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A B S T R A C T

We consider the problem of developing explainable Artificial Intelligence methods to interpret
the results of Artificial Intelligence models for time series data, taking time dependency into
account. To this end, we extend the Shapley–Lorenz method, normalised by construction, to
Artificial Intelligence for time series, such as neural networks and recurrent neural networks.
We illustrate the application of our proposal to a time series of Bitcoin prices, which acts as the
response variable, along with time series of classical financial prices, which act as explanatory
variables.

Three main findings emerge from the analysis. First, recurrent neural networks lead to a
better performance, in terms of accuracy and robustness, with respect to classic neural networks.
Second, the best performing models indicate that Bitcoin prices are affected mostly by their
lagged values, and that their explainability, in terms of classical financial assets, is limited.
Third, although limited, the contribution of classical assets to Bitcoin price prediction is well
captured by recurrent neural networks.

1. Introduction

Finance, along with health care and robotics, is one of the areas in which Artificial Intelligence (AI) is having a leading role in
generating predictions of future scenarios.

Time series data, common in financial models and typically analysed using econometric models, are now also being examined
using generative AI models, based on recurrent neural networks. This enables the generation of high-frequency price forecasting by
treating price time series as input (see, e.g. [1]). More traditional machine learning models, such as feed forward networks are also
used, the functioning and application of which was analysed, for example, in the work by [2].

Neural network models allow for the creation of more accurate long-term forecasts, as they can be integrated with multiple steps
ahead forecast models. Although classic recurrent neural networks cannot be used, due to the Gradient Descent problem, specific
architectures can, such as the LSTM and GRU (see, e.g. [3] for more details). These networks have been used for both univariate
and multivariate high-frequency time series data, obtaining excellent performances, as illustrated in the analysis carried out by [4].

The application of Artificial Intelligence to finance has led to the development of financial technologies (FinTech), and has
generated new econometric models for the analysis of time dependent time series, more complex than the classical ones (ARIMA
and GARCH models), such as artificial neural networks and recurrent neural networks. While typically more accurate than classical
models, machine learning models for time series are often considered black-boxes: their results are not explainable in terms of
their drivers. In classical models, the sign and magnitude of each autoregressive parameter explain the direction and strength of
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Fig. 1. Architecture of a NNAR network.

the relationship between a lagged predictor and the response variable. Whereas in machine learning models it is not possible to
re-conduct the many fitted parameters to any relationship. However, further models can be run on the model predictions obtained
with machine learning, such as Shapley values (see [5]) or their normalised version, the Shapley–Lorenz values (see [6]). The
contribution of this paper is to show how to obtain Shapley–Lorenz values for the more complex models used in generative AI
models for time series: recurrent neural networks.

In the next paragraph, we will introduce and describe how different neural network architectures can be used in generative AI
for time series modelling. Additionally, we will explain how Shapley values, along with their normalised version, Shapley–Lorenz
values, can be exploited to explain the output (generations, predictions, recommendations) obtained with such models.

2. Artificial Intelligence models for time series

In this section we consider two types of neural networks that can take into account the time dependency embedded the time
series data to generate forecasts and scenarios: the classic forward networks, introduced with the advent of machine learning models,
and the recurrent networks, which are also the basis of the modern generative AI models.

Specifically, we will focus on an autoregressive neural network model (NNAR), whereas as recurrent network models we will
consider a Long-Short-Term Memory model (LSTM) and a Gated Recurrent Unit network model (GRU). For robustness, we will also
consider two ‘‘classic’’ feed forward neural networks: a multilayer perceptron network (MLP) and a radial basis function network
(RBF).

We will compare the different neural network models not only in terms of predictive accuracy, as it is typically done in the
literature, but also in terms of explainability. To this aim, given the ‘‘black-box’’ nature of neural networks, in the next section we
will also propose to evaluate time series Artificial Intelligence models by means of Shapley–Lorenz values, extending what done
by [6] for classic machine learning models.

2.1. Autoregressive neural networks

Autoregressive neural networks (NNAR) are described by the architecture in Fig. 1. For more details see, e.g. [2].
From Fig. 1 note that the neural network has, in the input layer, 𝑝 lagged values of the response variable, similarly as in the classic

AR(p) model. Differently from what occurs in the AR(p) model, however, the input is not connected directly with the response, but
it is processed by an intermediate hidden layer, a computational unit which transforms the signals from the input before employing
them to determine the output values. It follows that a NNAR(p, s) model is a network characterised by p input nodes, the lags of
the response variable (𝑦𝑡−1, 𝑦𝑡−2,… , 𝑦𝑡−𝑝), and the s neurons in the hidden layer.

In the model specification phase, various architectures of NNAR can be compared. These architectures may differ in terms of
the number of lagged variables, nodes in the hidden layer, or additional input nodes, such as seasonal components or exogenous
covariates. The optimal structure can be selected based on appropriate criteria, such as Mean Square Error (MSE) or the Akaike
Information Criterion (AIC).
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Fig. 2. Processing unit of a LSTM network.

In the prediction phase, the network needs to be applied iteratively. For instance, if data is collected daily and the aim is to predict
the value for the following day, the available historical inputs up to the current date will be used for analysis. If the forecasting
time horizon extends further, such as predicting the value for the second day, the forecast for the next day, along with the historical
data, will be utilised as input, and so on.

2.2. Long Short Term Memory networks

Long Short-Term Memory (LSTM) networks can be described by a sequence of recursive steps, in which each input 𝑥𝑡 is processed
as in Fig. 2. For more details see, e.g. [3].

From Fig. 2 note that, during the processing of each unit 𝑥𝑡, there are two flows of information, represented by the two horizontal
lines that enter and exit the LSTM: the cell state (𝑐𝑡), known as Long Term Memory (LTM), and the hidden state (ℎ𝑡), known as
Short Term Memory (STM).

Each processing unit in the LSTM is characterised by three processing phases, as follows:

1. Forget Gate: this phase determines the percentage of information to forget. Looking at Fig. 2, the information received from
the previous hidden state (ℎ𝑡−1) and from the current input (𝑥𝑡) are jointly processed by the sigmoid function 𝜎(𝑧) = 1∕(1 +𝑒−𝑧),
with 𝑧 ∈ (−∞,+∞), determining the update of the forget gate, 𝑓𝑡 ∈ [0, 1]: 𝑓𝑡 = 𝜎(ℎ𝑡−1𝑤1 +𝑥𝑡𝑤2 + 𝑏1), which will then multiply
the previous cell state (𝑐𝑡−1);

2. Input Gate: in this phase the long term memory LTM is updated, by means of two activation functions. A hyperbolic tangent
function 𝑐𝑡, with values in [−1, 1], uses the previous hidden state and the current input, but with different weights and biases:
𝑐𝑡 = 𝑡𝑎𝑛ℎ(ℎ𝑡−1𝑤3 + 𝑥𝑡𝑤4 + 𝑏2).
A sigmoid activation function is instead employed to determine the memory potential, 𝑖𝑡: 𝑖𝑡 = 𝜎(ℎ𝑡−1𝑤5 + 𝑥𝑡𝑤6 + 𝑏3).
The LTM (cell) state is then updated summing the result of the forget gate with the product between 𝑐𝑡 and 𝑖𝑡: 𝑐𝑡 =
𝑓𝑡 × 𝑐𝑡−1 + 𝑐𝑡 × 𝑖𝑡;

3. Output Gate: in the third phase, the short-term memory (STM) is updated, using a tangent hyperbolic activation function:
𝜈𝑡 = 𝑡𝑎𝑛ℎ(𝑐𝑡).
Additionally, a sigmoid function (𝑜𝑡) is calculated, taking as arguments the previous hidden state and the current input:
𝑜𝑡 = 𝜎(ℎ𝑡−1𝑤7 + 𝑥𝑡𝑤8 + 𝑏4).
The new STM (hidden state) is thus calculated by multiplying the two results: ℎ𝑡 = 𝜈𝑡 × 𝑜𝑡.

2.3. Gated Recurrent Unit networks

Gated Recurrent Unit (GRU) neural networks are characterised by processing units with the structure displayed in Fig. 3. For
more details, see e.g. [3].

From Fig. 3, note that each processing unit in a GRU is characterised by two phases, as follows:
3 
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Fig. 3. Processing unit of a GRU network.

1. Reset Gate: it determines how much past information should be remembered. The reset value for a specific time step (𝑟𝑡) is
calculated through the sigmoid function:
𝑟𝑡 = 𝜎(ℎ𝑡−1𝑤1 + 𝑥𝑡𝑤2 + 𝑏1).
Next, 𝑟𝑡 is multiplied with the previous hidden state (ℎ𝑡−1) to determine how much past information should be retained for
that particular time step t ;

2. Update Gate: it determines which new information should be added. First, a candidate hidden state (ℎ̃𝑡) is determined through
the 𝑡𝑎𝑛ℎ function, which will have as arguments the current input and the product between the reset and the previous hidden
state: ℎ̃𝑡 = 𝑡𝑎𝑛ℎ((ℎ𝑡−1 × 𝑟𝑡)𝑤3 + 𝑥𝑡𝑤4 + 𝑏2).
Thus, to determine the candidate, not all the information from the previous time instant (𝑡− 1) is considered, but only what
must be remembered, expressed by ℎ𝑡−1 × 𝑟𝑡. Second, the information to be transferred from the previous hidden state is
calculated as: 𝑧𝑡 = 𝜎(ℎ𝑡−1𝑤5 + 𝑥𝑡𝑤6 + 𝑏3).
It follows that from the current hidden state candidate we keep a percentage equal to 𝑧𝑡, and for the remaining 1 − 𝑧𝑡 we
keep the information of the previous hidden state. It follows that the update will be determined as: ℎ𝑡 = (1 − 𝑧𝑡)ℎ𝑡−1 + 𝑧𝑡ℎ̃𝑡.

In summary, a GRU network employs fewer calculations than the LSTM and is, in fact, faster in the forecasting phase.

2.4. Multilayer perceptron networks

A multilayer perceptron (MLP) is a feed forward neural network that consists of multiple layers of interconnected nodes: an input
layer, one or more hidden layers, and an output layer. Each neuron in the network is connected to every neuron in the adjacent
layers.

The input layer receives the initial data, which is then passed through the hidden layers, where nonlinear transformations occur,
and finally, the output layer produces the network’s predictions or classifications. or more details, see e.g. [7].

2.5. Radial basis function networks

A Radial Basis Function Network (RBFN) is a feedforward neural network that uses radial basis functions as activation functions.
It typically consists of three layers: an input layer, a hidden layer with radial basis function neurons, and an output layer.

The input layer consists of neurons that receive the input data. Each neuron represents a feature or input variable. The hidden
layer contains radial basis function neurons. These neurons compute their output based on the distance between their input and
a center point, typically called a prototype or centroid. The output of each neuron in this layer is a radial basis function, such as
the Gaussian function or the multi quadratic function. The output layer usually consists of a single neuron or multiple neurons
depending on the task (e.g., regression or classification). It combines the outputs of the hidden layer neurons to produce the final
output of the network. For more details, see e.g. [7].
4 
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2.6. Shapley values and Shapley–Lorenz values

Shapley values (SV) were introduced in game theory (see, e.g. [5]) with the purpose of dividing the value of a game between
he various participants, depending on their contribution. In the recent years, they have been applied in the Artificial Intelligence
ontext, to mitigate the lack of interpretability of complex non-linear machine learning models which, while improving the accuracy
f the predictions, lose their explainability (see, for example, [8,9]).

In the machine learning context, Shapley values are exploited in a model post processing step, and aim to divide the model’s
predictions between the different feature variables, depending on their importance. In other words, the Shapley values approach is
not a model selection technique, but it is technique that is applied to the output of a model to determine which variables features
have mostly contributed to it. In this way, Shapley values can help the interpretation of a machine learning model, even when it is
a black-box model.

From a more formal viewpoint, the Shapley value for the 𝑖th prediction (𝑖 = 1,… , 𝑛) of a feature variable 𝑘 (𝑘 = 1,… , 𝐾) is the
following:

𝜙𝑘
𝑖 =

∑

𝑋′⊆(𝑋)⧵𝑋𝑘

|𝑋′
|!(𝐾 − |𝑋′

| − 1)!
𝐾!

⋅ [𝑌(𝑋′
∪𝑋𝑘)𝑖 − 𝑌(𝑋′)𝑖 ], (1)

where 𝑌(𝑋′
∪𝑋𝑘)𝑖 and 𝑌(𝑋′)𝑖 denote the 𝑖th predicted value provided, respectively, by a model with and without the 𝑘th predictor;

(𝑋) ⧵ 𝑋𝑘 is the set of all the possible model configurations which can be obtained excluding variable 𝑋𝑘; |𝑋′
| is the number of

ariables included in a given model configuration.
Thus, for each prediction, the Shapley values of each variable 𝑘, expressing its importance, is obtained as the average, over all

ossible models, of the difference between two predictions: that of a model in which the 𝑘th variable is used, and that in which it
s not used.

What described so far are the Shapley values for any individual predictions, also known as Local Shapley values. The Global
hapley values of a variable 𝑘 can be obtained taking the mean, or the sum, of the Shapley values of 𝑘 over all predictions 𝑖 = 1,… , 𝑛.

Shapley values have gained much importance in the Artificial Intelligence community, thanks to their capability of making
machine learning model explainable by opening their black box. Their diffusion has contributed to the growth of explainable
Artificial Intelligence, as described, for example, in [10–12].

While successful, Shapley values suffer, however, from a main disadvantage. They are not normalised: their value depends on
he unit of measurement of the response variable. Differently from measures such as the Area Under the Curve AUC (see, e.g. [13]),

or the 𝑅2, Shapley values cannot be interpreted as a percentage value, limiting their accountability. Thus, they cannot be used to
compare the explainability of different response variables.

To solve this issue, [6] introduced Shapley–Lorenz values (SLV), which represent a global measure of explainability, normalised
by definition. Essentially, Shapley–Lorenz values replace the difference between the two predictions in Eq. (1) with the difference
etween their predictive performance, as expressed by the Lorenz Zonoid, a function of the well known Gini coefficient, which takes
alues in the [0,1] range (see, e.g. [14]).

More formally, the Shapley–Lorenz value of a feature variable 𝑘 (with 𝑘 = 1,… , 𝐾) is the following:

𝐿𝑍𝑘(𝑌 ) =
∑

𝑋′⊆(𝑋)⧵𝑋𝑘

|𝑋′
|!(𝐾 − |𝑋′

| − 1)!
𝐾!

⋅ [𝐿𝑍(𝑌𝑋′∪𝑋𝑘
) − 𝐿𝑍(𝑌𝑋′ )], (2)

where (𝑋)⧵𝑋𝑘 and |𝑋′
| were already defined in Eq. (1), whereas 𝐿𝑍(𝑌𝑋′∪𝑋𝑘

) and 𝐿𝑍(𝑌𝑋′ ) are the Lorenz Zonoids of the response
ariable 𝑌 explained by the models which, respectively, include 𝑋′ ∪𝑋𝑘 predictors or only 𝑋′ predictors.

We remark that, similarly to Shapley values, Shapley–Lorenz values are model-agnostic: they can be applied to any machine
earning model, differently from model specific explanation such as, for example, feature importance plots (see, e.g. [15]). However,

differently from Shapley values, Shapley–Lorenz values are normalised, taking values in the close interval [0, 1]. This feature plays
a key role on the interpretation side: the Shapley–Lorenz value of a variable provides the percentage of variability of the response
variable that it explains, i.e. its added value.

Shapley–Lorenz values are generally non-negative, according to the inclusion principle, which holds exactly for nested linear
models, as demonstrated in [14]. When the underlying machine learning model is non-linear, the inclusion principle is only
approximate and, consequently, Shapley–Lorenz values may become negative.

2.7. S.A.F.E. Artificial Intelligence

Machine Learning (ML) methods are boosting the applications of Artificial Intelligence. However, differently from ordinary
omputer software and applications, AI not only converts inputs into outputs, but can also change the surrounding environment,

with the risk of creating harms for individuals and organisations.
This is the reason why policy makers, regulators and standard bodies around the world are issuing regulations and rec-

mmendations that AI developers, deployers and users should follow to manage the risks arising from the adoption of AI
ethods.

AI risk management requires to develop a consistent set of AI risk metrics that can be employed to monitor the compliance of
I applications. Such a set of metrics is not common practice, yet.
5 
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Recently, [16] have summarised the requirements in the existing regulations and recommendations into four main measurable
‘‘S.A.F.E.’’ key principles: ‘‘S’’ for sustainability; ‘‘A’’ for accuracy; ‘‘F’’ for fairness; ‘‘E’’ for explainability.

Sustainability refers to the robustness of an AI system to extreme events, such as cyber attacks or environmental issues. The
easurement of robustness is well known in the statistics and machine learning literature and it is usually conducted in terms of

he difference between the accuracy of two different predictions, obtained respectively under normal and perturbed input data.
Accuracy can be measured by the Area Under the ROC Curve (AUC) or by the Root Mean Square Error (RMSE) (see, e.g. [17]).

The measurement of Accuracy is well known in statistics and machine learning: the RMSE is routinely employed for a continuous
esponse; the AUC is typically employed for a binary response (see, e.g. [13,18]). More recently, [19] have introduced a new accuracy
easure that can be applied to both types of responses, generalising the AUC to the continuous case.

Fairness is one of the most important requirements for AI applications. Unfairness indicates that the output leads to an unequal
reatment of different population groups, by gender, age, and nationality, for example. Several recent research papers deal with the

measurement of fairness. Most of them are based on parity measures, which calculate the difference in accuracy of the AI output
obtained separately on different population groups. Accuracy can be measured employing AUC or RMSE (see, e.g. [20]).

Explainability is a requirement that has emerged with the development of highly accurate machine learning models which have,
owever, so many parameters that it is very difficult to reconduct the output to the inputs which determine it. The measurement of
xplainability requires attaching to each input variable an importance weight that expresses its influence on the final output such
s expressed, for instance, by Shapley values or by Shapley Lorenz values. A model is explainable if there exists at least one input
ariable which significantly impacts the output.

A recent paper [21] suggested to measure the S.A.F.E. principles using state of the art metrics, such as AUC, RMSE and Shapley
alues which are not, however, consistent with each other. A more consistent measurement model was put forward by [16], who
eplaced traditional metrics with new ones based on Lorenz Zonoids, the multivariate extension of the Gini coefficient.

In this paper, we will assess whether machine learning models for financial time series are S.A.F.E.: Sustainable, Accurate, Fair
and Explainable, employing the score metrics introduced in [16], which will now be recalled.

Explainability score. For a machine learning model with 𝐾 predictors, the score for explainability can be calculated on the whole
ample as:

𝐸 𝑥 − 𝑆 𝑐 𝑜𝑟𝑒 =
∑𝐾

𝑘=1 𝑆 𝐿𝑘

𝐿𝑍(𝑌 )
, (3)

where 𝐿𝑍(𝑌 ) corresponds to the Lorenz Zonoid-value of the response variable 𝑌 , and 𝑆 𝐿𝑘 denotes the Shapley–Lorenz values
associated with the 𝑘th predictor.

Accuracy score. Consider a machine learning model with a set of 𝑘 ≤ 𝐾 predictors, properly chosen by means of a feature selection
procedure, and a test sample from the dataset. The model’s accuracy score can be measured as follows:

𝐴𝑐 − 𝑆 𝑐 𝑜𝑟𝑒 =
𝐿𝑍(𝑌𝑋1 ,…,𝑋𝑘

)
𝐿𝑍(𝑌𝑡𝑒𝑠𝑡)

, (4)

where 𝐿𝑍(𝑌𝑋1 ,…,𝑋𝑘
) is the Lorenz Zonoid of the predicted response variable, obtained using 𝑘 predictors on the test set, and 𝐿𝑍(𝑌𝑡𝑒𝑠𝑡)

s the 𝑌 response variable Lorenz Zonoid value computed on the same test set.
Fairness score. Consider a machine learning model with 𝑘 predictors, resulting from the feature selection procedure and, in

ddition, a protected variable which is categorised in 𝑀 population groups. We can then measure the fairness score of the model
s:

𝐹 𝑎𝑖𝑟 − 𝑆 𝑐 𝑜𝑟𝑒 = 1 − 𝐿𝑍(𝑉 𝑆 𝐿
𝑀 ), (5)

where 𝐿𝑍(𝑉 𝑆 𝐿
𝑀 ) denotes the Lorenz Zonoid computed on the vector 𝑉 𝑆 𝐿

𝑀 whose elements correspond to the sum of the selected
predictors’ Shapley–Lorenz values in each population.

Sustainability score. Consider a machine learning model with 𝑘 predictors, resulting from the feature selection procedure, and, in addition,
ivide the sample in 𝐺 distinct groups, corresponding to increasing values of the predicted response. We can then measure the sustainability
core of a machine learning model as:

𝑆 𝑢𝑠𝑡 − 𝑆 𝑐 𝑜𝑟𝑒 = 1 − 𝐿𝑍(𝑉 𝑆 𝐿
𝐺 ), (6)

where 𝐿𝑍(𝑉 𝑆 𝐿
𝐺 ) indicates the Lorenz Zonoid calculated on the vector 𝑉 𝑆 𝐿

𝐺 , whose elements correspond to the sum of the selected predictors’
Shapley–Lorenz values in each group.

In the next Section we will apply the previous scores to the proposed machine learning time series models.

3. Application

We have applied the above mentioned models to the data described in [16], who employed Shapley–Lorenz values to explain
the results of a neural network model applied to time series of daily Bitcoin prices. Their model is a simple feed forward network
that does not take time dependency into account, assuming that the daily time series observations are independent in time.

Below are the descriptive statistics for the daily time series under consideration, covering the period from May 18, 2016 to April
0, 2018 (see Table 1).
6 
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Table 1
Descriptive statistics: Minimum (Min), Mean, Median (Med), Maximum (Max) and Standard Deviation (SD) of all available daily
prices.
Variable Min Mean Med Max SD

𝐵 𝐼 𝑇 𝐶 𝑂 𝐼 𝑁 438.38 3919.05 1713.00 19 650.01 4318.98
𝑈 𝑆 𝐷∕𝐸 𝑈 𝑅 0.80 0.88 0.89 0.96 0.04
𝐺 𝑂 𝐿𝐷 1128.42 1275.57 1276.83 1366.38 52.34
𝑆 𝑃 500 2000.54 2399.17 2390.90 2872.87 212.31
𝑈 𝑆 𝐷∕𝑌 𝑈 𝐴𝑁 6.27 6.68 6.67 6.96 0.19
𝑂 𝐼 𝐿 39.51 49.36 49.30 57.20 3.37

Table 2
Shapley Lorenz values for the NNAR, LSTM and GRU neural
network models.
NNAR model

Variable Shapley–Lorenz value (SLV)

𝑈 𝑆 𝐷∕𝐸 𝑈 𝑅 0.1212
𝐺 𝑂 𝐿𝐷 0.0238
𝑆 𝑃 500 0.0163
𝑂 𝐼 𝐿 0.0086
𝑈 𝑆 𝐷∕𝑌 𝑈 𝐴𝑁 0.0706

LSTM model

Variable Shapley–Lorenz value (SLV)

𝑈 𝑆 𝐷∕𝐸 𝑈 𝑅 0.0574
𝐺 𝑂 𝐿𝐷 0.0305
𝑈 𝑆 𝐷∕𝑌 𝑈 𝐴𝑁 0.0229
𝑆 𝑃 500 0.0156
𝑂 𝐼 𝐿 0.0143

GRU model

Variable Shapley–Lorenz value (SLV)

𝑈 𝑆 𝐷∕𝑌 𝑈 𝐴𝑁 0.0463
𝑂 𝐼 𝐿 0.0396
𝑆 𝑃 500 0.0322
𝐺 𝑂 𝐿𝐷 0.0230
𝑈 𝑆 𝐷∕𝐸 𝑈 𝑅 0.0298

Before describing our empirical findings, we would like to emphasize that all models have been implemented in Python and are
available upon request, ensuring full reproducibility of our work. Additionally, to facilitate comparability, we have used the same
training and validation data for all models.

Finally, we remark that, for each model, all predicted prices have been normalised in the interval [0, 1], calculating 𝑝−𝑚𝑖𝑛
𝑚𝑎𝑥−−𝑚𝑖𝑛 ,

with 𝑝 the predicted price; min and max, respectively, its minimum and maximum over the validation set.

3.1. Autoregressive neural networks

Several alternative structures of autoregressive neural networks have been compared, in terms of the Root Mean Square Error
(RMSE) of the corresponding predictions.

The comparison has been made employing the first year of data, subdivided into a training set with all data before September
30, 2017, and a validation set with all data from October 1, 2017 to December 31, 2017. This corresponds to a proportion of about
0% training data and 30% validation data.

For the given train/validation data split, the best neural network configuration is found for a network that corresponds to the
presence of two lagged variables and four neurons in the hidden layer, with a RMSE equal to 0.2801. If we increase the number
of hidden layer neurons, the RMSE in the training set decreases, but the RMSE in the validation set increases, consistently with the
well known over fitting behaviour of complex neural networks.

We have applied the chosen model to obtain predictions from January 1, 2018, onwards. They are represented in Fig. 4(a) for
the NNAR model.

Overall, if from Fig. 4(a) we calculate the square root of the euclidean distance between the (scaled) Bitcoin prices to be predicted
and the corresponding predictions, we obtain a RMSE equal to 0.13.

This result should be compared to the RMSE of the predictions obtained with the time independent model of [16], which is
equal to 0.14 and, therefore, the NNAR model slightly improves predictive accuracy.

We now move to explainability, to assess which explanatory variables mostly drive the predictions derived from the neural
etwork models. In the top part of Table 2 we report the Shapley–Lorenz values of the predictions in Fig. 4(a), in absolute values.
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Fig. 4. Model predictions and confidence intervals for the NNAR, LSTM and GRU neural network models. All predictions are calculated in a rolling window
mode: all data up to day 𝑡 is included to obtain the prediction of the Bitcoin price at time 𝑡 + 1.
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From the top part of Table 2 note that, for the NNAR model, only the USD/EUR exchange rate explains more than the 10% of
the variability of the response (Bitcoin prices). These findings differ from those illustrated in [16], which reported a Shapley–Lorenz
value of about 35% for Gold, followed by SP500 at about 10%, and the other three variables below 10%.

The difference in Shapley–Lorenz values is due to the different employed models. In [16], the response daily prices were assumed
to be independent of each other; whereas in the NNAR model considered here, the same prices are dependent on each other,
according to an autoregressive structure. This implies that the variability of the Bitcoin prices is explained not only by the prices
of the classical assets, as in [16], but also by the lagged values of the response itself, likely to matter, being the Bitcoin a rather
speculative asset. The insertion of the lagged variables may improve the model’s predictive performance, but it can also reduce the
explanation due to the classical assets, correlated with them. This motivates the difference between the results displayed in Table 2
and the findings showed in [16].

In other words, when correctly taking into account the endogenous autoregressive dependence between Bitcoin prices, as in this
aper, the exogenous influence of classical assets decreases.

3.2. Long Short Term Memory networks

We have compared several alternative structures of LSTM networks, in terms of the RMSE of the predictions made for the last
uarter of 2017, on the basis of the first three quarters of the same year.

The best LSTM network corresponds to a learning rate of 0.01, 10 epochs and 100 units in the short memory.
The predictions obtained using the best LSTM model, for the validation set, are represented in Fig. 4(b).
From Fig. 4(b), note that the predictions appear to be more accurate and precise than those provided by the NNAR model.

Overall, the RMSE of the predictions from the LSTM model in Fig. 4(b) is equal to 0.056, more than two times lower than the RMSE
obtained with the NNAR model, for the same data and train/validation partition. The result indicates that the predictive accuracy
of the LSTM is much higher than that of the NNAR model.

Moving to explainability, the middle part of Table 2 reports the obtained Shapley–Lorenz values for the LSTM model.
Comparing the results given by the NNAR model with those of the LSTM model, it seems that the LSTM model is less explainable

han the NNAR: summing the five Shapley–Lorenz values we obtain a total of about 0.24 for the NNAR and of about 0.11 for the
LSTM. The worse performance of the LSTM model can be due to the fact that the LSTM model gives more weight to the endogenous
autoregressive component, and less to the exogenous classical financial prices. In summary, when we move from the NNAR to the
LSTM, a decrease in explainability of about 45% arises. However, it still appears as an acceptable result if considered in combination
with an increase in accuracy of about 232%.

3.3. Gated Recurrent Unit networks

We have then applied alternative Gate Recurrent Unit networks, with the same data and train/validation splits as for the other
models. The best model is obtained with a Learning Rate of 0.001, 10 epochs and 100 units.

The chosen model leads to the predictions depicted in Fig. 4(c), with the corresponding confidence intervals.
The overall RMSE of the predictions in Fig. 4(c) is equal to 0.04: lower than the RMSE derived with the LSTM model.
Moving to the assessment of explainability, we report in the bottom part of Table 2 the Shapley–Lorenz values corresponding to

the predictions of the GRU model.
Comparing the Shapley–Lorenz values from the GRU model with those from the LSTM model, note that the two explanations are

similar. The sum of the five Shapley–Lorenz values for the GRU model is equal to about 18%, lower than that of the NNAR model
(but slightly higher than that of the LSTM model). As discussed for the LSTM model, this result is likely to be due to the prevalence
f the endogenous component, represented by the lagged response variables. This is also consistent with the majority of existing

literature, which indicates that Bitcoin is a speculative asset. In summary, when we move from the NNAR to the GRU, we get a
decrease in explainability of about 25% which is an acceptable result if considered in combination with an increase in accuracy of
bout 325%.

3.4. S.A.F.E. AI comparison

We now extend model comparison to consider also the Sustainability and the Accuracy of the different models, in line with the
S.A.F.E. model proposed in [16]. To this aim, Table 3 presents a comparison of the three models in terms of accuracy, explainability
and robustness. We also report, for the sake of comparison, the RMSE of the different models.

To improve the robustness of our results, we include in the comparison two further neural network models that are time
independent, as the model in [16]: a multilayer perceptron network (MLP) and a Radial Basis Function network (RBF).

Table 3 shows that the GRU and the LSTM model have an accuracy, as measured by the Ac-Score, much higher than that of the
NNAR model, and of the two time independent models, the MLP and the RBF. The GRU is more accurate than the LSTM. The same
Table shows that, in terms of explainability, the MLP, the RBF and the NNAR models are more explainable than the LSTM and the
GRU models, however at the expense of a much lower predictive performance, in line with what already discussed. The GRU is
lightly more explainable than the LSTM. These findings are in line with what already mentioned when comparing the RMSE and

the Shapley–Lorenz values of the models. In addition, Table 3 shows that, in terms of sustainability, the Sust-Score of the LSTM and
9 
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Table 3
Comparison of the MLP, RBF, NNAR, LSTM and GRU models with in terms of the S.A.F.E. metrics
and of the RMSE.
Model Sust-Score Ac-Score Ex-score RMSE

MLP 0.9661 0.4518 0.5114 0.1046
RBF 0.9538 0.4519 0.5443 0.0982
NNAR 0.7157 0.3718 0.2405 0.1358
LSTM 0.9607 0.8186 0.1122 0.0561
GRU 0.9244 0.8865 0.1778 0.0439

Fig. 5. Shapley–Lorenz values in different models.

of the GRU are much higher than that of the NNAR, indicating a higher robustness, intended as a stronger resilience to extreme
data. The two time independent models, the MLP and the RBF, also achieve high robustness, likely due to their lower complexity.

We can now draw a final ranking of the five considered models. In terms of accuracy, the GRU, followed by the LSTM, are the
best models; in terms of robustness, all models, different from NNAR, perform quite well; in terms of explainability, the simpler
MLP and RBF networks are the best models. We can thus conclude that model choice depends on what is deemed more relevant: if
it is predictive accuracy, the GRU, followed by the LSTM, is the best choice; if it is explainability, it is better to employ a simpler
MLP or RBF; if it is robustness, all models part from the NNAR are good.

3.5. Financial interpretation

We now consider the implications of the models in terms of the considered financial application. Fig. 5 displays the output
reported in Table 2 in a graphical format easier to visualise.

Fig. 5 clearly shows the higher importance of the explanations, for the NNAR model, with respect to the recurrent models.
To better understand the explanations, it is worth examining, for each explanatory variable, the relationship between its Shapley

values and the original values.
A high correlation (in absolute value) would indicate that most of the variability of a variable is relevant for the prediction of

the response; whereas a low correlation would indicate that the variable’s variation is not related to that of the response.
Table 4 contains the obtained correlations, for all considered time dependent networks: NNAR, LSTM and GRU, as well as for

the two time independent networks: MLP and RBF.
Table 4 indicates that the NNAR network does not present strong correlations, whereas the recurrent networks (LSTM and GRU)

lead to a strong correlation for the exchange rates USD/YUAN, USD/EUR and for the SP500 index, similarly as the two independent
networks (MLP and RBF).

These findings support once more the superiority of the recurrent networks, such as LSTM and GRU. They have a better predictive
accuracy. In addition, even though their Shapley–Lorenz values for the explanatory variables are low, their variability is strongly
correlated with that of the exogenous variables, and particularly for SP500, USD/YUAN and USD/EUR exchanges rates, similarly to
what occurs for the least accurate and simpler time independent models.
10 
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Table 4
Correlations between Shapley values and explanatory variables.
Model USD/YUAN USD/EUR GOLD OIL SP500

MLP 0.4400 −0.5700 −0.2800 −0.2900 0.9800
RBF −0.8800 0.6800 −0.3600 −0.5000 0.6900
NNAR −0.2600 0.0012 0.3300 −0.2000 −0.2400
LSTM 0.8600 0.4700 −0.3500 −0.4300 0.6800
GRU 0.8900 0.5400 −0.2700 −0.2300 0.6600

Table 5
Comparison of the variable importance rankings obtained from
the NNAR, LSTM and GRU models, using both Shapley and
Shapley–Lorenz values.
Shapley values
NNAR LSTM GRU

𝑈 𝑆 𝐷∕𝐸 𝑈 𝑅 𝑈 𝑆 𝐷∕𝐸 𝑈 𝑅 𝑈 𝑆 𝐷∕𝑌 𝑈 𝐴𝑁
𝐺 𝑂 𝐿𝐷 𝑈 𝑆 𝐷∕𝑌 𝑈 𝐴𝑁 𝑂 𝐼 𝐿
𝑆 𝑃 500 𝑆 𝑃 500 𝑆 𝑃 500
𝑈 𝑆 𝐷∕𝑌 𝑈 𝐴𝑁 𝐺 𝑂 𝐿𝐷 𝑈 𝑆 𝐷∕𝐸 𝑈 𝑅
𝑂 𝐼 𝐿 𝑂 𝐼 𝐿 𝐺 𝑂 𝐿𝐷
Shapley–Lorenz values
NNAR LSTM GRU

𝑈 𝑆 𝐷∕𝐸 𝑈 𝑅 𝑈 𝑆 𝐷_𝐸 𝑈 𝑅 𝑈 𝑆 𝐷∕𝑌 𝑈 𝐴𝑁
𝐺 𝑂 𝐿𝐷 𝐺 𝑂 𝐿𝐷 𝑂 𝐼 𝐿
𝑆 𝑃 500 𝑈 𝑆 𝐷_𝑌 𝑈 𝐴𝑁 𝑆 𝑃 500
𝑂 𝐼 𝐿 𝑆 𝑃 500 𝑈 𝑆 𝐷∕𝐸 𝑈 𝑅
𝑈 𝑆 𝐷∕𝑌 𝑈 𝐴𝑁 𝑂 𝐼 𝐿 𝐺 𝑂 𝐿𝐷

This indicates that recurrent network models better ‘‘transform’’ the variability of the inputs into predicted values of the response.
We conclude our analysis examining the robustness of our results in terms of the adopted explainability metrics. Specifically, we

compare the variable rankings obtained using Shapley–Lorenz values against those obtained using the standard Shapley values.
Table 5 summarises all the rankings obtained with the three proposed neural network models, first using Shapley values and

then Shapley–Lorenz values.
From Table 5, it can be observed that the NNAR and GRU models do not exhibit significant differences in the rankings obtained

using classical Shapley values, compared to those obtained using Shapley–Lorenz values. Only LSTM presents a slight difference, as
the price of Gold (GOLD) appears to assume a different level of importance. Overall, we can state that the rankings from Shapley–
Lorenz values are highly consistent with those obtained from the standard Shapley values. The former are, however, preferable, as
normalised and, therefore, easier to interpret.

3.6. Interaction between lagged variables

The above discussion clearly indicates that complex recurrent network models, such as LSTM and GRU, may considerably
improve predictive accuracy, but at the expense of a lower explainability, particularly in terms of the exogenous variables. As
he explainability of the predictors is the results of the interaction of many lagged effects, it becomes crucial to explain the results
f these models in terms of the interactions among the lagged values of the variables, by means of Shapley–Lorenz values. In this
ection we show how to carry out this task.

As mentioned in the previous section, in a recurrent network model, such as LSTM or GRU, the lags describe how the past
alues of the response and of the predictors impact the forecasts. The ability of the model to remember and integrate information
rom previous time lags relies to its internal mechanisms, such as cell states and gating units. These mechanisms enable LSTMs and
RUs to selectively retain or forget information from various lags, which is crucial for modelling temporal sequences with long-term
ependencies.

From an explainability standpoint, deriving an analytical formula that expresses the Shapley–Lorenz values in terms of the lagged
ariables is a complex task. However, the relationship can be estimated empirically. To this end, we applied an LSTM model for

various values of the maximum number of lags, specifically for lag = {1, 5, 10, 15, 30, 60}, always using the same train/test partition.
From the output of each model, we calculated the Root Mean Square Error (RMSE) on the test set.

The top panel of Fig. 6 displays the Shapley–Lorenz values for the five exogenous predictors as a function of the lags of the LSTM
eural network, while the bottom panel illustrates the RMSE as a function of the same lags.

Fig. 6 shows that Lag 1 variables provide the best RMSE, and that, in this case, the largest Shapley–Lorenz value corresponds to
the SP500, followed by the USD/EUR and USD/YUAN exchange rates, with Gold and Oil price at the end of the list.

When examining lag = 5 and lag = 60, which show comparable RMSE, the Shapley–Lorenz values for the USD/EUR and
SD/YUAN exchange rates are similar. In contrast, the Shapley–Lorenz values for Gold and Oil prices increase when moving from

ag = 5 to lag = 60, reducing the influence of the SP500 index. These findings may result from the fact that commodity prices
11 
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Fig. 6. Lag explainability of the LSTM neural network. Top panel: Shapley–Lorenz values for the five predictors as a function of the lags. Bottom panel: Root
Mean Square Error (RMSE) as a function of the lags.

exhibit longer auto-correlations compared to the SP500 index, possibly due to market frictions associated with them. Thus, larger
lags help capture the effects of these factors more effectively, consistent with the findings of [22].

For comparison, the top panel of Fig. 7 displays the Shapley–Lorenz values for the same five predictors as a function of the lags
of the GRU neural network, while the bottom panel illustrates the RMSE of the GRU as a function of the lagged values.

From Fig. 7 note that the RMSE of the GRU is smaller than that of the LSTM. This justifies why in the previous sections we have
chosen a lag of 60 to compare Shapley–Lorenz values across different neural networks.

Analysing in more detail the results from the GRU model, it arises that a lag equal to 15 provides the best performance in terms
of the RMSE. At this lag, the USD/EUR exchange rate is the most important factor, followed by the SP500 index and the USD/YUAN
exchange rate. Oil and Gold are at the bottom of the factor importance list. This is consistent with the behaviour of the LSTM for a
lag set equal to 5. On the other hand, when the lag is increased at 60, the most important factors shift to the USD/YUAN exchange
rate and Oil, followed by the SP500 index, the USD/EUR exchange rate, and Gold.

We can summarise the analysis concluding that the Shapley values of the two models share a common pattern: for small lags,
the exchange rates and the equity index dominate in importance, while for large lags, the importance of commodities increases, and
the influence of SP500 decreases. This behaviour aligns with the longer auto-correlations existing in commodity prices, which are
well captured by both the recurrent networks. Additionally, the importance of the predictors tends to become stable as the number
of lags increases.

4. Conclusions

In the paper we have proposed explainable AI models for time series of data, which are much employed in finance, using Bitcoin
price prediction as a use case.

We have extended the Shapley–Lorenz method to time series machine learning models, which, unlike the more well-known
Shapley value method, yields easily interpretable normalised values.
12 
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Fig. 7. GRU neural network. Top panel: Shapley–Lorenz values for the five predictors as a function of lags. Bottom panel: Root Mean Square Error (RMSE) as
a function of lags.

The extension has allowed us to compare models not only in terms of predictive accuracy, but also in terms of explainability
and in terms of robustness, according to the SAFE-AI assessment framework.

The empirical findings have shown that, in terms of accuracy, the GRU and the LSTM are the best models; in terms of robustness,
all models, apart from the NNAR, perform well; in terms of explainability, simpler networks, such as MLP and RBF, are the best
models. Model choice depends on which criteria is deemed more relevant.

From a financial viewpoint, the application of the Shapley–Lorenz method to our data highlights that the contribution of the
classical financial variables to the explanation of the Bitcoin prices is limited, especially for the most accurate models. Such limited
degree of explanation is due to the much lower variability of classical assets, with respect to Bitcoin prices. However, in the
paper we have shown that, especially using recurrent neural networks, the variability of the explanations is much correlated to
the corresponding input variables. This means that the variability of the inputs is exploited, as much as possible, to obtain better
predictions.

From an applied viewpoint, three main findings emerge from our empirical analysis. First, to predict Bitcoin prices, recurrent
neural networks are more accurate, but less explainable than classic neural networks. Second, Bitcoin prices are mostly affected by
their lagged endogenous values, rather than by exogenous financial prices. Third, although limited, the contribution of financial
prices to Bitcoin price prediction is well captured by recurrent neural networks.

Furthermore, the analysis of the interactions among lagged values in recurrent networks indicate that the exchange rates and
the equity index dominate in explainability, while for larger lags, the importance of commodities increases, and the influence of
SP500 decreases.

Future research should include the extension of what proposed and, in particular, of the normalised S.A.F.E. metrics, including
Shapley–Lorenz values, to Generative AI models, which extend (forward) recurrent networks with (forward–backward) attention
mechanisms.
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