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Two weakly nonlinear integral equations of motion commonly used in the
literature to study the nonlinear dynamics of straight and initially not rectilin-
ear Euler-Bernoulli beams, respectively, are further investigated. Attention is
focused on the process known as “static condensation”,which consists of neglect-
ing the axial inertia in the exact, fully nonlinear system of equations of motion to
determine the axial displacement as a function of the transversal one. The nov-
elty of the paper relies on showing that, contrarily to expectation and somehow
surprisingly, the integral equation for beams with a not rectilinear initial con-
figuration cannot be obtained by the static condensation process starting from
the exact, fully nonlinear, equations of motion, apart from a very particular and
specific case. On the contrary, it is confirmed the well-known result that for
rectilinear beams the integral equation can be obtained by the static conden-
sation. This highlights a major difference between the two integral equations
in terms of reliability and allows us a better understanding of the integral equa-
tion of rectilinear beams, underlying its strongermathematical background than
the classical counterpart for not straight beams (i.e., its being obtainable from
the exact, fully nonlinear, equations of motion via static condensation), which
provides it with a “special” behavior and makes it more trustworthy.

1 INTRODUCTION ANDMOTIVATION

In many papers [1], [2] and textbooks [3], [4] the equation

𝜌𝐴�̈� + 𝐸𝐼𝑤𝐼𝑉 −
𝐸𝐴

2𝐿
𝑤′′ ∫

𝐿

0

𝑤
′2𝑑𝑧 = 𝐹 (𝑧, 𝑡) , (1)

that dates back at least to Mettler [5] and Bolotin [6], has been used to investigate the nonlinear dynamics of initially
straight beams in which, due to the boundary conditions (axially restraint, i.e., 𝑢 (0, 𝑡) = 𝑢 (𝐿, 𝑡) = 0) and lack of axial-
transversal internal resonance, the axial inertia can be neglected, �̈� ≈ 0, which is known as Kirchhoff assumption [7] or
“static” or “kinematic” condensation [8]. Here 𝑢(𝑧, 𝑡) and𝑤(𝑧, 𝑡) are the axial and transversal displacements, respectively,
𝐸𝐼 the bending stiffness, 𝐸𝐴 the axial stiffness, 𝜌𝐴 the mass per unit length, 𝐹(𝑧, 𝑡) the external distributed load in the
transversal direction and 𝐿 the length of the beam. Prime denotes derivative with respect to the spatial variable 𝑧 and dot
derivative with the time 𝑡. The beam is assumed to be homogeneous, namely 𝐸𝐼, 𝐸𝐴 and 𝜌𝐴 are constants.
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Equation (1) is valid only for moderate displacements and has been applied in different fields of engineering, like for
example in micromechanics [9], [10]. One of its advantages, and likely the main reason of its popularity, is that when
𝐹 (𝑧, 𝑡) = 𝑓(𝑡)𝑎(𝑧), where 𝑎 (𝑧) = 𝑐1 sin(

𝑛𝜋𝑧

𝐿
) + 𝑐2 cos(

𝑛𝜋𝑧

𝐿
) is such that 𝑎′′ (𝑧) = −(

𝑛𝜋

𝐿
)
2
𝑎(𝑧), and when the boundary

conditions are satisfied by 𝑎(𝑧) (by properly selecting 𝑐1 and 𝑐2; for example for the hinged-hinged case we have 𝑐1 = 1

and 𝑐2 = 0), the solution 𝑤 (𝑧, 𝑡) = 𝑏(𝑡)𝑎(𝑧) leads exactly to the Duffing equation

𝜌𝐴�̈� (𝑡) + 𝐸𝐼
(𝑛𝜋

𝐿

)4
𝑏 (𝑡) +

𝐸𝐴

4

(𝑛𝜋
𝐿

)4 (
𝑐2
1
+ 𝑐2

2

)
𝑏3(𝑡) = 𝑓 (𝑡) , (2)

an ordinary differential equation which is easily solved.
When the initial shape is not straight, and denoted by 𝑤0(𝑧), the counterpart of Equation (1) is

𝜌𝐴�̈� + 𝐸𝐼𝑤𝐼𝑉 −
𝐸𝐴

2𝐿

(
𝑤′′ + 𝑤′′

0

)
∫

𝐿

0

(
𝑤

′2 + 2𝑤′𝑤′
0

)
𝑑𝑧 = 𝐹 (𝑧, 𝑡), (3)

which has been used in papers dealing with beams slightly curved (shallow arches) or with unwanted imperfections [11],
[12], [13], [14], [15], and again in different fields, including studies of MEMS [16] and internal resonances [17], and also
with other “extra” terms like elastic foundation [18] and nonlinear boundary conditions [19]. We refer to [3] and [20] for
the details of the derivation of (3), which essentially is based on the assumption that the axial strain in the beam remains
approximately constant in space.
To obtain exactly an ordinary differential equation from (3) requires that also 𝑤0(𝑧) is proportional to 𝑎(𝑧), which

is slightly more restrictive but often enough to illustrate the effects of the initial non rectilinearity. In this case, the
reducedmodel has also a quadratic term and is known as Helmholtz-Duffing equation [21]; the quadratic and cubic terms
depend on the transverse boundary conditions, while the axial boundary conditions 𝑢 (0, 𝑡) = 𝑢 (𝐿, 𝑡) = 0must always be
granted.
One of the reasons for the success and versatility of (3) is that it permits to accurately compute the linear natural frequen-

cies of initially curved beams with small sag; they do not vary significantly from those computed by the exact equations,
as shown in the forthcoming Figure 2a.
In the literature also the equivalent version of (3) has been less frequently used [22], [23], [24]

𝜌𝐴�̈� + 𝐸𝐼
(
𝑦𝐼𝑉 − 𝑤𝐼𝑉

0

)
−

𝐸𝐴

2𝐿
𝑦′′ ∫

𝐿

0

(
𝑦
′2 − 𝑤

′2
0

)
𝑑𝑧 = 𝐹 (𝑧, 𝑡), (4)

where 𝑦(𝑧, 𝑡) = 𝑤(𝑧, 𝑡) + 𝑤0(𝑧).
The large use of (1) and (3) that has been done in the literature naturally calls for a deeper understanding, in particular for

their derivation frommore general equations in order to have a solid background, and to clearly have inmind potentialities
and limits of use of these equations, that we name “integral equations”.
As already anticipated, (1) can be obtained by neglecting the axial inertia and obtaining the axial displacement as a

“static” function of the transversal one (in the sense that it can be achieved by solving an equation that no longer contains
the time-dependence), and then substituting this expression in the transversal equation ofmotion; this approach is known
as “static condensation”, and provides a clear theoretical base for (1). For example, it tells us that when axial inertia cannot
be neglected, that is, when the edges of a beam are movable in the axial direction, (1) is not valid, a fact that seems to be
not so well understood in the engineering community.
Since (3) is the counterpart of (1) for initially not rectilinear beams, the natural question is: can it also be derived by the

static condensation procedure? The main goal of this paper is to show rigorously that in general the answer is no, a fact
that makes (3) somehow weaker than (1), and thus less reliable.
To be as general as possible, we apply the static condensation directly to the kinematically exact nonlinear equa-

tions, without any a priori approximations that can affect the results. There is quite a lot of literature on kinematically
exact equations of motion for straight beams, in papers [25], [26] as well as in textbooks [27], [28], even if we prefer
to derive the equations by ourselves to use a specific notation and a given reference configuration that are convenient
for us.

 15214001, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202300668 by U

niversity Polit D
elle M

arche-A
ncona C

tr A
teneo, W

iley O
nline L

ibrary on [26/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LENCI and SOROKIN 3 of 13

2 THE EXACT KINEMATIC RELATIONS AND APPROXIMATE STRAINMEASURES

Let us consider a planar beam, which in this work is identified with its axis and thus it is a curve in the plane. With
reference to Figure 1 the following exact kinematic relations hold:
initial configuration

cosΦ =
𝑑𝑋

𝑑𝑆
=

𝑋′

𝑆′
, sinΦ =

𝑑𝑌

𝑑𝑆
=

𝑌′

𝑆′
, tanΦ =

𝑑𝑌

𝑑𝑋
=

𝑌′

𝑋′
,

𝑑𝑆 =
√
𝑑𝑋2 + 𝑑𝑌2 → 𝑆′ =

√
𝑋′2 + 𝑌′2,

𝐾𝑚 =
𝑑Φ

𝑑𝑧
= Φ′ =

[
atan

(
𝑌′

𝑋′

)]′
, 𝐾𝑔 =

𝑑Φ

𝑑𝑆
=

𝑑Φ

𝑑𝑧

𝑑𝑧

𝑑𝑆
=

𝐾𝑚

𝑆′
,

(5)

deformed configuration

cos 𝜙 =
𝑑𝑥

𝑑𝑠
=

𝑥′

𝑠′
, sin 𝜙 =

𝑑𝑦

𝑑𝑠
=

𝑦′

𝑠′
, tan 𝜙 =

𝑑𝑦

𝑑𝑥
=

𝑦′

𝑥′

𝑑𝑠 =
√
𝑑𝑥2 + 𝑑𝑦2 → 𝑠′ =

√
𝑥′

2
+ 𝑦′

2

𝑘𝑚 =
𝑑𝜙

𝑑𝑧
= 𝜙′ =

[
atan

(
𝑦′

𝑥′

)]′
, 𝑘𝑔 =

𝑑𝜙

𝑑𝑠
=

𝑑𝜙

𝑑𝑧

𝑑𝑧

𝑑𝑠
=

𝑘𝑚
𝑠′

,

(6)

deformations

𝜀𝑧 =
𝑑𝑠

𝑑𝑆
− 1 =

𝑠′

𝑆′
− 1,

𝑘𝑧 = Δ 𝑘𝑚 = 𝑘𝑚 − 𝐾𝑚 = 𝜙′ − Φ′ = (𝜙 − Φ)
′
= (Δ𝜙)

′
,

Δ 𝑘𝑔 = 𝑘𝑔 − 𝐾𝑔 =
𝑘𝑚
𝑠′

−
𝐾𝑚

𝑆′
=

𝑘𝑚
𝑠′

− (1 + 𝜀𝑧)
𝐾𝑚

𝑠′
=

𝑘𝑚 − 𝐾𝑚 − 𝜀𝑧𝐾𝑚

𝑠′
=

Δ𝑘𝑚 − 𝜀𝑧𝐾𝑚

𝑠′
,

(7)

F IGURE 1 Reference, initial and deformed configurations.
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4 of 13 LENCI and SOROKIN

displacements

𝑠𝑥 = 𝑥 − 𝑋, displacement along 𝑥

𝑠𝑦 = 𝑦 − 𝑌, displacement along 𝑦

𝑢 = 𝑠𝑥 cosΦ + 𝑠𝑦 sinΦ, axial displacement

𝑤 = −𝑠𝑥 sinΦ + 𝑠𝑦 cosΦ. transversal displacement

(8)

positions

𝑥 = 𝑋 + 𝑠𝑥 = 𝑋 + 𝑢 cosΦ − 𝑤 sinΦ,

𝑦 = 𝑌 + 𝑠𝑦 = 𝑌 + 𝑢 sinΦ + 𝑤 cosΦ,
(9)

where 𝐾𝑚 and 𝑘𝑚 are the mechanical curvatures, 𝐾𝑔 and 𝑘𝑔 the geometrical curvatures [29], [30] and 𝜀𝑧 the axial
deformation. All other symbols are implicitly defined in Figure 1.
Assuming 𝑋 (𝑧) = 𝑧 and 𝑌 (𝑧) = 𝑤0 (𝑧), the following expressions are obtained (remember that 𝑘𝑧 = Δ 𝑘𝑚 = (Δ𝜙)

′ )

𝜀𝑧 =
𝑢′√

1 + 𝑤
′2
0

−
𝑤

′′

0(
1 + 𝑤

′2
0

)3∕2 𝑤
+

1

2

𝑤
′2

1 + 𝑤
′2
0

+
𝑤

′′

0(
1 + 𝑤

′2
0

)2 𝑢𝑤′ +
1

2

𝑤
′′2
0(

1 + 𝑤
′2
0

)3 𝑢2 +⋯ ,

(10)

Δ𝜙 =
𝑤′√
1 + 𝑤

′2
0

+
𝑤′′
0(

1 + 𝑤
′2
0

)3∕2 𝑢
−

1

1 + 𝑤
′2
0

𝑢′𝑤′ −
𝑤′′
0(

1 + 𝑤
′2
0

)2 (𝑢′𝑢 − 𝑤′𝑤
)
+

𝑤′′2
0(

1 + 𝑤
′2
0

)3 𝑢𝑤 +⋯ ,

(11)

where we have considered terms only up to quadratic in the unknowns 𝑢 and 𝑤, which are enough for small/moderate
values of the displacements and in any case are the first terms providing nonlinearities. The curvature is the mechanical
one [29], [30].
When the beam is initially circular, we have 𝑋 (𝑧) = −𝑅 cos(

𝑧

𝑅
) and 𝑌 (𝑧) = 𝑅 sin(

𝑧

𝑅
), so that 𝐾𝑚 = 𝐾𝑔 = −

1

𝑅
= −𝑘,

where 𝑅 is the initial radius of curvature and 𝑘 the associated curvature; both do not depend on 𝑧. In this case we
have

𝜀𝑧 = 𝑢′ + 𝑘𝑤 +
1

2
𝑤

′2 − 𝑘𝑢𝑤′ +
1

2
𝑘2𝑢2 +⋯ , (12)

Δ𝜙 = 𝑤′ − 𝑘𝑢 − 𝑢′𝑤′ + 𝑘
(
𝑢′𝑢 − 𝑤′𝑤

)
+ 𝑘2𝑢𝑤 +⋯ , (13)

where again only terms up to quadratic are kept.
In a quite naïve way, we note that (12)–(13) can be obtained from (10)–(11) by assuming 1 + 𝑤′

0

2
≈ 1 and 𝑤

′′

0
= −𝑘, so

that they are equivalent for almost rectilinear beams that can be approximated by an arch of low sag.
In (10)–(11) and (12)–(13) we have implicitly made the assumption that 𝑢 and𝑤 have the same order of magnitude. This

is expected for beams with very large initial curvature (note that up to now no limitations are introduced on the initial
shape). However, since the axial stiffness is commonly much larger than the bending stiffness, for beams with moderate
initial deviation from the rectilinear configuration it can be assumed that the axial displacement 𝑢 is at least one order of
magnitude smaller than the transversal one.
To support the previous hypothesis, we report in Figure 2b the ratio 𝑟 =

𝑤𝑚𝑎𝑥

𝑢𝑚𝑎𝑥

between the maximum transversal
displacement and themaximumaxial displacement for the first three linear normalmodes for circular beamswith hinged-
hinged ends and for varying dimensionless initial curvature 𝛼 = 𝑘𝐿. Note that 𝑤𝑚𝑎𝑥 and 𝑢𝑚𝑎𝑥 are not obtained at the
same point of the beam. It is clear that for low values of 𝑘 we have 𝑟 > 10, a fact that confirms the previous assumption;
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LENCI and SOROKIN 5 of 13

F IGURE 2 (a) The first three dimensionless frequencies 𝜔 = �̄� 𝐿2
√
𝜌𝐴∕𝐸𝐼 (continuous lines are the exact values, dashed lines are

computed by the linearized version of (3): 𝜌𝐴�̈� + 𝐸𝐼𝑤𝐼𝑉 − (𝐸𝐴∕𝐿)𝑤
′′

0

𝐿∫
0

(
𝑤′𝑤

′

0

)
𝑑𝑧 = 0, where 𝑤0 = (𝑘∕2)𝑧(𝐿 − 𝑧) so that 𝑤′′

0 = −𝑘), and (b)

the corresponding ratio 𝑟 =
𝑤𝑚𝑎𝑥

𝑢𝑚𝑎𝑥

(computed with the exact equations) for a hinged-hinged circular beam (whose boundary conditions are

𝑢 (0) = 𝑢 (𝐿) = 𝑤 (0) = 𝑤 (𝐿) = 𝑤′′ (0) − 𝑘𝑢′ (0) = 𝑤′′ (𝐿) − 𝑘𝑢′ (𝐿) = 0) with slenderness 𝜆 = 𝐿
√
𝐸𝐴∕𝐸𝐼 = 100. Black is the first mode

(that for 𝛼 > 0.41 becomes the second), red the second mode (that for 𝛼 > 0.41 becomes the first) and blue the third mode. The grey line is the
threshold 𝑟 = 10. 𝛼 = 𝑘𝐿 is a dimensionless measure of the initial curvature, and practically corresponds to the angle of opening of the arch
(in radians).

more precisely, we have that 𝑟 > 10 for 𝛼 < 0.31 = 17.8◦ for the second mode, for 𝛼 < 0.98 = 56.1◦ for the first mode,
while surprisingly for the third mode we have always 𝑟 > 10 in the considered range. Strictly speaking, this is valid only in
the linear realm, but it is not difficult to accept that it is still qualitatively acceptable for moderate nonlinearities, as well
as for different boundary conditions, of course with different numerical thresholds.
Assuming that 𝑢 is of the second order and that 𝑤 is of the first order, and still keeping terms only up to the second

order, (10)–(11) become

𝜀𝑧 = −
𝑤′′
0(

1 + 𝑤
′2
0

) 3

2

𝑤 +
𝑢′√

1 + 𝑤
′2
0

+
1

2

𝑤
′2

1 + 𝑤
′2
0

+⋯ , (14)

Δ𝜙 =
𝑤′√
1 + 𝑤

′2
0

+
𝑤′′
0(

1 + 𝑤
′2
0

)3∕2 𝑢 +
𝑤′′
0(

1 + 𝑤
′2
0

)2 𝑤′𝑤 +⋯ , (15)

while (12)–(13) become

𝜀𝑧 = 𝑘𝑤 + 𝑢′ +
1

2
𝑤

′2 +⋯ , (16)

Δ𝜙 = 𝑤′ − 𝑘𝑢 − 𝑘𝑤′𝑤 +⋯ . (17)

For beams such that 𝑤′
0

2
≪ 1, that is, those with very small initial slopes, the expressions (14)–(15) further simplify:

𝜀𝑧 = −𝑤′′
0
𝑤 + 𝑢′ +

1

2
𝑤

′2 +⋯ , (18)

Δ𝜙 = 𝑤′ + 𝑤′′
0
𝑢 + 𝑤′′

0
𝑤′𝑤 +⋯ , (19)

while (16)–(17) remain unchanged. Note that only the second derivative of the initial configuration appears in (18)–(19).
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6 of 13 LENCI and SOROKIN

Finally, for straight beams, 𝑤0 (𝑧) = 0, we have

𝜀𝑧 = 𝑢′ +
1

2
𝑤

′2 +⋯ , (20)

Δ𝜙 = 𝑤′ +⋯ , (21)

where we underline that there are no quadratic terms in the expression of the curvature (that thus is linear), according to
the initial symmetry of the beam with respect to the reference configuration. Expressions (20) and (21) are the same used
in the Föppl–Kármán nonlinear theory of plates [3].

3 THE EQUATIONS OFMOTION

Let

𝑇 = ∫
𝐿

0

𝐸𝑇𝑑𝑧, 𝐸𝑇 =
𝜌𝐴

2

(
�̇�2 + �̇�2

)
,

𝑈 = ∫
𝐿

0

𝐸𝑈𝑑𝑧, 𝐸𝑈 =
1

2

(
𝐸𝐴𝜀2𝑧 + 𝐸𝐼𝜅2𝑧

)
,

𝑉 = ∫
𝐿

0

(𝑄𝑢 + 𝐹𝑤) 𝑑𝑧 − 𝑄0𝑢 (0) + 𝑄𝐿𝑢 (𝐿) − 𝐹0𝑤 (0) + 𝐹𝐿𝑤 (𝐿),

(22)

be the kinetic energy, potential energy, and work done by the external loads. 𝑄0, 𝑄𝐿, 𝐹0, and 𝐹𝐿 are the reactions of the
boundary constraints, and 𝑢(0), 𝑢(𝐿), 𝑤(0), and 𝑤(𝐿) are their known imposed displacements, that commonly vanish.
Rotary inertia and shear deformations are neglected, according to the fact that the beam is assumed to be slender as in the
Euler-Bernoulli theory. The Lagrangian is

 = ∫
𝑡1

𝑡0

(𝑇 − 𝑈 + 𝑉) 𝑑𝑡. (23)

The equation of motion in the axial direction is obtained by the stationarity of  with respect to 𝑢, and is given by

0 = 𝜌𝐴�̈� − 𝑄 +
𝜕𝐸𝑈

𝜕𝑢
−

𝑑

𝑑𝑧

𝜕𝐸𝑈

𝜕𝑢′
+

𝑑2

𝑑𝑧2
𝜕𝐸𝑈

𝜕𝑢′′

= 𝜌𝐴�̈� − 𝑄 +

(
𝐸𝐴𝜀𝑧

𝜕𝜀𝑧
𝜕𝑢

+ 𝐸𝐼𝜅𝑧
𝜕𝜅𝑧
𝜕𝑢

)
−

(
𝐸𝐴𝜀𝑧

𝜕𝜀𝑧
𝜕𝑢′

+ 𝐸𝐼𝜅𝑧
𝜕𝜅𝑧
𝜕𝑢′

)′

+

(
𝐸𝐴𝜀𝑧

𝜕𝜀𝑧
𝜕𝑢′′

+ 𝐸𝐼𝜅𝑧
𝜕𝜅𝑧
𝜕𝑢′′

)′′

.

(24)

The equation of motion in the transversal direction is instead obtained by the stationarity of with respect to 𝑤, and is
given by

0 = 𝜌𝐴�̈� − 𝐹 +
𝜕𝐸𝑈

𝜕𝑤
−

𝑑

𝑑𝑧

𝜕𝐸𝑈

𝜕𝑤′
+

𝑑2

𝑑𝑧2
𝜕𝐸𝑈

𝜕𝑤′′

= 𝜌𝐴�̈� − 𝐹 +

(
𝐸𝐴𝜀𝑧

𝜕𝜀𝑧
𝜕𝑤

+ 𝐸𝐼𝜅𝑧
𝜕𝜅𝑧
𝜕𝑤

)
−

(
𝐸𝐴𝜀𝑧

𝜕𝜀𝑧
𝜕𝑤′

+ 𝐸𝐼𝜅𝑧
𝜕𝜅𝑧
𝜕𝑤′

)′

+

(
𝐸𝐴𝜀𝑧

𝜕𝜀𝑧
𝜕𝑤′′

+ 𝐸𝐼𝜅𝑧
𝜕𝜅𝑧
𝜕𝑤′′

)′′

.

(25)
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LENCI and SOROKIN 7 of 13

The equations of motion strongly depend on the expressions of the deformations 𝜀𝑧 and 𝜅𝑧 that are considered, see
(10)–(21), and will lead to different beam models.
The stationarity of also gives the boundary conditions, in particular the “essential” or geometric boundary conditions

on the displacements 𝑢, 𝑤 and 𝜙, and the alternative “natural” or force boundary conditions. In this work only boundary
conditions for 𝑢 are used, see forthcoming Equation (26), while those in the transversal direction are not utilized (apart
from the example of Figure 2 where they are reported), and thus they are not discussed.

4 THE STATIC CONDENSATION

Themain idea of the static condensation [7], [8] consists of neglecting the axial inertia term𝜌𝐴�̈� in (24). Fromamechanical
point of view this makes sense only (i) in the absence of external axial load, 𝑄 = 0, and (ii) when the ends of a beam are
fixed in the axial direction,

𝑢(0, 𝑡) = 𝑑1, 𝑢 (𝐿, 𝑡) = 𝑑2. (26)

Commonly 𝑑1 = 𝑑2 ( = 0), while the case 𝑑1 ≠ 𝑑2 corresponds to a pre-stressed initial configuration. These are two
important hypotheses that are at the base of the utilized approach andmust be properly checked to ascertain the reliability
of the final results.
With the previous assumptions, Equation (24) becomes(

𝜀𝑧
𝜕𝜀𝑧
𝜕𝑢

+ 𝜌2𝜅𝑧
𝜕𝜅𝑧
𝜕𝑢

)
−

(
𝜀𝑧
𝜕𝜀𝑧
𝜕𝑢′

+ 𝜌2𝜅𝑧
𝜕𝜅𝑧
𝜕𝑢′

)′

+

(
𝜀𝑧

𝜕𝜀𝑧
𝜕𝑢′′

+ 𝜌2𝜅𝑧
𝜕𝜅𝑧
𝜕𝑢′′

)′′

= 0, (27)

where 𝜌 =
√
𝐸𝐼∕𝐸𝐴 is the radius of gyration of the beam cross-section.

Equation (27) is an ordinary differential equation (in the spatial coordinate 𝑧) that, together with the boundary condi-
tions (26), permits to compute the unknown 𝑢(𝑧, 𝑡), whichwill depend on𝑤(𝑧, 𝑡) and its derivatives. It is a “static” problem
since there are no more time derivatives (here time is just a parameter) and this motivates the name “static condensation”
adopted for this approach.
While in principle the problem (26)–(27) can be always solved, we are interested in studying the cases in which the

solution is “simple” enough to be of interest for engineers, in particular when it is analytical, rather than numerical.
We start by noting that in the most general case (10)–(11) (or (12)–(13)) we were not able to find an “easy” solution, in

particular because of the term 𝑢2 in (10) and (12) that makes these equations nonlinear with respect to 𝑢. Thus, in the
following we consider only moderately not rectilinear beams where the axial displacement is one order of magnitude
smaller than the transversal one. From (14) and (15) we obtain

𝜕𝜀𝑧
𝜕𝑢

= 0,
𝜕𝜅𝑧
𝜕𝑢

=

⎛⎜⎜⎜⎝
𝑤′′
0(

1 + 𝑤′
0

2
)3∕2

⎞⎟⎟⎟⎠
′

=
𝑤′′′
0(

1 + 𝑤′
0

2
)3∕2 − 3

𝑤′′2
0
𝑤′
0(

1 + 𝑤
′2
0

)5∕2 ,
𝜕𝜀𝑧
𝜕𝑢′

=
1√

1 + 𝑤
′2
0

,
𝜕𝜅𝑧
𝜕𝑢′

=
𝑤′′
0(

1 + 𝑤
′2
0

)3∕2 , 𝜕𝜀𝑧
𝜕𝑢′′

= 0,
𝜕𝜅𝑧
𝜕𝑢′′

= 0,

(28)

so that (27) becomes, after some simplifications,

⎛⎜⎜⎜⎝
𝜀𝑧√

1 + 𝑤′2
0

⎞⎟⎟⎟⎠
′

+ 𝜌2
𝑘′𝑧𝑤

′′
0(

1 + 𝑤
′2
0

)3∕2 = 0. (29)
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8 of 13 LENCI and SOROKIN

Solving (29) with respect to 𝜀𝑧 yields (remember that 𝑘𝑧 = (Δ𝜙)
′)

𝜀𝑧 =

√
1 + 𝑤

′2
0

⎧⎪⎨⎪⎩𝑒1 − 𝜌2 ∫
𝑧

0

𝑤′′
0(

1 + 𝑤
′2
0

)3∕2 (Δ𝜙)′′𝑑𝑠
⎫⎪⎬⎪⎭ , (30)

where 𝑒1 is a constant of integration.
By recalling the expressions (14) and (15) for 𝜀𝑧 and Δ𝜙, that contain 𝑢′ and 𝑢, respectively, we note that (30) is an

integro-differential equation in the unknown 𝑢, that cannot be solved easily (i.e., in closed form), so that for moderate
initial deviation from the rectilinear configuration the static condensation fails to provide a simple expression for 𝑢.
This agrees with the fact that (30) shows that 𝜀𝑧 is not constant in space, which is the main hypothesis behind the
Equation (3).
For small initial slopes, that is 𝑤′

0

2
≪ 1, (29) and (30) become

𝜀′𝑧 + 𝜌2𝑤′′
0 (Δ𝜙)

′′
= 0, (31)

𝜀𝑧 = 𝑒1 − 𝜌2 ∫
𝑧

0

𝑤′′
0 (Δ𝜙)

′′
𝑑𝑠, (32)

and the deformations are now given by (18)–(19). Equation (32) shows that also in this simplified case 𝜀𝑧 is not constant,
while (31) is an equation of the kind

𝑢′′ + 𝜌2𝑤′′
0

(
𝑤′′
0
𝑢
)′′

= 𝑓 (𝑧) (33)

and does not allow us to have an easy expression for 𝑢; thus, also when 𝑤′
0

2
≪ 1 the static condensation fails.

The next case to be considered is that of an initially circular beam, that is, when the strains are given by (16)–(17). In
this case we have (remember that 𝑘 is constant)

𝜕𝜀𝑧
𝜕𝑢

= 0,
𝜕𝜅𝑧
𝜕𝑢

= 0,
𝜕𝜀𝑧
𝜕𝑢′

= 1,
𝜕𝜅𝑧
𝜕𝑢′

= −𝑘,
𝜕𝜀𝑧
𝜕𝑢′′

= 0,
𝜕𝜅𝑧
𝜕𝑢′′

= 0, (34)

so that (27) becomes (
𝜀𝑧 − 𝑘𝜌2𝜅𝑧

)′
= 0, (35)

namely

𝜀𝑧 = 𝑒1 + 𝑘𝜌2𝜅𝑧, (36)

or (
1 + 𝑘2𝜌2

)
𝑢′ = 𝑒1 − 𝑘𝑤 −

1

2
𝑤

′2 + 𝑘𝜌2𝑤′′ − 𝑘2𝜌2
(
𝑤′𝑤

)′
. (37)

Solving (37) gives

(
1 + 𝑘2𝜌2

)
𝑢 (𝑧) = 𝑒1 𝑧 + 𝑒2 + 𝑘𝜌2𝑤′ − 𝑘2𝜌2𝑤′𝑤 − ∫

𝑧

0

(
𝑘𝑤 +

1

2
𝑤

′2

)
𝑑𝑠, (38)

which is easy enough to be considered useful; 𝑒2 is another constant of integration. It is worth observing that 𝑘𝑤 and𝑤′2,
which are both dimensionless, are of the same (second) order, in agreement with the hypothesis that leads to (14)–(21),
namely that the axial displacement 𝑢 is at least one order of magnitude smaller than the transversal displacement 𝑤.
Although (38) is simple enough, it is useful to see if it can be further elaborated. Remembering that 𝛼 = 𝑘𝐿 is a dimen-

sionless measure of the initial curvature, that practically corresponds to the angle of opening of the arch (in radians), we
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LENCI and SOROKIN 9 of 13

have that 𝑘𝜌 = 𝛼𝜌∕𝐿 = 𝛼∕𝜆, where 𝜆 = 𝐿∕𝜌 = 𝐿
√
𝐸𝐴∕𝐸𝐼 is the slenderness. Since we are considering small ini-

tial sags, that is small 𝛼s, and slender beams, that is large 𝜆s, we have that 𝑘2𝜌2 ≪ 1. Furthermore, 𝑘𝜌2𝑤′ − 𝑘2𝜌2𝑤′𝑤 =

𝑘𝜌2𝑤′(1 − 𝑘𝑤) ≈ 𝑘𝜌2𝑤′ since 𝑘𝑤 is of the second order and thus negligible with respect to 1. Thus, (38) becomes

𝑢 (𝑧) = 𝑒1 𝑧 + 𝑒2 + 𝑘𝜌2𝑤′ − ∫
𝑧

0

(
𝑘𝑤 +

1

2
𝑤

′2

)
𝑑𝑠. (39)

From the boundary conditions 𝑢 (0) = 𝑑1 and 𝑢 (𝐿) = 𝑑2 we obtain, respectively,

𝑒2 = 𝑑1 − 𝑘𝜌2𝑤′ (0) ,

𝑒1𝐿 = (𝑑2 − 𝑑1) − 𝑘𝜌2
[
𝑤′ (𝐿) − 𝑤′ (0)

]
+ ∫

𝐿

0

(
𝑘𝑤 +

1

2
𝑤

′2

)
𝑑𝑧,

(40)

so that 𝑢(𝑧) is fully determined. We also have (higher order terms have been neglected)

𝜀𝑧 = 𝑒1 + 𝑘𝜌2𝑤′′, (41)

𝑘𝑧 = 𝑤′′ − 𝑘

(
𝑒1 + 𝑤′′𝑤 +

𝑤′2

2

)
, (42)

and observe that even in the “simplest” case (41) the axial deformation 𝜀𝑧 is, again, not constant in space.
The second step of the static condensation consists of inserting the function 𝑢 so far obtained in the transversal equation

ofmotion (25) so that a single equation in the unknown function𝑤 is obtained. Still dealingwith an initially circular beam,
from (16) and (17) we get

𝜕𝜀𝑧
𝜕𝑤

= 𝑘,
𝜕𝜅𝑧
𝜕𝑤

= −𝑘𝑤′′,
𝜕𝜀𝑧
𝜕𝑤′

= 𝑤′,
𝜕𝜅𝑧
𝜕𝑤′

= −2𝑘𝑤′,
𝜕𝜀𝑧
𝜕𝑤′′

= 0,
𝜕𝜅𝑧
𝜕𝑤′′

= 1 − 𝑘𝑤. (43)

After long computations these give

𝜌𝐴�̈� + 𝐸𝐼𝑤𝐼𝑉 + 𝐸𝐴𝑒1
(
𝑘 − 𝑤′′

)
− 𝑘𝐸𝐼

[
3𝑤′′2 + 4𝑤′𝑤′′′ + 2𝑤𝐼𝑉𝑤

]
= 𝐹, (44)

where use is made of the fact that 𝑘 is small and so terms 𝑘2, 𝑘3, etc. have been disregarded. Inserting the expression (40)
of 𝑒1, and still keeping only first order terms with respect to 𝑘, yields

𝜌𝐴�̈� + 𝐸𝐼𝑤𝐼𝑉 −
𝐸𝐴

𝐿
𝑤′′

[
(𝑑2 − 𝑑1) +

1

2 ∫
𝐿

0

𝑤
′2𝑑𝑧

]

+𝑘
𝐸𝐴

𝐿

[
(𝑑2 − 𝑑1) +

1

2 ∫
𝐿

0

𝑤
′2𝑑𝑧 − 𝑤′′ ∫

𝐿

0

𝑤𝑑𝑧

]

−𝑘𝐸𝐼

[
𝑤′′

(
𝑤′ (0) − 𝑤′ (𝐿)

𝐿

)
+ 3𝑤′′2 + 4𝑤′𝑤′′′ + 2𝑤𝐼𝑉𝑤

]
= 𝐹,

(45)

or, in the case without pre-stress, 𝑑2 = 𝑑1 ,

𝜌𝐴�̈� + 𝐸𝐼𝑤𝐼𝑉 −
𝐸𝐴

2𝐿
𝑤′′

𝐿∫
0
𝑤

′2𝑑𝑧

+𝑘
𝐸𝐴

𝐿

(
1

2

𝐿∫
0
𝑤

′2𝑑𝑧 − 𝑤′′
𝐿∫
0
𝑤𝑑𝑧

)
−𝑘𝐸𝐼

[
𝑤′′

(
𝑤′ (0) − 𝑤′ (𝐿)

𝐿

)
+ 3𝑤′′2 + 4𝑤′𝑤′′′ + 2𝑤𝐼𝑉𝑤

]
= 𝐹.

(46)
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10 of 13 LENCI and SOROKIN

We note that when 𝑘 = 0, that is for initially rectilinear beams, (46) corresponds to (1), while for 𝑘 ≠ 0 the Equation (46)
does not corresponds to (3). It is not equal to (4), too.
It is thus proved that (3) cannot be derived by the static condensation, not even in the simplest case of the initially

shallow slender arch. This shows some kind of singularity, or “discontinuity”: Equation (3) for any 𝑤0(𝑧) ≠ 0 does not
derive from the static condensation, while its limit for 𝑤0(𝑧) → 0 does.
Equation (46) is a new one and, to the best of the authors’ knowledge, has not been reported in the literature so far, even

if similar nonlinear terms are reported in Sect. 4.5.2 of [4], but referring to an initially straight beam, thus in a different
case. Since it comes from the firm theoretical background illustrated in this work, we believe it is trustable (of course
when it is reasonable to neglect axial inertia). A deeper investigation of (46) requires studying the effect of neglecting
the nonlinear terms multiplying the bending stiffness 𝐸𝐼 because of the slenderness of the beam (see the next section).
Furthermore, it is also interesting to carefully compare (46) with (3) and with the kinematically exact equations. These,
together with other possible further developments, are out of the scope of this work and are left for future investigations.
Here we observe only that the single mode Galerkin equation obtained by (3) is given by

𝜌𝐴�̈� (𝑡) + 𝐸𝐼
(𝑛𝜋

𝐿

)4
𝑏 (𝑡) + 𝑔 (𝑛) 𝑘 𝑏(𝑡)

2
+

𝐸𝐴

4

(𝑛𝜋
𝐿

)4 (
𝑐2
1
+ 𝑐2

2

)
𝑏3(𝑡) = 𝑓 (𝑡)

𝑔(𝑛) =

⎧⎪⎪⎨⎪⎪⎩
−𝑐2𝑛

2𝜋2 𝐸𝐴

𝐿2
, for cos (𝑛𝜋) = 1,

𝑐13𝑛𝜋
𝐸𝐴

𝐿2
, for cos (𝑛𝜋) = −1,

(47)

where𝑤 (𝑧, 𝑡) = 𝑏(𝑡)𝑎(𝑧), 𝑎(𝑧) = 𝑐1 sin(
𝑛𝜋𝑧

𝐿
) + 𝑐2 cos(

𝑛𝜋𝑧

𝐿
) and 𝑘2 and higher order terms have been neglected, while that

obtained by (46) is given by

𝜌𝐴�̈� (𝑡) + 𝐸𝐼
(𝑛𝜋

𝐿

)4
𝑏 (𝑡) + 𝑔 (𝑛) 𝑘 𝑏(𝑡)

2
+

𝐸𝐴

4

(𝑛𝜋
𝐿

)4 (
𝑐2
1
+ 𝑐2

2

)
𝑏3(𝑡) = 𝑓 (𝑡) ,

𝑔(𝑛) =

⎧⎪⎪⎨⎪⎪⎩
0, for cos (𝑛𝜋) = 1,

𝑐1 𝑛𝜋

[
𝐸𝐴

𝐿2

(
2𝑛2𝜋2

𝜆2
+ 3

)
−

4𝐸𝐼

𝐿4
𝑛2𝜋2

2𝑐2
1
+ 5𝑐2

2

𝑐2
1
+ 𝑐2

2

]
, for cos (𝑛𝜋) = −1.

(48)

The linear and cubic terms are the same as (2) (to which both reduce for the rectilinear case 𝑘 = 0), but the quadratic
coefficients are very different from each other, a fact that calls for further investigations, too.

5 A NAÏVE CONSIDERATION

Let us rescale the spatial variable as 𝑧 = 𝜁𝐿, 0 ≤ 𝜁 ≤ 1, the time as 𝑡 = 𝐿2
√

𝜌𝐴

𝐸𝐼
𝜏 and the displacement as𝑤 = 𝑊𝐿. Note

that this corresponds to the use the length of the beam as a length scale, for both spatial coordinate and displacement.
Equation (46) becomes (now prime is derivative with respect to 𝜁 and dot with respect to 𝜏, while we remember that
𝛼 = 𝑘𝐿 and 𝜆 = 𝐿

√
𝐸𝐴

𝐸𝐼
is the slenderness)

�̈� +𝑊𝐼𝑉 −
𝜆2

2
𝑊′′ ∫

1

0

𝑊′2𝑑𝜁

+𝛼𝜆2

(
1

2 ∫
1

0

𝑊′2𝑑𝜁 −𝑊′′ ∫
1

0

𝑊𝑑𝜁

)
−𝛼

[
𝑊′′

(
𝑊′ (0) −𝑊′ (1)

)
+ 3𝑊′′2 + 4𝑊′𝑊′′′ + 2𝑊𝐼𝑉𝑊

]
=

𝐹𝐿3

𝐸𝐼
.

(49)
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In (49) there are two quadratic terms, one proportional to 𝛼𝜆2 and the other to 𝛼. If the beam is very slender, 𝜆 is very
large and thus the second quadratic term can be neglected with respect to the first one:

�̈� +𝑊𝐼𝑉 −
𝜆2

2
𝑊′′ ∫

1

0

𝑊
′2𝑑𝜁 + 𝛼𝜆2

(
1

2 ∫
1

0

𝑊
′2𝑑𝜁 −𝑊′′ ∫

1

0

𝑊𝑑𝜁

)
=

𝐹𝐿3

𝐸𝐼
. (50)

Now it is worth to rewrite (3) in the following equivalent form, obtained by integrating by parts,

𝜌𝐴�̈� + 𝐸𝐼𝑤𝐼𝑉 −
𝐸𝐴

2𝐿

(
𝑤′′ + 𝑤′′

0

)
∫

𝐿

0

(
𝑤

′2 − 2𝑤𝑤
′′

0

)
𝑑𝑧 −

𝐸𝐴

𝐿

(
𝑤′′ + 𝑤

′′

0

)(
𝑤 𝑤′

0
|||𝐿0
)

= 𝐹, (51)

Making the very naïve assumption 𝑘 = −𝑤
′′

0
(which is correct only when 𝑤

′′

0
is constant and the initial curvature is

small), assuming 𝑤 (0) = 𝑤 (𝐿) = 0 (or 𝑤′
0
(0) = 𝑤′

0
(𝐿) = 0) and neglecting the terms proportional to 𝑘2, gives

𝜌𝐴�̈� + 𝐸𝐼𝑤𝐼𝑉 −
𝐸𝐴

2𝐿
𝑤′′ ∫

𝐿

0

𝑤
′2𝑑𝑧 − 𝑘

𝐸𝐴

𝐿
𝑤′′ ∫

𝐿

0

𝑤𝑑𝑧 + 𝑘
𝐸𝐴

2𝐿 ∫
𝐿

0

𝑤
′2𝑑𝑧 = 𝐹. (52)

Introducing the dimensionless variable as done at the beginning of this section it is possible to see that (52) corresponds
to (50). It thus seems that also (3) can be obtained as the static condensation, but only if (i) 𝑤′′

0
is constant, (ii) 𝑤 (0) =

𝑤 (𝐿) = 0 (or 𝑤′
0
(0) = 𝑤′

0
(𝐿) = 0) and (iii) the beam is slender. These are too restrictive hypotheses, and thus we keep

the general conclusion of the previous section that (3) cannot be derived from the static condensation. We report the
developments of this section just as a curiosity, and for completeness of the analysis.

6 CONCLUSIONS

In this paper, the possibility to derive by static condensation the well-known and well-used integral equations commonly
used to describe the nonlinear dynamics of Euler-Bernoulli beams has been investigated in detail.
With the exact kinematic relations for planar beams having arbitrary initial configurations as the point of departure,

the exact strain measures have been initially obtained, with special reference to the case of circular beams, where the
curvature is constant and large. They have been successively approximated by showing that for moderate deviations from
the rectilinear configuration, the axial displacement is at least one order of magnitude smaller than the transversal one.
Finally, the case of small initial curvature has been detailed, too.
The two (axial and transversal) equations of motion have been obtained by the Lagrangian approach. The first one is

carefully investigated under the hypothesis that the axial inertia can be neglected (static condensation), which is plausible
only if there are no loads in the axial direction and if the edges of a beam are immovable in the axial direction, a fact that
seems to be not so well understood in the literature. These main hypotheses are essential to obtain the axial displacement
𝑢 as a function of the transversal one 𝑤 and of its spatial derivatives.
With the goal of having useful results for engineers, attention is focused on looking for simple (i.e., analytical) function

𝑢(𝑤,𝑤′). All expressions of strain previously introduced, from the exact to the more approximate ones, have been con-
sidered, and it has been shown that only in the case of initially circular beams, with constant curvature 𝑘, it is possible
to find the simple enough function (38), that simplifies to (39) for small initial curvatures. This latter expression has been
inserted in the second (transversal) equation of motion, and the integral equation (45) is obtained. It is never reported in
the literature (to the best of authors’ knowledge).
It has been shown that in the elementary case of an initially straight beam, the classical Equation (1) has been recovered,

as expected since it is well-known that it can be derived by the static condensation. On the contrary, it has been proved
that it does not correspond to the classical integral Equation (3) for not rectilinear beams, not even for shallow arches (i.e.,
constant initial curvature), apart from a very specific case that cannot be generalized. This is themain finding of this work
and proves that the (3) is less trustable than its counterpart for straight beams.
The present work is focused on Euler-Bernoulli beams. A worthy development consists of applying the same ideas also

to shallow cables, continuing what has already been done in [8], to other beams models (e.g., Timoshenko) as well as to
plates and shells. These require not trivial elaborations, that are left for future work.
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