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ABSTRACT  25 

We review the spatial distribution of toxic marine microalgal species and the impacts 26 

of all types of harmful algal events (Harmful Algal Blooms, HABs) in the 27 

Mediterranean Sea (MS), including the Black Sea, the Sea of Marmara, coastal 28 

lagoons and transitional waters, based on two databases compiled in the Ocean 29 

Biogeographic Information System (OBIS). Eighty-four potentially toxic species have 30 

been detected in the MS (2,350 records), of which 16 described from these waters 31 

between 1860 and 2014 and a few suspected to have been introduced. More than half 32 

of these species (46) produce toxins that may affect human health, the remainders 33 

ichthyotoxic substances (28) or other types of toxins (10). Nevertheless, toxicity-34 

related events are not frequent in the MS (308 records in 31 years), and mainly consist 35 

of impacts on aquaculture, caused by the dinoflagellates Dinophysis and Alexandrium, 36 

along with a few actual shellfish poisoning cases. Pseudo-nitzschia blooms are 37 

widespread, but domoic acid in shellfish rarely exceeds regulatory levels. Fish kills 38 

are probably less sporadic than reported, representing a problem at a few places along 39 

the southern MS coasts and in the Ebro River Delta. Since the last decade of the 20th 40 

century, blooms of the benthic dinoflagellates Ostreopsis cf. ovata have regularly 41 

occurred all along rocky shores of the MS, at times with human health problems 42 

caused by toxic aerosol. New records of Gambierdiscus and Fukuyoa, until now 43 

reported for the westernmost and easternmost MS coasts, raise concerns about the risk 44 

of ciguatera, a syndrome so far known only for subtropical and tropical areas. Recent 45 

discoveries are the dinoflagellates Vulcanodinium rugosum, responsible for the 46 

presence of pinnatoxins in French lagoons’ shellfish, and the azaspiracid-producers 47 

Azadinium spp. Mucilages and discolorations have a major impact on tourism in 48 

summer. Reports of toxic species and HABs have apparently increased in the MS over 49 
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the last half century, which is likely related to the increased awareness and monitoring 50 

operations rather than to an actual increase of these phenomena. Indeed, while the 51 

case of Ostreopsis appears as a sudden upsurge rather than a trend, no actual increase 52 

of toxic or noxious events has so far emerged in intensively studied areas, such as the 53 

French and Spanish coasts or the Adriatic Sea. Moreover, some cases of decrease are 54 

reported, e.g., for Alexandrium minutum blooms disappearing from the Harbour of 55 

Alexandria. Overall, main HAB risks derive from cases of massive development of 56 

microalgal biomass and consequent impacts of reduced coastal water quality on 57 

tourism, which represents the largest part of the marine economy along the MS coasts. 58 

 59 

Keywords: HABs; Mediterranean Sea; microalgae; toxicity; OBIS 60 
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1. Introduction 62 

The Mediterranean Sea (MS, from the Latin mare Mediterraneum = the sea 63 

surrounded by land) is an enclosed basin surrounded on the north by southern Europe 64 

and Anatolia, on the south by North Africa and on the east by the Levant. It occupies 65 

an area of approximately 2,510,000 km2 lying between latitudes 30° and 46° N. The 66 

narrow and shallow Strait of Gibraltar to the West connects it with the Atlantic 67 

Ocean, the Dardanelles to the East with the Black Sea through the Sea of Marmara 68 

and the Bosporus, while to the south-east the Suez Canal, opened in 1869 and recently 69 

expanded, allows the exchange with the Red Sea. In spite of its geographic position 70 

within the northern temperate latitudes, the quite shallow sill (170 m) at the Atlantic 71 

boundary blocks the entrance of deep, cold oceanic waters and determines temperate-72 

subtropical conditions in the whole area, with minimum temperatures rarely and only 73 

at certain locations going below 12 °C. 74 

The size, location, and morphology of the MS are at the base of its complex physical 75 

dynamics with a distinctive thermohaline circulation and permanent or semi-76 

permanent sub-basin gyres. A marked oligotrophy, increasing along both the west-77 

east and the north-south directions, characterizes the MS (Siokou-Frangou et al., 78 

2010). However, along the Mediterranean coasts there are densely populated areas 79 

while a number of large rivers with extended catchment basins flow in the MS (e.g., 80 

the Po in the northern Adriatic, the Nile in Egypt, the Ebro in Spain, and the Rhone in 81 

France). This implies that meso- and eutrophic conditions, and at times pollution, can 82 

affect various coastal areas (UNEP/MAP, 2012). 83 

The MS has been the crossroad of various cultures since the very beginning of the 84 

human colonization and the development of ancient civilizations. Trading routes, 85 

migrations, invasions and the struggle for power have shaped the dynamic history of 86 
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populations around the basin for millennia. The population grew from 281 million in 87 

1970 to 419 million in 2000 and 472 million in 2010, and is predicted to reach 572 88 

million by 2030. Coastal administrative entities make less than 12% of the surface 89 

area of the Mediterranean countries, but host more than a third of the population of 90 

the whole region. Coastal population grew from about 100 million in 1980 to 150 91 

million in 2005 and could reach 200 million by 2030 (UNEP/MAP, 2017). 92 

The MS also represents a unique geographic landscape that generates wealth but 93 

requires cooperation among the different countries to preserve the environment and 94 

the biological resources. The conservative value of the economic assets of the MS has 95 

been estimated to be in the order of US$ 5.6 trillion, generating an annual economic 96 

value of US$ 450 billion (Randone et al., 2017). A large fraction of the economic 97 

value is represented by tourism and related activities; fisheries come as second but 98 

>80% of the fish stock is presently threatened. Aquaculture in the MS has 99 

considerably expanded over the last decades reaching about 1.3 million tons in 2009 100 

with an estimated value of US$ 3,700 million (Rosa et al., 2012). Most of the marine 101 

aquaculture production comes from the north Mediterranean countries, which are also 102 

the most intensively monitored, but it is rapidly expanding also in Turkey and Egypt. 103 

In spite of the dramatic alteration of habitats, depletion of natural resources and 104 

increased number of alien species, the MS is still characterized by high biodiversity in 105 

most animal and algal groups and a considerable number of endemic species (Coll et 106 

al., 2010). 107 

The rate at which climatic conditions (e.g., surface temperature, heat waves and sea 108 

level) have changed in the MS over the last decades is higher than the global average 109 

(Cramer et al., 2018). These changes, coupled with increased population size, 110 

urbanization and changes in land use at many coastal places, may pose at serious risk 111 
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the quality of the environment, the quality and quantity of food and consequently the 112 

health and safety of the local populations (Cramer et al., 2018). Especially in view of 113 

the growing need to exploit marine resources, HABs and toxic species may represent 114 

an increasing risk for human health and economic activities.  115 

Few are the papers reviewing the occurrence of harmful species and/or events at the 116 

scale of the whole Mediterranean basin. Fifty years ago Jacques and Sournia (1978-117 

1979) published a first account of the cases of water discoloration (‘eaux rouges’) and 118 

the species involved. The overview included mainly dinoflagellate blooms, along with 119 

a few cases of anoxia but with no evidence of toxic effects in humans or marine fauna 120 

in those years when microalgal toxins were still almost unknown. In an overview of 121 

nearly twenty years later, cases of PSP and DSP – mainly attributable to Alexandrium 122 

minutum and Dinophysis spp., respectively – were reported from the northern coasts 123 

of the basin, along with the records of various potentially toxic or ichthyotoxic 124 

dinoflagellates at different sites (Honsell et al., 1995). A subsequent overview of toxic 125 

and harmful microalgae covering up to 2009 pointed at the sudden spreading of 126 

Ostreopsis cf. ovata blooms along the rocky Mediterranean shores (Zingone, 2010). 127 

The present overview covers the MS distribution of marine, toxin-producing 128 

microalgae, as included in the IOC-UNESCO Taxonomic Reference List of Harmful 129 

Micro Algae (Moestrup et al., 2009) and the cases of toxin-related harmful events 130 

(Sections 2.1 and 2.2), including direct impact on human health or natural resources 131 

or indirect impact to aquaculture industry. In addition, we review non-toxic events 132 

that include high biomass harmful algal blooms (HB-HABs) causing seawater 133 

discolorations, anoxia or any other damages to the environment or human activities 134 

(Section 2.3). Finally, we discuss the trends of HABs in the MS in general and 135 

particularly in the Adriatic Sea, which is considered a HAB hotspot (Section 3). The 136 
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overview is based on information from more than 600 scientific publications and 137 

technical reports collected in two curated databases in the Ocean Biogeographic 138 

Information System OBIS (Zingone et al., submitted): the MS-HABMAP-OBIS 139 

(https://obis.org/), gathering records of toxic species occurrence, and the Harmful 140 

Events Database (HAEDAT, http://haedat.iode.org/), collecting information of either 141 

toxic or non-toxic events, i.e., cases of intoxications, closures of aquaculture plants, 142 

seawater discolorations and mucilages. The present review is a contribution to a first 143 

appraisal of the current knowledge of HAB occurrences across the world seas, 144 

namely, the Global HAB Status Report, (Hallegraeff et al., 2017; Zingone et al., 145 

2017). The requirement for such an assessment has emerged from the apparent 146 

worldwide increase and spreading of HABs and their negative impacts contrasted by 147 

the lack of an overview founded on a robust basis of data.  148 

 149 

2. HABs in the Mediterranean Sea: toxic species and harmful event distribution  150 

2.1 Toxic species 151 

Of the more than 140 potentially toxic species listed in the IOC-UNESCO taxonomic 152 

reference list (Moestrup et al., 2009), 84 have been found in the MS so far: 17 153 

diatoms, 54 dinoflagellates, 3 dictyochophytes, 6 haptophytes, and 4 raphidophytes 154 

(Table 1, and some examples in Fig. 1). These records cover both species actually 155 

found to produce toxins in the MS and species known to be toxic from other areas. 156 

Given the known variability in toxin production among strains of the same species, 157 

non-tested local populations are only ‘potentially toxic’ in most cases, but for brevity 158 

they will be referred to as ‘toxic’ in the context of this paper. Sixteen of the toxic 159 

species have actually been discovered and described from the MS (Table 2), the first 160 

ones (Prorocentrum lima, Dinophysis caudata, D. sacculus and D. tripos) in the 161 

https://obis.org/
http://haedat.iode.org/
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second half of the 19th century and the most recent ones (Vulcanodinium rugosum, 162 

Azadinium dexteroporum, Nitzschia bizertensis and Ostreopsis fattorussoi) in the 163 

current decade. Some of the HAB species of the MS, such as D. caudata and 164 

Chattonella subsalsa, are widely distributed worldwide while others, including the 165 

recently described N. bizertensis and O. fattorussoi, so far seem to be restricted to 166 

specific areas of the MS. 167 

The discovery of potentially toxic species in the MS has undergone an evident 168 

escalation over the years (Fig. 2), from the first descriptions of more than a century 169 

before the discovery of their toxicity to the rapid increase after the 1960s and the most 170 

recent findings. Information on their distribution has also markedly increased along 171 

with the intensification of monitoring operations and studies on planktonic and 172 

benthic microalgae (e.g., Zingone et al., 2006; Aligizaki et al., 2009; Pistocchi et al., 173 

2012; Balkis and Taş, 2016; Fernández et al., 2019) and of their resting stages in the 174 

sediments (Bravo et al., 2006; Satta et al., 2013) or sediment traps (Montresor et al., 175 

1998). Yet the actual range of most toxic species in the MS is far from being known. 176 

Indeed, the identification of some of the most represented genera in the MS, such as 177 

Alexandrium, Karenia, Karlodinium and Pseudo-nitzschia, as well as of many other 178 

flagellates, is quite problematic. In many cases the observation of live material or 179 

methods more complex than light microscopy are needed. Cryptic diversity 180 

discovered in many microalgal taxa over the last decades also concerns several 181 

harmful genera and species, which have undergone careful taxonomic investigations 182 

more than other non-toxic taxa. This trend has led to the discovery of non-toxic taxa 183 

morphologically similar to toxic ones, such as several species in the P. delicatissima 184 

and P. pseudodelicatissima species-complexes (Bates et al., 2018), the non-toxic A. 185 

tamutum hardly distinguishable from A. minutum (Fig. 1A, Montresor et al., 2004), 186 
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and the non-toxic chain-forming Gymnodinium impudicum (as Gyrodinium 187 

impudicum, Fraga et al., 1991) which was misidentified as Gymnodinium catenatum 188 

in studies predating its discovery (e.g., Carrada et al., 1991). Recent studies coupling 189 

detailed morphological investigations with the analysis of different molecular markers 190 

and toxin production have attempted to clarify species identity within the 191 

Alexandrium tamarense-species complex (John et al., 2014; Litaker et al., 2018). The 192 

case of Chattonella subsalsa is interesting because, based on several molecular 193 

markers, two different genotypes with different geographic distributions exist for the 194 

species (Klöpper et al., 2013). All these taxonomic insights have invalidated many 195 

previous identifications of presumed toxic taxa, as detailed in the following sections. 196 

In recent years, information on the presence of toxic species is also gathered through 197 

molecular identification of environmental DNA samples (e-DNA metabarcoding), 198 

which may give relevant information on the presence and seasonality of cryptic or 199 

rare species (Ruggiero et al., 2015; Dzhembekova et al., 2017; Grzebyk et al., 2017). 200 

Nonetheless, new findings of species through molecular methods should always be 201 

confirmed by morphological studies.  202 

Some of the toxic species of the MS have been suspected to be non-indigenous 203 

species (NIS), i.e., introduced outside their natural past or present distribution. The 204 

main possible NIS in the MS are Pseudo-nitzschia multistriata, Alexandrium 205 

pacificum and Ostreopsis cf. ovata. The first MS record of Pseudo-nitzschia 206 

multistriata, a chain-forming diatom having a distinctive sigmoid shape (Fig. 1G), 207 

was in 1992 in the Gulf of Naples, where phytoplankton have been intensively studied 208 

since the beginning of the 1980s. The species has shown an increasing trend 209 

afterwards in the same area (D’Alelio et al., 2010) and has subsequently been found in 210 

Spanish (Quijano-Scheggia et al., 2008), Greek (Moschandreu and Nikolaidis, 2010), 211 
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Tunisian (Sahraoui et al., 2011) and Moroccan waters (Rijat Leblad et al., 2013) and 212 

in the Adriatic Sea (Pistocchi et al., 2012; Turk Dermastia et al., 2020). The chain-213 

forming dinoflagellate Alexandrium pacificum (as A. catenella) was found for the first 214 

time in low density in 1983 along the Spanish coast (Margalef and Estrada, 1987). In 215 

the following years, A. pacificum formed blooms on the Spanish coast (Gomis et al., 216 

1996; Vila et al., 2001) and in the Thau Lagoon (as A. tamarense/catenella, Abadie et 217 

al., 1999; Lilly et al., 2002). Subsequently it was progressively found eastward along 218 

the Italian (Lugliè et al., 2003, 2017; Satta et al., 2013), Algerian (Frehi et al., 2007) 219 

and Tunisian coasts (Turki and Balti, 2007; Fertouna-Bellakhal et al., 2015), whereas 220 

it is still unrecorded in the rest of the MS. The benthic dinoflagellate Ostreopsis cf. 221 

ovata showed a sudden emergence in the MS at the end of the last century (see section 222 

2.2.4). A much higher genetic variability and several cryptic species characterize this 223 

taxon along the Japanese coasts compared to the Mediterranean-Atlantic area (Sato et 224 

al., 2011; Penna et al., 2012) where genetic differences are seen only at the population 225 

level with AFLP markers (Italiano et al., 2014). This situation suggests a relatively 226 

recent radiation of the species in the latter area and, given the lack of hydrographic 227 

links between the two regions, a possible man-mediated transport, although it is 228 

impossible to establish when this occurred (Sato et al., 2011). In lack of type material, 229 

or material from the type locality, it has not been established which of the numerous 230 

morphologically similar taxa corresponds to Ostreopsis ovata. Therefore these taxa 231 

should be referred to as O. cf. ovata (Penna et al., 2010; Sato et al., 2011). Benthic 232 

Gambierdiscus and Fukuyoa species are also a novelty in the MS, and their 233 

distribution, presently limited at the two ends of the basin, hints at a possible recent 234 

introduction from both the Atlantic and the Red Sea. 235 

 236 



 
 

11 
 

2.2 Toxic events  237 

2.2.1 Diarrhetic Shellfish Poisoning (DSP) 238 

DSP toxins in mollusks represent the most frequently reported cases of seafood 239 

contamination in the MS. Eight toxic species of the genus Dinophysis, plus 240 

Phalacroma rotundatum (Table 1), have been observed along the Mediterranean 241 

coasts (Fig. 3A). Dinophysis caudata and D. sacculus (Fig. 1C), the most frequently 242 

reported species, were both described from the MS more than one century ago (Kent 243 

1881; Stein 1883), but risks for human health have first been recognised only in the 244 

1980s in the Gulf of Lion (Belin et al., 1995). In the northern Adriatic Sea, DSP 245 

toxicity events have occurred on both the western and eastern side, often causing the 246 

closure of shellfish farms (Sedmak and Fanuko, 1991; Boni et al., 1992, 1993; Della 247 

Loggia et al., 1993; Orhanović et al., 1996; Bernardi Aubry et al., 2000; Francé and 248 

Mozetič, 2006; Marasović et al., 2007; Ninčević-Gladan et al., 2008). In the period 249 

1989-2018, such closures occurred regularly along the Slovenian coast (northern 250 

Adriatic) with an exceptionally long period from May 2010 to March 2011 in which 251 

relatively high Dinophysis abundances were recorded (around 2,000 cells·L-1 of D. 252 

fortii, Francé et al., 2018). These high abundances, never recorded again, were related 253 

to long-lasting low salinity and extremely high temperatures in June – July surface 254 

waters (<30 °C) causing a marked water column stratification (Francé et al., 2018). 255 

High levels of okadaic acid (OA) and/or dinophysistoxin (DTX) in several instances 256 

also led to halt shellfish harvesting along the French (Belin et al., 2020) and Spanish 257 

coasts of the MS (García-Altares et al., 2016; Fernández et al., 2019). Recurrent toxic 258 

Dinophysis blooms have been recorded in the Thermaikos Gulf (Greece, North 259 

Aegean Sea) since 2000, when they caused great economic losses (EU 5 million) to 260 

aquaculture (Koukaras and Nikolaidis, 2004). More occasionally, high levels of DSP 261 
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toxins have been reported from the eastern Mediterranean (Orhanović et al., 1996; 262 

Bazzoni et al., 2018) and Tunisian waters (Armi et al., 2012).  263 

Nonetheless, there have been just a few cases of DSP diagnoses in humans, in the 264 

Adriatic (Boni et al., 1992) and Tyrrhenian Seas (Lugliè et al., 2011), and two major 265 

accidents. One occurred in 2000, when 200 people were hospitalized following the 266 

above-mentioned Dinophysis bloom in the Thermaikos Gulf (Koukaras and 267 

Nikolaidis, 2004). The other happened in 2010 in Piemonte (north-western Italy), with 268 

more than 150 people harmed by the consumption of toxic mussels from the northern 269 

Adriatic Sea (Pistocchi et al., 2012).  270 

Other DSP producers widely distributed in the MS are two benthic species of the 271 

genus Prorocentrum (Fig 3A), P. lima (Fig. 1F) and P. rhathymum, but no toxicity 272 

events have been related with their presence. 273 

 274 

2.2.2. Paralytic Shellfish Poisoning (PSP) 275 

PSP events in the MS are related to toxins produced by species of the genus 276 

Alexandrium and by Gymnodinium catenatum. Of the six Alexandrium species known 277 

to produce PSP toxins found in the MS, A. minutum, the type species of the genus 278 

(Fig. 1A), and A. pacificum (as A. catenella in records before 2014) are the most 279 

commonly reported ones (Table 1, Fig. 3B). In some cases these species have reached 280 

high densities (up to 107 cells·L-1) causing seawater discolorations. Alexandrium 281 

taylorii has also caused discolorations at several Spanish and Italian touristic places 282 

(section 2.3.1, table S1) but no toxicity has ever been found in MS populations of this 283 

species. 284 

Reports of PSP events initially associated with A. tamarense (Boni et al., 1983; 285 

Honsell et al., 1992; Abadie et al., 1999), a species that should not produce saxitoxins 286 
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(John et al., 2014), were later reinterpreted and attributed to A. minutum (Pistocchi et 287 

al., 2012) or A. pacificum (Lilly et al., 2002). However, one strain of A. tamarense 288 

from Sardinian coasts has recently been found to be toxic (Lugliè et al., 2017). Since 289 

the first observations of massive natural fish mortalities in Egypt (Zaghloul and 290 

Halim, 1992), A. minutum produced toxic blooms with consequent ban of both fishing 291 

and shellfish harvesting in Morocco (Labib and Halim, 1995), Spain (Delgado et al., 292 

1990; Forteza et al., 1998), France (Belin et al., 2020) and Italy (Honsell et al., 1996). 293 

After 2000, only a few cases of shellfish farm closures attributed to A. minutum have 294 

been reported in northern Sardinia (Italy; Lugliè et al., 2011), Catalonia (Spain; Vila 295 

et al., 2005; Bravo et al., 2008; Sampedro, 2018) and southern France coasts (Belin et 296 

al., 2020). Because of a very similar non-toxic species discovered in the MS, A. 297 

tamutum, the identification of A. minutum can be problematic and should be 298 

confirmed by molecular or toxin analyses. Alexandrium pacificum was responsible for 299 

toxic blooms along the Catalan coast (Bravo et al., 2008), in the Thau Lagoon 300 

(Abadie et al., 1999), in Sardinia (Lugliè et al., 2011) and Sicily (Dell’Aversano et al., 301 

2019), at times causing shellfish harvesting closures (Vila et al., 2001; Bravo et al., 302 

2008).  303 

Alexandrium andersonii and A. ostenfeldii are much less frequently recorded and 304 

possibly overlooked or misidentified in plankton studies. At times their presence has 305 

been traced as resting stages (e.g., Montresor et al., 1998; Bravo et al., 2006; Satta et 306 

al., 2013). Two other Alexandrium species recorded in the MS, A. balechii and A. 307 

pseudogonyaulax, do not produce PSP toxins but are considered potentially 308 

ichthyotoxic.  309 

Gymnodinium catenatum was first reported in southern Spain in 1987 (Bravo et al., 310 

1989). The worst, and apparently unique, fatal case of human intoxication in the 311 
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whole Mediterranean was due to a bloom of this species that caused 4 deaths and the 312 

hospitalization of 23 people in Morocco in 1994 (Tagmouti-Talha et al., 1996). 313 

Shellfish harvesting ban due to high concentrations of G. catenatum have however 314 

been frequent in Andalusia (Spain) during the last 3 decades (HAEDAT). Records of 315 

this species in the central and eastern MS should be considered with caution because 316 

of possible misidentification of G. impudicum (Gómez, 2003). 317 

 318 

2.2.3 Amnesic Shellfish Poisoning (ASP) 319 

Sixteen of the 26 Pseudo-nitzschia species known to produce domoic acid (DA) have 320 

been found so far in the MS. Species-level identification is problematic in light 321 

microscopy and often requires the use of electron microscopy and/or molecular 322 

markers. It follows that in most publications only the genus is reported, or taxa are 323 

clustered into two ‘groups’, only distinguishing the thin (P. delicatissima-group) and 324 

the thicker morphotypes (P. seriata-group). In the last decades, potentially toxic 325 

Pseudo-nitzschia species have been identified properly from several locations of the 326 

MS (Fig. 3C) where the presence of the cold-water species Pseudo-nitzschia seriata, 327 

often reported in old studies, has never been confirmed.  328 

Seasonal blooms of Pseudo-nitzschia spp., at times including toxic ones, occur all 329 

along Mediterranean coasts (Fig. S1), with abundances up to several million cells·L-1 330 

(e.g., Caroppo et al., 2005; Cerino et al., 2005; Quiroga et al., 2006; Quijano-Scheggia 331 

et al., 2008; Ljubešić et al., 2011; Marić et al., 2011; Cabrini et al., 2012; Ruggiero et 332 

al., 2015; Taş and Lundholm, 2017; Totti et al., 2019a). Nevertheless, the detection of 333 

DA has caused the closure of aquaculture plants only in a limited number of cases 334 

(4% of toxicity events in HAEDAT) in southern Spain (HAEDAT) and France (Amzil 335 

et al., 2001), whereas DA values below the regulatory limit have occasionally been 336 
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found in shellfish from the Adriatic Sea (Ciminiello et al., 2005; Ujević et al., 2010; 337 

Arapov et al., 2016), Greece (Kaniou-Grigoriadou et al., 2005), and in 65% of 180 338 

mussel samples from mid-Tyrrhenian waters (Rossi et al., 2016). In a few cases, the 339 

presence of DA in bivalves was related to a specific taxon, i.e., P. calliantha along the 340 

Croatian coast (Marić et al., 2011) and in the Gulf of Trieste (Honsell et al., 2008) and 341 

P. brasiliana in the Bizerte Lagoon in Tunisia (Sahraoui et al., 2011).  342 

Nitzschia bizertensis, described from the Bizerte Lagoon (Tunisia), is one of the two 343 

Nitzschia species known to produce domoic acid. At least in one case, the presence of 344 

this species was related to the detection of domoic acid in mussels (Bouchouicha-345 

Smida et al., 2014). Less clear is the toxicity and the distribution of the other benthic 346 

species Halamphora coffeaeformis. 347 

 348 

2.2.4. Ostreopsis and species responsible of Ciguatera Fish Poisoning (CFP) 349 

The benthic dinoflagellate Ostreopsis cf. ovata produces ovatoxins, which are 350 

palytoxins-like molecules that can intoxicate humans by inhalation or ingestion of 351 

contaminated seafood. The species was first detected in the MS in the plankton of 352 

Villefranche-sur-Mer (France) after a strong mistral wind event in 1972 (Max Taylor, 353 

pers. comm.), when it was identified with the name of the only species known at that 354 

time, O. siamensis. The presence of the species was then documented from the coasts 355 

of Lebanon in 1980 (Abboud-Abi Saab, 1989) and central Italy in 1986 (Zingone in 356 

Tognetto et al., 1995). Around the 2000s, monitoring programs implemented 357 

following a series of harmful events (see below) made it evident that Ostreopsis 358 

species were growing all along the rocky shores of the northern MS (Fig. 4A) in 359 

summer/autumn, thriving as epiphyte on macroalgae or epibionthic on a number of 360 

benthic substrata, with concentrations up to 106 cells·g-1 fresh weight of macroalgal 361 
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thalli (Mangialajo et al., 2011). At lower concentrations Ostreopsis spp. were also 362 

found along the northern African coasts (Illoul et al., 2012; Ben Gharbia et al., 2019). 363 

Of the three species so far identified in the MS, the most common and widespread is 364 

O. cf. ovata, whereas O. cf. siamensis and O. fattorussoi have a much more restricted 365 

distribution (Fig. 1E). An interesting aspect of the annual dynamics of Ostreopsis 366 

species is the rather repetitive patterns of summer and/or autumn peaks, with timing 367 

that vary from place to place and is scarcely related to temperature or to other obvious 368 

environmental parameters (Zingone, 2010; Accoroni and Totti, 2016).  369 

First problems caused by Ostreopsis in the MS were fish and invertebrate kills in 370 

1998 along the coasts of Tuscany (northern Tyrrhenian Sea) (Sansoni et al., 2003; 371 

Simoni et al., 2003). Some years later (2002) more than 200 people coming from the 372 

beach of the city of Genoa (Ligurian Sea) were hospitalized with fever, red eyes and 373 

wheeze (Ciminiello et al., 2006). The only known problems caused by benthic 374 

microalgae at that time were those related to ciguatera fish poisoning (CFP) in 375 

subtropical areas, whereas cases of toxic aerosol were only known for planktonic 376 

Karenia brevis blooms in the Gulf of Mexico. In those years, similar human health 377 

problems and dermatitis cases were reported from the Catalonia and Balearic Islands 378 

(Vila et al., 2008), French (Cohu et al., 2013) and Algerian coasts (Illoul et al., 2012), 379 

and are still reported nowadays at several MS places (e.g., Croatian coast, Ninčević 380 

Gladan et al., 2019). Both the presence of toxins in the aerosol (Ciminiello et al., 381 

2014) and toxicological data on the effects of inhalation exposure in mice (Poli et al., 382 

2018) support a link between Ostreopsis toxins and the respiratory symptoms reported 383 

during blooms. However, those health problems do not occur during all phases of a 384 

bloom (Vila et al., 2016) and are quite sporadic compared to the widespread and often 385 

massive presence of the suspected causative species.  386 
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The presence of Ostreopsis toxins in marine animals used as food and their impacts 387 

on the animal health are relevant for their sanitary implications, which are still 388 

controversial (Tubaro et al., 2011). Apparently healthy organisms (e.g., mussels and 389 

sea urchins) during Ostreopsis blooms can accumulate fairly large amount of toxins 390 

(Aligizaki et al., 2008; E. Fattorusso & V. Soprano, pers. comm.), but macroscopic 391 

damages have been reported for various benthic organisms in the MS (Sansoni et al., 392 

2003, Simoni et al., 2003; Accoroni and Totti, 2016) and elsewhere (Shears and Ross, 393 

2009). In mussels, Ostreopsis can induce important and not completely reversible 394 

ultrastructural damages (Carella et al., 2015) and immunological, histological and 395 

oxidative responses (Gorbi et al., 2013) while in sea urchins Ostreopsis blooms affect 396 

reproduction and offspring health (Migliaccio et al., 2016). 397 

Four species of the dinoflagellate genus Gambierdiscus, which can produce CFP 398 

toxins, have recently been found in the MS. Gambierdiscus australes, G. cf. 399 

belizeanus, G. carolinianus, G. silvae and some unidentified Gambierdiscus spp., 400 

have been reported from the Balearic Islands (Tudó et al., 2018), Greece and Cyprus 401 

(Aligizaki and Nikolaidis, 2008; Holland et al., 2013; Aligizaki et al., 2018; Tudó et 402 

al., 2018), with the highest diversity in Crete. Fukuyoa paulensis also has been found 403 

in the Balearic Islands (Laza-Martínez et al., 2016) and Cyprus (Tudó et al., 2018). 404 

Yet CFP cases are not known in the MS countries with the exception of a suspected 405 

case of ciguatoxins in rabbitfish (Siganus rivolutus) reported from Israeli coasts 406 

(Bentur and Spanier, 2007). 407 

 408 

2.2.5. Azaspiracid Shellfish Poisoning (AZP) 409 

The toxins azaspiracids (AZAs), produced by a number of dinoflagellate species of 410 

the genera Azadinium and Amphidoma, and the human syndrome they can cause, 411 
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AZP, have been discovered at the beginning of this century (James et al., 2002). 412 

Subsequently AZAs have been reported in shellfish from numerous sites, including 413 

the MS (Bacchiocchi et al., 2015). A new species described from the MS, A. 414 

dexteroporum (Percopo et al., 2013, Fig. 1 B), produces a whole suite of AZAs that 415 

can cause direct harm to molluscs (Rossi et al., 2017; Giuliani et al., 2019). Another 416 

toxic Azadinium, A. poporum, has been found in Greek waters (Luo et al., 2018) but 417 

no impacts related to AZAs have been reported so far.  418 

 419 

2.2.6 Ichthyotoxicity  420 

About half of the potentially toxic MS species produce a variety of toxins that differ 421 

from those related to the syndromes mentioned in the previous sections. Of these, the 422 

majority (28 species, Table 1) produce substances that have been associated with fish 423 

and/or shellfish kills. With a few exceptions, species in this list are unarmoured 424 

dinoflagellates, e.g., Karenia and Karlodinium, and other flagellates belonging to the 425 

prymnesiophytes, raphidophytes and dictyochophytes, which are all hardly 426 

identifiable in fixed material under the light microscope, and hence are overlooked in 427 

most monitoring and ecological investigations. The large majority of the information 428 

on the presence of these ichthyotoxic species (Fig. 4B) comes from fish mortality 429 

events, mainly located near fish-farming plants, in which the identification of the 430 

culprit became necessary.  431 

The few fish mortality events in the MS known before 1975 were related to HB-432 

HABs of non-ichthyotoxic species causing anoxia in bottom waters (see section 2.3.1) 433 

rather than to ichthyotoxic species (Jacques and Sournia, 1978-79). In the subsequent 434 

years, fish kills by ichthyotoxic species were reported sporadically from Catalan 435 

coasts, Spain (Garcés et al., 1999), caused by Karlodinium spp., and Sardinia (Italy), 436 
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caused by Chattonella subsalsa (Stacca et al., 2016). Occasional fish mortality events 437 

were related to Prymnesium spp., in the Ebro Delta (Spain, Comín and Ferrer, 1978) 438 

and in a Tuscany lagoon (Italy, Mattioli and Simoni, 1999), Karenia selliformis in the 439 

Gulf of Gabes (Tunisia, Romdhane et al., 1998; Feki et al., 2013) and Karenia brevis 440 

and Pseudochattonella cf. verruculosa in Greece (Ignatiades and Gotsis-Skretas, 441 

2010). In other cases, fish kills occurred during blooms of species toxic to humans, 442 

like in Egypt in 1987 (Zaghloul and Halim, 1992; Labid and Halim, 1995) where 443 

Alexandrium minutum was the culprit. No fish or shellfish kill accidents in the MS 444 

have ever been associated with blooms of two potentially ichthyotoxic Alexandrium 445 

species, A. balechii and A. pseudogonyaulax. 446 

Benthic cyanobacteria are poorly investigated in Mediterranean waters, but blooms of 447 

filamentous cyanobacteria have been the cause of massive fish mortalities in 448 

Alexandria waters (Egypt) during spring 2005 (Ismael, 2012). 449 

 450 

2.2.7 Other toxins 451 

The dinoflagellates Gonyaulax spinifera, Lingulodinium polyedra and Protoceratium 452 

reticulatum, which are quite widespread in the MS (Fig. 4 B), produce yessotoxins 453 

(YTX). These substances were initially associated to DSP because their presence 454 

gives similar positive results in mouse bioassay, but they are not considered toxic to 455 

humans (Tubaro et al., 2010). However, YTXs caused economic impacts in 2002, 456 

2004 and 2007, when mussel harvesting was halted for a long time (average closure 457 

153 days) in the north-western Adriatic Sea (Poletti et al., 2008). 458 

Vulcanodinium rugosum produces pinnatoxins (Rhodes et al., 2010; Nézan and 459 

Chomérat, 2011) a neurotoxin that has lethal effects on sea urchin larvae, oysters and 460 
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Artemia. Currently there are no problems related to this species, while toxic effects on 461 

humans are not known. 462 

 463 

2.3. Non-toxic events 464 

Independent from toxin production, all microalgae may exert a negative impact when 465 

they reach a high biomass producing seawater discolouration, mucilages or anoxia in 466 

bottom waters (Zingone and Enevoldsen, 2000). Although several microalgal species 467 

are frequently associated with these HB-HABs, as detailed in the next sections, the 468 

number of species that may cause harm with no specific toxin production is in theory 469 

unlimited, and can vary from place to place. For this reason it is not possible to define 470 

a global or regional list of non-toxic harmful microalgae. In addition to HB-HAB-471 

formers, some non-toxic species, mainly diatoms, may cause mechanical harm to 472 

invertebrates’ gills (Bell, 1961), but no information on such events is available for the 473 

MS. In case of fish or invertebrate kills, at time it is hard to discern whether the cause 474 

has been anoxia, toxic substances or mechanical damages. In many cases, species 475 

known to produce toxins may produce non-toxic HB-HABs, which have no impact on 476 

human or marine fauna health but important consequences for tourism. For all these 477 

reasons, the boundaries between events described in the previous and next sections 478 

cannot always be well defined. 479 

 480 

2.3.1 Discolorations 481 

In the MS, discolouration or anoxia have frequently been caused by unarmoured 482 

dinoflagellates either toxic (e.g., Margalefidinium polykrikoides) or non-toxic (e.g., 483 

Noctiluca scintillans), but also by numerous armored dinoflagellates, diatoms, 484 

prasinophytes, prymnesiophytes and raphidophytes (Table S1). Change of seawater 485 
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color caused by HB-HABs (Fig. 5) have been noticed since the first half of the XX 486 

century in both lagoons and coastal sites, where they were given several names (purga 487 

de mar, punti verdi) before the one of red tides gained popularity. The oldest records 488 

include discolorations caused by Chattonella subsalsa in 1956 in the Algiers harbor 489 

(Hollande and Enjumet, 1957), Alexandrium minutum in 1957 in the Alexandria 490 

harbor (Halim, 1960) and Prorocentrum cordatum in the Gulf of Naples in September 491 

1962 (Yamazi, 1964).  492 

Different dinoflagellates (e.g., Alexandrium spp., Noctiluca scintillans, Karlodinium 493 

spp.), raphidophytes (Chattonella subsalsa and Fibrocapsa japonica, Fig. 1D) and 494 

chlorophytes (Tetraselmis wettsteinii and Pyramimonas spp.) occasionally produced 495 

discoloration (Table S1, Fig. 5), which in some cases were also associated with fish 496 

kills and/or massive death of marine invertebrates caused by anoxic conditions (e.g., 497 

Arzul, 1994; Halim and Labib, 1996; Garcés et al., 1999). A couple of such cases of 498 

fish mortality events attributed to anoxia were already reported in the review by 499 

Jacques and Sournia (1978-79): in Ismir Bay (Nümann, 1955, in Jacques and Sournia, 500 

1978-79) and in the Adriatic Sea (Piccinetti and Manfrin, 1969; Froglia, 1970), during 501 

blooms of Gymnodinium sp. and Protoperidinium depressum, respectively. 502 

Discolorations were particularly frequent in the northern Adriatic Sea in summer in 503 

the 1970−‘80s, when dinoflagellate blooms (e.g., Lingulodinium polyedra, 504 

Alexandrium mediterraneum and Lepidodinium chlorophorum) turned the sea into 505 

various colours (Boni, 1983, Table S1), at times extending offshore as in the case of 506 

N. scintillans in 1980 (Fonda Umani et al., 2004) and L. chlorophorum in 1984 507 

(Artegiani et al., 1985). Some summer blooms were caused by diatoms (e.g., 508 

Skeletonema marinoi and Chaetoceros spp.), particularly after intense freshwater 509 

inputs (Boni, 1983; Regione Emilia Romagna, 1982-2018). Over the last decades 510 
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blooms of F. japonica (Fig 1D) became common in late summer (Cucchiari et al., 511 

2008) in shallow coastal waters where they lasted up to 20–40 days. Along the eastern 512 

Adriatic coast, ‘red tides’ were limited to eutrophicated semi-enclosed bays 513 

(Marasović et al., 1991) or to unusual phenomena such as bloom of the silicoflagellate 514 

Octactis (formerly Distephanus) speculum in summer 1983 in bottom waters in the 515 

Gulf of Trieste, causing anoxia (Fanuko, 1989). An increasing number of 516 

discolorations have been observed over two decades in the Golden Horn Estuary of 517 

the Sea of Marmara (Taş et al., 2016). An unusual bloom of the coccolithophore 518 

Holococcolithophora sphaeroidea (as Calyptrosphaera sphaeroidea) caused a white-519 

green-turquoise discoloration in a vast area off the Tarragona harbor (Spain, Cros et 520 

al., 2002). The most recent event has been a long-lasting bloom of Margalefidinium 521 

cf. polykrikoides that produced a yellow brownish discoloration in a touristic area of 522 

the Ionian Sea (Italy) in July-August 2018, recurring in the same place in summer 523 

2019 (Roselli et al., 2020).  524 

In summer, discolorations can be a serious problem along Mediterranean beaches 525 

where they have an impact on tourism and recreational use of the sea. This is the case 526 

of the recurrent Alexandrium taylorii blooms along the Sicilian and Sardinian coasts 527 

(Italy) and in the Balearic Islands (Spain) (e.g., Basterretxea et al., 2005; Giacobbe et 528 

al., 2007; Satta et al., 2010; Sampedro, 2018). 529 

 530 

2.3.2 Mucilages 531 

In the MS, a number of cases of mucilaginous aggregate formation related to 532 

microalgal growth have been described, the most conspicuous of which occurred in 533 

the northern Adriatic Sea in the 1990s. Mucilaginous macroaggregates represent the 534 

last stage of aggregation of organic matter, mainly refractory polysaccharides derived 535 
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from phytoplankton exudates (Myklestad, 1995) and/or from bacterial capsular 536 

material (Stoderegger and Herndl, 1998) whose hydrolysis cannot be sustained by 537 

phosphorous-limited bacteria (Danovaro et al., 2005). Whereas marine snow 538 

(aggregates of 0.5-1 cm diameter) is common in all the oceans (Simon et al., 2002), 539 

the mucilage event in the northern Adriatic Sea was unique in that those aggregates 540 

covered hundred square kilometres of both coastal and offshore areas. The formation 541 

of larger aggregates was favored by the strong stratification of the water column and 542 

reduced circulation that retained freshwater in the northern Adriatic basin (Russo et 543 

al., 2005). The direct responsible of the phenomenon were often thought to be the 544 

most abundant phytoplankton species in the aggregates, such as Cylindrotheca 545 

closterium (Revelante and Gilmartin, 1991) and Gonyaulax fragilis (Pompei et al., 546 

2003), both capable to produce large amounts of refractory polysaccharides (Pistocchi 547 

et al., 2005; Urbani et al., 2005). In fact, phytoplankton communities associated with 548 

mucilage aggregates largely vary, depending on sampling area and period (Totti et al., 549 

2005, and references therein), while the aggregates represent a self-sustained 550 

microcosm hosting a rich microorganism community (Simon et al., 2002). 551 

Pelagic mucilages have been reported at several other Mediterranean sites, such as the 552 

Greek (Gotsis-Skretas, 1995; Nikolaidis et al., 2008) and Catalan coasts (Sampedro et 553 

al., 2007) where Gonyaulax fragilis was thought to be involved in their production, 554 

and the Sea of Marmara (Turkey) where Cylindrotheca closterium, Skeletonema 555 

costatum and Gonyaulax fragilis were indicated as the most abundant species 556 

(Tüfekçi et al., 2010). In the Tyrrhenian Sea, extensive pelagic aggregates were 557 

observed in 1991, 2000 and 2012 (Fig. 5 A, Calvo et al., 1991; Innamorati et al., 558 

1993; Escalera et al., 2018). Foam accumulated massively along the Catalan coast in 559 
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March 2006 during a Phaeocystis sp. bloom, an event that was related to anomalous 560 

hydrographic winter conditions (Arin et al., 2014). 561 

Massive mucilage events have also concerned the benthic environment. Ostreopsis cf. 562 

ovata during intense blooms forms a network-shaped mucilaginous biofilm that can 563 

harm benthic invertebrates (Schiaparelli et al., 2007). In the Tyrrhenian and Ligurian 564 

Seas (western MS), benthic mucilages have occurred since 1991 (Sartoni and Sonni, 565 

1991), and have been attributed to the massive growth of several macro- and 566 

microalgae such as the filamentous brown alga Acinetospora crinita and the colonial 567 

pelagophytes Nematochrysopsis marina and Chrysonephos lewisii (Giuliani et al., 568 

2005; Schiaparelli et al., 2007). The allochthonous pelagophyte Chrysophaeum 569 

taylorii, recorded in the western MS since 2005, in recent years was involved in the 570 

formation of dense layers of mucous covering macroalgae, gorgonians and the 571 

surrounding rocks (Lugliè et al., 2008; Caronni et al., 2015). 572 

 573 

3. Trends in the Mediterranean HABs 574 

3.1 General trends 575 

The MS has undergone profound changes over the last centuries. Human action has 576 

mainly been visible along the coasts of the basin, which have become increasingly 577 

populated and deeply modified by coastal and riverine engineering and deforestation 578 

which, along with cultural eutrophication, are all potential drivers of deep changes in 579 

phytoplankton communities (Garcés and Camp, 2012). Natural and/or man-induced 580 

meteorological and climatic variations superimpose to these changes often with an 581 

amplifying effect. The most striking characteristic of the MS HABs over the last 50 582 

yrs, which approximately correspond to the time since when they have been studied 583 

more intensively, is the remarkable increase of the toxic species list, from a few taxa 584 
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to the more than 80 of the present review (Fig. 2). Over the same period, the records 585 

of these species across the MS have also remarkably increased (Fig. 6). This trend is 586 

parallel to that of the increased list of toxic species and of their records worldwide, 587 

which is an obvious result of the intensification of the taxonomic and toxin studies on 588 

marine microalgae (Zingone et al., 2017). The increase of the records of actual HAB 589 

events from the less than 30 cases listed by Jacques and Sournia (1978-1979) and 590 

Honsell et al. (1995) to the several hundred cases of halted aquaculture operations, 591 

seawater discoloration and minor human health accidents presently recorded in 592 

HAEDAT is also impressive (Fig. 7). Damages to aquaculture caused by ASP and 593 

PSP toxins in mussels have been limited over the last 30 years while DSP cases have 594 

represented about 75% of the harmful events, with an increase between the decade 595 

1987-1997 and the two following ones (Fig. 7). This trend should however be 596 

interpreted with caution because it has been paralleled by a remarkable growth of the 597 

coastal MS population (section 1), much more intensive use of marine resources, and 598 

consequent raise of the level of attention to the integrity and safety of marine 599 

resources.  600 

In fact, toxic blooms as well as mucilage events and discolorations in the MS have 601 

generally shown an unpredictable interannual periodicity, like in the case of the 602 

conspicuous blooms of Noctiluca scintillans in the Adriatic Sea (Fonda Umani et al., 603 

2004), Moroccan (Tahri Joutei et al., 2003), Catalan (Lopez and Arte, 1971) and 604 

French coasts (M.-O. Soyer in Jacques and Sournia, 1978-1979). There are cases of 605 

decreases, e.g., the blooms of Alexandrium pacificum occurring on the Catalan coast 606 

from 1996 to 1998 (Vila et al., 2001) but rarely recorded afterwards (Sampedro, 607 

2018). Blooms of A. minutum were recurrent in Egyptian waters but not recorded any 608 

longer after 1994 (Ismael and Halim, 2001), while their frequency doubled from 2000 609 
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to 2012 along the Catalan coast (Sampedro, 2018). Blooms of the ciliate Mesodinium 610 

rubrum hosting cryptophyte chloroplasts were not recorded in the MS (Jacques and 611 

Sournia, 1978-1979) until their occurrence in both the Adriatic (Sorokin and 612 

Ravagnan, 1999) and Tyrrhenian Seas (Siano et al., 2006), and afterwards have only 613 

been observed in 2017 in the North Aegean Sea (Genitsaris et al., 2019). 614 

In the case of Ostreopsis cf. ovata, rather than an increase the phenomenon in the MS 615 

has shown a sudden upsurge around the 2000, followed by an expansion of the known 616 

range for the species in the next years and a relative stability in the following decade. 617 

Indeed Ostreopsis cf. ovata provides the most evident case of range expansion and 618 

increased impact over time in the MS. Although benthic microalgae have received 619 

scarce attention until the late 20th century, it is unlikely that the species might have 620 

been abundant but undetected before. The apparent sudden range expansion and 621 

impact of Ostreopsis cf. ovata is in line with an increasing trend of species of the 622 

same genus in New Zealand and some other temperate areas around the world 623 

(Parsons et al., 2012). On the other hand, no clear increase of the impact or of species 624 

abundance has been reported since the 2000 outburst, while the above-mentioned 625 

range expansion has coincided with a dramatic increase in monitoring programs and 626 

research projects focused on benthic microalgae. Initially, the sudden relevance of the 627 

phenomenon was associated with an increase of temperature in the MS, based on the 628 

belief that all Ostreopsis species were of tropical origin. In fact, Ostreopsis cf. ovata 629 

and its close relatives are widely distributed in temperate areas, also matching the 630 

apparent preference of the species for moderately high rather than very high 631 

temperature (Mangialajo et al., 2011; Scalco et al., 2012). Overall, the trend observed 632 

for this species in the MS, with an outburst followed by a stabilizing trend, recalls that 633 

of an invasive species rather than that of a species favored by a temperature increase. 634 
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 635 

3.2 HAB trends in the Adriatic Sea, a case study  636 

The Adriatic Sea (AS) represents a unique system for its semi-enclosed morphology, 637 

shallow depth and oligotrophic nature in most parts but with eutrophic characteristics 638 

along the north-western coasts driven by inputs from the Po River and other rivers 639 

(Mozetič et al., 2010; Cozzi and Giani, 2011). The AS is considered one of the 640 

hotspots of MS HABs (Garcés and Camp, 2012), in terms of both occurrence and 641 

impacts. However, compared to the great variety of potentially toxic species (Mozetič 642 

et al., 2019), toxicity cases are limited, and the most common toxins found above the 643 

regulatory limits in the Adriatic shellfish to date are DSP toxins (okadaic acid group) 644 

and other lipophilic toxins (yessotoxins and pectenotoxins). 645 

Because of the early development of marine-related activities, there is a wealth of 646 

information from the area dating back to the last century, which allows some insights 647 

on possible HAB trends. Phytoplankton in certain areas of the AS (e.g., Gulf of 648 

Trieste, Gulf of Venice, Senigallia-Susak transect, Kaštela Bay) have been 649 

extensively studied for decades (Ninčević-Gladan et al., 2010; Bernardi Aubry et al., 650 

2012; Marić et al., 2012; Mozetič et al., 2012; Cerino et al., 2019; Totti et al., 2019a), 651 

highlighting a number of changes, such as trends or regime shifts in main 652 

phytoplankton groups (Mozetič et al., 2010; Totti et al., 2019a) and in bloom forming 653 

species (Cabrini et al., 2012). However, no trends specifically related to toxic species 654 

is evident from these long-term studies, neither in terms of increased frequency nor of 655 

abundance. In fact, most studies on HAB species are snapshots of isolated toxic 656 

episodes (Pistocchi et al., 2012, and references therein). Similar conclusions can be 657 

drawn also from toxicity events: aquaculture operations have been halted frequently 658 

over the last 20 years (section 2.2.1), but without any significant trend for DSP events.  659 
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Nevertheless, some changes in phytoplankton community structure of the AS have 660 

involved a number of HAB species, such as Pseudo-nitzschia multistriata, an 661 

allochthonous species (section 2.1) that became a regular component of the autumn 662 

phytoplankton communities of the NW AS (Totti et al., 2019a). In the Gulf of Trieste, 663 

previously rare Dinophysis tripos have become a regular member of the autumn 664 

phytoplankton assemblages since 2010, along with higher temperatures recorded in 665 

this decade (Francé et al., 2018), whereas further south D. sacculus has replaced D. 666 

caudata as one of the indicator species of spring phytoplankton communities (Totti et 667 

al., 2019a). 668 

HB-HABs caused by dinoflagellates, occurring in summer and often associated with 669 

water discoloration and bottom anoxia, were a major problem in the AS until the end 670 

of the 1980s (see section 2.3.1). At the time, because of the heavy impact on the local 671 

economy, the Italian government adopted countermeasures to reduce P content in 672 

detergents and improve the urban wastewater treatment plants, leading to a strong 673 

reduction of P load in coastal waters. Since the end of the 1980s, summer 674 

dinoflagellate blooms became a rarer phenomenon, their decline coinciding with the 675 

years of large mucilaginous macroaggregate appearance.  676 

Mucilages in the AS (see section 2.3.2) were known since the beginning of 1700, 677 

when they were named ‘mare sporco’. In more recent years, massive episodes have 678 

occurred in the years 1988 to 1991 and 1997 to 2004, typically in summer (Giani et 679 

al., 2005), while a spatial and temporal reduction occurred in subsequent years. An 680 

anomalous occurrence in autumn-winter was reported in 2006-2007, probably in 681 

relation to a water temperature increase (Danovaro et al., 2009). The mucilage 682 

appearance, and the concurrent disappearance of summer water discolorations have 683 

both been associated with the decrease of inorganic and organic P (Degobbis et al., 684 
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2005), but also to hydrographic changes related to large-scale climatic changes around 685 

the end of the ‘80s, which could have driven a regime-shift affecting not only the AS 686 

but also other European Seas (Conversi et al., 2010). 687 

In the last decade (2008-2018), HB-HABs of both diatoms and dinoflagellates 688 

occurred without a regular temporal pattern, reflecting the meteorological events that 689 

nowadays tend to be more intense and unhampered by a regular seasonal rhythm 690 

(Totti et al., 2019a, b). Blooms of Fibrocapsa japonica that were common at the end 691 

of the 1990s seem to be rarer since 2012 (Regione Emilia-Romagna, 1982-2018), and 692 

mucilage events occurred shortly in 2014 and in 2018 (Regione Emilia-Romagna, 693 

1982-2018).  694 

As a whole, HABs in the AS show unpredictable time variability that is partly related 695 

to the irregularity and intensity of meteorological events in the last decades. 696 

Prolonged periods of drought (Cozzi et al., 2019) with oligotrophic conditions 697 

(Mozetič et al., 2010) alternate with nutrient pulses from continental water runoff that 698 

can drive the occurrence of anomalous intense blooms at any time of the year (Totti et 699 

al., 2019a). 700 

 701 

4. Conclusions  702 

A deep knowledge on the spatial and temporal distribution of harmful species and the 703 

blooms that they produce is an indispensable goal towards a safe use of marine 704 

resources and an informed management and planning of the coastal zone. In the MS 705 

this goal is even more crucial considering the importance of the economy deriving 706 

from the use of the sea for tourism and recreational use, fishery and aquaculture. The 707 

information about HABs has grown remarkably over the last 50 years since the first 708 

review (Jacques and Sournia, 1978-1979) all over the MS areas. However, the marked 709 
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west-east and north-south gradients in the knowledge of HABs and HAB species 710 

distribution persist, with long traits of coast with scarce or no information available.  711 

Overall, the MS hosts a high number of potentially toxic species, many of which have 712 

a wide distribution across its coastal waters. Yet the cases of intoxication are 713 

extremely rare, while the impact on aquaculture appears to be limited to a few hot 714 

spots in the northern Adriatic, Spain and France coasts. A variety of toxins have 715 

actually been detected in several instances in microalgae strains from the MS, while 716 

seafood toxicity, when detected, has commonly remained below the safety limits. The 717 

typical oligotrophic offshore Mediterranean waters that influence most coastal areas 718 

and the enhanced alongshore circulation in many places may play a role in keeping 719 

toxic algae at levels rarely exceeding critical density thresholds, thus preventing their 720 

excessive accumulation in seafood. On the other hand, quite effective monitoring 721 

operations have accompanied the development of aquaculture over the last decades, 722 

thus reducing the possibility of accidents to a minimum level. 723 

In terms of microalgal toxins, the only major concern seems to reside in the large 724 

amount of palytoxin-like substances that every summer accumulate along the rocky 725 

Mediterranean shores because of Ostreopsis blooms. Although sea urchins and wild 726 

mussels inhabiting those environments at time accumulate those toxins to 727 

considerable levels, no cases of seafood intoxication have occurred so far. 728 

Contaminated herbivorous fishes represent a problem in areas where they ingest 729 

macroalgal substrates colonized by toxic microalgae, i.e. in the ciguatera areas, but 730 

species capable of this transfer link may be missing in the MS trophic webs, or toxins 731 

are neutralized in the transfer. Nonetheless, the guard level must be kept high because 732 

sudden changes might occur, e.g., due to penetration of benthic herbivorous fish in the 733 

MS and consequent novelties in the local food webs. 734 
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Overall, the present overview demonstrates a relatively low risk deriving from toxic 735 

blooms and a higher risk from high biomass blooms affecting the aesthetic qualities of 736 

coastal areas devoted to tourism in the MS. No clear trends in occurrence nor 737 

expansions emerge for either toxic or HB-HABs. While EU regulation and national 738 

initiatives have promoted actions addressing seawater quality and aiming at a good 739 

environmental status (GES), human densities along the coasts is predicted to keep on 740 

increasing in the next decades. Therefore, a larger use of marine resources in the 741 

future, in the MS like in other coastal areas of the world, will probably lead to an 742 

increased impact of the risks posed by HABs even in absence of any trends in their 743 

abundance and frequency (Zingone and Wyatt, 2005). In addition, predicted changes 744 

in climate and consequent modifications in hydrographical features may drive local 745 

variations in microbial populations both in the plankton and in the benthos. Continued 746 

monitoring and further studies on HAB patterns and trends are therefore mandatory 747 

goals to be able to predict their evolution and protect human health and wellbeing in 748 

the MS.  749 
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Figure captions  1487 

Figure 1: Examples of toxic species from the Mediterranean Sea. A) Alexandrium 1488 

minutum stained with calcofluor. B) Azadinium dexteroporum. C) Dinophysis 1489 

sacculus. D) Fibrocapsa japonica. E) Ostreopsis fattorussoi stained with Calcofluor 1490 

(courtesy of S. Accoroni). F) Prorocentrum lima. G) Pseudo-nitzschia multistriata. 1491 

Scale bars in A and B: 5 µm; in C, D, E, F and G: 20 µm. 1492 

Figure 2: Cumulative numbers of known toxic species in the Mediterranean Sea in 1493 

different years.  1494 

Figure 3: Geographic range of potentially toxic species in the Mediterranean Sea. 1495 

Distribution of species known to produce toxins related to: A) Diarrhetic Shellfish 1496 

Poisoning (DSP), Dinophysis spp. and the benthic species Prorocentrum lima and P. 1497 
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rhathymum. B) Paralytic Shellfish Poisoning (PSP), Alexandrium spp. and 1498 

Gymnodinium catenatum. C) Amnesic Shellfish Poisoning (ASP), Pseudo-nitzschia 1499 

spp. and Nitzschia bizertensis. For the genera Dinophysis, Pseudo-nitzschia and 1500 

Alexandrium, which include both toxic and non-toxic species, the maps represent only 1501 

toxic species and, in case of cryptic or problematic species, only the records validated 1502 

by electron microscopy, molecular methods and/or toxin production. 1503 

Figure 4: Geographic range of potentially toxic species in the Mediterranean Sea. A) 1504 

Ostreopsis spp. (mostly O. cf. ovata) and species related to the Ciguatera Fish 1505 

Poisoning (CFP). B) Species producing ichthyotoxins (Alexandrium 1506 

pseudogonyaulax, Karenia spp., Karlodinium spp., Chattonella spp., Vicicitus 1507 

globosus, Prymnesium spp., etc.) and other toxins. The latter include mainly a few 1508 

widespread dinoflagellate species that produce yessotoxins (Lingulodinium polyedra, 1509 

Gonyaulax spinifera and Protoceratium reticulatum), but also other dinoflagellates 1510 

producing azaspiracids (Azadinum spp.), pinnatoxins (Vulcanodinium rugosum) and 1511 

other toxins with poorly known effects (e.g., Prorocentrum spp., Margalefidinium 1512 

polykrikoides). See Table 1 for a complete list.  1513 

Figure 5: A) Mat of Oscillatoria acutissima in the Eastern Harbour of Alexandria 1514 

(Egypt). B) Bloom of Noctiluca scintillans in Thermaikos Gulf (Thessaloniki, 1515 

Greece). C) Discoloration caused by Euglena viridis in the Golden Horn Estuary (Sea 1516 

of Marmara, Turkey). D) Shellfish mortality in Ras El-Bar (Egypt) in 2011 due to the 1517 

proliferation of N. scintillans and consequent oxygen depletion. E) Pelagic mucilages 1518 

in the Gulf of Naples (Italy). 1519 

Figure 6: Distribution of potentially toxic species, mucilages and discolorations in the 1520 

Mediterranean Sea. A) Distribution of species known to be toxic and harmful events 1521 
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until 1995 as reported in Jacques and Sournia (1978-1979) and Honsell et al. (1995). 1522 

B) Distribution of potentially toxic species (excluding Ostreopsis and CFP species) 1523 

and harmful events updated to the present status of knowledge. The position of the 1524 

circles in several cases has been slightly modified to reduce overlapping. 1525 

Figure 7. Harmful events related to microalgae in the Mediterranean Sea (n=501) 1526 

based on records in the Harmful Algae Event Database HAEDAT 1527 

(http://haedat.iode.org/). High density phytoplankton blooms with no impacts were 1528 

not considered. A) Relative abundance of different types of nuisance with details of 1529 

seafood toxicity. B) Interannual variations of ASP, DSP and PSP toxicity events. 1530 

http://haedat.iode.org/
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Table 1: Potentially toxic species in the Mediterranean Sea and associated types of syndromes or 

impacts (see Moestrup et al., 2009 and Lassus et al., 2016 for details). ASP, Amnesic Shellfish 

Poisoning; AZP, Azaspiracid Shellfish Poisoning; DSP, Diarrhetic Shellfish Poisoning; PSP, Paralytic 

Shellfish Poisoning; CFP, Ciguatera Fish Poisoning. ‘Other toxins’ include unknown toxins or toxins 

with poorly known effects.  

Bacillariophyceae  

Halamphora coffeaeformis ASP 

Nitzschia bizertensis ASP 

Pseudo-nitzschia australis ASP 

Pseudo-nitzschia brasiliana ASP 

Pseudo-nitzschia caciantha ASP 

Pseudo-nitzschia calliantha ASP 

Pseudo-nitzschia cuspidata ASP 

Pseudo-nitzschia delicatissima ASP 

Pseudo-nitzschia fraudulenta ASP 

Pseudo-nitzschia galaxiae ASP 

Pseudo-nitzschia hasleana ASP 

Pseudo-nitzschia multiseries ASP 

Pseudo-nitzschia multistriata ASP 

Pseudo-nitzschia pseudodelicatissima ASP 

Pseudo-nitzschia pungens (1) ASP 

Pseudo-nitzschia subfraudulenta ASP 

Pseudo-nitzschia subpacifica ASP 

  

Dictyochophyceae  

Pseudochattonella farcimen Ichthyotoxicity 

Pseudochattonella verruculosa Ichthyotoxicity 

Vicicitus globosus Ichthyotoxicity 

  

Dinophyceae  

Alexandrium andersonii PSP 

Alexandrium balechii Ichthyotoxicity 

Alexandrium minutum PSP 

Alexandrium ostenfeldii PSP 

Alexandrium pacificum (2) PSP 

Alexandrium pseudogonyaulax Ichthyotoxicity 

Alexandrium tamarense (2) PSP 

Alexandrium taylorii PSP 

Amphidinium carterae Ichthyotoxicity 

Amphidinium klebsii Ichthyotoxicity 

Azadinium dexteroporum AZP 

Azadinium poporum AZP 

Dinophysis acuminata DSP 

Dinophysis acuta DSP 

Dinophysis caudata DSP 

Dinophysis fortii DSP 

Dinophysis infundibulum DSP 

Dinophysis ovum DSP 

Dinophysis sacculus DSP 

Dinophysis tripos DSP 

Table 1



 

 

(1) Including P. pungens var. aveirensis   
(2) A. pacificum (group IV) and A. tamarense (group III), following the ribotype group designation in 

John et al. (2014) and Litaker et al. (2018) 

Fukuyoa paulensis CFP 

Gambierdiscus australes CFP 

Gambierdiscus belizeanus CFP 

Gambierdiscus carolinianus CFP 

Gambierdiscus silvae CFP 

Gonyaulax spinifera Other toxins 

Gymnodinium catenatum PSP 

Karenia bicuneiformis Ichthyotoxicity 

Karenia brevis Ichthyotoxicity 

Karenia cristata Ichthyotoxicity 

Karenia longicanalis Ichthyotoxicity 

Karenia papilionacea Ichthyotoxicity 

Karenia selliformis Ichthyotoxicity 

Karlodinium armiger Ichthyotoxicity 

Karlodinium corsicum Ichthyotoxicity 

Karlodinium veneficum Ichthyotoxicity 

Lingulodinium polyedra Other toxins 

Margalefidinium polykrikoides Ichthyotoxicity 

Ostreopsis fattorussoi Airborne disease 

Ostreopsis cf. ovata Airborne disease 

Ostreopsis cf. siamensis Airborne disease 

Pfiesteria piscicida Ichthyotoxicity 

Phalacroma mitra DSP 

Phalacroma rotundatum DSP 

Polykrikos hartmannii Other toxins 

Prorocentrum borbonicum Other toxins 

Prorocentrum cordatum Other toxins 

Prorocentrum emarginatum Other toxins 

Prorocentrum lima DSP 

Prorocentrum mexicanum  Other toxins? 

Prorocentrum rhathymum DSP 

Protoceratium reticulatum Other toxins 

Vulcanodinium rugosum Other toxins 

  

Haptophyceae  

Chrysochromulina leadbeateri Ichthyotoxicity 

Phaeocystis globosa Other toxins 

Prymnesium calathiferum Ichthyotoxicity 

Prymnesium faveolatum Ichthyotoxicity 

Prymnesium parvum Ichthyotoxicity 

Prymnesium polylepis Ichthyotoxicity 

  

Raphidophyceae  

Chattonella marina (3) Ichthyotoxicity 

Chattonella subsalsa Ichthyotoxicity 

Heterosigma akashiwo Ichthyotoxicity 

Fibrocapsa japonica Ichthyotoxicity 



(3) Including Chattonella marina var. antiqua 

 



Table 2: Potentially toxic species described from the Mediterranean Sea 

 

*A second, distinct genotype also discovered in Mediterranean waters (Klöpper et al., 2013). 

** First report in Rhodes et al. (2010) from New Zealand. 

 

 

Species name Described in Described as  Type locality 

Alexandrium minutum Halim Halim (1960)  Harbour of Alexandria, Egypt 

Alexandrium pseudogonyaulax (Biecheler)  
Horiguchi ex K.Yuki & Y.Fukuyo 

Biecheler (1952) Goniodoma 

pseudogonyaulax 

Thau Lagoon, Gulf of Lion, France 

Azadinium dexteroporum Percopo & 

Zingone 

Percopo et al. (2013)  Gulf of Naples, Italy 

Chattonella subsalsa Biecheler* Biecheler (1936)  Saltern of Villeroy, Sète, France 

Dinophysis caudata Kent Kent (1881)  Nearby Fano, Marche Region, Italy 

Dinophysis fortii Pavill. Pavillard (1923)  Thau Lagoon and/or Sète harbour, 

France 

Dinophysis infundibulum J.Schiller Schiller (1928)  Southern Adriatic Sea 

Dinophysis sacculus F.Stein Stein (1883)  Kvarner Gulf, Croatia 

Dinophysis tripos Gourret Gourret (1883)  South of Ratonneau, Gulf of 

Marseille, France 

Karlodinium armiger Bergholtz, Daugbjerg 

& Moestrup 

Bergholtz et al. (2006)  Alfacs Bay, Catalonia, Spain 

Karlodinium corsicum (Paulmier, Berland, 

Billard & Nézan) Siano & Zingone 

Paulmier et al. (1995) Gymnodinium 

corsicum 

Diana Lagoon, Corse, France 

Nitzschia bizertensis  Bouchouicha-Smida, 

Lundholm, Hlaili & Mabrouk 

Bouchouicha-Smida et 

al. (2014) 

 Bizerte Lagoon, Tunisia 

Ostreopsis fattorussoi Accoroni, Romagnoli 

& Totti 

Accoroni et al. (2016)  Batroun, Lebanon 

Prorocentrum lima (Ehrenb.) F.Stein Ehrenberg (1860) Crytoptomonas lima Sorrento, Gulf of Naples, Italy 

Prymnesium faveolatum Fresnel Fresnel et al. (2001)  Beach of Roquebrun, Cap Martin, 

France 

Vulcanodinium rugosum Nézan & 

Chomérat** 

Nézan and Chomérat 

(2011) 

 

 Ingril Lagoon, France 
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