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Abstract 17 

This paper aims at discussing an automated measurement system for detecting carbonation depth in concrete 18 

sprayed with phenolphthalein. Image processing and Convolutional Neural Networks strategies are exploited 19 

to accurately separate the carbonated and non-carbonated areas and to remove those aggregates on the 20 

carbonation front that could bring to a wrong evaluation of the carbonation depth. Very strong correlation (R2 21 

> 0.98) is found between results provided by the proposed approach and the method suggested by the EN 22 

13295 standard. The expanded uncertainty (coverage factor k =2) of this novel approach is 0.08 mm. ANOVA 23 

analysis performed in multi-operator tests proved that the highest source of uncertainty is the measurement 24 

system, which, on the other hand, is robust to changes in the operator performing the measurement.  25 
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1. Introduction 29 

Durability of concrete is defined as its ability to resist weathering action, chemical attack, abrasion, or any 30 

other process of deterioration, by retaining the original form, quality, and serviceability when concrete itself 31 

is exposed to a certain environment [1]. 32 

In the late 20th century, an increasing number of reinforced concrete structures showed major deterioration due 33 

to durability problems, causing huge costs for repair and rehabilitation. This has also become an economic 34 

issue, with estimated direct and indirect costs of 3–4% of gross national product in developed countries, 35 

connected to maintenance and repair operations.   36 

One of the main causes of degradation is the carbonation of concrete. This is considered a critical problem, 37 

particularly in those regions characterized by a warm and relatively humid environment, since moisture content 38 

accelerates the carbonation mechanism. The carbonation of cement paste lowers the pH of the pore solution, 39 

thus contributing in depassivating steel reinforcements and in making them prone to corrosion. The pH value 40 

of non-carbonated cement-based material is approximately 13, but it moves around 9 when carbon dioxide 41 

diffuses inside the material itself. This occurs since calcium hydroxide (Ca(OH)2) contained in the pore 42 

solution, reacting with carbon dioxide, is converted into calcium carbonate (CaCO3) [2], with a significant 43 

carbonation rate when relative humidity (RH) ranges between 45-95%. In this way, the passive layer protecting 44 

the steel rebars is damaged and steel starts to corrode if it gets in contact with moist air [3]. The initiation of 45 

reinforcement corrosion is the main responsible for shortening the service life of reinforced concrete structures 46 

(RCS) [4,5]. Therefore, monitoring RCS is of utmost importance to prevent irreversible damages that may also 47 

end up in structural failure. Some authors have started developing strategies for monitoring the corrosion 48 

process in concrete structures. These strategies ranges from more standard strain measurements by Fiber Bragg 49 

Grating (FBG) sensors [6] or electrochemical approaches [7] to recent machine learning-based methods [8]. 50 

Nevertheless, despite the hot topic, the accepted approach to identify the likelihood of corrosion relates on the 51 

measurement of carbonation depth, and the test used for determining carbonation depth is regulated by the EN 52 

13295 standard [3]. This standard suggests spraying a phenolphthalein solution on the target to highlight the 53 

presence of carbonated/non-carbonated areas. The phenolphthalein solution changes its colour in relation to 54 

the pH of the material: in the non-carbonated part of the specimen, where concrete has still a highly alkaline 55 

behaviour (pH > 9), a purple-red coloration is obtained, whereas in the carbonated area of the specimen, where 56 



pH < 9, no colour change is observed [9]. The standard describes a procedure in which the operator is asked 57 

to manually measure the carbonation depth (dk), i.e. “the average distance, measured in mm, from the surface 58 

of the concrete or mortar where the CO2 has reduced the alkalinity of the hydrated cement to an extent such 59 

that an indicator solution based on phenolphthalein remains colourless”, by using rulers, callipers, etc. [3].  60 

However, it should be underlined that, even if this method is easy to perform, it suffers from subjectivity, due 61 

to operator’s experience, colours perception, and manual ability, low repeatability and low reproducibility. 62 

This paper aims at overcoming the aforementioned limits by discussing an automated and objective approach, 63 

based on machine vision, for measuring carbonation depth of concrete.  64 

There are very few papers dealing with the automated detection of carbonation depth in scientific literature. 65 

Segura et al. [10] developed an automatic digital image-processing algorithm that filters the image of the 66 

specimen, after calibration and background removal, to enhance the contour of the carbonated area and hence 67 

calculate carbonation depth. The algorithm appears to be accurate and strongly correlated to manual 68 

measurements (R2 = 0.96). Yet, the main drawback is that the heterogeneity of the specimen requires different 69 

thresholding/segmentation approaches when using direct sunlight illumination to separate the carbonated from 70 

the non-carbonated areas. 71 

Choi et al. [11] developed an image-processing technique to automatically detect the carbonated region 72 

highlighted by phenolphthalein solution; their algorithm consists of two subsequent detection processes: an 73 

initial binarization followed by a convex hull operation. The algorithm seems to be quite robust, but 74 

unfortunately, no quantitative results on carbonation depth are provided.  75 

Ruiz Madera [12] developed a dedicated vision system to take pictures in homogeneous light conditions and 76 

two different algorithms to detect the carbonated area in concrete specimens. The former is an image-77 

processing based algorithm for image segmentation in the RGB space; the latter exploits neural networks and 78 

deterministic image-processing strategies to improve detection of carbonation depth; indeed, this coupled 79 

approach causes an improvement in accuracy of 20% with respect to the sole use of deterministic approaches.  80 

However, the use of neural networks seems to exceed the requirements for this application, which could be 81 

afforded in a simpler way. In fact, neural networks have a significant computational time and require the 82 

definition of proper parameters, whose value considerably affects the output, so that an imprecise setting could 83 

cause considerable measurement errors (also in terms of repeatability). 84 



This paper presents a measurement system (hardware and software) targeted to the automated detection of 85 

carbonation depth in concrete specimens. Results obtained with the system have been compared to those 86 

performed by adopting the manual procedure defined in the EN 13295 standard. This comparison has been 87 

made in terms of carbonation depth values, repeatability and time consumption. Four different concrete 88 

compositions developed within the European project EnDurCrete (New Environmental friendly and Durable 89 

conCrete, integrating industrial by-products and hybrid systems, for civil, industrial and offshore applications) 90 

have been tested to prove the robustness of the system to concrete colour variation (e.g. due to the presence of 91 

carbon-based additions).  92 

The paper is organised as follows: Section 2 discusses the preparation of the concrete specimens and the 93 

phenolphthalein test for measuring carbonation depth; Section 3 describes the developed automated 94 

measurement system, focusing both on its hardware and software parts; Section 4 reports the metrological 95 

characterisation of the automated system and the comparison with manual measurements carried out on 96 

different concrete mixes; finally, Section 5 reports the main conclusions on the performance evaluation of the 97 

developed automated algorithm. 98 

 99 

2. Materials and experimental methods 100 

2.1. Preparation of concrete specimens 101 

A Portland blended cement was used to cast four concrete compositions (C1, C2, C3, and C4). 102 

Limestone/quartz river sand (0/4 mm) was used as fine aggregate, whereas intermediate (5/10 mm) and coarse 103 

(10/15 mm) river gravels were used as coarse aggregates. Two polycarboxylate (PC)-based water reducers 104 

were used to reach the desired workability class (S5). 105 

The reference concrete, labelled as C1, was produced with a cement content of 375 kg/m3 and water/cement 106 

(w/c) ratio equal to 0.42 by weight. Aggregates were dosed at 48% for sand, 19% for intermediate gravel and 107 

33% for coarse gravel, respectively, on the total aggregates volume. Three increasing percentages of carbon-108 

based additions were added in order to change the colour of specimens, which from the lighter to the darker 109 

are identified as C2, C3, and C4, respectively. 110 

The concrete batches were mixed in a concrete mixer by adding at first powder materials in the following 111 

order: aggregates, carbon-based addition, and cement (mixed for 2 minutes). Afterwards, water was added and 112 



mixed for 3 minutes, then PC admixtures were incorporated to reach the same workability class (S5) and mixed 113 

for 15 minutes.  114 

Concretes were poured into cubic moulds of 10 cm per side and cured at a temperature (T) of 20 ± 1 °C and a 115 

relative humidity (RH) higher than 95% for 28 days.  116 

 117 

2.2. Accelerated carbonation and phenolphthalein test 118 

After 28 days of curing, the concrete specimens were exposed to accelerated carbonation in an environmental 119 

test chamber (Figure 1) at T = 21 ± 1 °C, RH = 60 ± 10% and CO2 concentration = 3 ± 0.2 vol.% [13]. This 120 

CO2 concentration, much higher than the one suggested by the EN 13295 standard (i.e. CO2 = 1%), was adopted 121 

to accelerate the carbonation process of the specimens. 122 

 123 

 124 

Figure 1 Environmental CO2 chamber hosting concrete specimens 125 

 126 

The carbonation depth was measured on the specimens according to the EN 13295 standard at 7 days after the 127 

curing period. This operation was performed by cutting the specimens and treating the internal surface with 128 

1% solution of phenolphthalein in alcohol. Indeed, the specimens (cubes) were split into two halves, internally 129 

sprayed with phenolphthalein solution, and pictures taken of the sprayed surfaces. The maximum carbonation 130 

depth (dmax) was also measured, even if the standard requires to measure it only when the carbonation profile 131 

is irregular and dk > 4 mm. Manual measurements were performed using a Vernier calliper (accuracy ± 0.01 132 

mm).  133 



 134 

3. Automated measurement system for carbonation depth of concrete 135 

The automated measurement system discussed in this paper (Figure 2a) aims to objectively measure the 136 

carbonation depth on concrete specimens.  137 

 

 
(a) (b) 

Figure 2 Measurement system setup for carbonation depth measurement system: overall setup (a) and detailed 138 
representation (b) 139 

 140 

The measurement setup, excluding the specimen to be tested, consists of the following elements (Figure 2 b): 141 

• Camera (1) and diffuse illumination system (2): the camera is a standard full-HD (1920x1080 pixel) 142 

webcam with auto-focus capability. The choice of such a camera is to demonstrate the possibility of 143 

having accurate measurement results also with a low-cost device. Two slightly tilted (compared to the 144 

camera optical axis) LED strips covered with a diffusing panel were used for diffuse illumination.  145 

• Bar with fiducial markers (5): five markers are placed on a bar whose height can be adjusted, with 146 

reference to the height of the specimen (4). The bar can slide on a dovetail guide (6). The positioning of 147 

the markers at the same height of the sprayed surface of the specimen makes it possible to perform a 148 

pixel-to-mm conversion. The markers adopted are squared markers targeted to be recognised by the 149 

Python OpenCV ArUco library ([14,15]) and they are needed to perform an automated camera 150 

calibration [16]; 151 

• Back-light LED illumination plate (3): the homogeneous high-contrast background created by back-152 

light illumination makes it possible to ease the detection of the external contour of the specimen.  153 



 154 

Figure 3 Workflow for measuring the carbonation depth of a concrete specimen sprayed with phenolphthalein 155 

 156 

As for the measurement procedure, it consists in three main steps: a) once the specimen is positioned on the 157 

lighting plate with the sprayed surface facing the camera, b) the sliding bar is adjusted to have the markers at 158 

the same level of the target surface; c) the operations reported in Figure 3 are performed by a software 159 

specifically developed in Python programming language that exploits the OpenCV library [17]. More in 160 

details, once the raw image is acquired by the software, the processing algorithm performs the following 161 

operations: 162 



• ArUco marker detection for image calibration: the script autonomously detects the 5 ArUco markers 163 

and measures, for each of them, the length of the sides of the markers in terms of pixels. Then, the 164 

average value of the 20 measured sides is calculated. Knowing that the side of each marker is 25 mm, 165 

the pixel-to-mm conversion constant is obtained, and the picture is calibrated; 166 

• ROI (Region-Of-Interest) selection: a ROI is extracted from the image acquired in order to exclude all 167 

the disturbing elements that are presents in the background of the picture; 168 

• Specimen contour extraction: To ease the extraction of the specimen’s contours (in Computer Vision 169 

contours are curves obtained by joining all the continuous points with similar intensity along the 170 

boundary of a target), a binarization of the image is usually recommended [17]; this step requires a 171 

proper selection of a threshold on the intensity values associated to the pixels of the image.  172 

 

(a) 

 

(b) 

Figure 4 Histogram representation of pixel intensity level of specimen image: Comparison between diffuse (a) 173 
and diffuse plus back-light (b) illumination. 174 

 175 



The combined diffuse and back-light illumination adopted in the system makes it possible a smoother 176 

identification of two distinct areas in the histogram intensity values of the image: the darkest area of 177 

the specimen, on the left, and the lightest area of the background, on the right. Figure 4 reports a 178 

comparison of the histogram representation of pixel intensity between a specimen illuminated by 179 

diffuse illumination (Figure 4a) and the same specimen illuminated via both diffuse and back-light 180 

illumination (Figure 4b). The wider separation between these two areas is well evident in the latter 181 

configuration. Indeed, this eases the identification of a proper pixel intensity threshold that brings to a 182 

correct separation of the specimen contour with respect to the background in the binarized image.  183 

The length of this contour is the external perimeter of the specimen and the area within the contour 184 

represents the specimen overall surface area; 185 

• Purple area identification: the purple contour representing the carbonation front is identified through 186 

a binary threshold on the HSV (hue, saturation, value) colour space [18]. Contrarily to the RGB colour 187 

spaces, which codes colour through three channels, the HSV colour spaces, which separates luma, i.e. 188 

image intensity, from chroma, i.e. colour information, codes colour only by the hue channel; in fact, 189 

the other two channels express the saturation, from unsaturated (shades of grey) to fully saturated, and 190 

the brightness (value) of the colour. This justifies the use of the HSV colour space for colour-based 191 

segmentation [18]. Indeed, processing the image in the HSV colour space makes it possible to widen 192 

the colour separation between the carbonated and the non-carbonated area, since those pixels 193 

belonging to the image region targeted to be considered non-carbonated will therefore fall into a 194 

specific range of hue, saturation and value.  195 

The threshold ranges in the HSV colour space have been chosen by asking an operator expert in testing 196 

according to the EN 13295 standard, but not expert in computer vision, to analyse 24 different 197 

specimens through a dedicated graphical user interface (Figure 5). The set of 24 specimens was created 198 

by including specimens cast with the four concrete mixes in order to have different concrete and purple 199 

colour tone. The optimal thresholds in the HSV colour space have been identified as those producing 200 

the wider min-max intervals of Hue, Saturation and Value and guaranteeing a good quality label on 201 

the automatically thresholded images when revised by the expert.  202 



As shown in Figure 6a, once thresholding in the HSV colour space is performed, the binarized image 203 

obtained is effective for isolating the contour of the non-carbonated area and thus for calculating the 204 

area within this contour. It is worth mentioning that aggregates within the contour are considered holes 205 

and properly filled to be included in the calculation of the overall non-carbonated area. 206 

 207 

 

Figure 5 Graphic user interface adopted for interactive selection of the thresholds in the HSV colour space. 208 
The blue contour represents the specimen external perimeter, whereas the green contour represents the purple 209 

area detected 210 

 211 

  

(a) (b) 

Figure 6 Binary image obtained through HSV range threshold (a), green biggest contour which well 212 
individuates non-carbonated area (b). 213 

 214 



• Carbonation depth (dk) calculation: the EN 13295 standard recommends to perform the following steps 215 

to estimate the carbonation depth: a) identify five measurement points on each side of the sprayed 216 

surface of the specimen; b) measure carbonation depth with a ruler/calliper, rounded to the nearest 0.1 217 

mm, in correspondence of the five identified points; c) compute the average value on the five measures, 218 

rounded to the nearest 0.5 mm; d) repeat the process for each side of the specimen and e) compute dk 219 

as the mean value of the depths calculated for each one of the target sides of the specimen. 220 

The availability of the image of the specimen makes it possible to increase the statistical basis on 221 

which calculating the carbonation depth, since this value can be obtained as the ratio between the area 222 

of the carbonated zone and the perimeter of the same zone – see equation 1.  223 

𝑑𝑑𝑐𝑐 =
𝐴𝐴𝑐𝑐
𝑝𝑝

 (1)  

where dc is the carbonation depth (pixel), Ac is the carbonated area (pixel2), and p is the perimeter 224 

(pixel) of the carbonated area. 225 

The area of the carbonated zone can be estimated by subtracting the area of the non-carbonated zone 226 

from the total area within the external contour of the specimen, according to equation 2.  227 

𝐴𝐴𝑐𝑐 = 𝐴𝐴𝑡𝑡 − 𝐴𝐴𝑛𝑛𝑛𝑛 (2)  

where At is the total area (pixel2), and Anc is the non-carbonated area (pixel2). 228 

The carbonation depth in dimensional units can be calculated by applying the pixel-to-mm conversion 229 

parameter according to equation 3. 230 

𝑑𝑑𝑐𝑐−𝑚𝑚𝑚𝑚 =
𝑑𝑑𝑐𝑐

𝑝𝑝_𝑚𝑚𝑚𝑚
 (3)  

where dc-mm is the carbonation depth (mm) and p_mm is the conversion constant (pixel/mm). 231 

• Maximum carbonation depth (dmax) calculation: when the distribution of aggregates is dense over the 232 

specimen surface, they may likely lie on the carbonation front. If this is the case, since aggregates react 233 

differently to phenolphthalein and remain uncoloured, they can induce in misleading interpretation of 234 

dmax [11]. On the one hand, a human operator could be able to discard aggregates in the calculation of 235 

the maximum carbonation depth; on the other hand, this choice is highly subjective, since it also relates 236 

to the colour-perception of each operator. To make the whole approach robust and highly objective, a 237 



dedicated classification process based on Convolutional Neural Network (CNN [19] was developed. 238 

The VGG16 [20] classifier (Keras’s implementation [21]) was trained by selecting manually ROIs 239 

containing/not containing aggregates from a dataset of 1000 pictures (500 of each class). Each dataset 240 

of 500 images was then divided between training, validation and test sets, in a ratio of 8:1:1. Tests 241 

with different sizes of the dataset were also performed. In fact, trials both/either adding to the former 242 

dataset a dataset of 5000 images of aggregates taken from the Pebble-Dataset [22] and/or classic data 243 

augmentation approaches were performed. However, it turned out that the improvement in accuracy 244 

was practically null when considering the maximum carbonation depth (reported in Section 4.2), this 245 

proving that there was no reason to increase the size of the initial dataset of 1000 pictures. 246 

The classifier was then integrated in an algorithm that scans the specimen area horizontally and 247 

vertically, starting from the centre of gravity of the specimen face in order to find the maximum 248 

distance of the carbonation profile from the external contour; if an aggregate is present within the 249 

profile, the value is discarded. 250 

 251 

Figure 7 Dense aggregate detection (red square) and correction of the identified maximum carbonation value 252 

 253 

An example of the output is reported in Figure 7, where the correct value of the maximum carbonation 254 

depth is identified by the red line. The red rectangle highlights the max depth that would have been 255 

identified if aggregates were not removed: this would result in a miscalculation of the maximum 256 

carbonation depth, which would result in 10.70 mm (overestimated value) with respect to 5.90 mm 257 

(correct value). 258 

 259 



4. Results and discussion 260 

4.1. Metrological characterization 261 

The metrological performance of the measurement system was assessed in terms of repeatability and 262 

reproducibility [23]. The Type A uncertainty was assessed by taking 100 pictures of the same specimen while 263 

its angular position is slightly varying on the lighting plane for back-light illumination (i.e. rotating the 264 

specimen around the vertical axis perpendicular to the lighting plane). The reproducibility of the measurement 265 

system was assessed by asking 3 different operators to perform ten measurements each. It should be highlighted 266 

that the specimens used for the two analyses were different. This choice was undertaken to demonstrate the 267 

robustness of the approach.  268 

The distribution, normalised with respect to their mean value, related to the values measured in the intra- 269 

operator analysis is reported in Figure 8. The Type A uncertainty associated to the measurement is estimated 270 

to be 0.04 mm. If considering a coverage factor k = 2, an expanded uncertainty value of 0.08 mm is identified.  271 

 272 

 273 

Figure 8 Distribution normalised with respect to the mean value of carbonation depth values measured on 100 274 
images by the same operator 275 

 276 

Data belonging to the inter-operator tests were analysed performing an ANOVA single factor analysis [24]. 277 

Table 1 and Table 2 report, respectively, the Variance analysis for each operator and the results of the ANOVA 278 

test.  279 

  280 



 281 

Table 1 Inter-operator test: operator performance on ten measurements 282 

Groups Count 
Sum 

[mm] 
Average 

[mm] 
Variance 

[mm2] 
Operator 1 10 32.97 3.29 0.0021 
Operator 2 10 32.80 3.28 0.0018 
Operator 3 10 32.84 3.28 0.0014 

 283 

Table 2 ANOVA table of inter-operator test 284 

Source of Variation 

Sum of 
Squares 
[mm2] 

Degree 
of 

freedom 
Variances 

[mm2] F 

Standard 
Deviations 

[mm] P-value F crit 
Between Groups 0.0015 2 0.0007 0.4184 0.02 0.6622 3.3541 
Within Groups 0.0479 27 0.0017  0.04   

        

Total 0.0494 29          
 285 

From the ANOVA analysis, it is clear that the null-hypothesis is verified. Moreover, the reproducibility 286 

variance is quite small (0.0007 mm2) if compared with the repeatability one (0.0017 mm2). This means, on the 287 

one hand, that the main amount of variation is due to the algorithm itself; on the other hand, that the algorithm 288 

is quite robust to position changes of the specimen over the lighting table. Indeed, in performing inter-operator 289 

tests, each operator was asked to remove the specimen from the lighting table and to place it again over the 290 

table to perform the measurement. This sequence was intended to randomize the way the specimen could have 291 

been framed by the camera. Figure 9 reports the variation of the specimen centre point (a) over the image and 292 

the rotation angle of the specimen around the camera optical axis (b). Hence, despite a translational variation 293 

of 15 mm and 9 mm (horizontal and vertical variations of the centre of the specimen) and an angular variation 294 

of ±3° in the positioning of the specimen, the algorithm can calculate the carbonation depth of the specimen 295 

with the same uncertainty identified in the inter-operator test. The main source of uncertainty is therefore the 296 

one associated to the algorithm itself, and it turns out to be U = 0.08 mm (expanded uncertainty calculated 297 

with coverage factor k = 2). 298 

 299 



  

(a) (b) 

Figure 9 Variation of the specimen position over the lighting table during the inter-operator test: location of 300 
the centre of the specimen obtained as distance from the origin of the ROI of the image (a); rotation angle of 301 

the specimen around the camera optical axis (b) 302 

 303 

4.2. Comparison with manual measurement results 304 

Table 3 reports the carbonation depth values measured on the four different specimens after 7 days of 305 

accelerated carbonation test.  306 

Measurement were performed both with the method recommended by the EN 13295 (manual measurement), 307 

and the new developed automated system. Results are reported both in terms of non-approximated values and 308 

with 0.5 mm accuracy, this latter value being the resolution recommended by the EN 13295 standard. 309 

 310 

Table 3 Carbonation depth [mm] results obtained with calliper and automated algorithm 311 

 C1 C2 C3 C4 
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Calliper 1.51 1.50 6.20 6.00 2.93 3.00 8.20 8.00 2.06 2.00 7.90 8.00 2.01 2.00 7.60 7.50 

Automated 

algorithm 
1.42 1.50 6.24 6.00 2.86 3.00 8.10 8.00 2.01 2.00 8.23 8.00 2.18 2.00 7.71 7.50 

 312 



It is evident that the automated method well complies to the EN 13295 requirements: if rounding to 0.5 mm 313 

accuracy, the carbonation depth values of the automated system perfectly match those measured manually.  314 

Concerning maximum carbonation values, it can be noticed that the automated system well matches the calliper 315 

results. Indeed, if comparing the raw dk and dmax results provided by the two methods (Figure 10), a correlation 316 

coefficient R2 = 0.96 is obtained, indicating a very strong correlation between the two approaches. The linear 317 

fitting of the dk values shows a small offset of about 0.03 mm, apparently indicating an overestimation of 318 

results given by the automated system. This could be due, for instance, to the different calculation methods 319 

adopted by the two approaches, since the whole carbonation profile is considered in the automated system, 320 

whereas just 5 points are analysed in the manual measurement; this could explain the absence of offset in the 321 

one-shot measurement for evaluating the dmax value. If rounding data to the nearest value with 0.5 mm 322 

resolution, as suggested by the EN 13295 standard, a perfect correlation is found, since the two approaches 323 

provide the same values for dk and dmax.  324 

It should be highlighted that the automated algorithm is also robust to changes in concrete colour, ranging from 325 

bright – reference C1 – to dark (because of carbon-based additions) – C2, C3, C4.  326 

 327 

  

(a) (b) 

Figure 10 Correlation between automated algorithm and calliper results: dk (a) and dmax (b) values 328 

 329 

As measurement time is concerned, it is worthy to note that the manual procedure requires time not only for 330 

the measurement itself, but also for evaluating all the different case studies reported in the standard (presence 331 

of a dense aggregate lying within the carbonation front, side length lower than 3 cm, etc.), whereas these are 332 



all implemented in the automated algorithm. With the manual method, the measurement requires 333 

approximately 240 s per specimen (considering an expert operator), whereas the automated algorithm takes 334 

just 5 s per specimen (Intel Core i5-6600 CPU 3.30 GHz machine). Therefore, the time saving with the 335 

automated method is of about 98%. 336 

 337 

5. Conclusions 338 

An automated measurement system for detecting carbonation depth in concrete specimens has been proposed 339 

and discussed in this paper. By exploiting machine vision and Convolutional Neural Networks, the system is 340 

able to automatically calculate the carbonation depth (dk) and the maximum carbonation depth (dmax) of a 341 

specimen, rejecting the eventual presence of aggregates lying on the carbonation front. The system proved to 342 

be accurate (estimated expanded uncertainty U = 0.08 mm) and robust to changes in the operator performing 343 

the measurement. Moreover, the approach also proved to be robust to changes in the colour of the concrete 344 

specimen analysed. Correlation analysis performed with the method suggested by the EN 13295 standard 345 

proved the efficacy of the whole method, with great time saving (approximately -98%). One would have 346 

expected also a higher resolution with a vision-based system than the one achieved with a calliper. Indeed, the 347 

resolution adopted in the paper has been chosen specifically to ease comparison of results between the manual 348 

and the automated approach. It should be highlighted that the resolution of the vision-based system presented 349 

in the paper can be improved by adopting higher-resolution cameras (sensor with different size and higher 350 

pixel content) and different optics. In fact, a Full-HD webcam was specifically chosen for the system to 351 

demonstrate the feasibility of the approach also with a low-cost device. Nevertheless, two further aspects 352 

should be considered: a) given the absence of reference data for the carbonation depth it was mandatory to 353 

stick to the reference process recommended by the EN 13295 standard, hence to the resolution 0.5 mm 354 

suggested by the standard; b) such a resolution is currently accepted to assess the carbonation depth in concrete. 355 

For these reasons, the time saving and the objectivation capabilities of the measurement should be really 356 

considered as the main advantages that the vision-based system presented in the paper can bring to a user who 357 

is approaching the problem of assessing the carbonation depth in concrete. 358 

  359 
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