor and the strain increments as input, computes the stress rate according to 

Green-Naghdi formulation in corotational framework, and returns to Abaqus the updated Cauchy 

stress. The forward Euler integration is used to integrate the constitutive rate equation, while the 

constitutive equations (10a) and (10b) are used to describe the equivalent stress-strain behaviour of 

the material.  

Governing equations: 

In elasticity, the Cauchy stress components can be written as follows: 


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+=
3

1

2
k

el

kkij

el

ijij   
(A4) 

In a Green-Naghdi corotational framework, the stress increments are readily: 
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ijij   
(A5) 

where  and   are the classic Lamè elastic constants, ij  is the Kronecker operator, and el

ij  are 

the logarithmic Hencky strain increments. The use of the logarithmic strain is often exploited for the 

numerical integration of constitutive equations in incremental form for large deformation plasticity 

problems [58, 59], and thus adopted by Abaqus as input for the stress reconstruction. 

Analogously, the strain and strain rate are additively decomposed into an elastic (e) and plastic (p) 

part: 

p

ij

e

ijij   +=  (A6) 
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ij

e

ijij  +=  (A7) 

 

When the elastic limit is exceeded, the von Mises Yield criterion is used to compute the equivalent 

stress y  as a function of equivalent plastic strain p ; the yield function is given by:  

( ) ijij

p

y SSq
2

3
==  

(A8) 

where ijS are the deviatoric stresses 
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Assuming that the principal directions of stress and plastic strain coincide, the Isotropic Hardening 

flow rule is used to compute the evolution laws of plastic strains components. The flow rule is: 

p

y

ijp

ij

S



 














=

2

3
 

(A10) 

 

Equations (A7) and (A8) define the material behaviour. At any increment, the occurrence of plastic 

flow is determined by evaluating q based on purely elastic response; these equations are to be 

integrated by applying the forward Euler method to the flow rule (A10). 

 

Implementation scheme 

In the Vumat code, the integration of the Cauchy stress has to be performed explicitly at each time 

increment from instant tt −  to instant t : 

ijijij ttt  +−= )()(  (A11) 

The elastic predictor method is used to determine the occurrence of yielding; in fact, the deviatoric 

stress components are: 

ijijij ettSS +−= 2)(  (A12) 

where ije  are the deviatoric strain increments, and the equivalent stress predictor is  

ijij SS =
2

3
  

(A13) 

 

When the elastic predictor is lower than the yield stress, equations (A5) and (A11) can be used to 

update the Cauchy stress tensor at the end of the time increment. On the other hand, plastic flow 

occurs when the elastic predictor is larger than the current yield stress y ; using the Newton method, 

the increment of equivalent plastic strain in the time step is obtained by [60]: 
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where  p

y ddK =  is the hardening rate, i.e. the derivative of the equation (10): 
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The current yield stress can now be updated: 

( ) ( ) p

yy Kttt  +−=   (A16) 

 

Notice that K accounts for the equivalent plastic strain rate p  (i.e. tp  ) and for the temperature 

T that have been computed in the previous integration step. Integration of the plastic work gives the 

temperature at the end of the current step: 
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The sought Cauchy stress tensor can be computed: 
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with  = ijij Sf . In addition, the components of plastic strain can be updated according to equation 

(A10): 
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