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Simple Summary: Microplastics (MPs) contamination is a worldwide problem. Studies have also
demonstrated their presence in fish feed, posing serious issues for the aquaculture sector. The present
study investigated, for the first time through a comparative approach, the effects of different-sized
fluorescent MPs included in a diet intended for zebrafish (Danio rerio). A comparison based on fish
developmental stage (larval vs. juvenile), exposure time, and dietary MPs’ size and concentration
was performed, applying a set of laboratory analyses to elucidate MPs’ possible effects on fish growth
and welfare, translocation among tissues and organs, and the presence of biological barriers capable
of trapping MPs. Results showed that smaller MPs and longer dietary exposure are responsible for
translocation of MPs from the gut to other tissues and organs. However, the biological barriers of
zebrafish are able to limit MPs’ translocation to the muscle. Results obtained in this experimental
model are important for possible application to other farmed finfish species.

Abstract: One of the main sources of MPs contamination in fish farms is aquafeed. The present
study investigated, for the first time through a comparative approach, the effects of different-sized
fluorescent MPs included in a diet intended for zebrafish (Danio rerio). A comparison based on fish
developmental stage (larval vs. juvenile), exposure time, and dietary MPs’ size and concentration was
performed. Four experimental diets were formulated, starting from the control, by adding fluorescent
polymer A (size range 1–5 µm) and B (size range 40–47 µm) at two different concentrations (50 and
500 mg/kg). Zebrafish were sampled at 20 (larval phase) and 60 dpf (juvenile stage). Whole larvae,
intestine, liver and muscles of juveniles were collected for the analyses. Polymer A was absorbed at
the intestinal level in both larvae and juveniles, while it was evidenced at the hepatic and muscular
levels only in juveniles. Hepatic accumulation caused an increase in oxidative stress markers in
juveniles, but at the same time significantly reduced the number of MPs able to reach the muscle,
representing an efficient barrier against the spread of MPs. Polymer B simply transited through the
gut, causing an abrasive effect and an increase in goblet cell abundance in both stages.

Keywords: microplastics; histology; oxidative stress; immune response; fish development

1. Introduction

Microplastics (MPs; size < 5 mm) have been detected in several environments [1–4],
the marine ecosystem included [4], making them a worldwide threat. MPs are divided
into two categories: (i) primary MPs are directly produced for commercial use, such
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as for cosmetics [5] or industrial abrasives [6]; (ii) secondary MPs are the result of the
fragmentation of larger plastic debris through natural weathering processes [7]. In oceans,
MPs were discovered decades ago, and it has now been demonstrated that they are present
everywhere from the water surface to the sediment [8,9]. MPs have also been detected in
marine animals, from the lowest trophic level to the top of the food chain, posing serious
concerns about their effects on living organisms [10–12].

Different studies have demonstrated that the aquaculture sector is also affected by MPs
pollution since farmed aquatic species show similar MPs accumulation with respect to wild
specimens [13,14]. In fish farms, environmental contamination through the use of plastic
materials is considered a major source of exposure for farmed species [15–17]. However,
another important source of MPs pollution for farmed fish is represented by the feeds
used in aquaculture. In fact, it has been shown that conventional aquafeed ingredients,
such as marine [18,19] and plant-derived ones [20], as well as more recent alternatives
such as insect meal [21–23], are characterized by different degrees of MPs contamination.
Specifically, the number of fragments, polymer type, and size of MPs associated with
each aquafeed ingredient are related to both the production/collection area [24] and the
processing/packaging procedures [19].

In this context, MPs feed contamination is related to the concentration, size, and
shape of the polymers, and all these features can have negative effects on the different life
cycle stages of farmed fish [25]. The larval stage is one of the most delicate phases of the
fish life cycle because of the shift from endogenous to exogenous feeding and the rapid
development characterized by deep morphological, anatomical, and behavioral changes,
often associated with high mortality [26–28]. In addition to this critical physiological step,
it has been demonstrated that fish larvae can mistake MPs for zooplankton, resulting
in (i) gastrointestinal tract obstruction; (ii) reduction in predatory activity caused by an
apparent feeling of satiety; (iii) reduced growth and swimming capacity; (iv) induction of
inflammatory responses, mainly at the gut level; and (v) alterations in the structure of the
microbiome at the phylum level [29,30]. Exposure to MP-contaminated diets can also have
adverse effects on further fish life cycle stages (juveniles and adults) due to both physical
and chemical mechanisms, as evidenced in several species, such as gilthead seabream
(Sparus aurata) [31–33], European seabass (Dicentrachus labrax) [34], Indian medaka (Oryzias
melastigma) [35,36], and zebrafish (Danio rerio) [37–39]. In particular, with regard to the
juvenile stage, gilthead seabream exposed to MPs-contaminated diets showed an increase in
oxidative stress marker activity [31], increased cellular stress with a higher oxidative stress
response in the brain [32], and enhanced activity of antioxidant and pro-inflammatory
enzymes [33]. Furthermore, a recent study conducted on European seabass juveniles
demonstrated the translocation of dietary MPs (with a size range of 1–5 µm) into muscular
tissue, highlighting potential effects on human health [34].

With regard to adult fish, most of the studies have been performed on experimen-
tal model fish, which show a shorter life cycle when compared to commercial species.
Adult zebrafish exposed to different-sized MPs showed oxidative stress activation in the
intestine [39] and gonad impairment [38], as well as a different location and degree of accu-
mulation depending on the MPs’ size [37]. Adult medaka exposed to MPs-contaminated
diets showed histological and oxidative stress alterations in gills, livers, testes, and ovaries,
leading to reproductive and endocrine disorders [35], as well as an alteration in gut micro-
biota, hepatic toxicity, and lipid metabolism disorders depending on MPs’ size [36].

By considering the most recent literature on fish exposure to MPs, it is evident that
MPs’ toxicity mainly depends on their size, concentration, shape, and chemical features, but
also on fish life cycle stage [40,41]. Consequently, a comparative study between different
life cycle stages subjected to MPs-contaminated diets is necessary and of great interest. In
this regard, zebrafish represent an excellent experimental model, as they are a widely used
species in fish nutrition [42] and toxicology studies (including MPs exposure) [43–45] and
are characterized by a short life cycle compared to other finfish species [42,46]. Nevertheless,
due to developmental, anatomical, and behavioral differences among zebrafish life cycle
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stages, a comparative study of dietary MPs exposure is of interest [47–49]. In particular,
one of the main features of teleost that determines the transition from the larval stage,
characterized by deep and rapid morphological changes, to a fully developed juvenile is
the development of a functional and complete digestive system [48].

In the present study, diets containing fluorescent MP microbeads of different size
ranges (1–5 µm or 40–47 µm) and included at two different concentrations (50 mg/kg or
500 mg/kg) were formulated, with the first concentration selected according to Zitouni
et al. [50] and the second one 10x higher in order to intensify possible effects due to MPs
ingestion. MPs-free or -contaminated diets were prepared and provided to zebrafish, from
the larval to the juvenile stage, in order to perform a comparative study of their potential
accumulation, translocation, and impact on fish welfare and growth. In this regard, a
multidisciplinary approach, including, biometry, chemical digestion, histology, confocal
microscopy, and molecular biology, was applied in order to have a comprehensive overview
of the effects of dietary MPs administration in both larval and juvenile zebrafish.

2. Materials and Methods
2.1. Ethics

All the experimental procedures involving animals conducted for the present study
were performed in accordance with Italian legislation on experimental animals and were
approved by the Ethics Committee of the Marche Polytechnic University (Ancona, Italy)
(n.3 24/11/2022) and the Italian Ministry of Health (Aut. n. 391/2023-PR). The suffering
of the animals was minimized by using an anaesthetic (MS222; Merck KGaA, Darmstadt,
Germany).

2.2. MPs Features

Two different fluorescent microbeads (MPs) were purchased from Cospheric LLC
(Goleta, CA, USA): (i) polymer A: amino formaldehyde polymer (FMV-1.3), with a size
range of 1–5 µm and an emission peak of 636 nm when excited at 584 nm; (ii) polymer
B: polyethylene (UVPMS-BR-0.995), with a size range of 40–47 µm and an emission peak
of 607 nm when excited at 575 nm. Before being included in the preparation of the
experimental diets at the above-mentioned concentrations, fluorescent MP microbeads,
hydrophobic in their pristine state, were resuspended, according to the company’s technical
support suggestion, in a 0.1% tween-80 solution as a surfactant (Merck KGaA) and then
rinsed with deionized water three times; low tween-80 concentrations are non-toxic to
zebrafish [51].

2.3. Production of Experimental Diets

Five test diets were prepared in the pilot feed mill facility available at the Department
of Agriculture, Food, Environmental and Animal Science of University of Udine (Italy)
starting from the same batches of single ingredients. A control fluorescent MPs-free diet
(named Control) was formulated to resemble the proximate composition of a commer-
cial standard diet available for zebrafish (Zebrafeed; Sparos LDA, Olhão, Portugal), in
accordance with a previous study performed on zebrafish [52]. The fluorescent MP beads
were not added during the preparation process of Control diet, that was checked through
confocal microscopy to confirm the absence of contamination; no fluorescence was de-
tected. Four experimental diets containing MPs were prepared by adding, at two different
concentrations (mg/kg of feed), fluorescent polymers A or B to the control mixture diet,
which was made of the same ingredients from the same batches: (i) 50 and 500 mg/kg of
polymer A (diet A50 and A500, respectively); (ii) 50 and 500 mg/kg feed of polymer B (diet
B50 and B500, respectively). It has to be pointed out that the authors of the present study
aimed to evaluate only the effects of fluorescent MPs voluntary added (polymers A and
B), being aware that each dietary ingredient could possess an intrinsic contamination of
other non-fluorescent MPs. However, since the basic diet mixture was made by the same
ingredients coming from the same batches, the amount of non-fluorescent MPs in all diets



Animals 2023, 13, 2256 4 of 17

is assumed to be the same, and thus the effects observed in fish are related only to the
presence of the fluorescent MPs.

In particular, all powdered ingredients used for the production of the test diets were
well mixed (GastroNorm 30C1PN, ItaliaGroup Corporate Srl) for 20 min, and then oil and
water were added to the mixture to attain the appropriate consistency for pelleting. Water
was used to include A or B polymers in the mixture. Pellets were obtained by using a 3 mm
die meat grinder, and were dried at 37 ◦C for 48 h in a ventilated heater and then ground
and sieved through a battery of sieves to obtain particles of the right size for fish rearing
(for details, see Section 2.5). Diets were subsequently stored in vacuum bags and shipped to
the Department of Life and Environmental Sciences, Marche Polytechnic University (Italy).

Feed samples were analysed for dry matter, crude protein, ether extract, and ash
contents according to the AOAC [53]. The ingredients, MPs concentrations, and proximate
composition of experimental diets are reported in Table 1.

Table 1. Ingredients (g/kg), MPs concentrations (mg/kg feed), and proximate composition (% of
DM) of experimental diets used in the present study.

Control Diet A50 Diet A500 Diet B50 Diet B500

Ingredients (g/kg)
Fish meal 1 490 490 490 490 490
CPSP 90 2 123 123 123 123 123

Wheat gluten meal 3 120 120 120 120 120
Pea protein concentrate 4 120 120 120 120 120

Wheat starch 5 55 55 55 55 55
Fish oil 60 60 60 60 60

Soya lecithin 8 8 8 8 8
Mineral and vitamin supplements 6 14 14 14 14 14

Binder (sodium alginate) 7 10 10 10 10 10
MPs concentrations (mg/kg feed)

Polymer A (size: 1–5 µm) - 50 500 - -
Polymer B (size: 40–47 µm) - - - 50 500
Proximate composition (%)

Dry matter 94.2
Crude protein 58.3

Crude lipid 14.0
Ash 12.5

1 Fish meal (61% CP, 11% CF), kindly provided by Skretting Italia, Mozzecane (VR, Italy). 2 Soluble fish protein
concentrate (82% CP) (Sopropêche, France). 3 Wheat gluten meal (CP, 81%), kindly provided by Skretting Italia.
4 Pea protein concentrate (CP 69%) (Lombarda trading srl, Cremona, Italy). 5 Wheat starch: pre-gelatinized wheat
starch, kindly provided by Skretting Italia. 6 Mineral and vitamin supplement composition, as reported in [54].
7 Sodium alginate (Merck KGaA, Darmstadt, Germany). For proximate composition, values are reported as
mean ± standard deviation of triplicate analyses.

2.4. Fish

Zebrafish embryos (wild-type strain AB) were obtained from the broodstock colony
of Università Politecnica delle Marche and maintained in a Tecniplast system (Varese,
Italy) for 48 h, with a photoperiod of 12 h light and 12 h dark, under optimal water
conditions: 28 ± 0.5 ◦C; pH 7 ± 0.1; ammonia and nitrite concentrations < 0.01 mg/L;
and nitrate concentration <10 mg/L. Then, the embryos were collected, selected under a
stereomicroscope by collecting those that were correctly developing and not damaged, and
randomly divided into five experimental groups (in triplicate) according to the five dietary
treatments. A total of 7500 embryos were used.

2.5. Experimental Design

After hatching, zebrafish larvae were initially reared in fifteen 20 L tanks (3 tanks per
experimental group; 500 larvae per tank) with the same water conditions as the broodstock
tanks. Water was gently replaced 10 times a day via a dripping system and the sides of each
tank were provided with black panels to reduce light [55]. After 20 days post-fertilization
(dpf), the fish of each tank were transferred in 100 L tanks (3 tanks per experimental group)
equipped with mechanical and biological filtration (Panaque, Roma, Italy).
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Starting from 5 dpf to the end of the experiment (60 dpf), zebrafish were fed exper-
imental diets as follows: (i) Control group, fed a control diet; (ii) A50 group, fed a diet
containing 50 mg/kg of polymer A (range size: 1–5 µm); (iii) A500 group, fed a diet con-
taining 500 mg/kg of polymer A (range size: 1–5 µm); (iv) B50 group, fed a diet containing
50 mg/kg of polymer B (range size: 40–47 µm); (v) B500 group, fed a diet containing
500 mg/kg of polymer B (range size: 40–47 µm). The feed particle size was adapted in
relation to fish growth during the feeding trial: <100 µm from 5 to 15 dpf, 101–200 µm from
16 to 30 dpf, and 201–400 µm from 31 dpf to the end of the experiment (60 dpf), following
the procedures of [54]. Each experimental group was fed at a feeding rate of 3% body
weight, divided into two equal amounts (one in the morning and one in the afternoon).
In addition, from 5 to 10 dpf, zebrafish larvae in all the experimental groups were fed the
rotifers Brachionus plicatilis (5 individual/mL) twice a day according to Zarantoniello
et al. [54]. Uneaten feed and dead specimens, if present, were siphoned 30 min after feeding
from all the experimental tanks and recorded. The required numbers of fish per tank
were sampled, after a lethal dose of MS222 (0.3 g/L): (i) at 20 dpf (larval phase); (ii) at
60 dpf (juvenile stage). Biological samples were collected and properly stored for further
analysis. In particular, samples were immediately placed in biopsy cassettes and fixed
in 4% paraformaldehyde (PFA) or in Bouin’s solution at 4 ◦C for confocal microscopy or
histological analyses, respectively. Samples for chemical and molecular analyses were
placed in 1.5 mL Eppendorf tubes and stored at −20 or −80 ◦C, respectively. This storage
is considered appropriate since the present study is checking only for fluorescent MPs.

2.6. Biometry

Ten newly hatched larvae (3 dpf) from each tank (30 per dietary group) were randomly
collected to measure the initial body weight (IBW), determined in pools of five larvae each.
For the final body weight (FBW) determination, 20 zebrafish larvae and 20 zebrafish juve-
niles were randomly collected from each tank (60 larvae and 60 juveniles per experimental
group) at 20 and 60 dpf, respectively. The specific growth rate (SGR) was calculated for
both larvae and juveniles as follows:

SGR (% day−1) = [(ln FBW − ln IBW)/t] × 100 (1)

in which t represents the number of days (17 and 57 for larvae and juveniles, respectively).
Finally, the survival rate was calculated at both 20 and 60 dpf for larvae and juveniles,
respectively, by removing the dead specimens from the initial number of fish.

2.7. Confocal Microscopy

For confocal microscopy analyses, three feed subsamples of each experimental diet
were analysed to evaluate the effective presence of MP microbeads. Additionally, 5 whole
larvae per tank (15 per experimental group) were collected at 20 dpf, whereas liver, intestine,
and muscle samples from 5 juveniles per tank (15 per experimental group) were collected
at 60 dpf. Samples were fixed in 4% PFA for 24 h at 4 ◦C and then stocked at the same
temperature in a 1× phosphate-buffered saline (PBS) solution until further processing.
Samples were then placed in concave glass slides with a glycerol-PBS solution (90:10) and
mounted with a cover slip. The presence of fluorescent MP microbeads in the collected
samples was assessed with a Nikon A1R confocal microscope (Nikon Corporation, Tokyo,
Japan). Samples were excited with 561/647 nm wavelengths simultaneously and emissions
were collected at 615 and 670 nm to visualize, respectively, the MPs (red) or tissue texture
(blue). Images were processed with NIS-Element software (version 5.21.00; Nikon).

2.8. Chemical Digestion of Samples and MPs Quantification

Three pools of 10 larvae per tank (9 pools per experimental group) collected at 20 dpf,
and liver, intestine, and muscle samples from three juveniles per tank (9 per experimental
group) collected at 60 dpf, were weighed and digested through a 10% KOH solution
according to Chemello et al. [56]. The solution was added to each sample (1:10 w/v ratio)
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in glass tubes; samples were then incubated for 48 h at 40 ◦C. After 48 h, the digestate was
filtered through 0.7 µm pore-size fibreglass filters (Whatman GF/A, Merck KGaA) using
a vacuum pump connected to a filter funnel. The filters were dried at room temperature
and stocked in glass Petri dishes until the analysis. MPs quantification on filters was
performed through a Zeiss Axio Imager.A2 (Zeiss, Oberkochen, Germany) using Texas Red
(561 nm) and FITC (491 nm) channels. The MPs were manually counted using the ZEN
Blue 2.3 software (Zeiss) and acquisition of images was made by the Axiocam 503 digital
camera (Zeiss).

2.9. Histology

Five whole larvae per tank (15 per experimental group) were collected at 20 dpf,
whereas liver and whole intestine samples from 5 juveniles per tank (15 per experimental
group) were collected at 60 dpf. All the samples were fixed in Bouin’s solution (Merck
KGaA) for 24 h at 4 ◦C and stocked in a 70% ethanol solution at 4 ◦C (after being washed
three times with 70% ethanol). Then, samples were dehydrated through ethanol solutions
(80, 95, and 100%), washed with xylene (Bio-Optica, Milano, Italy), and, finally, embedded
in paraffin (Bio-Optica). The solidified paraffin blocks were cut to obtain 5 µm sections
using a Leica RM RTS microtome (Leica, Nussloch, Germany). Sections were stained with
(i) Mayer haematoxylin and eosin Y (Merck KGaA; H&E) to assess potential alterations in
the tissues’ architecture and the eventual occurrence of inflammatory phenomena in both
the intestinal tract and the hepatic parenchyma; (ii) Alcian Blue (Bio-Optica) to measure the
relative abundance of Alcian blue positive (Ab+) goblet cells (only for sections of whole
larvae and juvenile intestines). The evaluation of histological indexes in the intestine was
performed on three transversal sections per fish (15 fish per dietary group) collected at a
distance from each other of 50 µm. Specifically, for the morphometric evaluation of the
height of undamaged and non-oblique mucosal folds, the ZEN 2.3 software (Zeiss) was
used. Regarding the semi-quantitative analysis of the relative abundance of Ab+ goblet
cell, scores were assigned as follows: Ab+ goblet cells: + = 0 to 3 per villus; ++ = 4 to 6 per
villus; + + + = more than 6 per villus.

2.10. Molecular Analyses

Three larvae per tank (9 larvae per experimental group) were collected at 20 dpf,
and liver and whole intestine samples from 3 juveniles per tank (9 liver and 9 intestine
samples per experimental group) were collected at 60 dpf. Total RNA extraction was
performed using the TRI Reagent (Merck KGaA) and eluted in 20 µL of RNase-free water
(Qiagen, Hilden, Germany). DNase treatment (10 IU at 37 ◦C for 10 min, MBI Fermentas,
Milano, Italy) was performed on total RNA to digest genomic DNA. The final RNA con-
centration/integrity was measured using a NanoPhotometer P-Class (Implen, München,
Germany) and by running 1 µg of total RNA stained with GelRedTM on a 1% agarose
gel. RNA samples were stored at −80 ◦C. The cDNA synthesis was performed on 1 µg of
RNA using the iScript™ cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA) following the
manufacturer’s instructions.

Real-time quantitative PCR (qPCR) reactions were performed in an iQ5 iCycler thermal
cycler (Bio-Rad), setting a 96-well plate according to Chemello et al. [57]. For each sample,
reactions were set mixing 1 µL of 1:10 diluted-cDNA, 5 µL of fluorescent intercalating
agent (2× concentrated iQ ™ Sybr Green, Bio-Rad, Milano, Italy), and 0.3 µM of both
forward and reverse primer. The thermal profile was 3 min at 95 ◦C, and then 45 cycles
of 20 s at 95 ◦C, 20 s at the annealing temperature specific to each primer (reported in
Table 2), and 20 s at 72 ◦C for extension. Annealing temperatures for each primer were
optimized with temperature gradient assays. Primer specificities were assessed via the
absence of primer–dimer formation and dissociation curves. Additionally, for each pair of
primers, the efficiencies were evaluated with a mix of cDNA (Control group) (efficiency
around 90% for all the primers, with an R2 that ranged from 0.994 to 0.998) at different
concentrations (1:1, 1:10, 1:100, 1:1000). At the end of each cycle, the fluorescence was
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monitored, and one single peak was detected for each qPCR product in the melting curve
analyses. For each reaction, two no template controls (NTCs) were added in each run to
guarantee absence of contamination (no peaks were found for the NTC in each reaction).
Amplification products were sequenced, and homology was verified. Internal reference
genes, ribosomal protein L13 (rpl13) and actin-related protein 2/3 complex subunit 1A
(arpc1a), were used to standardize the results. Relative quantification of genes involved in
immune response (interleukin 1 beta, il1b; interleukin 10, il10; lipopolysaccharide-induced
TNF factor, litaf ) and oxidative stress (superoxide dismutase 1, sod1; superoxide dismutase
2, sod2; catalase, cat) was performed. Calculation of mRNA levels of target genes analysed
was performed using the geometric mean of the two reference genes after demonstrating
that they were stably expressed through applications implemented in the Bio-Rad CFX
Manager 3.1. software. Gene transcript expression alterations among experimental groups
are reported as relative mRNA abundance (arbitrary units) [58]. The qPCR data were
processed using iQ5 optical system software version 2.0 (Bio-Rad), including GeneEx
Macro iQ5 Conversion and GeneEx Macro iQ5 files.

Table 2. Sequences, identification numbers (ZFIN ID), and annealing temperatures (AT) of primers
used in the present study.

Gene Forward Primer (5′-3′) Reverse Primer (5′-3′) AT (◦C) ZFIN ID Reference

il1b GCTGGGGATGTGGACTTC GTGGATTGGGGTTTGATGTG 54 040702-2 [59]
il10 ATTTGTGGAGGGCTTTCCTT AGAGCTGTTGGCAGAATGGT 56 051111-1 [59]
litaf TTGTGGTGGGGTTTGATG TTGGGGCATTTTATTTTGTAAG 53 040704-23 [59]
sod1 GTCGTCTGGCTTGTGGAGTG TGTCAGCGGGCTAGTGCTT 60 990415-258 [60]
sod2 CCGGACTATGTTAAGGCCATCT ACACTCGGTTGCTCTCTTTTCTCT 60 030131-7742 [60]
cat CCAAGGTCTGGTCCCATAA GCACATGGGTCCATCTCTCT 60 000210-20 [60]

rpl13 TCTGGAGGACTGTAAGAGGTATGC AGACGCACAATCTTGAGAGCAG 59 031007-1 [59]
arpc1a CTGAACATCTCGCCCTTCTC TAGCCGATCTGCAGACACAC 60 040116-1 [59]

2.11. Statistical Analyses

All data were checked for normality (Shapiro–Wilk test) and homoscedasticity (Lev-
ene’s test). All the data were then analysed through one-way analysis of variance (ANOVA)
followed by Tukey’s multiple comparison post hoc test, performed using the software
package Prism 8 (GraphPad software version 8.0.2, San Diego, CA, USA). Significance was
set at p < 0.05.

3. Results
3.1. Biometry

As reported in Table 3, no significant differences were detected among all experimental
groups in terms of SGR for both zebrafish larvae and juveniles.

Table 3. Specific growth rate (SGR%) of zebrafish larvae and juveniles fed the experimental diets
measured at 20 dpf and 60 dpf, respectively.

Control A50 A500 B50 B500 p Value

Larvae 15.2 ± 3.7 15.1 ± 3.6 16.1 ± 2.8 16.5 ± 2.6 15.9 ± 2.4 0.0603
Juveniles 9.4 ± 1.0 9.9 ± 1.6 9.7 ± 1.7 9.6 ± 1.5 9.5 ± 1.4 0.3861

Control: zebrafish fed a control diet; A50 and A500 groups: zebrafish fed diets containing 50 mg/kg and
500 mg/kg of polymer A (range size: 1–5 µm), respectively; B50 and B500 groups: zebrafish fed diets containing
50 mg/kg and 500 mg/kg of polymer B (range size: 40–47 µm), respectively. Data are reported as mean± standard
deviation (n = 60).

3.2. Confocal Microscopy Allows for a Clear In Situ Visualization of MPs

No fluorescent MP microbeads were detected in all the tissues analysed for the Control,
B50, and B500 groups at both the larval (Figure 1) and juvenile (Figure 2) stages. Polymer
B microbeads were only found in the gut lumen (Figure 1b). Differently, polymer A
microbeads were found in the intestine of both larvae and juveniles. Furthermore, while at
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20 dpf (larval stage), polymer A microbeads were detected only at the intestinal level, at 60
dpf (juvenile stage), polymer A microbeads were also detected in the hepatic parenchyma
and, to a lesser extent, at the muscular level, suggesting a time-dependent translocation of
MPs among organs and tissues.
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Figure 1. Representative images of zebrafish larvae analysed through confocal microscopy. (a) Focus 
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Figure 1. Representative images of zebrafish larvae analysed through confocal microscopy. (a) Focus
on intestine from a zebrafish larva fed a control diet; (b) polymer B fluorescent microbeads in the gut
lumen of a zebrafish larva fed a B500 diet; arrow indicates the direction of the gut tract, from cranial
to caudal region; (c) whole larva fed an A50 diet; (d,e) focus on intestine and liver from larvae fed an
A50 diet; (f,g) z-stack images of intestine from zebrafish larvae fed A50 and B50 diets, respectively.
Asterisks indicate polymer A microbeads; arrowheads indicate polymer B microbeads. Abbreviations:
M, muscle tissue; G, gut tract. * indicates microbeads.

3.3. MPs Quantification

Table 4 reports the MPs quantification in whole larvae and in the intestine, liver, and
muscle of juveniles. Regarding the larvae, no fluorescent microbeads were detected in the
Control, B50, and B500 groups. Both the A50 and A500 groups showed the presence of
fluorescent A microbeads, with A500 showing a significantly (p < 0.05) higher abundance
compared to the A50 group.

Table 4. MPs quantification (number of microbeads/mg) in whole zebrafish larvae and in the
intestine, liver, and muscle of zebrafish juveniles fed experimental diets.

Control A50 A500 B50 B500

Larvae whole
specimen 0 0.5 ± 0.2 a 3.5 ± 0.8 b 0 0

Juveniles
intestine 0 1.15 ± 0.45 a 61.93 ± 14.30 b 0.14 ± 0.01 a 0.64 ± 0.15 a

liver 0 5.4 ± 1.6 a 231.1 ± 47.1 b 0 0
muscle 0 0.3 ± 0.1 a 4.7 ± 1.2 b 0 0

Control: zebrafish fed a Control diet; A50 and A500 groups: zebrafish fed diets containing 50 mg/kg and
500 mg/kg of polymer A (range size: 1–5 µm), respectively; B50 and B500 groups, zebrafish fed diets containing
50 mg/kg and 500 mg/kg of polymer B (range size: 40–47 µm), respectively. Data are reported as mean± standard
deviation (n = 9). a,b Within each line, different letters denote statistically significant differences among the
experimental group.
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juveniles fed Control (a–c) and A500 (d–f) diets. * indicates microbeads.

With regard to juveniles, no fluorescent microbeads were detected in the Control group
in all the tissues analysed. Considering the intestine, group A showed a higher presence of
MPs with respect to group B. Specifically, the A500 group showed the highest abundance of
MPs when compared to the other experimental groups. The A50 group was characterized
by a significantly (p < 0.05) higher abundance value compared to the B50 and B500 groups,
which did not show significant differences between them.

Considering the liver samples, the A500 group was characterized by a significantly
(p < 0.05) higher abundance compared to the A50 group, while no fluorescent microbeads
were detected in the B50 and B500 groups.

Finally, considering the muscle samples, the A500 group showed a significantly higher
abundance compared to the A50 group, while no fluorescent microbeads were evident in
the Control and B groups.

3.4. Histology

Considering both larvae (Figure 3a–e) and juveniles (Figure 3f–j), no structural alter-
ations or signs of inflammation were evident in the hepatic parenchyma and in the intestine
from all the experimental groups.

Table 5 reports the histological indexes measured in intestine samples of larvae and
juveniles. In particular, in both life stages, the B50 and B500 groups were characterized, in
comparison to the Control, A50, and A500 groups, by (i) a significantly (p < 0.05) lower
mucosal fold height; (ii) a higher relative abundance of Ab+ goblet cells.
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Figure 3. Examples of histomorphology of the gut tract and liver of zebrafish (a–e) larvae and
(f,g) juveniles. (k–o) Examples of Ab+ goblet cells in intestinal mucosal folds. (a,f,k) Control; (b,g,l)
A50; (c,h,m) A500; (d,i,n) B50; (e,j,o) B500. Scale bars: (a–e) 200 µm; (f–g) 100 µm; (k–o) 50 µm.

Table 5. Histological indexes measured in the intestine of larvae and juveniles fed experimental diets.

Control A50 A500 B50 B500

Larvae
Mucosal fold height 102.9 ± 15.0 a 86.7 ± 8.4 ab 88.0 ± 5.8 ab 73.2 ± 4.6 bc 65.7 ± 6.0 c

Ab+ goblet cells’ relative abundance + + + ++ ++

Juveniles
Mucosal fold height 94.9 ± 5.7 a 96.4 ± 8.8 a 88.2 ± 9.4 a 69.7 ± 7.9 b 70.1 ± 5.4 b

Ab+ goblet cells’ relative abundance ++ ++ ++ +++ +++

Control: zebrafish fed a control diet; A50 and A500 groups: zebrafish fed diets containing 50 mg/kg and
500 mg/kg of polymer A (range size: 1–5 µm), respectively; B50 and B500 groups, zebrafish fed diets containing
50 mg/kg and 500 mg/kg of polymer B (range size: 40–47 µm), respectively. Data are reported as mean± standard
deviation (n = 15). a,b,c Different letters denote statistically significant differences among the experimental groups.
Ab+ goblet cells: + = 0 to 3 per villus; ++ = 4 to 6 per villus; + + + = more than 6 per villus.

3.5. Real-Time PCR Results

With respect to the larvae, no significant differences were detected among the ex-
perimental groups in the expression of genes involved in immune response (Figure 4a–c)
and oxidative stress (Figure 4e,f), with the exception of the B500 group, which showed a
significant sod1 downregulation compared to the A50 group (Figure 4d).

With respect to juveniles, no significant differences were evident among the exper-
imental groups in the expression of genes involved in immune response (Figure 5a–c).
However, with regard to the expression of genes involved in oxidative stress response
(Figure 5d–f), the A50 and A500 groups showed a significant (p < 0.05) sod1, sod2, and cat
upregulation compared to the Control group, while in B50 and B500 groups, only sod1 gene
expression was significantly (p < 0.05) higher than the Control (Figure 5d). No significant
differences were evident in sod2 and cat gene expression (Figure 5e,f).
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Figure 4. Relative mRNA abundance of genes involved in immune response (a) il1b, (b) il10, and
(c) litaf and oxidative stress (d) sod1, (e) sod2, and (f) cat in analysed zebrafish larvae. Control:
zebrafish fed a control diet; A50 and A500 groups: zebrafish fed diets containing 50 mg/kg and
500 mg/kg of polymer A (range size: 1–5 µm), respectively; B50 and B500 groups, zebrafish fed diets
containing 50 mg/kg and 500 mg/kg of polymer B (range size: 40–47 µm), respectively. Data are
reported as mean ± standard deviation (n = 5). a,b Different letters denote statistically significant
differences among the experimental groups; ns, no significant differences.
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Figure 5. Relative mRNA abundance of genes involved in immune response (a) il1b, (b) il10, and
(c) litaf and in oxidative stress (d) sod1, (e) sod2, and (f) cat analysed in intestine and liver, respectively,
of zebrafish juveniles. Control: zebrafish fed a control diet; A50 and A500 groups: zebrafish fed diets
containing 50 mg/kg and 500 mg/kg of polymer A (range size: 1–5 µm), respectively; B50 and B500
groups, zebrafish fed diets containing 50 mg/kg and 500 mg/kg of polymer B (range size: 40–47 µm),
respectively. Data are reported as mean ± standard deviation (n = 5). a,b Different letters denote
statistically significant differences among the experimental groups; ns, no significant differences.
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4. Discussion

Despite the large number of publications on MPs exposure in fish, information about
the effects of different-sized polymers during the fish life cycle is still limited. While
previous studies have demonstrated that different fish species are able to distinguish water-
suspended MPs, enacting avoidance and rejection mechanisms [61–64], in the present study,
both zebrafish larvae and juveniles ingested the tested fluorescent microbeads that were
included in the feed during the preparation process. This result was clearly confirmed
through the confocal microscopy and quantification analyses, which also suggested a dif-
ferent fate for the tested MPs in relation to their size and the fish life cycle stage analysed.
Specifically, confocal microscopy analyses showed that polymer A microbeads were ab-
sorbed at the intestinal level in both zebrafish larvae and juveniles, while they were present
at the hepatic and muscular level only in the juvenile stage. This result is in accordance
with previous studies performed on adult zebrafish and goldfish, evidencing that MPs
microbeads of 1–5 and 0.8 µm in size, respectively, were internalised by the fish intestinal
villi and were detected at the hepatic level after at least 30–45 days of exposure [65,66]. This
evidence suggests that, in the present study, the larval stage was not exposed to the dietary
MPs (independent of the MPs’ dietary concentration) for a sufficient time to observe their
translocation to other tissues and organs.

The MPs quantification through chemical digestion provided quantitative details
about the MPs accumulation, evidencing, during the larval phase, a simple dose-dependent
accumulation. In this phase, whole specimens were sampled because of the impossibility of
isolating single organs and tissues due to their small size. However, more accurate results
were obtained at the juvenile stage since the analyses were performed on single organs and
tissues. At this developmental stage, polymer A microbeads were considerably present in
the intestine and liver and, in a significantly lesser extent, in the muscle. These are extremely
interesting results and are evidence of zebrafish possessing biological barriers capable of
trapping MPs. Even though the precise mechanism via which MPs are absorbed at the
intestinal level was not determined, different studies have proposed that the absorption
paths could be via endocytosis or pinocytosis [67,68]. Then, once they are absorbed by
the intestinal villi, MPs can reach different tissues through blood circulation [69]. In the
present study, a similar scenario was possibly evidenced due to the higher number of
MPs detected in the liver compared to the intestine. This result, along with the absence of
inflammatory events, histopathological alterations, and changes in the expression of genes
involved in immune response, suggests that the intestine acts as a simple “transit” organ
for dietary MPs.

Conversely, the liver in zebrafish juveniles was able to accumulate a high number
of polymer A microbeads, possibly constituting an “accumulation organ”. This result is
also supported by the gene expression of oxidative stress markers that evidenced a strong
upregulation (independent of the MPs’ dietary concentration) in the liver of zebrafish
juveniles fed diets containing polymer A microbeads. Accordingly, previous studies
highlighted that the liver is the organ most affected MPs exposure [70–73]. It also seems
that MPs’ effects on the liver are strictly related to their size and the possible combination
of the particles with toxic compounds, such as antibiotics [74] or metals [75].

Nevertheless, the ability of the liver to trap most of the polymer A microbeads ensured
that only a limited number of them can be translocated to the muscle. The presence of this
important hepatic biological barrier protects the muscle, and thus the edible portion, of
the fish from dietary MPs contamination, offering a defence for potential final consumers.
These results are in accordance with a previous study performed on European seabass,
which highlighted that fluorescent MP beads of 1–5 µm in size were detected in the fillet in
a significantly lower amount compared to the ingested quantity [34].

Previous studies highlighted that MPs characterized by a greater dimensional range of
100–400 µm and 20 µm, respectively, simply transit through the gut lumen without being
absorbed [75,76]. Accordingly, in the present study, chemical digestion analyses highlighted
an absence of polymer B microbeads during the larval stage, while a very low abundance
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was detected at the intestinal level in juveniles. However, no absorption of these MPs
was detected through confocal microscopy at the intestinal level during the juvenile stage.
The low abundance of polymer B microbeads in the intestine can be related to the 24 h
starving period that preceded the sampling, a sufficient amount of time to have an empty
gut. However, even if the polymer B microbeads were not directly absorbed at the intestinal
level, both larvae and juveniles from groups B showed shortened mucosal folds and a
higher abundance of Ab+ goblet cells compared to the other experimental groups. These
results are likely related to an abrasive effect of polymer B microbeads at the intestinal level
and to a consequent intensification of intestinal lubrication via an increase in goblet cells
to facilitate the MPs’ expulsion, as demonstrated in previous studies [76,77]. However, no
signs of intestinal inflammation or an increase in the expression of markers involved in the
immune or oxidative stress response were observed in these fish, suggesting more adverse
effects related to smaller MP microbeads compared to bigger ones. These molecular results
can be considered accurate despite the absence of a non-reverse transcriptase control. In
fact, primers were specifically designed to span an exon–exon junction (that only exists in
cDNA) to exclude genomic DNA contamination. Additionally, RNA was treated through
DNase and checked on agarose gel and through a NanoPhotometer. The molecular results
obtained in the present study are in accordance with other studies that showed how nano-
sized MPs can have more negative consequences than micron-sized ones for both fish and
crustaceans [78,79]. These outcomes indicate that MPs’ effects on organisms are inversely
related to their size.

Finally, growth was not affected by the dietary administration of both polymer types
in zebrafish larvae and in juveniles. This result was partially in accordance with a previous
study performed on zebrafish, in which growth was not affected by 20–27 µm dietary MPs
during the larval stage (30 dpf) but was negatively affected after 90 and 360 days of expo-
sure [80]. Another study, testing two different-sized MPs on spiny chromis Acanthochromis
polyacanthus, evidenced that while MPs 2 mm in diameter did not affect fish growth, those
with a size < 300 µm had a negative impact on fish growth [81]. As suggested by the
authors of the previously cited study, fish growth could be influenced by MPs depending
on different variables, such as their size, concentration, and shape, and thus further studies
are necessary to better elucidate why no growth differences were detected in the present
study.

5. Conclusions

The present study demonstrated that zebrafish have biological barriers against dietary
MPs acting in relation to size, concentration, and exposure time, leading to different
scenarios during the different fish life cycle stages. MP microbeads of 40–47 µm in size were
not absorbed at the intestinal level and simply transited to the gut lumen, progressively
causing a shortening of mucosal folds and an increase in mucous cells in both larvae and
juveniles. On the other hand, MP microbeads of 1-5 µm in size were able to pass the
intestinal barrier and, only in juveniles, translocate from the gut to other target organs and
tissues, such as the liver and the muscle, in a dose-dependent way. However, the reduced
amount of polymer A microbeads detected in the juveniles’ muscle samples indicated that
the liver is a key organ in the retention of MPs.

These results are important for the aquaculture sector but, at the same time, underline
the need for further research to promote animal welfare by mitigating the negative side
effects of MPs in fish.
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