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Abstract A correct assessment of microalgae

growth on porous building materials (i.e.: fired bricks,

sandstones and limestones) can provide a useful tool

for researchers and practitioners. In fact, it may help

predicting the biofouling damage extension and it can

assist the experts in a correct planning of maintenance

interventions to limit costs. The literature regarding

such issue outlined the Avrami’s model as the most

recurrent one, even considering the influence of

biocidal treatments on the substrate. However, it

seems to have some limitations when the growth is

very fast or, conversely, when the latency time is

extended over the time. Therefore, a different mod-

elling approach is here proposed, by using the logistic

function (extensively used i.e. in population growth).

Results reveal that the logistic function seems to

succeed in better modelling the available experimental

data. Moreover, it seems to overcome the limits of the

Avrami’s model, as well as to be less influenced by the

main drivers of microalgae growth, such as porosity

and roughness of the substrate, biocides treatments

and environmental conditions (temperature).

Keywords Microalgae growth � Façades
biodeterioration �Avrami’s model � Logistic function �
Porous building materials

List of symbols

X(t) Covered area by algae biofouling (–)

Ac/At Final covered area ratio parameter (–)

r Intrinsic growth rate parameter (day-1)

tp Growth inflection point parameter (day)

n Avrami’s exponent for time variation (–)

R% R Factor index (%)

exp1, …,

exp3

The experimental measures of the 3

samples respectively (–)

expm The average experimental value (–)

expm,i The average experimental value for the

ith time (–)

mtot The total slope of the average

experimental data (–)

mi The ith slope of the average

experimental data (–)

1 Introduction

The biodeterioration caused by microorganisms is one

of the first causes of deterioration of construction
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Marche, via Brecce Bianche, 60131 Ancona, Italy

e-mail: e.quagliarini@univpm.it

B. Gregorini

e-mail: b.gregorini@pm.univpm.it

M. D’Orazio

e-mail: m.dorazio@univpm.it

Materials and Structures (2022) 55:158

https://doi.org/10.1617/s11527-022-01993-x(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0002-1091-8929
http://orcid.org/0000-0001-5378-5364
http://orcid.org/0000-0003-3779-4361
http://crossmark.crossref.org/dialog/?doi=10.1617/s11527-022-01993-x&amp;domain=pdf
https://doi.org/10.1617/s11527-022-01993-x


materials and it usually leads to a decrease in their

performances [1, 2]. The main actors that cause

degradation can be identified in fungi, mould,

cyanobacteria and green microalgae [3, 4]: they

produce chemical and mechanical degradation of the

surfaces themselves, and subsequently, acting as first

colonizers, they form a conducive substrate to more

complex biological forms (e.g. mosses and lichens)

[5]. In addition, their high adaptability to external

conditions let the biodeterioration phenomena to

spread on several construction materials, being them

porous (such as concrete, brick, stones [6, 7]) and non-

porous ones (i.e. ETICS [8]), when subject to different

environmental conditions (e. g. temperature, humid-

ity, light, condensation [9, 10]). Starting from discol-

oration, biodeterioration may end up causing high

maintenance and repair costs for the external surfaces

of constructions, monuments, outdoor furniture and so

on, even leading to hazards to human health (e.g.

slipping problems when it occurs on pathways)

[9, 11, 12]. Among these microorganisms, microalgae

growth is one of the less investigated phenomena to

the authors’ knowledge, especially compared to mould

and fungi. Moreover, recent literature focused in

describing its influencing factors (e.g. substrata prop-

erties, environmental conditions and effects of bio-

cides treatments) but it is quite poor on growth

modelling and failure model side [13–17].

From an engineering point of view, a correct

modeling of the microalgae biofouling phenomenon

can provide a useful tool both for predicting the

damage on the various porous building materials and

for the correct planning of maintenance interventions

so as to be able to limit their costs [16, 18].

Currently, the most widespread model applied to

porous building materials is the Avrami’s model. It was

firstly provided by Tran [17] dealing with cement

mortars where microalgae growth reached the complete

covering of the tested samples. Subsequent changes to

the initial formulation (modified Avrami’s model)

allowed the successfully application of the model to

other porous building materials, where the microalgae

could not reach the total coverage of the tested samples

[14, 16], i.e. slightly porous and slightly rough fired

bricks surfaces [14, 15], materials treated with biocides

[14–16] and when the environmental conditions limited

their development (e.g. low temperature) [13].

However, two important limitations of such model

can be pointed out. A previous work [15] highlighted

that one of the Avrami’s flaws occurs when the growth

rate is very fast (i.e.: on materials having high porosity

and/or high roughness) and the latency phase is

missing. Due to the analytical formulation and the

constraints adopted [15] to ensure the physical aspects,

the curve has a minimum value equal to 0 and a latency

phase that prevents the curve to develop as fast as the

experimental microalgae biofouling. The second lim-

itation, conversely, occurs when the latency time

extends over the growth time, e.g. for materials with

low porosity and/or roughness. According to the first

derivative, such model is used to analytically show a

decreasing trend between time zero and the latency

time. As a consequence, the predicted biofouling

coverage in this interval could be rather poor.

To overcome such issue, Tran [17] proposed to

consider null the coverage before the latency time.

Anyway, if we want a model where only before the

inoculation/storage of algae, that is, at time t = 0, as

for the experimental set-up we are going to deal with

in this paper, it can be considered null, and then it is a

not decreasing function, the Avrami’s model does not

succeed in.

An alternative approach could be thus preferred to

overcome those limitations.

The use of the logistic function could be a valid help

in this direction. Besides its historical wide use when

dealing with population growth models [19–21], it

was, in fact, quite employed i.e. in the biofuel industry

for what concerns biological description of microalgae

growth [22]. Besides, numerous studies adopted this

formulation to simulate the experimental data of

in vitro microalgae cultivations [23–28]. Concerning

the description of biofouling on porous building

materials, the logistic formula has been recently

successfully applied only in one study on mold growth

[29], but no application about microalgae growth is

known up to now to the authors’ knowledge.

Hence, the aim of this work is to apply the logistic

model for describing microalgae growth on some of

the most recurrent porous building materials (fired

bricks, limestones and sandstones), previously ana-

lyzed through the Avrami’s model. Moreover, since

microalgae growth curves are strongly influenced by

substrate properties, (i.e. porosity and roughness),

environmental conditions (i.e. temperature) and even-

tual surface treatments, such factors are also consid-

ered for the models’ accuracy. By comparing the

results, this work wants to verify if the first one:
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– can better overlap experimental data and overcome

the previous cited limits than the second one;

– is less influenced by the main factors influencing

the microalgae growth, such as porosity and

roughness of the substrate, environmental temper-

ature, as well as biocides treatments.

2 Materials and methods

2.1 Theory

A brief description of the Avrami’s model we refer to

is reported in Appendix 3.

Instead, the logistic function adopted in this work is

defined by Eq. (1), proposed in [24, 29]:

XðtÞ ¼ Ac

At

� 1

1þ exp�rðt�tpÞ

� �
ð1Þ

where, microalgae coverageX (–) is a function of time t

(day) and the three parameters, namely Ac/At, r and tp,

can be defined from experimental measures. In partic-

ular, the first one is the maximum covered area ratio (–

), being Ac the area covered by microalgae and At the

total area of the sample. It represents the horizontal

asymptote ranging between 0 and 1. The r parameter

(day-1) can be defined as the intrinsic growth rate [24]

while the tp parameter (day) is defined as the inflection

point of the growth curve and it is the day in which

microalgae coverage (Ac/At)/2 is reached. In this work

both r and tp are calculated through iterations by

minimizing the least squares value between experi-

mental data and calculated values [24]. In particular,

according to such method, the two parameters were

calculated through iteration as a pair of values (tp, r)

that minimizes the sum of the squares of the residuals.

Residuals were considered as the differences between

the experimental values Xexpm;i
and the ones obtained

with the logistic equation Xðtp; rÞi for each measuring

time [30], as reported in Eq. 1a.

tp; r
� �

: min
X
t¼i

Xexpm;i
� Xðtp; rÞi

� �2 !
ð1aÞ

Moreover, the model first derivative is always

higher than 0 for every time values: hence, no

decreasing trend can be observed as happening for

the Avrami’s equation (see Sect. 3.2).

It is important to underline that in the following

sections Eq. 1 is compared to equation C1:

– from time t = 0 to the time of the last experimental

measure (condition 1);

– by considering the coverage equal to zero before

the latency time, for taking into account the

physical aspects involved in its formulation [17]

(condition 2).

2.2 Experimental tested materials

Previous experimental microalgae growth data,

already modelled by the (modified) Avrami’s model,

on fired bricks, sandstones and limestones [13–16] are

selected, as reported in Table 1. The relative Avrami’s

curves are thus collected from such references, while

the logistic ones are determined from the beginning for

all the materials (Table 1).

2.3 Methods for the comparison

2.3.1 Overlapping the experimental data

The first comparison involves the assessment of which

model could better overlap the experimental data. To

assess that, the comparison is run generally evaluating:

how many times the models overlap the data and their

fitting quality. Concerning the values out per each

model, this work evaluates when they are out accord-

ing to each growth phase and how far from the

experimental data they are.

For the first comparison, this works determines the

percentage of values that validates condition (2):

minðXexp1 ;:::;Xexp3Þi�Xðt¼ iÞ�maxðXexp1 ;:::;Xexp3Þi

ð2Þ

where X(t = i) is the calculated covered area for both

the models at the ith time, that is, the time (days) when

the measure was made during the microalgae growth

(e.g.: 0, 7 days, 14 days, …, 70 days) and Xexp1, …,

Xexp3 correspond to the experimental measures of the 3

samples respectively.

To the same aim, a comparison between the fitting

quality index R% (–) of the two models is run. This

index was previously adopted for the Avrami’s law

[13, 14, 16, 17], and it is calculated according to (3):

Materials and Structures (2022) 55:158 Page 3 of 18 158



R% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t¼i

Xðt ¼ iÞ � Xexpm;i

� �2
P
t¼i

Xexpm;i

vuuuut � 100 ð3Þ

where X(t = i) and Xexpm;i
represent the calculated and

the average experimental data at time t = i,

respectively. This value expresses the deviation

between experimental data and simulated one, that

is, the more it tends to zero the more the analytical

model overlaps the measured data.

For the second step, the percentage of the values

resulting out of the experimental range is run accord-

ing to (4):

Table 1 List of the porous building materials considering substrate properties, temperature and surface treatments [13–16]

Substrate properties Temperature Surface treatment

Typology Refs Name Porosity (–) Roughness (lm) T = 10 �C T = 27.5 �C None TiO2 TiO2 ? Ag TiO2 ? Cu

Brick [14] LSU 0.19 2.4 4 4

LST 0.19 2.4 4 4

LRU 0.19 2.8 4 4

LRT 0.19 2.8 4 4

[15] NNt 0.19 2.8 4 4

NAg 0.19 2.8 4 4

NCu 0.19 2.8 4 4

[13] AS 0.19 4.5 4 4

AS 0.19 4.5 4 4

AR 0.19 5.54 4 4

AR 0.19 5.54 4 4

B 0.25 2.95 4 4

B 0.25 2.95 4 4

[14] HSU 0.37 1.1 4 4

HST 0.37 1.1 4 4

HRU 0.37 8.9 4 4

HRT 0.37 8.9 4 4

[15] ANt 0.37 8.9 4 4

AAg 0.37 8.9 4 4

ACu 0.37 8.9 4 4

[13] CS 0.44 6.6 4 4

CS 0.44 6.6 4 4

CR 0.44 7.6 4 4

CR 0.44 7.6 4 4

Sandstone [16] A2 0.05 7.9 4 4

A2T 0.05 7.9 4 4

A1 0.08 7.6 4 4

A1T 0.08 7.6 4 4

Limestone [16] C3 0.08 2 4 4

C3T 0.08 2 4 4

C1 0.09 2.6 4 4

C1T 0.09 2.6 4 4

C2 0.18 2.6 4 4

C2T 0.18 2.6 4 4
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number of Xout

number of Xtot

� �
Gp

ð4Þ

comparing the number of times values are out (Xout)

to the number of total values (Xtot) resulting in each

specific growth phase Gp (i.e. latency, exponential and

stagnation).

To avoid subjective interpretations, the discretiza-

tion of the average experimental data into the three

phases is run according these steps:

1. the total slope of the experimental data mtot was

determined as the linear incremental ratio between

the starting point (0;0) and the ending point (tend;

Xmax) from the experimental data, where tend
corresponds to the last measuring time.

2. the ith slope mi is determined between the covered

area at time i and the previousmeasure at time i - 1;

3. the three phases are evaluated according to

condition (5)

Exponential mi [mtot

Latency; Stagnation mi �mtot

	
ð5Þ

This discretization method defines the exponential

phase as the phase in which the growth slope mi is

higher than the overall linear growth (mtot). Con-

versely, both the latency and stagnation take place

when mi is equal or lower than mtot, respectively, right

before and after the exponential phase. Figure 1 shows

an example of such discretization: the first 11 exper-

imental data and the last 9 values are grouped

respectively in the latency/stagnation phase, since

their mi values are always lower than mtot; conversely,

the remaining experimental values can be grouped in

the exponential phase because their mi are higher than

the mtot. In this way, it is possible to define a latency

phase where the coverage is not a constant equal to

zero, but it has an incremental ratio, even if small.

The goal of the last comparison is to evaluate

eventual trend of under/over estimation for such out

values and, thus, to asses if one of themodels is closer to

the experimental data, even when not properly overlap-

ping the data. For every ith out values, the underesti-

mation/overestimation is calculated by determining the

difference between the calculated X(t = i) and the

minimum/maximum experimental value among the

three sample ðXexp1 ; :::;Xexp3Þi according to (6):

Xðt ¼ iÞ �minðXexp1 ; :::;Xexp3Þi

Ac=At

; if Xðt ¼ iÞ\

minðXexp1 ; :::;Xexp3Þi

Xðt ¼ iÞ �maxðXexp1 ; :::;Xexp3Þi

Ac=At

; if Xðt ¼ iÞ[

maxðXexp1 ; :::;Xexp3Þi

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ

Moreover, a normalization of such differences to

the total covered area Ac/At is set in order to have

comparable results. In fact, the total covered area

significantly differs among all the materials, ranging

between 0.10 and 1.00 [13–16]. Condition (6) is

determined for both the models. Boxplot analysis is

run to describe the trend and distribution of such

values for each phase.

2.3.2 Overcoming the Avrami’s flaws

The first step of this section wants to validate the

hypothesis that the Avrami’s model is not able to

correctly simulate microalgae growth for ANt, ACu

and AAg materials because the latency phase is

missing [15]. In order to verify that, the discretization

above is applied to such materials by verifying the

presence/absence of the latency phase. Subsequently,

by determining the logistic curves for such materials,

the work verifies whether the logistic model is able to

overcome this flaw. A graphical test is also adopted to

check the overcoming of the second Avrami’s flaw for

all the materials with the latency time higher than 0,

for both conditions 1 and 2 reported in Sect. 2.1.

2.3.3 Correlation with the influencing factors

The third comparison is run to assess which model is

lesser influenced by the microalgae influencing factors

such as porosity and roughness, surface treatments, as

well as different environmental conditions (tempera-

ture). To evaluate the correlation with each factor

alone, three subsets are formed:

1. Porosity and Roughness subset: with all the

untreated material under T = 27.5 �C;
2. Temperature subset: all the untreated material

under T = 10 �C and T = 27.5 �C, respectively;
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3. Surface Treatment subset: all the treated and respec-

tively untreated materials under T = 27.5 �C.

Three categories are correlated to each subset. The

first one is the numbers of values inside the experi-

mental range, the second one involves the fitting

quality index R% (–) and the third one considers the

values out according to each growth phase (latency,

exponential and stagnation phase).

In particular, the effect of porosity and roughness is

considered as a combined effect through a fitting

surface determined as a 1st degree polynomial equa-

tion fitted by using MATLAB R2017b software [31].

A linear regression is considered for temperature and

surface treatments. Since this last one is a binary

regressor (untreated/ treated), binary indicator vari-

ables are used respectively 0 for the untreated

materials and 1 for the treated ones [32]. The

coefficient of determination R2 (–) is used to assess

if a correlation between each model and the cited

above influencing factors is present (R2 C 0.50) [32]

and the relative trends are then evaluated through

scatter plot, only in affirmative cases.

3 Results

3.1 Overlapping the experimental data

It is worth underlining right off that there are no

significant differences by considering the comparison

between the logistic model and the Avrami’s one

declined on both the two conditions reported in

Sect. 2.1, thus, what is reported in the following can

be considered valid in either case.

The only exception is for the check on values out

and growth phases. This particular case will be

specified hereafter.

Figure 2 shows the percentage of the values of the

Avrami’s and logistic model that falls within the

minimum and maximum values of the experimental

data. For fired brick (Fig. 2a), about the 2/3 of the

Avrami’s values fall within the given experimental

range. For the logistic model, these values raise up to

about 3/4. For the stony materials (Fig. 2b) 70% of

values are included in the experimental range for both

the models. In addition, limestones and sandstone,

singularly taken, have comparable result.

Figure 3 shows the scatter plots that compare the

R% obtained for both the models applied to fired bricks

and stones. For fired bricks (Fig. 3a), it is evident that

the logistic model presents better results: the R%

values are all below the bisector line of the graph. In

particular, when the Avrami’s model is less correct

with R% values ranging between 45 and 60% (2 treated

bricks and 1 untreated), the logistic model is able to

increase the accuracy down to 10%. For stones

(Fig. 3b), both models are, instead, really precise

since all the R% values are below 1%.

When analyzing the values out for each single

phase (Fig. 4a), the first evidence is that the two

models miss about 1 experimental value out of 2 in the

latency phase for both bricks and stones. A little bit

better behavior is reached only for bricks when

considering the Avrami’s model with no algal cover-

age from time zero to latency time (42% of values out

instead of 44% of Fig. 4a).

The accuracy of the two models in lying inside the

experimental ranges increases in the other two phases.

m
-

sl
o

p
e 

[-
] 

X
 (

t)
 [

-]
 

Time [day]

m_i m_tot Exp_M

Latency Phase Exponential Phase Stagnation Phase

Fig. 1 Example of average

experimental data

discretization into the

latency/exponential/

stagnation phase. Black dots

represent the average

experimental data; vertical

bars represent the m values,

respectively grey for the ith
value and white for the total.

The 2nd axis refers to the

m values
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Fig. 4 Analysis of Avrami’s and logistic values out for bricks and stones: a trend correlation between values out and growth phases;

b boxplot analysis for under/overestimation trends
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In particular, the logistic model halves the Avrami’s

percentages for fired bricks, while comparable results

hold for stones, for both limestone and sandstone.

Lastly, Fig. 4b shows how far the analytical values are

from the experimental ones. In fact, the logistic model

reduces the overestimation and underestimation of the

experimental data, especially in the exponential and

stagnation phases of bricks.

3.2 Overcoming Avrami’s flaws

Figure 5 confirms what previously hypothesized and

reported in literature [15]: the trend of microalgae

growth on materials ANt, ACu and AAg escapes the

latency phase. As shown in Fig. 5, the mi slope are

higher than the total slopemtot from thegrowth start until

21 days, denoting the starting trend as exponential.

For such materials, the logistic model better

simulates the fast growth, escaping the latency phase,

than the Avrami’s one, that it is not able at all to

predict most of the experimental points, as shown in

Fig. 6. It is obvious that, in this case, the values

obtained at time zero are not null and it could have no

physical meaning, except you can consider that as due

to the (rapid) effect of the inoculation over the

samples. Anyway, this could be a gap to be filled for

future research. At this moment, it is better to have a

(logistic) model that can predict better most of the

experimental points (all of the experimental points

rather than one, in this case), especially during the

exponential and the stagnation phase, for practical

purposes.

The logistic model is also able to overcome the

second Avrami’s flaw, when this model is declined by

condition 1 in Sect. 2.1, thanks to the differences in its

formulation. In fact, its equation shows an increasing

first derivative for every time value. Nevertheless,

Fig. 7 shows one of the most significative scenarios
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representing such problem and the simulating differ-

ences between the two models. Such scenario refers to

materials AS and AR, with very low porosity and/or

roughness (see Table 1). Since the latency time was set

to 27 days [13], a particularly extended latency time,

the Avrami’s model has a slight decreasing trend with

a starting point at about ? 0.05, while the logistic

does not.

For sake of clarity, since the curves of the other

bricks and stony materials (listed in Table 1) showed

barely visible differences are not here reported, but

they can be found in Appendix 1.

3.3 Correlation with microalgae growth

influencing factors

The first result of the correlation analysis is that the

accuracy of both models for bricks is poorly affected

by microalgae growth influencing factors (Fig. 8)

since all the obtained R2 values are lower than 0.50.

However, when comparing the two models, we can

note that the logistic one is more performing in respect

to substrate properties and temperature. In fact, for

such categories, 8 logistic R2 values out of 10 are

lower than the respective Avrami’s one. For surface

treatments, the correlation is barely null for both of

them. The only R2 C 0.50 is the one between the

values out during the exponential phase and the

temperature for the Avrami’s model.

‘‘Lat’’, ‘‘Exp’’ and ‘‘Stag’’ indicate respectively the

latency, exponential and stagnation phase.

For what concerns the stony materials, a strong

correlation between the porosity and roughness of the

substrate and the model accuracy can be observed

(Fig. 9). In particular, the most of R2 values are higher

than 0.50 for the values inside and outside, whereas the

ones referring to the logistic model are still lower than

the Avrami’s one. As for bricks, surface treatments

have no influence on both the models’ accuracy.

‘‘Lat’’, ‘‘Exp’’ and ‘‘Stag’’ indicate respectively the

latency, exponential and stagnation phase.

Figures 10 and 11 show all the scatter plots for

R2 C 0.50. According to that, it is possible to note that:

for bricks (Fig. 10), Avrami’s model has fewer values

out for low temperature values; for stones, the lower the

porosity is, the more correct both the models are. When

R2 B 0.50, e.g. the R2 = 0.17 for logistic values out in

the latency phase (Fig. 11), datapoint are quite scat-

tered, thus their determined trend are not predictive.
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Fig. 7 Comparison
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Nevertheless, all the remaining trend, with R2\ 0.50

for bricks and stones, are reported in Appendix 2.

4 Conclusion

Predictive models for microalgae growth on porous

building materials can provide a useful tool for

engineers and practitioners to support correct and

adequate maintenance actions, thus limiting interven-

tion costs, as well as to understand the powerful of

protective or conservative treatments. In this work, a

novel approach, using the logistic function, never

applied for microalgae growth on porous building

materials up to now, is proposed and compared to the

most recurrent one in literature: the Avrami’s model.

The comparison was made by using the same exper-

imental dataset available in literature. The results

showed that the logistic model seems to be more

reliable than the Avrami’s model. In fact, it is: (1)

accurate as the Avrami’s model, or even more accurate

when applied to bricks, in overlapping the experimen-

tal data, by reducing the over/underestimations and

increasing the fitting quality; (2) able to overcome the

Avrami’s flaws both when the growth is too fast or too

slow; (3) lesser or even not at all disturbed by the

Influencing 

Factors - 

Bricks

Values Inside R% [-] Values Out

Porosity - 

Roughness

Temperature

Surface 

Treatments

0.00

0.25

0.50

0.75

1.00

Inside

R
2
 -

 S
u

rf
ac

e 
[-

] 

Avrami Logistic

0.00

0.25

0.50

0.75

1.00

R%

R
2
 -

 S
u

rf
ac

e 
[-

] 

Avrami Logistic

0.00

0.25

0.50

0.75

1.00

Lat Exp Stag

R
2
 -

 S
u

rf
ac

e 
[ -

] 

Avrami Logistic

0.00

0.25

0.50

0.75

1.00

Inside

R
2
 -

 L
in

ea
r 

[-
]

Avrami Logistic

0.00

0.25

0.50

0.75

1.00

R%

R
2
 -

 L
in

ea
r 

[-
]

Avrami Logistic

0.00

0.25

0.50

0.75

1.00

Lat Exp Stag

R
2
 -

 L
in

ea
r 

[-
]

Avrami Logistic

0.00

0.25

0.50

0.75

1.00

Inside

R
2
 -

 L
in

ea
r 

[-
] 

Avrami Logistic

0.00

0.25

0.50

0.75

1.00

R%

R
2
 -

 L
in

ea
r 

[ -
] 

Avrami Logistic

0.00

0.25

0.50

0.75

1.00

Lat Exp Stag

R
2
 -

 L
in

ea
r 

[ -
] 

Avrami Logistic

Fig. 8 Correlation analysis (R2) between the two model and the microalgae influencing factors for fired bricks

158 Page 10 of 18 Materials and Structures (2022) 55:158



influencing factors for microalgae growth. It is worth

pointing out that the logistic model used in this study is

a pure mathematic model with no correlations with the

physic of the studied phenomenon.On the other side, in

the considered Avrami’s one, physical aspects of the

phenomenon are taken into account. This leads neces-

sarily to constraints on its parameters and then lower

correlation between the experimental data and the fit.

Nevertheless, future works should deepen the

influence of the substrate properties on the models’

accuracy, especially the stony ones since the materials

subset was limited compared to the brick one, as soon

as other experimental data will be available. Besides,

the logistic model should be tested on other materials

(e.g. wood, plaster, mortars and ETICS, as well as,

carbonated cementitious ones) composing monu-

ments, buildings and furniture than can be prone to

microalgae biofouling. Future research should be also

oriented towards the use of it for characterizing the

overall material bio-receptivity. Finally, a possible

development of the work may concern the implemen-

tation of a real failure model which, starting from the

characteristics of the substrate, considering different

environmental conditions (mainly temperature) and
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Fig. 9 Correlation analysis (R2) between the two model and the microalgae influencing factors for stones
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exploiting the logistic equation, will be able to

describe the phenomenon of biofouling over time.
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Appendix 1

Figure 12 reports all the logistic curves determined

and applied to the literature experimental data and

compared to the Avrami’s curve for fired bricks

materials [13–15]. Materials are listed according to

Table 1

Figure 13 shows the logistic curve determined and

applied to the stony experimental data compared to the

respective Avrami’s curve [16]. Materials are listed

according to Table 1.

Fig. 11 Trend analysis: scatter plot for R2 C 0.50. Stone values in, latency values out and stagnation values out. Points indicate the

determined values, the light blue and light red meshes indicate, respectively, the fitting results for the Avrami’s and the Logistic model

cFig. 12 Comparison between average experimental data,

Avrami’s model curve and Logistic Function curve for fired

bricks [13–15], listed according to Table 1. Points indicate the

average experimental data under optimal growth conditions

(grey), under low temperature (dark grey) and treated (white);

blue line indicates the Avrami’s model; red line indicates the

Logistic Function curve; dotted and dashed lines relatively

indicate materials under low temperature and with surface

treatments
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Appendix 2

Figure 14 shows all the scatter plot and the determined

trend for all the R2 B 0.50 for the brick surfaces,

indicating also their respective R2.

Points indicate the determined values, lines indicate

the fitting results, respectively blue for Avrami’s

model and red for the logistic.

Figure 15 shows all the scatter plot and the

determined trend for all the R2 B 0.50 for the stony

materials, indicating also their respective R2.
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Fig. 13 Comparison between average experimental data,

Avrami’s model curve and Logistic Function curve for stones

[16]: a sandstone (triangle); b, c limestone (square). Points

indicate the average experimental data under optimal growth

conditions (grey) and treated (white); light blue line indicates

the Avrami’s model light red line indicates the Logistic Function

curve; dashed lines relatively indicate materials with surface

treatments
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Appendix 3

The Avrami’s model we refer to is based on nucleation

and the subsequentgrowthofnuclei [17], thismeans that

given a material in phase A (uncolonized material), the

nucleation corresponds to the formation of nuclei of

phase B (colonized material), while the growth corre-

sponds to the increase in the size of these nuclei after

their first appearance. A simple equation can summarize

this process, as reported in Eq. 8 [14, 16].
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Fig. 15 Correlation analysis for stones: a Values in and out

with Porosity and Roughness, b Values in and out with Surface

treatment; c R% with all the three influencing factors. Points

indicate the determined values, lines indicate the fitting results,

respectively light blue for Avrami’s model and light red for the
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XðtÞ ¼ ð1� exp�Kðt�t1Þn

Þ � Ac

At

ð8Þ

where X(t) (–) is the percentage of covered surface

area by algae, t1 (day) is the latency time, K (–) is a

constant depending on the material, n can be assumed

equal to 4 [14], Ac is the covered area by algae at the

end of the accelerated growth test, and At is the total

area of the sample.
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