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Simple Summary: Pork is an indispensable meat source for humans. Clarifying the genetic basis of
the adaptability and domestication of pigs will promote the breeding process. In this study, numerous
candidate genes related to the environmental adaptation, domestication, and artificial selection of
pigs were selected via genome-wide selection sweep analysis. In particular, some genes located
in major histocompatibility complex regions were also under selection during domestication and
artificial selection. Phylogenetic comparative analysis revealed obvious differences in the population
distribution and management history between MHC region/MHC II haplotypes and genome-wide
genotypes. These findings enhance our theoretical understanding of the environmental adaptability
and domestication of pigs and offer valuable insights for disease-resistance breeding in pigs.

Abstract: As a global focus of animal husbandry, pigs provide essential meat resources for hu-
mans. Therefore, analyzing the genetic basis of adaptability, domestication, and artificial selection
in pigs will contribute to further breeding. This study performed a genome-wide selection sweep
analysis to identify candidate genes related to domestication and adaptive selection via data from
2413 public genotypes. Two complementary statistical analyses, FST (fixation index) and XP–EHH
(cross–population extended haplotype homozygosity) were applied. The results revealed that numer-
ous candidate genes were associated with high-altitude adaptability (e.g., SIRPA, FRS2, and GRIN2B)
and habitat temperature adaptability (e.g., MITF, PI3KC2A, and FRS2). In addition, candidate genes
related to the domestic genetic imprint of indigenous pigs (e.g., TNR, NOCT, and SPATA5) and
strong artificial selection pressure in commercial breeds (e.g., ITPR2, HSD17B12, and UGP2) were
identified in this study. Specifically, some MHC–related genes (e.g., ZRTB12, TRIM26, and C7H6orf15)
were also under selection during domestication and artificial selection. Additionally, a phylogenetic
comparative analysis revealed that the genetic divergence between populations does not fully follow
the geographical distribution and management history in the major histocompatibility complex
region/major histocompatibility complex II haplotypes, unlike that of the genome-wide genotypes.
Furthermore, the higher heterozygosity and haplotype alleles of MHC reduce the differences between
populations. Briefly, this study not only helps promote the relative theoretical understanding of
environmental adaptive selection and domestication but also provides a theoretical reference for
disease-resistant breeding in pigs.
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1. Introduction

As one of the main domestic animals, pigs (Sus scrofa) play important roles in agri-
cultural systems worldwide [1]. Zooarchaeological evidence has demonstrated that pigs
were domesticated independently in Anatolia and the Yellow River valley of China, dating
back at least 8000–10,000 years [2,3]. Since then, various phenotypic differences in the
appearance, growth, reproduction, meat quality, and adaptability of pigs have resulted
from long-term natural and artificial selection [4]. Currently, pigs provide a stable source of
food for humans; moreover, pigs are the main meat consumed worldwide and an important
dietary component, especially in Asia [5]. Humans have bred multiple pig breeds that
adapt to different feeding environments and meet the expected demands by breeding and
improvement [6,7].

Many candidate genes (CDGs) related to pig environmental adaptability and artificial
selection for economic breeding have been investigated by sweeping genomic imprinting.
For example, MITF and EDNRB were reported to be associated with the two-end black
color trait in Tongcheng pigs [8]. TLR9 was found to be related to the reproductive traits
of Taihu pigs [9]. A genome-wide detection of selection signatures in Duroc pigs revealed
that INSR, IGF1R, and IGF2R may be the key CDGs for their excellent growth traits [10]. A
series of genes (e.g., C10orf67, VEGFC, and ADAMTS9) enriched in the hypoxia response
category were confirmed to be related to the high-altitude adaptation of Tibetan pigs to
low-oxygen environments [11–14]. The FOXM1 and RTEL1 genes, which are considerably
enriched in the pathway of DNA damage repair, were found to help Tibetan pigs maintain
genomic stability during DNA replication and resist UV stimulation [11].

The major histocompatibility complex (MHC), a tightly linked group of genes located
in specific regions of vertebrate chromosomes, plays a crucial role in the immune system,
and its encoded product is called the major histocompatibility antigen [15]. The main
function of the MHC is to recognize invading factors from bacteria, viruses, and other
external sources within the body, thereby triggering the immune system to respond ac-
cordingly [16,17]. Ample evidence suggests that MHC is not only associated with animal
disease resistance and adaptability [18] but also closely linked to the economic traits of
livestock [19,20]. In particular, theories regarding the maintenance of genetic diversity and
evolutionary drivers of MHC regions in animals remain unclear, which limits the contribu-
tion of MHC region variations to disease-resistant breeding in domesticated animals.

However, most previous studies focused on populations with narrow geographical
regions or limited management backgrounds. Furthermore, given the presence of multiple
copies of genes and gene jumps in MHC regions, current research on MHC polymorphisms
is limited to identifying fragment polymorphisms in some key genes [21,22]. Fortunately,
commercial high-density genome-wide SNP chips of pigs (Illumina 60k SNP chips) have
been widely used worldwide in recent decades [23,24], providing sufficient data for a more
comprehensive understanding of the domestication and adaptive selection of domestic pigs.
In particular, accurate hybridization signals at each locus in the genome enable the precise
localization and acquisition of MHC variant genotypes with large chromosome spans,
contributing to the identification of diverse MHC regions. Therefore, this study utilizes
publicly available high-density SNP chip data from 2413 pigs across 129 worldwide breeds
to identify genomic imprints of domestication and adaptation in domestic pigs, helping
breeders further understand the genetic basis of the natural selection and domestication of
domestic pigs. In particular, this study emphasizes the role of the major histocompatibility
complex (MHC) in these processes, providing breeders further understanding into the
genetic mechanisms underlying natural selection and domestication in pigs.
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2. Materials and Methods
2.1. Acquisition of Original Data

A total of 2413 public Illumina 60k SNP datasets (Illumina, San Diego, CA, USA) from
129 pig breeds worldwide were retrieved from two published studies and available in
the Dryad Digital Repository [25,26], including 554 wild boars, 1367 indigenous pigs, and
492 commercial individuals. Further details are provided in Table S1. The original datasets
were combined via the PLINK v1.90—merge command.

2.2. Genome-Wide Selection Signal Analysis

The original datasets were filtered by VCFtools (v0.1.16) with a minor allele frequency
(MAF) of <0.05 and a call rate of ≥0.9, and nonbiallelic SNPs were removed. A total
of 44,081 autosomal SNPs were subsequently retained for analysis. Multiple pig breeds
were used for genome-wide selection signal analysis (GWSA) to screen candidate genes
associated with high altitude adaptability (case: altitude > 2800 m, control: altitude < 300 m),
habitat temperature adaptability (case: South China breeds, control: North China breeds),
domestication from wild boars to indigenous pigs (case: wild boars, control: indigenous
pigs), and artificial selection of indigenous pigs to commercial breeds (case: indigenous pigs,
control: commercial breeds) (Table S2). With respect to GWSA, the Pairwise Fixation Index
(FST) [27] and cross-population-extended haplotype homozygosity test (XP-EHH) [28] were
performed via VCFtools (v0.1.16) and selscan (v2.0.0, https://github.com/szpiech/selscan
(accessed on 10 October 2023)), respectively. CDGs were defined as the intersection of
genes annotated by SNPs with a top 1% threshold of FST and a top and tail 1% threshold of
XP-EHH based on the reference genome annotation file (Sus scrofa 10.2, GCA_000003025.4).
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses
of the CDGs were performed using KOBAS 3.0 (http://bioinfo.org/kobas (accessed on
15 June 2024)).

2.3. Genetic Diversity Characteristics of Pig MHC and Genome-Wide Data

The original datasets were filtered with parameters of MAF < 0.05, a call rate of ≥0.95,
and the PLINK function indep-pairwise 50 10 0.1 by PLINK software, resulting in 6929 SNPs
for subsequent population phylogenetic analysis and estimation of the diversity of all the
animals at the genome-wide level. In contrast, 63 SNPs were retained from the pig MHC I
(27 SNPs), II (16 SNPs), and III (19 SNPs) molecular regions.

The p-distance matrix between individuals was estimated by VCF2Dis (https://github.
com/hewm2008/VCF2Dis (accessed on 20 August 2024)). The neighbor-joining phy-
logenetic tree was constructed with FastME v2.1.6.2 software [29] and visualized with
iTOL (https://itol.embl.de/ (accessed on 20 August 2024)). Principal component analysis
(PCA) was performed via PLINK and visualized with the R program (ggplot2 package).
The linkage disequilibrium (LD) of the genomic region was determined via HaploView
4.2 (https://www.broadinstitute.org/haploview/haploview (accessed on 20 July 2024)).
Population phylogenetic clustering was performed using ADMIXTURE v1.3.0 (https:
//dalexander.github.io/admixture/ (accessed on 20 July 2024)) with K = 2–10, and the
minimum CV error of the K value was considered the most reliable K value. The haplo-
types of MHC II were constructed by DnaSP v6 (http://www.ub.edu/dnasp/ (accessed on
15 October 2023)) using the phase method. The observed heterozygosity (HO), expected
heterozygosity (HE) of the population, and pairwise differences (FST) were estimated using
Arlequin v3.5.2.2 software (https://cmpg.unibe.ch/software/arlequin35/ (accessed on
20 July 2024)) with default parameters. Correlation coefficient analysis between these
parameters was performed via R package ggplot2.

https://github.com/szpiech/selscan
http://bioinfo.org/kobas
https://github.com/hewm2008/VCF2Dis
https://github.com/hewm2008/VCF2Dis
https://itol.embl.de/
https://www.broadinstitute.org/haploview/haploview
https://dalexander.github.io/admixture/
https://dalexander.github.io/admixture/
http://www.ub.edu/dnasp/
https://cmpg.unibe.ch/software/arlequin35/
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3. Results
3.1. Genome-Wide Selective Sweep Analysis of Environmental Adaptability and Domestication
in Pigs

First, a total of 19 CDGs (e.g., CYP46A1, GRIN2B, and PDE9A) associated with adapta-
tion to high-altitude environments in pigs were identified (Figure 1A). A total of 26 KEGG
pathways and 238 GO terms were enriched. Notably, some CDGs (e.g., FRS2, PDE9A, and
SIRPA) were enriched in the KEGG pathways associated with the nervous system and in the
GO terms related to vascular and cardiac muscle (Table S3). Second, a total of 19 CDGs (e.g.,
ASRGL1, PIK3C2A, and MITF) related to pig environmental temperature adaptability were
obtained (Figure 1C). These genes were enriched in 37 KEGG pathways and 199 GO terms,
especially melanin- and metabolism-related pathways, and GO terms related to the ner-
vous system (Table S4). With respect to the domestication of pigs, 18 CDGs (e.g., THEMIS,
PRIM2, and NR5A2) were identified as being involved in the domestication of wild boars
into indigenous pig breeds (Figure 1E). These genes were enriched in 14 KEGG pathways
and 191 GO terms. According to the enrichment results (Table S5), several pathways and
GO terms, such as brain development, circadian rhythms, and spermatogenesis, attracted
our attention. Subsequently, 13 CDGs (e.g., SND1, ITPR2, and HSD17B12) were associated
with the artificial selection breeding of indigenous pigs into commercial breeds (Figure 1G).
A total of 53 KEGG pathways and 127 GO terms were enriched by these CDGs (Table S6).
Interestingly, HSD17B12, UGP2, and ITPR2 were enriched in the KEGG pathways related
to the nervous system, the synthesis and secretion of sex hormones, and the metabolism
of carbohydrates.
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Figure 1. Manhattan plots of selection signatures for environment adaptability and domestication 
of pigs using FST and XP–EHH methods. (A) Manhattan plots for high-altitude adaptability. (B) A 
Venn diagram of the intersection of candidate genes for high-altitude adaptability. (C) Manhattan 
plots for habitat temperature adaptability. (D) A Venn diagram of the intersection of candidate 
genes for habitat temperature adaptability. (E) Manhattan plots for domestication from wild boars 
to indigenous pigs. (F) A Venn diagram of the intersection of candidate genes for domestication 
from wild boars to indigenous pigs. (G) Manhattan plots for artificial selection from indigenous pigs 
to commercial pigs. (H) A Venn diagram of the intersection of candidate genes for artificial selection 
from indigenous pigs to commercial pigs. 

Figure 1. Manhattan plots of selection signatures for environment adaptability and domestication
of pigs using FST and XP–EHH methods. (A) Manhattan plots for high-altitude adaptability. (B) A
Venn diagram of the intersection of candidate genes for high-altitude adaptability. (C) Manhattan
plots for habitat temperature adaptability. (D) A Venn diagram of the intersection of candidate
genes for habitat temperature adaptability. (E) Manhattan plots for domestication from wild boars to
indigenous pigs. (F) A Venn diagram of the intersection of candidate genes for domestication from
wild boars to indigenous pigs. (G) Manhattan plots for artificial selection from indigenous pigs to
commercial pigs. (H) A Venn diagram of the intersection of candidate genes for artificial selection
from indigenous pigs to commercial pigs.

3.2. Genetic Diversity Characteristics of Pig MHC at Different Domestication and Selection Stages

An LD block analysis of the MHC regions revealed a block between CHR7_27,778,363 bp
and CHR7_27,797,198 bp in the MHC III region in indigenous and commercial pigs, which
cover the C2 and ZRTB12 genes (Figure 2B). A unique block between CHR7_27,373,527 bp and
CHR7_27,389,510 bp from the MHC I region, which included the C7H6orf15, DPCR1, and



Animals 2024, 14, 3159 5 of 14

C7H6orf205 genes, was investigated in commercial breeds. Additionally, two blocks were
confirmed only within wild boars: one is CHR7_24,777,963 bp and CHR7_24,791,155 bp in
MHC I (LOC100154127 and TRIM26), and the other is CHR7_29,543,539 bp and
CHR7_29,546,337 bp in MHC II (BRD2 and SLA-DQA).
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Furthermore, the phylogenetic tree of the genome-wide genotypes revealed that
nearly all individuals from each population or breed were classified together, indicating
that their phylogenetic relationships are consistent with their geographical distribution
and management history (Figure 3A). Specifically, the commercial breeds bred separately
in Europe (e.g., Landrace, Pietrain, and Yorkshire) and America (Hampshire and Duroc)
also presented distinct geographical origins. Similarly, the same population structure and
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individual kinship patterns were presented by both the PCA and ADMIXTURE results from
the genome-wide data (Figure 3B,C). In particular, the differences between groups became
more pronounced as the K value increased (Figure 3C). In contrast, the phylogenetic
tree constructed from the MHC data revealed a mixture of populations from different
geographical distributions (Figure 3D). The PCA results also revealed that pigs from
different continents presented greater genetic similarity compared to the genome-wide
data (Figure 3E). The ADMIXTURE results revealed that the most reliable K value of the
MHC region was 7, and the genetic stratification of all populations gradually became more
complex as the K value increased (Figure 3F).
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Figure 3. Genetic structure of worldwide pigs. (A) Neighbor-joining tree of pigs constructed
by genome-wide data. (B) Plots of principal components analysis based on genome-wide data.
(C) Admixture results of worldwide pig breeds from K = 2–10 based on genome-wide data.
(D) Neighbor-joining tree of pigs constructed by MHC data. (E) Plots of principal components
analysis based on MHC data. (F) Admixture results of worldwide pig breeds from K = 2–10 based on
MHC data.

Additionally, a total of 441 haplotypes were reconstructed by 16 SNPs from the MHC
II region. The population phylogenetic tree revealed more chaotic population relationships
than individual-level relationships with MHC SNPs (Figure 4A). Smaller FST pairs between
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populations were observed from haplotypes of MHC II than those of the genome-wide
genotypes (Figure 4B). Furthermore, the MHC II haplotype HO of all populations was
uniformly greater than that of the genome-wide genotypes (Table S7), and the mean FST
of the MHC II haplotype in more than 99% of the populations was lower than that of the
genome-wide genotypes (Table S8). Finally, the correlation analysis results between HO and
the mean FST of the MHC II haplotype for each population revealed a significant negative
correlation (Figure 4C, R = −0.58, p = 9.9 × 10−13).
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Figure 4. Phylogenetic network and population differentiation of 129 pig populations based on
genome-wide data and MHC II haplotypes. (A) Neighbor-joining tree of 129 pig populations con-
structed by the haplotypes of MHC II. (B) Pairwise population differentiation between 129 pig
populations based on the genome-wide data and the haplotypes of MHC II. (C) Correlation between
observed heterozygosity and mean FST of MHC II haplotypes in 129 pig populations.

4. Discussion
4.1. Genetic Basis of High-Altitude Adaptability in Eurasian Pigs

As one of the important livestock species in the Qinghai–Tibet Plateau, Tibetan pigs
play an important role in the regional agricultural economy. Importantly, thousands of years
of natural selection have enhanced their ability to adapt to the challenges of high-altitude
environments, including hypoxia and intense ultraviolet radiation [13]. Therefore, Tibetan
pigs are suitable animal models for understanding the genetic mechanism of high-altitude
adaptation. A series of biological characteristics formed under long-term natural selection,
such as good cardiopulmonary development, loss of hypoxic pulmonary vasoconstriction,
and right ventricular hypertrophy, contribute to the survival of plateau animals [30,31]. In
this study, a series of CDGs were enriched in the GO terms related to cardiomyocytes and
angiogenesis. Nitric oxide plays a major role in the changes in vascular tone and organ
function under hypoxia [32], whereas SIRPA is characterized as an acute regulator of arterial
vasodilation, which can inhibit nitric oxide-mediated vasodilation [33]. FRS2 has been
found to regulate the differentiation of human pluripotent cardiovascular progenitors and
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cardiomyocytes [34], while the inhibition of PDE9A reduces cardiac hypertrophy through
natriuretic peptide-dependent cGMP-PKG signal transduction [35], all of which may be
related to the increased heart size of Tibetan pigs. THSD7A, which is involved in embryonic
angiogenesis [36], has also been reported to be related to the adaptation of Tibetan pigs
to the hypoxic environment in previous studies [37]. The enrichment of the GRIN2B gene
in multiple pathways of the nervous system category also caught our attention. GRIN2B
has been reported to be associated with high-altitude adaptation in Tibetan pigs [31]. The
FRS2 gene was also enriched in the thermogenesis pathway, which may help Tibetan pigs
maintain body temperature at high altitudes, but no relevant findings have been reported
in previous studies.

4.2. Genetic Basis of Habitat Temperature Adaptability in Eurasian Pigs

In recent years, the increasing frequency of extreme weather events worldwide under-
scores the urgent need to investigate the genetic basis of temperature adaptation in pigs.
The vast geographical expanse of China allows indigenous pig breeds, which have thrived
at various latitudes and altitudes, to exhibit distinct environmental adaptability. This
study aimed to explore the genetic basis of temperature adaptation in pigs by comparing
the genomic differences between native pig breeds from Southern China and those from
Northern China. In this study, numerous CDGs were observed to explain the adaptability
of pigs to habitat temperature. MITF is a key gene in the melanogenesis pathway [38]. Heat
stress can markedly increase the expression of MITF, resulting in increased melanogene-
sis [39]. The coat color plays an important role in protecting animals from environmental
stresses, such as high temperatures. The profound effects of environmental temperature on
biological processes, such as aerobic metabolism, have been demonstrated in a previous
study [40]. Cellular metabolism is the basis of all biological activities [41]. Studies have
shown that the PI3KC2A [42], ASRGL1 [43], and CHSY1 [44] genes are involved mainly
in metabolism by regulating cellular proliferation. The PIK3C2A and FLI1 genes were
enriched in the GO terms related to blood circulation and angiogenesis. Notably, thermal
adaptation is achieved by increasing blood flow to the skin, which increases heat loss [45].
Several CDGs (e.g., FRS2, TRIM2, and GRIN2B) were enriched in multiple GO terms related
to forebrain development, neurons, and synapses, which is consistent with the fact that
temperature changes have considerable effects on the function of the nervous system and
its components [46]. Interestingly, two CDGs (FRS2 and GRIN2B) associated with both the
high-altitude adaptability and the habitat temperature adaptability of pigs were identified.
The climates in high-altitude areas and high-latitude areas of Northern China are relatively
cold. Therefore, these common CDGs may be related to the thermoregulation of indigenous
breeds in low-temperature environments.

4.3. Domestic Genetic Imprinting of Indigenous Pigs from Wild Boars

Since wild boars were domesticated in Eurasia, various phenotypic differences in the
appearance, growth, reproduction, and meat quality of pigs have resulted from long-term
natural and artificial selection [4]. In this study, wild boar and indigenous breeds from all
over the world were utilized to identify candidate genes associated with the domestication
of pigs. The results revealed that some CDGs (TNR, NOCT, and SPATA5) are involved in
the GO terms of synaptic transmission, circadian rhythms, and brain development. The
changes in brain size occurred during domestication, which may be related to the relaxed
selection pressure on cognitive abilities in the human environment [47]. In addition, various
biological functions, such as metabolism and cell proliferation, are regulated by circadian
rhythms [48,49]. Evidence shows that domestic pigs can adapt to photoperiod changes
by changing their circadian rhythm through the secretion of melatonin [50]. In particular,
NOCT controls specific circadian pathways associated with the uptake and utilization of
lipids [51]. In addition, RLF and SPATA5 play important roles in spermatogenesis and
testis development [52,53], which is in agreement with the knowledge of differences in
reproductive traits between wild boar and domestic pigs during domestication [54].
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4.4. Genetic Imprinting of Strong Artificial Selection Pressure in Commercial Breeds Worldwide

Over the past 200 years, a series of high-economic-value traits have been rapidly
fixed and standardized in commercial pig breeds through intense artificial selection. These
commercial breeds, such as Large White, Landrace, and Duroc breeds, present advantages,
including fast growth rates, superior meat quality, and high feed conversion efficiency [55].
This study aims to perform whole-genome selection signal scanning on these breeds
to reveal the genomic imprints resulting from strong artificial selection. In this study,
numerous CDGs related to the strong artificial selection of commercial pig breeds were
identified, with the aim of explaining the genetic roots in the context of commercial breeding.
ITPR2 was enriched in multiple pathways of the nervous system category. The knockout
of ITPR2 led to abnormalities in the striatum, a key component of the emotion-regulating
network in mice, which may be related to the depression-like behavior associated with
ITPR2 deficiency [56]. Moreover, several CDGs (ITPR2, HSD17B12, and UGP2) enriched
in KEGG pathways are associated with the synthesis and secretion of sex hormones. A
previous study suggested that an insufficient dose of HSD17B12 affects the fertility of
female mice, resulting in premature ovarian insufficiency [57]. UGP2 was reported to be
related to the semen quality of Niangya yaks [58]. In addition, several CDGs were enriched
in KEGG pathways, such as salivary secretion, gastric acid secretion, and metabolism of
multiple carbohydrates, which may be related to the digestive function and absorption
capacity of commercial pig breeds.

4.5. Genetic Diversity Characteristics of Pig MHC at Different Domestication and Selection Stages

The MHC is a term referring to a group of genes encoding major histocompatibil-
ity antigens in animals whose main function is antigen presentation [59]. An increasing
number of studies have confirmed that MHC is related not only to immunity but also to
the multiplex traits of domesticated animals [60,61]. In this study, an LD block covering
three genes (STG, MUCL3, and C7H6orf205) was observed in commercial pigs compared
with indigenous/wild pigs. In clinical practice, MUCL3 is considered a prognostic marker
for immunogenic cell death associated with patients with colorectal cancer [62]. Specif-
ically, MUCL3 has been confirmed to be associated with cancers and neuropsychiatric
disorders [63,64]. Commercial pigs suffer from negative experiences of life emotions and
the expression of animal instincts due to industrial management [65].

In addition, an LD block covering two genes (C2 and ZBTB12) was shown in in-
digenous/commercial animals. Recently, complementary C2 may be causally related to
increased type 2 diabetes risk [66,67]. A previous study confirmed that the upregulation
of C2 is positively correlated with obesity and hyperinsulinemia in subcutaneous adipose
tissue and adipocytes and negatively correlated with the expression of insulin signaling-
related genes [68]. In addition, ZBTB12 plays important roles in various biological functions,
such as serving as a molecular barrier that protects the unidirectional transition from the
fate of metastable stem cells to the late developmental stage [69], and ZBTB12 methylation
is associated with cardiovascular disease risk [70]. In particular, a large haploblock (cov-
ering ZBTB12) from the human MHC region HLA-B*57 was verified to be related to the
HIV viral load [71]. This result suggests that the strong selection under both gene regions
in indigenous pigs may help contribute to their different environmental adaptabilities and
body shape formations compared with those of wild boars.

The results of both the phylogenetic analysis and the population structure analysis
(K = 2) based on the genome-wide data indicated that the phylogenetic relationships
among 129 worldwide pig breeds aligned with their geographical distribution. Notably,
two distinct branches representing European and Asian ancestry were identified, which
corroborates previous findings that the domestication of pigs primarily originated in Europe
and Asia [25,72]. Furthermore, the differences in phylogenetic analysis results between
genome-wide data and the MHC region confirmed the previous discovery of divergence
in the evolutionary stage between the MHC region and the autosomal genome [73,74]. In
theory, abundant evidence suggests that the MHC region of vertebrates is influenced by
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multiple selection and evolutionary driving forces [75,76]. This study revealed that the
potential dominant genotypes of these MHC-related genes were gradually fixed in the
domestication and artificial selection stages. Some evidence supports the argument that the
MHC suffers from positive selection [77,78]. However, domestication does not significantly
reduce MHC diversity in pigs [79]. Additional evidence suggests that the diversity of
MHCs is modified by a combination of complex evolutionary forces, such as genetic drift,
balanced selection, pathogen drive, the environment, and migration [73,80,81].

In this study, although the phylogenetic tree and PCA results of the MHC regions did
not show a clear phylogenetic relationship consistent with the geographic distribution and
management history of the genome-wide genotypes, two clear clusters in Europe and Asia
were still observed. This finding supports the hypothesis that multiple forces are involved
in maintaining MHC diversity, particularly with a wealth of evidence indicating that the
epidemiological history of different geographical regions is crucial to the development
of MHC diversity in populations [82]. Additional evidence also suggests that MHC di-
versity is influenced by ancestral haplotypes, leading to different geographic distribution
groups carrying private MHC genotypes inherited from their ancestral animals in the early
stages of domestication or their ancient/wide ancestors [83,84] because of the conserved
immunological function of the MHC.

Additionally, this study revealed that numerous indigenous and commercial individu-
als from different geographical distributions exhibit inexplicable close blood relationships
in the MHC. A lower population genetic divergence and greater heterozygosity of the MHC
region than the genome-wide genotypes were observed, which directly demonstrates that
balanced selection is a key force in maintaining the genetic diversity of the MHC. Studies
have confirmed that MHC gene loci carry as many alleles as possible through balanced
selection, enabling them to bind to multiple pathogen antigens, thereby enhancing the host
immune response to pathogens [85,86]. In particular, European rabbit individuals with
MHC DRB heterozygous genotypes have greater body weights and lower hepatic coccidia
loads than homozygous individuals [87]. Therefore, high heterozygosis and more geno-
types in the MHC may contribute to different individuals who may share the same alleles
and reduce genetic differences between populations/breeds [74]. This is also determined
by the unique biological function of the MHC, which plays a critical role in ensuring the
survival of animals in natural environments and supporting population persistence.

5. Conclusions

This study provides comprehensive insights into the domestication and environmental
adaptation of pigs through a genome-wide selection analysis of 2413 pigs across 129 global
populations. Numerous CDGs associated with high-altitude adaptation, temperature adapt-
ability, and domestication processes have been identified, shedding light on the genetic
mechanisms behind these traits. These findings highlight the complexity of pig domesti-
cation, which is driven by both natural and artificial selection pressures. Moreover, this
study underscores the importance of the major histocompatibility complex in maintaining
genetic diversity across different stages of domestication, with balanced selection playing a
crucial role in preserving MHC polymorphisms. These results not only provide a theoretical
understanding of pig genetics but also offer valuable information for breeding programs
aimed at improving disease resistance and adaptability in domestic pig populations.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ani14213159/s1, Table S1: Detailed information of pig populations;
Table S2: Sample grouping information of genome-wide selection signal analysis; Table S3: Enrich-
ment results of KEGG pathways and GO terms for candidate genes associated with high-altitude
adaptability; Table S4: Enrichment results of KEGG pathways and GO terms for candidate genes
associated with habitat temperature adaptability; Table S5: Enrichment results of KEGG pathways
and GO terms for candidate genes associated with domestication from wild boars to indigenous
pigs; Table S6: Enrichment results of KEGG pathways and GO terms for candidate genes associ-
ated with artificial selection from indigenous pigs to commercial pigs; Table S7: Comparison of
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all populations.
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