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1. Introduction

The environmental effects of a product's life cycle must be 
considered when designing a product due to the damage caused 
by climate change [1]. The design team must be able to evaluate 
the environmental performance of numerous project proposals 
from the early design stages [2]. Furthermore, it must already 
be able to evaluate the different scenarios of the production 
chain of the product's life cycle. Life Cycle Assessment (LCA) 
tools allow very detailed analyses of the product environmental 
impact, without however giving the designer alternatives 
[3].The solution to the opportunity to make less impactful 
products from an environmental point of view is left to the 
designer’s and engineer’s skills and ability. Based on the 
available data and the objective of the analysis, the system 

boundaries can be chosen. The boundaries of the system can 
include the phases of raw material extraction, production, 
distribution, use and final disposal of the product. The 
reference standards are ISO 14040 and ISO 14044. The 
practical application of eco-design and circular economy 
approaches represents an opportunity to be seized in the 
industrial sector for the reduction of environmental impacts and 
the creation of economic value [4]. 
Producing products with less and less impact and placed within 
a circular process is now necessary for multiple purposes: from 
an environmental perspective (i.e., aware consumers), 
economic (i.e., competitiveness) and geo-political point of 
view, to reduce dependence in the supply of increasingly scarce 
raw materials.

34th CIRP Design Conference

A parametric environmental impact model for manufacturing components 
based on machine learning techniques

Luca Manuguerraa*, Federica Cappellettia, Marta Rossib, Marco Mandolinia, Michele Germania

aUniversità Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
bUniecampus, Via Isimbardi, 10, 22060 Novedrate (CO), Italy

* Corresponding author. Tel.: 071 2204402. E-mail address: l.manuguerra@staff.univpm.it

Abstract

Environmental sustainability-oriented design is becoming increasingly important in the industrial field partly because of the effects of climate 
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level data. In this paper, a method is proposed to obtain a parametric model for the environmental impact assessment of manufacturing components 
at the early design stage. It allows consistent considerations concerning environmental matters, albeit little information available during design 
phase. 
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1.1. Parametric LCA for Conceptual design

Conceptual design creates new challenges for environmental 
assessment. Little detailed information is available, decisions 
and trade-offs between multiple attributes must be made 
quickly. Borland and Wallace [5] illustrated how the 
capabilities of parametric LCA models developed by 
environmental experts can be integrated with traditional design 
models and made available on request. However, the use of 
detailed parametric models is still of limited value for initial 
conceptual design, due to the amount of time and information 
required to develop parametric LCA [6] models. As a result, 
many tool developers are focusing on the early design phases 
[7]. Qualitative or quantitative methods, such as lists of control 
[8], qualitative matrices [9], abbreviated LCA [10], and LCA 
simplification [11], represent attempts to simplify and reduce 
the number of resources needed for LCA modelling. The 
usefulness of these methods is undeniable, but they are not 
suitable for initial conceptual design.

1.2. Machine learning in Life Cycle Assessment

The lack of analytical methods for integrated initial conceptual 
design motivated the development of a surrogate learning LCA 
concept to be applied to preliminary assessments of the life 
cycle, based on Machine Learning (ML) techniques. ML 
presents a complex challenge linked to the enormous amount 
of input factors and related uncertainties that influence the 
entire life cycle. ML techniques belong to a class of Artificial 
Intelligence (AI) techniques that can learn from data to increase 
their accuracy without reprogramming. Through the analysis of 
a training database, an algorithm is generated without user 
assistance, ML creates a model that can be queried [12]. ML 
algorithms are generally classified into four groups: supervised 
learning, unsupervised learning, semi-supervised learning and 
reinforcement learning [13]. ML can be used to fill in missing 
data in the Life Cycle Inventory (LCI) phase for LCA [14]. An 
ML model can in real time evaluate how production or process 
changes impact and provide, based on specific constraints, 
potential solutions for less environmentally harmful 
production. ML offers suggestions for an optimization process. 
Feature selection techniques in ML allow to identify the most 
important parameters and focus on their collection. In this way, 
it is possible to reduce the input parameters, favouring the 
speed compilation, streamlining the data collection phase, 
making it faster and promoting a better understanding of the 
model. Unlike full LCA, this makes it particularly useful in the 
design process. The literature offers many examples of ML 
applications for emissions prediction. Antanasijevic et al. [15]
developed a model for predicting greenhouse gas emissions 
from electric vehicles used in several European countries using 
an Artificial Neural Network (ANN) approach with 
sustainability, economic and industrial indicators used as 
inputs. Sousa et al. [2] created a surrogate LCA model based 
on ML techniques to evaluate the environmental impact of 
energy-intensive electrical products. Wistoff et al. [16] aim to 
measure the overall environmental impact potential of design 
choices in a consumer product. This is achieved by employing 
a multi-layer perceptron neural network with backpropagation 
training, a ML technique. This method establishes a 

relationship between the LCA impact of 37 case study products 
and the attributes of the products.

1.3. Aim and scope

The method proposed in this work aims to create a predictive 
model that can be used in the initial design phase to analyse the 
environmental impact; the chosen category is Climate Change 
which allows to verify the kgCO2eq produced in 
manufacturing a product. Finally, the method is tested to verify 
its applicability.

2. Material and Method

The CRISP-DM (CRoss Industry Standard Process for Data 
Mining) method is a methodology for data mining [17] and was 
used as the approach for this study. The six phases are
presented in the following sections (Fig. 1): I. Business 
understanding; II. Data understanding; III Data preparation; IV. 
Modeling; V. Evaluation; VI. Deployment. The primary 
objective of this paper is to confirm that ML techniques have 
made the construction of an environmental impact model 
specifically tailored for axisymmetric components feasible, 
aligning with the prerequisites of the initial phases.

Fig. 1. Method

2.1. Business understanding

In this phase, the objectives and required needs are defined.
First, definition of the problem to study. Problem definition 

focuses on project requirements according to environmental 
objectives. This phase aims to identify lifecycle management 
and product design opportunities. This methodology is strongly 
influenced by an LCA analysis, therefore recovering the same 
initial inputs, such as defining the objective, in this case 
evaluating the environmental impact of the creation of a 
manufacturing product; the functional unit that is formulated as
producing a mechanical axisymmetric component; the system
boundaries, therefore the phases that to consider; the 
calculation method, LCIA Method, Database, Impact 
Category. The choice of impact categories will determine how 
many dependent parameters (outputs) must be predicted.
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Secondly, define what accuracy is acceptable for the results 
that will be obtained from the model. In the case of an LCA 
analysis, an error of 40% can be encouraging [18].

2.2. Data understanding

Data understanding entails the identification, collection, 
analysis, and validation of datasets to fulfill project objectives, 
a concept applied to the examination of mechanical 
components. Specifically, this stage involves three activities. 
The initial activity involves identifying all components within 
the designated product family.

The second task requires carrying out a complete LCA 
analysis of at least one component chosen as a reference or a 
set of representative components of the entire database. To 
reduce the time of this phase, LCA analyses previously carried 
out on components could be used, it is not necessary to do new 
ones, or LCA analyses from the literature can be used, when
representative of the component. This preliminary analysis is 
used to understand the life cycle of the component, the phases 
that will be considered, and therefore the information and 
parameters that will be collected. Furthermore, it also allows to 
understand what the critical issues and limitations of the 
analysis are. This step allows to write down all the hypotheses 
that have been made to solve problems and limitations. The 
model will therefore be trained on data that have been deemed 
reliable and of which the limits and critical issues are known.

The third task concerns the collection of data and 
information, which is divided into geometric and non-
geometric information:
• Geometric information is collected from 3D CAD models 

or 2D drawings. The parameters chosen must be common 
and capable of describing all the parts analyzed. 

• Non-geometric information concerns, for example, the 
manufacturing processes to obtain the semi-finished 
product (e.g. forging, casting) and where the material, 
manufacturing processes to obtain the finished product 
(e.g. milling, drilling, turning) take place. Manufacturing 
cycles, with which it is possible to identify manufacturing 
processes. 

These activities provide all the data that can be grouped and 
sorted in a first database. All associated parameters describe 
each part, expressed separately as independent parameters.

2.3. Data preparation

Preparing data for modeling means building a large and 
structured data database to be used to obtain algorithms that 
predict an acceptable error. The data preparation phase can be 
divided into three different activities, at the end of which, the 
database will be ready for the modeling phase.

The initial step involves outlining all conceivable geometric 
and non-geometric parameters that could influence the impact 
assessment, some of which were detailed in the data 
understanding phase. 

The subsequent task involves broadening the range of 
independent parameter values. The precision and reliability of 

outcomes generated by the predictive algorithm of the 
parametric model hinge on the characteristics of the database 
employed for model training. A larger volume of records 
translates to more effective training and introducing variations 
in values within the same parameter aids in mitigating the risk 
of overfitting. This activity is aimed at expanding the number 
of records. The first aspect is to consider all possible values for 
certain parameters. Once determined, the database is extended 
considering all possible combinations. The extension can 
concern both geometric and non-geometric parameters.

The third activity consists in calculating the environmental 
impact for each record and therefore for each impact category. 
In this case, environmental impact analysis software tools (e.g. 
SimaPro, GaBi, OpenLca) are used.

2.4. Modeling

Modeling is the phase in which diverse models are built and 
assessed using various techniques. Regression models and 
supervised algorithms are used. The objective is to identify the 
optimal ML algorithm for predicting the dependent parameter. 
The initial step involves selecting the algorithm to be tested. 
During this stage, the various models generated using different 
algorithms are juxtaposed. Subsequently, models are generated 
in the second step. The third step involves evaluating the 
obtained model using performance indicators. The results 
obtained in this phase inform the choice of the best algorithm. 
These activities are iterated for each algorithm under 
consideration. By directly comparing performance indicators, 
the algorithm with the least error is selected.

2.5. Evaluation 

This task assesses whether the accuracy of the model meets 
the criteria established in the Business Understanding phase.

2.6. Deployment

During the deployment process, users can manage the 
parametric model and evaluate the impact of each independent 
parameter on the environmental impact. This process embodies 
model interpretation, emphasizing the goal of providing a 
comprehensible model rather than a black box. A 
comprehensive exploration of feature importance is 
undertaken, enabling users to grasp the significance of each 
independent parameter and its influence on the environmental 
impact. Various methods can be employed to ascertain the 
significance of each feature.

3. Case study

This section will go over the method by applying it to the 
case study, namely manufacturing axisymmetric parts.

Business Understanding. The objective of the proposed 
model aims to calculate the environmental impact for the 
Climate Change category [kgCO2eq] to manufacturing
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axisymmetric parts. The functional unit is to produce a
mechanical axisymmetric manufacturing part. The system 
boundaries consider the material, pre-production, transport and 
manufacturing phases (cradle to gate). The pre-production is 
the phase where the semifinished part is produced. The 
manufacturing phase is the phase where the part is finished and 
refined. The Calculation method: ReCiPe Midpoint (H) V1.12 
/ Europe Recipe H, Ecoinvent 3 – allocation, default, Climate 
Change [kg CO2 eq]. The allowable estimate error is 40%. 

Data Understanding. For this study, 73 different models 
were collected (e.g., shafts, discs, pins, flanges, and washers). 
Axisymmetric components are parts with rotational symmetry.
Two comprehensive LCA analyses were conducted on two 
components chosen as representative of the database (Fig. 3), 
through LCA software SimaPro.

The pin (Fig. 3 a) was made of chromium steel and it was made 
through casting processes in China, then transported to Italy 
where it underwent mainly turning operations, and then drilling 
operations. Transportation from China to Italy was by ship. The 
disc (Fig. 3 b) was made of low-alloyed steel and it was made
through forging processes in Italy, then transported to the U.S. 
where it underwent mainly milling, and then drilling processes. 
Transportation from Italy to the U.S. was by air.
Fig. 4 shows the results of the comprehensive LCA analysis 
that was conducted on these two components. From this 
analysis, is evident that all the considered phases are not 
negligible and the impact and importance of the phase may vary
depending on the input data.

Data Preparation. Input parameters are divided into 
geometric and non-geometric. The geometric ones are:

• Dimensions D1, D2, [mm] are the max radial extensions;
• Dimension D3 [mm] is the max axial length;
• D_Inner [mm] is internal diameter;

• F_Type (Hollow/Solid) indicates whether the finite is 
hollow or solid;

• F_Mass [kg] is the finished mass;
• Ring_Seat, Keys_Seat (Yes/No) indicates whether there is 

this specific machining on the component;
• N_Thread (Yes/No) indicates the number of this specific 

machining on the component;
• S_Type (Round/Sheetmetal/Hexagon/RoundTube)

indicates the type of the starting raw.

The non-geometric are:

• Material (Chromium steel/ Steel low alloyed/Steel 
unalloyed);

• Turning, Milling, Drilling (Yes/No) indicates whether 
there is this specific machining on the component;

• Preproduction (Casting/Forging) indicates the type of 
manufacturing process of the semi-finished product;

• Country_Preproduction (Italy/China/USA) and 
Country_Machining (Italy/USA) indicate the country 
where the productive plant is present.

For database extension, it was decided as a first task to 
geometrically scale the 3D CAD models. Scaling means 
enlarging or decreasing parts in all directions according to 
scaling factors. From 73 parts, 219 parts were obtained. For 
database extension, non-geometric parameters were also used:
• the material (3), considering that each part can be made of 

Chromium steel, Steel low alloyed and Steel unalloyed;
• the preproduction process (2), considering that each part 

can be made by casting or forging; 
• the nation where the preproduction process takes place (3), 

considering Italy, China and the United States;
• the nation where the machining process takes place (2), 

considering Italy and the United States.
In this way, the final database from 219 records was extended 
to 7884. Transportation was calculated accordingly and 
considering the distances and types shown in Table 1. Table 2
shows database statistical information.
Modeling. Modeling is the phase during which numerous 
models are generated and evaluated using various approaches. 
The primary goal is to identify the most effective machine 
learning methods for predicting specific environmental impact 
factors, with one dedicated to each parametric impact model. 

Fig. 2. System boundaries.

Fig. 3. Axisymmetric representative products: pin (a), disc (b).

Fig. 4. Environmental impact assessment
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To achieve this, RapidMiner, a data science platform 
developed by Altair Engineering, was used. RapidMiner offers 
a diverse range of machine-learning techniques.

Table 1. Transport information

From To Distance [km] Type
Italy Italy 500 Lorry
Italy USA 6500 Air

China Italy 9500 Ship
China USA 13000 Air
USA Italy 6500 Air
USA USA 750 Lorry

The process was facilitated by the Auto Model plugin within 
RapidMiner Studio, which simplifies the generation and 
validation of models [19]. In RapidMiner there are several ML 
techniques, including Gradient Boosting (GB) [20], Random 
Forest (RF) [21], Deep Learning (DL) [22], Neural Network 
(NN) [23], and Linear Regression (LR) [24]. The process of 
constructing an environmental impact model commences by 
partitioning the database into training and testing sets.  
Software tools designed for data mining or data sciences are 
essential for the modeling process. 

Table 2. Database statistical information

Parameter Max Min Mean Standard 
deviation

D1 [mm] 5.00E+02 4.00E+00 1.19E+02 1.04E+02
D2 [mm] 5.00E+02 4.00E+00 1.21E+02 1.05E+02
D3 [mm] 4.14E+03 6.25E-01 1.85E+02 4.24E+02

D_Inner [mm] 3.04E+02 0.00E+00 4.10E+01 5.38E+01
F_Mass [kg] 8.89E+03 4.70E-03 2.39E+02 8.75E+02

N_Thread 1.20E+01 0.00E+00 1.95E-01 1.08E+00

Ultimately, each algorithm produces a predictive model. A 
40% hold-out set is employed for performance evaluation. 
Initially, the software utilizes this hold-out set as its input. 
Subsequently, employing a multi-hold-out-set validation 
approach, the software assesses performances across seven 
distinct subsets. The most robust and top-performing results are 
excluded. The average of the remaining five performances is 
then computed. Table 3 shows the results of the modeling 
process for the Relative Error [19]. The authors opt for the 
Relative Error because it is straightforward for engineers to 
comprehend and has a direct connection to the initial design 
phase.

Table 3. Modeling result

Model Relative Error
Generalized Linear Model 83.4%
Deep Learning 79.0%
Decision Tree 21.7%
Random Forest 71.7%
Gradient Boosted Trees 43.5%

Evaluation. The results show that only the decision trees 
respect the stability constraints for the relative error during the 
Business Understanding phase. RapidMiner automatically 
tuned the hyperparameter to achieve the following value 
(Optimise Parameter Quadratic Operator): maximal depth: 25.

Deployment. RapidMiner allows to carry out a Feature 
Importance analysis to understand how parameters influence 
the model. Fig. 5 shows that F_Mass is the most important 
parameter. The models were deployed and stored in a database 
to be used for design by engineers through RapidMiner's 
simulator module.

4. Results

The ML model allows for predicting an axisymmetric 
component impact assessment with a relative error of 21.7%. 
The error obtained is aligned with what the business 
understanding requires (40%).

5. Discussion

The proposed approach is not restricted to any software; it 
can be implemented using various data science tools and other 
analytical disciplines for environmental impact estimation. 
Moreover, each parameter chosen for predictive models is 
identifiable during the early stages of design. The advantage is 
due to the simplicity of using a prediction model and the speed 
with which results are obtained. The critical disadvantage of 
this research is that it provides only one overall estimate of the 
environmental impact without understanding which of the 
various phases has the greatest impact. For the next steps, it 
could be to create a model for each phase of the life cycle, in 
this way in addition to having greater traceability of the impact, 
the influence of each parameter in each phase will be managed, 
and a better result will be achieved also in terms of accuracy. 
The result obtained from this model does not replace a 
complete LCA analysis conducted at the end of the design. The 
proposed method allows the creation of a prediction model of 
environmental impacts with an acceptable error, to be used in 
the initial design phase. The model is proposed as a decision-
making tool for the designer to guide him/her from the first 
initial steps in a conscious design oriented towards 
environmental sustainability. The rapid modification of both 
geometric and non-geometric parameters allows ecodesign 

Fig. 5 Feature Importance
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modeling to be carried out, albeit at a high level, but consistent 
with the little information available in the initial design phase.
The high generalizability of the geometric application of the 
model decreases the accuracy of the result. To obtain better 
results in terms of accuracy, it is possible to intervene in 
different ways, adding a parameter that identifies the family of 
the part or creating a specific model for each family. A model 
of general applicability is useful when designing components 
that cannot be assimilated into any family.

6. Conclusion

The research outlined a procedure for developing parametric 
models for manufactured parts during the conceptual or early 
design phases. This approach relies on machine learning 
algorithms trained with databases generated by a dedicated 
software tool designed for estimating environmental impact. 
Through this methodology, a model specific to axisymmetric 
manufactured parts was successfully established, and the 
strategy facilitated the selection of the most suitable machine 
learning algorithm for addressing this particular challenge. 
Future investigations should assess the method's applicability 
to other product items by subjecting it to testing across diverse 
geographical areas and production processes.
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