
Open Access.© 2020 G. Banegas et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 License

J. Math. Cryptol. 2020; 14:95–109

Research Article

Gustavo Banegas*, Paulo S. L. M. Barreto, Edoardo Persichetti, and Paolo Santini

Designing Eflcient Dyadic Operations for
Cryptographic Applications
https://doi.org/10.1515/jmc-2015-0054
Received Feb 05, 2020; accepted Feb 11, 2020

Abstract: Cryptographic primitives from coding theory are some of the most promising candidates for NIST’s

Post-Quantum Cryptography Standardization process. In this paper, we introduce a variety of techniques to

improve operations on dyadic matrices, a particular type of symmetric matrices that appear in the automor-

phism group of certain linear codes. Besides the independent interest, these techniques find an immediate

application in practice. In fact, one of the candidates for the Key Exchange functionality, called DAGS, makes

use of quasi-dyadic matrices to provide compact keys for the scheme.

Keywords: post-quantum cryptography, code-based cryptography, dyadic matrices.

2010 Mathematics Subject Classification: 11T71, 94A60

1 Introduction
Post-QuantumCryptography is the area of research that investigates cryptographic primitives that are deemed

secure against attackers equipped with quantum technology. These include schemes based on a variety of

mathematical problems, such as finding short vectors in a lattice, or decoding random linear codes. The lat-

ter is known as Code-based Cryptography and it relies more or less directly on the Syndrome Decoding Prob-

lem [4], which shows no vulnerabilities to quantum attacks. The first code-based scheme was introduced by

McEliece in 1978 [10] and has resisted cryptanalysis, in its original form, for nearly 40 years.

McEliece’s cryptosystem has often been ignored in favor of schemes based on number theory problems

(such as RSA or El Gamal), mainly due to the size of its public key, which was deemed too large for practical

use (especially at the time). However, Shor’s algorithm [14] shows that, once quantum computers of an ap-

propriate size are available, the cryptosystems currently in use will become obsolete. It is therefore important

to offer a credible alternative to current cryptography, and, with this in mind, NIST has recently launched a

call for papers to standardize the public-key primitives of the future [1].

Among the code-based candidates for NIST’s call, DAGS [3] is a Key Encapsulation Mechanism (KEM)

that uses Quasi-Dyadic (QD) matrices to considerably reduce the size of the public key, following a McEliece-

like approach. The proposal builds on a line of work initiated by Misoczki and Barreto [11] and subsequently

developed by Persichetti in [6, 12].

*Corresponding Author: Gustavo Banegas: Technische Universiteit Eindhoven, Netherlands; Email: souzag@chalmers.se

Paulo S. L. M. Barreto: Institute of Technology, University of Washington at Tacoma, United States of America

Edoardo Persichetti: Department of Mathematical Sciences, Florida Atlantic University, United States of America; Email:

epersichetti@fau.edu

Paolo Santini: Università Politecnica delle Marche, Ancona, Italy; Email: p.santini@staff.univpm.it

https://doi.org/10.1515/jmc-2015-0054

96 | G. Banegas et al.

Our Contribution.
We analyze two separate aspects of dyadic operations. First, we present three different algorithms for that

are aimed specifically at computing multiplication of dyadic matrices. These are, respectively, a “standard"

approach thatmakes use of dyadic signatures, a specialized Karatsuba-like algorithm, and a procedure based

on the Fast Walsh-Hadamard Transform (FWHT) [7], also called dyadic convolution. We analyze the perfor-

mance of all three methods and report our timings.

As a second contribution, we describe a procedure that applies the LUP decomposition [5] to the dyadic case.

The method effectively factors every quasi-dyadic matrix into a product of two triangular matrices and a per-

mutationmatrix. This leads to thepossibility of a very efficient algorithm for computing the inverse of amatrix,

which is particularly useful in code-based cryptography, for instance for computing the systematic form of

a parity-check (or generator) matrix. According to our measurements, this improved inversion procedure is

extremely fast, and provides a very large speedup during DAGS Key Generation.

Organization of the Paper. This paper is organized as follows. We start with some preliminary definitions

in Section 2. We then present our main contributions: the various multiplication techniques are described in

Section 3 and the improved inversion algorithm is presented in Section 4.We conclude by showing the results

obtained when applying our techniques to DAGS; this is done in Section 5.

2 Preliminaries
We introduce dyadic matrices and describe some of their general properties.

Definition 2.1. Given a ringR and a vectorh = (h
0
, h

1
, · · · , hn−1) ∈ Rn, with n = 2

r for some r ∈ N, the dyadic
matrix ∆(h) ∈ Rn×n is the symmetric matrix with components ∆ij = hi⊕j where⊕ stands for bitwise exclusive-or.
Such a matrix is said to have order r. The sequence h is called signature of the matrix ∆(h), and corresponds to
its first row. The set of dyadic n × n matrices over R is denoted ∆

(︀
Rn
)︀
.

One can alternatively characterize a dyadic matrix recursively: any 1 × 1matrix is dyadic of order 0, and any

dyadic matrixM of order r > 0 has the form

M =

(︃
A B
B A

)︃
(1)

where A and B are two dyadic matrices of order r − 1. In other words, ∆
(︀
Rn
)︀
= ∆

(︁
∆
(︁
Rn/2

)︁)︁
.

Definition 2.2. A dyadic permutation is a dyadic matrix Π i ∈ ∆({0, 1}n) characterized by the signature π i =
(δij | j = 0, . . . , n − 1), where δij is the Kronecker delta (hence π i corresponds to the i-th row or column of the
identity matrix).

A dyadic permutation is clearly an involution, i.e. (Π i
)

2

= I. The i-th row, or equivalently the i-th column, of

the dyadic matrix defined by a signature h can be written as ∆(h)i = hΠ i
.

A dyadic matrix can be efficiently represented by its signature; in particular, all the operations between

dyadic matrices can be referred only to the corresponding signatures. Indeed, for any two length-n vectors
a, b ∈ R, we have:

∆(a) + ∆(b) = ∆(a + b) (2)

which means that, given two dyadic matrices A and B, with respective signatures a and b, their sum is the

dyadic matrix described by the signature a + b.
In an analogous way, the multiplication between dyadic matrices can be done by considering only the

corresponding signatures; we will discuss efficient ways for computing multiplications in Section 3.

Designing Eflcient Dyadic Operations for Cryptographic Applications | 97

Algorithm 1 Standard multiplication of dyadic matrices

Input: r ∈ N, n = 2

r
and a, b ∈ Fn.

Output: c ∈ Fn such that ∆(c) = ∆(a)∆(b).
1: c← vector of length n, initialized with null elements.

2: c
0
← a

0
· b

0

3: for i ← 1 to n − 1 do
4: c

0
← c

0
+ aibi

5: i(b) ← binary representation of i, using n bits.
6: for {j = 0, 1, · · · , n − 1} do
7: j(b) ← binary representation of j, using n bits.
8: π(b) ← i(b) ⊕ j(b)

9: π ← conversion of π(b) into an integer.
10: ci ← ci + aibπ
11: end for
12: end for
13: return c

Moreover, it is easy to see that the inverse of a dyadic matrix is also a dyadic matrix; this can be easily com-

puted using Sylvester-Hadamard matrices (see Section 3.2).We will expand on this in Section 4.

Finally, we introduce a relaxed notion of dyadicity, which will be useful throughout the paper.

Definition 2.3. A quasi-dyadicmatrix is a (possibly non-dyadic) block matrix whose elements are dyadic sub-
matrices, i.e. an element of ∆

(︀
Rn
)︀d

1
×d

2 .

3 Multiplication of Dyadic Matrices
In this section we consider different methods for computing the multiplication between two dyadic matrices.

In fact, we have just mentioned how somematrix operations, like the sum or the inversion, can be efficiently

performed in the dyadic case just by considering the signatures. Multiplication can be strongly improved

with similar methods, which exploit the particular structure of such matrices. In particular, we analyze three

different algorithms and provide estimations for their complexities; we then compare the performance of the

various algorithms.

For ease of notation, we will refer to the two n × n matrices that we want to multiply simply as A and B, with
a = [a

0
, a

1
, · · · , an−1] and b = [b

0
, b

1
, · · · , bn−1] being the respective signatures. Maintaining the same

notation, the product matrix C = AB, which is also dyadic, will have signature c = [c
0
, c

1
, · · · , cn−1].

In particular, we focus on the special case of quasi-dyadic matrices with elements belonging to a field F of

characteristic 2.

3.1 Standard Multiplication

The first algorithm we analyze is described in Algorithm 1; we refer to it as the standard multiplication. The
element of C in position (i, j) is obtained as the multiplication between the i-th row of A and the j-th column

of B. Since dyadic matrices are symmetric, this is equivalent to the inner product between the i-th row of A
and the j-th one of B. The signature c (i.e., the first row of C) is obtained by inner products involving only a
(i.e., the first row of A). Thus, we can just construct the rows of B, by permutations of the elements in b, and
then compute the inner products.

The complexity of the algorithm is due to two different types of operations:

98 | G. Banegas et al.

1. In order to construct the rows ofB, we need the indexes of the corresponding permutations. Each index

is computed as themodulo 2 sumof two binary vectors of length r, so can be obtainedwith a complexity

of r binary operations. Thus, considering that we need to repeat this operation for 2r − 1 rows (for the
first one, no permutation is needed), the complexity of this procedure can be estimated as r ·2r ·

(︀
2

r
− 1

)︀
.

2. Each element of c is obtained as the inner product between two vectors of 2r elements, assuming values

in F. This operation requires 2r multiplication and 2

r
− 1 sums in F. If we denote as Cmult and Csum the

costs of, respectively, a multiplication and a sum in F, the total number of binary operations needed to

compute 2

r
inner products can be estimated as 2

2r
· Cmult + (2

2r
− 2

r
) · Csum.

The complexity of a standard multiplication between two dyadic signatures can be estimated as:

Cstd = r ·
(︁
2

2r
− 2

r
)︁
+ 2

2r
· Cmult + (2

2r
− 2

r
) · Csum (3)

3.2 Dyadic Convolution

Definition 3.1. The dyadic convolution of two vectors a, b ∈ R, denoted by aMb, is the unique vector ofR such
that ∆(aMb) = ∆(a)∆(b).

Of particular interest to us is the case where Rn is actually a field F. Dyadic matrices over F form a commu-

tative subring ∆(Fn) ⊂ Fn×n, and this property gives rise to efficient arithmetic algorithms to compute the

dyadic convolution. In particular, we here consider the fast Walsh-Hadamard transform (FWHT), which is

well known [7] but seldom found in a cryptographic context. We describe it here for ease of reference. We

firstly recall the FWHT for the case of a field F such that char(F) ≠ 2, and then describe how this technique

can be generalized to consider also the case of char(F) = 2 (which, again, is the one we are interested in).

Definition 3.2. LetF be a fieldwith char(F) = ̸ 2. The Sylvester-HadamardmatrixHr ∈ Fn is recursively defined
as

H
0
=

[︁
1

]︁
,

Hr =
[︃
Hr−1 Hr−1
Hr−1 −Hr−1

]︃
, r > 0.

One can show by straightforward induction that H2

r = 2

rIr and hence H−1r = 2

−rHr, which can also be ex-

pressed recursively as

H−1
0

=

[︁
1

]︁
,

H−1r =

1

2

[︃
H−1r−1 H−1r−1
H−1r−1 −H−1r−1

]︃
, r > 0.

Lemma 3.1. Let F be a field with char(F) = ̸ 2. IfM ∈ Fn×n is dyadic, then H−1r MHr is diagonal.

Proof. The lemma clearly holds for r = 0. Now let r > 0, and write

M =

[︃
A B
B A

]︃
where A and B are dyadic. It follows that

H−1r MHr =
1

2

[︃
H−1r−1 H−1r−1
H−1r−1 −H−1r−1

]︃[︃
A B
B A

]︃[︃
Hr−1 Hr−1
Hr−1 −Hr−1

]︃
=

[︃
H−1r−1M+

Hr−1 O
O H−1r−1M−

Hr−1

]︃
,

and since bothM
+
= A+B andM

−
= A−B are dyadic,H−1r−1M+

Hr−1 andH−1r−1M−
Hr−1 are diagonal by induction,

as is thus also H−1r MHr.

Designing Eflcient Dyadic Operations for Cryptographic Applications | 99

Lemma 3.1 establishes that Sylvester-Hadamard matrices diagonalize all dyadic matrices. In particular, the

factors in a product of dyadic matrices are thus simultaneously diagonalized, suggesting an efficient way to

carry out the matrix multiplication, namely, computingH−1r (MN)Hr = (H−1r MHr)(H−1r rHr) given the diagonal
forms H−1r MHr and H−1r rHr of two dyadic matrices M and N requires only n multiplications of the diagonal

elements.

In fact, it is not necessary to compute H−1r MHr in full to obtain the diagonal form ofM, as indicated by

the following result:

Lemma 3.2. Let F be a field with char(F) = ̸ 2. The diagonal form of a dyadic matrixM ∈ Fn×n is the first line of
MHr. In other words, H−1r ∆(h)Hr = diag(hHr).

Proof. The lemma clearly holds for r = 0. Now let r > 0, and with the notation of Lemma 3.1, the diagonal of

H−1r MHr is the concatenation of the diagonals of H−1r−1M+
Hr−1 and H−1r−1M−

Hr−1. Similarly, since

MHr =
[︃
A B
B A

]︃[︃
Hr−1 Hr−1
Hr−1 −Hr−1

]︃
=

[︃
M

+
Hr−1 M

−
Hr−1

M
+
Hr−1 −M

−
Hr−1

]︃
,

the first line ofMHr is the concatenation of the first lines ofM+
Hr−1 andM−

Hr−1, which by induction are the
diagonals of H−1r−1M+

Hr−1 and H−1r−1M−
Hr−1 respectively, yielding the claimed property.

Corollary 3.2.1. Computing c such that ∆(a)∆(b) = ∆(c) involves only three multiplications of vectors by
Sylvester-Hadamard matrices.

Proof. By Lemma 3.2, diag(aHr) diag(bHr) = (H−1r ∆(a)Hr)(H−1r ∆(b)Hr) = H−1r ∆(a)∆(b)Hr = H−1r ∆(c)Hr =

diag(cHr). Now simply retrieve c from z = cHr as c = zH−1r = 2

−rzHr.

The structure of Sylvester-Hadamardmatrices leads to an efficient algorithm to computeaHr fora ∈ Fn, which
is known as the fast Walsh-Hadamard transform. Let [a

0
, a

1
] be the two halves of a. Thus

aHr = [a
0
, a

1
]

[︃
Hr−1 Hr−1
Hr−1 −Hr−1

]︃
= [(a

0
+ a

1
)Hr−1, (a0 − a1)Hr−1].

This recursive algorithm, which can be easily written in purely sequential fashion (Algorithm 2), has complex-

ity Θ(n log n), specifically, rn additions or subtractions in F. It is therefore somewhat more efficient than the

fast Fourier transform, which involves multiplications by n-th roots of unity, when they are available at all

(otherwise working in extension fields is unavoidable, and more expensive).

The product of two dyadic matrices ∆(a) and ∆(b), or equivalently the dyadic convolution aMb, can thus
be efficiently computed as described in Algorithm 3. The total cost is 3rn additions or subtractions and 2n
multiplications (half of these by the constant 2

−r
= 1/n) in F, with an overall complexity Θ(n log n). Notice

that this is also the complexity of computing det ∆(a).
The fast Walsh-Hadamard transform itself is not immediately possible on fields of characteristic 2, since

it depends on Sylvester-Hadamard matrices which must contain a primitive square root of unity. Yet the

FWHT algorithm can be lifted to characteristic 0, namely, from F
2
= Z/2Z to Z, or more generally from

F
2
N = (Z/2Z)[x]/P(x) (for some irreducible P(x) of degree N) to Z[x]. Algorithm 3 can then be applied, and

its output mapped back to the relevant binary field by modular reduction. This incurs a space expansion by

a logarithmic factor, though. Each bit from F
2
is mapped to intermediate values that can occupy as much

as 3r + 1 bits; correspondingly, each element from F
2
N is mapped to intermediate values that can occupy as

much as (3r + 1)N bits. Thus the component-wise multiplication in Algorithm 3 becomes more complicated

to implement for large N. However, the method remains very efficient for the binary case as long as each ex-

panded integer component fits a computer word. For a typical word size of 32 bits and each binary component

being expanded by a factor of 3r+1, this means that blocks as large as 1024×1024 can be tackled efficiently.

On more restricted platforms where the maximum available word size is 16 bits, dyadic blocks of size 32 × 32

can still be handled with relative ease.

100 | G. Banegas et al.

Algorithm 2 The fast Walsh-Hadamard transform (FWHT)

Input: r ∈ N, n = 2

r
and a ∈ Fn with char(F) = ̸ 2.

Output: aHr.
1: v ← 1

2: for j ← 1 to n do
3: w ← v
4: v ← 2v
5: for i ← 0 to n − 1 by v do
6: for l ← 0 to w − 1 do
7: s ← ai+l
8: q ← ai+l+w
9: ai+l ← s + q
10: ai+l+w ← s − q
11: end for
12: end for
13: end for
14: return a

Algorithm 3 Dyadic convolution via the FWHT

Input: r ∈ N, n = 2

r
and a, b ∈ Fn with char(F) = ̸ 2.

Output: aMb ∈ Fn such that ∆(a)∆(b) = ∆(aMb).
1: c← vector of length n, initialized with null elements.

2: c̃← vector of length n, initialized with null elements.

3: Compute ã← aHr via Algorithm 2. ◁ expansion 1→ r + 1
4: Compute b̃← bHr via Algorithm 2. ◁ expansion 1→ r + 1
5: for j ← 0 to n − 1 do
6: c̃j ← ãj˜bj ◁ expansion r + 1→ 2r + 1
7: end for
8: Compute c← c̃Hr via Algorithm 2. ◁ expansion 2r + 1→ 3r + 1
9: c← 2

−rc
10: return c

Designing Eflcient Dyadic Operations for Cryptographic Applications | 101

3.3 Karatsuba Multiplication

In this section we propose a method which is inspired by Karatsuba’s algorithm for the multiplication of two

integers [9]. Let us denote by a
0
and a

1
, respectively, the first and second halves of a, i.e.:

a
0
=

[︁
a
0
, a

1
, · · · , a n

2

−1

]︁
(4)

a
1
=

[︁
a n

2

, a n
2

+1
, · · · , an−1

]︁
.

The same notation is used for b
0
and b

1
and c

0
and c

1
, corresponding to the halves of B and C. Some

straightforward computations show that the following relations hold:

c
0
= a

0
b
0
+ a

1
b
1

(5)

c
1
= (a0 + a1) (b0 + b1) + c0

The iterative application of equation (5) allows to compute multiplications between dyadic matrices of any

size. Let us denote as C(2
z
)

mul and C(2
z
)

sum the complexities of a multiplication and a sum between two signatures

of length 2

z
. For the sum of two dyadic signatures of size 2

z
we have:

C(2
z
)

sum = 2

z
· Csum, (6)

where Csum again denotes the complexity of a sum in the finite field.

The complexity of this algorithm can thus be estimated as:

CKar = 3 · C(2
r−1

)

mul + 4 · C(2
r−1

)

sum = (7)

= 3 · C(2
r−1

)

mul + 4 · 2

r−1
· Csum =

= 3 ·

[︁
3 · C(2

r−2
)

mul + 4 · C(2
r−2

)

sum

]︁
+ 4 · 2

r−1
· Csum =

= 3

[︁
3 · C(2

r−2
)

mul + 4 · 2

r−2
· Csum

]︁
+ 4 · 2

r−1
· Csum =

= 3

2

· C(2
r−2

)

mul + 4 ·

[︁
3 · 2

r−2
+ 2

r−1
]︁
Csum =

= 3

3

· C(2
r−3

)

mul + 4 ·

[︁
3

2

· 2

r−3
+ 3 · 2

r−2
+ 2

r−1
]︁
Csum =

= · · · =

= 3

r
· Cmul + 4 ·

⎡⎣ r∑︁
j=1

3

j−1
2

r−j

⎤⎦
· Csum =

= 3

r
· Cmul +

4

3

· 2

r
·

⎡⎣ r∑︁
j=1

(︂
3

2

)︂j⎤⎦
· Csum

Taking into account the well known sum of a geometric series, we have:

r∑︁
j=1

(︂
3

2

)︂j
= −1 +

r∑︁
j=0

(︂
3

2

)︂j
=

= −1 +

1 − (

3

2

)

r+1

1 −

3

2

=

3

r+1

2
r − 3.

Considering this result, equation (7) leads to:

CKar = 3

r
· Cmul + 4 ·

[︀
3

r
− 2

r]︀
· Csum (8)

102 | G. Banegas et al.

4 Eflcient Inversion of Dyadic and Quasi-Dyadic Matrices
In this section we propose an efficient algorithm for computing the inverse of quasi-dyadic matrices. The

algorithm in principle is targeted to matrices that are not fully dyadic (even though, obviously, they have to

be square). This is because, while it is of course possible to apply our procedure to fully dyadicmatrices, these

can in general be inverted much more easily, as we will see next.

To begin, remember that by definition of a quasi-dyadic matrix (Definition 2.3) we mean an element of

∆
(︀
Rn
)︀d

1
×d

2

.

4.1 Dyadic Matrices

The inverse of a dyadic matrix (i.e. d
1
= d

2
= 1) can be efficiently computed, using only the signature, as

described by the following Lemma.

Lemma 4.1. Let n = 2

r for r ∈ N and let ∆(a) ∈ Rn×n be a dyadic matrix with signature a. Then the inverse
∆(a)−1 is the dyadic matrix ∆(b), for b =

1

2
r b̃Hr, where b̃ is the vector such that diag(b̃) = [diag (aHr)]−1.

Proof We have ∆(b)∆(a) = In = ∆([1, 0, · · · , 0]). The diagonal form of In corresponds to the first row of the

product InHr, and so it is equal to the first row of Hr, that is the length-n vector made of all ones. According

to Corollary 3.2.1, we can write:

diag(b) diag(a) = diag([1, 1, · · · , 1]).

We then define aHr = [λ0, λ1, · · · , λn−1], and obtain:

diag(b) = diag([1, 1, · · · , 1]) diag

−1

(a) = diag([λ−1
0
, λ−1

1
, · · · , λ−1n−1]).

Because of Lemma 3.2, we finally have:

b = diag

−1

(a)H−1r =

1

2
r diag

−1

(a)Hr . �

As we mentioned before, the above Lemma yields a very simple way for computing the inverse of a dyadic

matrix: given a signature a, we just need to compute its diagonalized form as aHr, compute the reciprocals

of its elements and put it in a vector b̃. Finally, the inverse of ∆(a) can be obtained as

1

2
r b̃Hr. This property

also leads to a very simple way to check the singularity of ∆(a): if its diagonalized form contains some null

elements, then it is singular.

We now focus on the case of dyadic matrices over a field Fwith characteristic 2. One can show by induc-

tion that in such a case a dyadic matrix ∆(a) of dimension n satisfies ∆(a)2 = (

∑︀
i ai)

2I, and hence its inverse,
when it exists, is ∆(a)−1 = (

∑︀
i ai)

−2∆(a), which can be computed in O(n) steps since it is entirely determined

by its first row. It is equally clear that det ∆(a) = (

∑︀
i ai)

n
, which can be computed with the same complexity

(notice that raising to the power of n = 2

r
only involves r squarings). Basically, verifying whether a dyadic

matrix has full rank or not can be easily done by checking whether the sum of the elements of the signature

equals 0.

4.2 Quasi-Dyadic Matrices

Consider a quasi-dyadicmatrixM. Since thematrix has to be square, we have d
1
= d

2
= d, and thematrix has

dimension dn × dn. Such a matrix can be compactly represented just by the signatures of the dyadic blocks.

To simplify notation, we can denote the signature of the dyadic-block in position (i, j) as m̂i,j, and store all

Designing Eflcient Dyadic Operations for Cryptographic Applications | 103

such vectors in a matrix M̂ ∈ Rd×dn:

M̂ =

⎛⎜⎜⎜⎜⎝
m̂

0,0
m̂

0,1
· · · m̂

0,d−1
m̂

1,0
m̂

1,1
· · · m̂

1,d−1
.

.

.

.

.

.

.
.
.

.

.

.

m̂d−1,0 m̂d−1,1 · · · m̂d−1,d−1

⎞⎟⎟⎟⎟⎠ . (9)

We focus again on the special case of quasi-dyadic matrices over a field F with characteristic 2.

The LUP decomposition is a method which factorizes a matrixM as LUP, where L and U are lower trian-

gular and upper triangular matrices, respectively, and P is a permutation.

Exploiting this factorization, the inverse ofM can thus be expressed as:

M−1

= P−1U−1L−1. (10)

The advantage of this method is that the inverses appearing in (10) can be easily computed, because of their

particular structures. In fact, the inverse of an upper (lower) triangular matrix is obtained via a simple back-

ward (forward) substitution procedure, while the inverse of P is its transpose.

In some cases, applying a block-wise LUP decomposition might lead to some complexity reduction; for

instance, see [13] for the inversion of a sparsematrix. Here, we consider the case of a quasi-dyadicmatrix; the

corresponding procedure is shown in Algorithm 4.

Algorithm 4 LUP Decomposition of a Quasi-Dyadic Matrix

Input: d, r ∈ N, n = 2

r
and M̂ ∈ Fd×dn with char(F) = 2.

Output: M̂ ∈ Fd×dn, P̂ ∈ Nd .
1: P̂← [0, 1, · · · , d − 1]
2: u ← 0

3: for j ← 0 to d − 1 do
4: Update u, M̂ and P̂ via Algorithm 5. ◁ Pivoting of the signatures in the j-th column

5: if u = 0 then
6: return u ◁ M̂ is singular

7: end if
8: for i ← j + 1 to d do
9: m̂i,j ← m̂i,jm̂−1

j,j
10: end for
11: for i ← j + 1 to d − 1 do
12: for l ← j + 1 to d − 1 do
13: m̂i,l ← m̂i,l + m̂i,jm̂j,l
14: end for
15: end for
16: end for
17: return M̂, P̂

Our proposed procedure consists in using a block decomposition, whichworks directly on the signatures,

in order to exploit the simple and efficient algebra of dyadicmatrices. The operations in Algorithm4 only refer

to the signatures in M̂: for instance, the expression m̂i,jm̂i,l means the product between the dyadics having

as signatures m̂i,j and m̂i,l. This choice may result in some abuse of notation, but is useful to emphasize the

fact that, as we have explained in the previous sections, operations with dyadics can be efficiently computed

just by taking into account their signatures. It can be easily shown that, for a quasi-dyadic matrix, its factors

L, U and P are in quasi-dyadic form as well: as we have done for the matrix M, we refer to their compact

representations as L̂, Û and P̂, respectively.
The algorithm takes as input a matrix M̂, as in (9), and computes its LUP factorization; outputs of the

algorithm are the modifiedmatrix M̂, having as elements the ones of its factors L̂ and Û, and the permutation

P̂. As in (9), we denote as m̂i,j the signature in position (i, j) in the output matrix M̂. Thematrices L̂ and Û can

then be expressed as:

104 | G. Banegas et al.

L̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
1̂ 0̂ 0̂ · · · 0̂

m̂
1,0

1̂ 0̂ · · · 0̂
m̂

2,0
m̂

2,1
1̂ · · · 0̂

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

m̂d−1,0 m̂d−1,1 m̂d−1,2 · · · 1̂

⎞⎟⎟⎟⎟⎟⎟⎠ , Û =

⎛⎜⎜⎜⎜⎜⎜⎝
m̂

0,0
m̂

0,1
m̂

0,2
· · · m̂

0,d−1
0̂ m̂

1,1
m̂

1,2
· · · m̂

1,d−1
0̂ 0̂ m̂

2,2
· · · m̂

2,d−1
.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

0̂ 0̂ 0̂ · · · m̂d−1,d−1

⎞⎟⎟⎟⎟⎟⎟⎠ (11)

where 1̂ and 0̂ denote, respectively, the signature of the identity matrix and the one of the null matrix (i.e. the

length-k vectors [1, 0, · · · , 0] and [0, 0, · · · , 0]).

The matrix P̂ is represented through a length-d vector [p
0
, p

1
, · · · , pd−1], containing a permutation of

the integers [0, 1, · · · , d − 1]; the rows of M̂ get permuted according to the elements of P̂. In particular, the

elements of P̂ are obtained through a block pivoting procedure, which is described in Algorithm 5.

Algorithm 5 Block pivoting
Input: d, j, r ∈ N, n = 2

r
, P̂ ∈ Nd and M̂ ∈ Fd×dn with char(F) = 2, .

Output: u ∈ N.
1: u ← 0

2: i ← j
3: while i ≤ d − 1 do
4: w ← sum(m̂i,j) ◁ Sum of the elements in m̂i,j
5: if w = 0 then
6: z ← pj
7: pj ← pi
8: pi ← z
9: for l ← 0 to d − 1 do
10: z ← m̂j,l
11: m̂j,l ← m̂i,l
12: m̂i,l ← z
13: i ← i + 1
14: end for
15: else
16: i ← d
17: u ← 1

18: end if
19: end while
20: return u

This function takes as input M̂, P̂ and an integer j, and searches for a pivot (i.e., a non singular signature)
in the j-th column of M̂, starting from m̂j,j, and places it in position (j, j). As the procedure goes on, every time

a singular signature is tested, the rows of M̂ get permuted; the elements of P̂ are accordingly modified. If the

j-th column contains all singular blocks, this means that the matrix M̂ is singular; in such a case, this event

is notified by setting u = 0.

We point out that, for the matrices we are considering, we expect Algorithm 4 to be particularly efficient.

First of all, as we have already said, this is due to the possibility of efficiently performing operations involving

dyadic matrices; in addition, the dyadic structure should also speed-up the pivoting procedure. In fact, we

can consider a signature in M̂ as a collection of k random elements picked from GF(2N): thus, their sum can

be assumed to be a random variable with uniform distribution among the elements of the field GF(2N). So,
the probability of it being equal to 0, which corresponds to the probability of the corresponding signature to

be singular, equals 2

−m
. This probability gets lower asm increases: this fact means that the expected number

of operations performed by Algorithm 5 should be particularly low. Basically, most of the times the function

will just compute the sum of the elements in m̂j,j and verify whether it is null or not.

Designing Eflcient Dyadic Operations for Cryptographic Applications | 105

Once the factorization of M̂ has been obtained, we just need to perform the computation of M−1

through (10). Since the inverse of a triangular matrix maintains the original triangular structure, the compu-

tation of the inverses L̂−1 and Û−1 can be efficiently performed. A possible way for computing these matrices

is to store the elements of both matrices in just one output matrix T̂. We do this in Algorithm 6.

Algorithm 6 Computation of T̂
Input: d, r ∈ N, n = 2

r
and M̂ ∈ Fd×dn with char(F) = 2.

Output: T̂ ∈ Fd×dn .
1: T̂← Îd
2: for j ← 0 to d − 1 do
3: for i ← j + 1 to d − 1 do
4: for l ← j to i − 1 do
5: t̂i,j ← t̂i,j + m̂i,k t̂k,j
6: end for
7: end for
8: for i ← j to d − 1 do
9: for l ← j to i − 1 do
10: t̂j,i ← t̂j,i + m̂k,i t̂j,k
11: end for
12: t̂j,i ← t̂j,im̂−1

i,i
13: end for
14: end for
15: return T̂

Thematrix Îd is the compact representation of a dn×dn identitymatrix, and so is composed of signatures

δi,j1̂, where δi,j denotes the Kronecker delta.
If we denote as t̂i,j the signature in position (i, j), we have:

L̂−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
1̂ 0̂ 0̂ · · · 0̂
t̂
1,0

1̂ 0̂ · · · 0̂
t̂
2,0

t̂
2,1

1̂ · · · 0̂
.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

t̂d−1,0 t̂d−1,1 t̂d−1,2 · · · 1̂

⎞⎟⎟⎟⎟⎟⎟⎠ , Û−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
t̂
0,0

t̂
0,1

t̂
0,2

· · · t̂
0,d−1

0̂ t̂
1,1

t̂
1,2

· · · t̂
1,d−1

0̂ 0̂ t̂
2,2

· · · t̂
2,d−1

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

0̂ 0̂ 0̂ · · · t̂d−1,d−1

⎞⎟⎟⎟⎟⎟⎟⎠ . (12)

5 Performance Analysis: Application to DAGS
In this sectionwe provide the results of the application of our techniques to DAGS. For completeness, we have

included a specification of the three DAGS algorithms in Appendix A, but for our purpose, DAGS is essentially

the McEliece cryptosystem, converted to a KEM via a standard transformation [8]. In particular, the Key Gen-

eration algorithm is the same as the QD-GS McEliece version described in [12]. In this algorithm, a key role is

played by the systematization (i.e. reduced row echelon form) of a quasi-dyadic rectangularmatrix, the result

of which will in fact be the public key for the scheme. The cost of computing said systematic matrix dwarfs

everything else in key generation: according to a static analysis, this takes over 98% of the total cost of key

generation. Therefore, a fast procedure to compute the systematic form will have a substantial impact on the

overall performance of the algorithm.

Implementation Details.
Wedeveloped a code in “C” to implement our procedures. In all cases, we use no optimizations apart from the

optimization from the GCC compiler (“-O3”). The GCC version usedwas 7.3.1 20180406, the codewas compiled

for the processor Intel(R) Core(TM) i5-5300UCPU@2.30GHzwith 16GB ofmemory and operating systemArch

106 | G. Banegas et al.

linux version 2018.05.01 with Kernel 4.16.5. We ran 100 times each piece of code and computed the average

of all measurements; to obtain the number of cycles, we used the file “cpucycles.h" from supercop¹.

Fast Multiplication.
To compare our methods, we fix a dyadic order r and measure the cost of a multiplication of two matrices of

size n = 2

r
. Relevant dyadic orders for DAGS are for instance r = 4 and r = 5. We do this over different fields

to highlight the difference in performance when changing fields: we tested F
2
5 and F

2
6 which are the fields

currently used by DAGS.

Table 1: Cost of Multiplication between Dyadic Matrices

Standard Karatsuba Dyadic Convolution

F
2
5

r = 4 4, 833 2, 194 3, 899

r = 5 21, 285 5, 909 12, 045

F
2
6

r = 4 5, 833 2, 194 4, 899

r = 5 23, 231 6, 223 13, 568

Eflcient Inversion.
We report here the results of the improved inversion procedure (Algorithms 4, 5 and 6). We compared our

procedure with the equivalent portion of the DAGS implementation that we extrapolated from the publicly

available source code [2]. In particular, we measured the piece of code that begins with the creation of the

Cauchy matrix and ends with the generation of the systematic matrix. Table 2 shows the comparison, mea-

sured in cpu cycles.

Acknowledgement: Edoardo Persichetti and Paolo Santini were supported by NSF grant CNS-1906360.

1 https://bench.cr.yp.to/supercop.html

https://bench.cr.yp.to/supercop.html

Designing Eflcient Dyadic Operations for Cryptographic Applications | 107

Table 2: Comparison of Inversion Methods

DAGS Implementation LUP Inversion LUP + Karatsuba
DAGS 1 1, 318, 973, 209 321, 771 108, 117

DAGS 3 2, 211, 076, 311 557, 822 198, 199

DAGS 5 17, 925, 330, 712 654, 713 431, 890

References
[1] https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization.
[2] https://git.dags-project.org/dags/dags.
[3] Gustavo Banegas, Paulo S. L. M. Barreto, Brice Odilon Boidje, Pierre-Louis Cayrel, Gilbert Ndollane Dione, Kris Gaj,

Cheikh Thiecoumba Gueye, Richard Haeussler, Jean Belo Klamti, Ousmane Ndiaye, Duc Tri Nguyen, Edoardo Persichetti and
Jefferson E. Ricardini, DAGS: Key Encapsulation using Dyadic GS Codes, IACR Cryptology ePrint Archive 2017 (2017), 1037.

[4] E. Berlekamp, R. McEliece and H. van Tilborg, On the inherent intractability of certain coding problems (Corresp.), Information
Theory, IEEE Transactions on 24 (1978), 384 – 386.

[5] J. R. Bunch and J. E. Hopcroft, Triangular factorization and inversion by fast matrix multiplication,Mathematics of Computation
28 (1974), 231–236.

[6] Pierre-Louis Cayrel, Gerhard Hoffmann and Edoardo Persichetti, Eflcient Implementation of a CCA2-Secure Variant of McEliece
Using Generalized Srivastava Codes, in: Public Key Cryptography - PKC 2012 - 15th International Conference on Practice and
Theory in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings (Marc Fischlin, Johannes A. Buchmann
and Mark Manulis, eds.), Lecture Notes in Computer Science 7293, pp. 138–155, Springer, 2012.

[7] M. N. Gulamhusein, Simple matrix-theory proof of the discrete dyadic convolution theorem, Electronics Letters 9 (1973),
238–239.

[8] Dennis Ho�einz, Kathrin Hövelmanns and Eike Kiltz, A Modular Analysis of the Fujisaki-Okamoto Transformation, Cryptology
ePrint Archive, Report 2017/604, 2017, http://eprint.iacr.org/2017/604.

[9] A. Karatsuba and Y. Ofman,Multiplication of Multidigit Numbers by Automata, 01 1963.
[10] R. J. McEliece, A Public-Key Cryptosystem Based On Algebraic Coding Theory, Deep Space Network Progress Report 44 (1978),

114–116.
[11] R.Misoczki and P. S. L.M. Barreto, CompactMcEliece Keys fromGoppaCodes, in:Selected Areas in Cryptography, pp. 376–392,

2009.
[12] E. Persichetti, Compact McEliece keys based on quasi-dyadic Srivastava codes, Journal of Mathematical Cryptology 6 (2012),

149–169.
[13] Lukas Polok and Pavel Smrz, Pivoting Strategy for Fast LU Decomposition of Sparse Block Matrices, in: Proceedings of the

25th High Performance Computing Symposium, HPC ’17, pp. 14:1–14:12, Society for Computer Simulation International, San
Diego, CA, USA, 2017.

[14] P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM
Journal on Computing 26 (1997), 1484–1509.

A DAGS Algorithms
Webriefly describe the three algorithms that defineDAGS. Generalized Srivastava codes are defined by param-

eters s and t, where in our case log s is the dyadic order; the codes in use have length n = n
0
s and dimension

k = k
0
s where n

0
and k

0
are the number of dyadic blocks. Other parameters are the cardinality of the base

field q and the degree of the field extension m. In addition, we have k = k′ + k′′, where k′ is arbitrary and set
to be “small”.

The key generation process uses the following fundamental equation

1

hi⊕j
=

1

hi
+

1

hj
+

1

h
0

(13)

which guarantees we can build a dyadicmatrix, with signature h = (h
0
, h

1
, . . . , hn−1), which is also a Cauchy

matrix, i.e. a matrix C(u, v) with components Cij = 1

ui−vj . In [11] it is proved that we can use the fundamental

http://eprint.iacr.org/2017/604

108 | G. Banegas et al.

equation to choose a support and polynomial for a Goppa code such that this dyadic Cauchymatrix is a parity-

check matrix for the code.

Key Generation

1. Generate dyadic signature h according to the fundamental equation.

2. Build the vectors (u, v) that define the Cauchy matrix (again using the equation).

3. Form Cauchy matrix
^H
1
= C(u, v).

4. Build
^Hi, i = 2, . . . t, by raising each element of

^H
1
to the power of i.

5. Superimpose blocks
^Hi in ascending order to form matrix

^H.
6. Generate scaling vector z by sampling elements zi in Fqm with zis+j = zis for i = 0, . . . , n

0
− 1, j =

0, . . . , s − 1.
7. Set yj =

zj
s−1∏︁
i=0

(ui − vj)t
for j = 0, . . . , n − 1 and y = (y

0
, . . . , yn−1).

8. Form H =
^H · Diag(z).

9. Project H onto Fq using the co-trace function: call this Hbase.
10. Write Hbase in systematic form (A | In−k).
11. The public key is the generator matrix G = (Ik | AT).
12. The private key is the pair (v, y).

Note that all matrices involved in key generation are quasi-dyadic (with blocks of size s × s), namely

^H, H, Hbase and its systematic form, and the final matrix G which is the public key. Step 10 is the systemati-

zation process which is impacted by our improved inversion algorithm.

The encapsulation and decapsulation algorithms make use of three hash functions G : Fk
′
q → Fkq, H :

Fk
′
q → Fk

′
q andK : {0, 1}* → {0, 1}ℓ, where ℓ is the desired length of the key to be shared.

Encapsulation

1. Choosem $← Fk
′
q .

2. Compute r = G(m) and d = H(m).

3. Parse r as (ρ || σ) then set µ = (ρ ||m).

4. Generate error vector e of length n and weight w from σ.
5. Compute c = µG + e.
6. Compute k = K(m).

7. Output ciphertext (c, d); the encapsulated key is k.

The decapsulation algorithm is essentially a run of the decoding algorithm to decode the noisy codeword

received as part of the ciphertext, plus a number of integrity checks.

Decapsulation

1. Recover parity-check matrix H′
in alternant form from private key.

2. Use H′
to decode c and obtain codeword µ′G and error e′.

3. Output⊥ if decoding fails or wt(e′) = ̸ w
4. Recover µ′ and parse it as (ρ′ ||m′

).

5. Compute r′ = G(m′
) and d′

= H(m′
).

6. Parse r′ as (ρ′′ || σ′).
7. Generate error vector e′′ of length n and weight w from σ′.

Designing Eflcient Dyadic Operations for Cryptographic Applications | 109

8. If e′ ≠ e′′ ∨ ρ′ ≠ ρ′′ ∨ d = ̸ d′
output⊥.

9. Else compute k = K(m′
).

10. The decapsulated key is k.

	1 Introduction
	2 Preliminaries
	3 Multiplication of Dyadic Matrices
	3.1 Standard Multiplication
	3.2 Dyadic Convolution
	3.3 Karatsuba Multiplication

	4 Efficient Inversion of Dyadic and Quasi-Dyadic Matrices
	4.1 Dyadic Matrices
	4.2 Quasi-Dyadic Matrices

	5 Performance Analysis: Application to DAGS
	A DAGS Algorithms

