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ABSTRACT Tensors and multiway analysis aim to explore the relationships between the variables used to
represent the data and find a summarization of the data with models of reduced dimensionality. However,
although in this context a great attention was devoted to this problem, dimension reduction of high-order
tensors remains a challenge. The aim of this article is to provide a nonlinear dimensionality reduction
approach, named principal tensor embedding (PTE), for unsupervised tensor learning, that is able to derive
an explicit nonlinear model of data. As in the standard manifold learning (ML) technique, it assumes
multidimensional data lie close to a low-dimensional manifold embedded in a high-dimensional space. On
the basis of this assumption a local parametrization of data that accurately captures its local geometry is
derived. From this mathematical framework a nonlinear stochastic model of data that depends on a reduced
set of latent variables is obtained. In this way the initial problem of unsupervised learning is reduced to the
regression of a nonlinear input-output function, i.e. a supervised learning problem. Extensive experiments
on several tensor datasets demonstrate that the proposed ML approach gives competitive performance when
compared with other techniques used for data reconstruction and classification.

INDEX TERMS Manifold learning, multiway analysis, nonlinear dimensionality reduction, tensor, tensor
learning, unsupervised learning.

I. INTRODUCTION
Tensors, also referred to as multiway arrays, are high-order
generalizations of vectors and matrices and have been
adopted in diverse branches of data analysis, to represent a
wide range of real-world data. Examples of tensor data are
grayscale and color video sequences [1]–[4], gene expres-
sion [5], genome-scale signals [6], magnetic resonance imag-
ing [7], to cite just a few.

Data modeling and classification of these data are impor-
tant problems in several applications, such as human
action and gesture recognition [8], tumor classifications [9],
spatio-temporal analysis in climatology, geology and soci-
ology [10], neuroimaging data analysis [11], big data rep-
resentation [12], completion of big data [13], and so on.
To address these problems most previous works represent
a tensor by a vector in high-dimensional space and apply
ordinary learning methods for vectorial data. Representa-
tive techniques in this context include feature extraction and
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selection [14], [15], linear discriminant analysis (LDA) [16],
and support vector machine (SVM) [17]. Unfortunately this
approach needs to arrange the tensor data into long vectors
causing two main problems, i) loss of structural information
of tensors, ii) vectors with very high dimensionality. To face
these problems specific tensor learning algorithms that retain
the original structure of tensor data have been recently devel-
oped [18]–[26]. However, in all these methods the problem
of high dimensionality of data, also known as the curse
of dimensionality, remains. To deal with such an issue the
classical dimensionality reduction method, known as prin-
cipal component analysis (PCA) [27], [28] was generalized
to the second-order case (2-DPCA) [29], low-rank matrices
(GLRAM) [30], and high-order cases (MPCA) [31], [32].
Likewise, the linear discriminant analysis (LDA) [33] tech-
nique was extended to a 2D case (2-DLDA) [34], [35]
and multilinear discriminant analysis (MDA) [36]. Nev-
ertheless to overcome the limitations of methods based
on classical approaches, the decomposition of tensors
into low-rank components, using two popular models,
namely the Tucker decomposition (TD) [37] and the
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CANDECOMP/PARAFAC (CP) decomposition [38], has
been one of the main concerns in tensor analysis to reduce
the dimensionality of data [39], [40]. In all the above meth-
ods, data are considered as points in a multidimensional
space, thus using the global structure information of the
dataset alone. Instead many studies have shown that some
classes of real world high-dimensional data exist in which
they lie on a low-dimensional manifold (a parametrized sur-
face), thus showing a local geometric structure.

Manifold learning (ML) is a nonlinear dimensionality
reduction (NLDR) technique that, assuming the existence
of an intrinsic structure, the manifold, has proven to be
very effective in modeling data with reduced dimensionality
[41], [42]. ML, also classified as embedding method, is based
on the assumption that high-dimensional data are embed-
ded in a nonlinear manifold of lower dimension [43]–[47],
[48]–[50]. In this context several algorithms have been pro-
posed, such as locally linear embedding (LLE) [51], local tan-
gent space alignment (LTSA) [52], locally multidimensional
scaling (LMDS) [53], and ISOMAP [54].

To deal with the high-order tensor data, some of these
methods were extended by using multiway data analy-
sis [55] and in particular higher order tensor decomposition
[56], [57]. For example, Lai et al. [58] proposed a robust
tensor learning method called sparse tensor alignment (STA)
for unsupervised tensor feature extraction. Ju et al. [59]
introduced a new tensor dimension reduction model based
on the Bayesian theory. The proposed method assumes that
each observation can be represented as a linear combination
of some tensor bases, thus CP decomposition and variational
EM algorithm are used to solve this model. He et al. [60]
proposed tensor subspace analysis (TSA) for second-order
learning. In the method suggested by Jiang et al. [61], given
image tensor data, a k-nearest neighbour graph to encode the
geometrical structure of data is constructed. Liu et al. [62]
proposed a non-linear dimensionality reduction algorithm
based on locally linear embedding called supervised locally
linear embedding in tensor space (SLLE/T). SLLE/T pre-
serves local manifold structure within each class based on
locally linear embedding (LLE) and enforces separability of
data points belonging to different classes. Chen et al. [63],
assuming that data lie in a nonlinear manifold, attempted
to discover the intrinsic structure of this manifold with a
two-stage algorithm named tensor-based Riemannian mani-
fold distance-approximating projection (TRIMAP). Jia and
Fu [64] suggested a low-rank tensor subspace learning for
RGB-D action recognition, in which the tensor samples are
factorized to obtain three projection matrices by Tucker
Decomposition (TD).

The central objective in ML algorithms is to determine
an effective parametrization of data. This is a key issue
in order to accurately capture the local geometry of the
low-dimensional manifold and the following aspects are
relevant to this end: i) nonlinearity, ii) explicit modeling,
iii) intrinsic dimension (ID) estimation.

With regard to nonlinearity data generally have a nonlinear
geometric structure, thus using the tangent space at each data
point to locally describe its neighbour, as assumed in some of
the previous techniques, is a strong limitation.

With reference to the second aspect, a main drawback of
mostMLmethods is that no explicit mapping representing the
local manifold parametrization can be obtained after the train-
ing process, as they learn high-dimensional data implicitly.

Regarding ID estimation, the intrinsic dimension (ID) may
be interpreted as theminimumnumber of parameters required
to describe the data [65], thus to derive a low-dimensional
model, the dataset ID has to be discovered first.

At present, none of the methods suggested so far are able
to take into account all the key requirements of nonlinearity,
explicit modeling, and ID estimation for low-dimensional
tensor modeling.

The aim of this article is to develop a manifold
learning-based approach, named principal tensor embedding
(PTE), for unsupervised tensor learning, that is able to
address the first two of the aforementioned key points, while
adopting the most relevant state-of-the-art methods for the
ID estimation. This result represents an advancement with
respect to the state-of-the-art, as the standard tensor learning
techniques are not able to combine all the relevant aspects
previously mentioned. The method has been derived by con-
sidering a tensor as an element of the finite-dimensional
linear space of tensors, in which the inner product defines
a metric for the space. Once a basis is computed using
the Gram-Schmidt procedure, the coefficient vector in this
basis, establishes an isomorphism between a vector space of
rank-one and the space of tensors. In this way the problem
of dimensionality reduction in tensor space reduces to the
dimensionality reduction in vector space. To this end an
effective manifold algorithm recently proposed, can be used
for the parametrization of data, to accurately capture the local
geometry of the low-dimensional manifold that represents the
data. In such a way a nonlinear model of data with reduced
dimensionality is obtained.

The model establishes an explicit one-to-one correspon-
dence between a tensor, a point on the manifold embedded
in the high dimensional space, and a vector, a point in the
low-dimensional Euclidean space. Additionally a relation-
ship for the geodesic distance of all pairs of points on the
manifold, as a nonlinear function of the Euclidean distance
between points in the low-dimensional space, is given.

The rest of the paper is organized as follows. Section II
reviews related work on tensor learning. Section III sum-
marizes our method highlighting the most relevant aspects.
Section IV introduces some general concepts on finite dimen-
sional linear space of tensors. SectionV gives a representation
of a tensor in terms of a basis derived by the tensor version
of the Gram-Schmidt procedure. In Section VI a nonlinear
dimensionality reduction approach, named principal tensor
embedding (PTE), is developed, and the estimation of non-
linearity in such a model is treated in Section VII using a
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nonparametric kernel regression (NPKR) technique. Exper-
imental results are presented in Section VIII, in which the
proposed tensor learning approach is used and compared with
some other techniques for data reconstruction and classifica-
tion problems.

II. RELATED WORK
Tensor learning techniques have been more widely applied to
2-order and 3-order tensors. In the following we summarize
the most relevant approaches in these two main fields.

A. TENSOR LEARNING OF 2-ORDER TENSORS
Principal component analysis (PCA) is one of the most com-
mon techniques for unsupervised subspace learning, however
when applied to tensor objects it requires their reshaping into
vectors with high-dimensionality (vectorization). As a result
this implies high processing costs in terms of computational
and memory demand.

Multilinear principal component analysis (MPCA) [31] is
the multilinear extension of the classical PCA that have been
used both for two-order and three-order tensors. Recently a
method called graph-Laplacian PCA (gLPCA) that combines
a manifold learning method, i.e. the graph-Laplacian, with
PCA has been proposed [66].

Tucker decomposition (TD) is a technique that reduces a
given tensor to a low-rank tensor [37]. It solves an optimiza-
tion problem, by minimizing the Frobenius distance between
the given tensor and a tensor of lower dimensionality.

To account for the geometrical (manifold) structure of
image tensor data, a technique called graph-Laplacian
Tucker tensor decomposition (GLTD), that combines
graph-Laplacian with a regularized version of TD, has
recently been proposed in [61].

B. TENSOR LEARNING OF 3-ORDER TENSORS
Tensor neighborhood preserving embedded (TNPE) and ten-
sor locality preserving projection (TLPP) [67] are tensor
embedding techniques. They extend neighborhood preserv-
ing embedding (NPE) and locality preserving projection
(LPP), which can only work with vectorized representation,
to be used with more general tensor representations. More
specifically, given a set of data points {xi, i = 1, . . . ,N }
in higher-dimensional space, NPE and LPE seek a trans-
formation matrix that maps each data point xi to a corre-
sponding lower-dimensional data point yi. Similarly TNPE
and TLPP find a set of transformation matrices for defining
the embedded tensor subspaces that together give an optimal
approximation to the tensor manifold, preserving some local
geometric properties.

Orthogonal tensor neighborhood preserving embedded
(OTNPE) [68] is a generalized tensor subspace model similar
to TNPE. However, while TNPE cannot ensure the obtained
transformation matrices have orthogonal column vectors,
OTNPE aims to derive orthonormal basis tensor for TNPE.

Sparse tensor alignment (STA) [58] is a sparse represen-
tation incorporated into tensor alignment (TA) framework,

a technique that unifies the tensor learning methods. Since
a tensor Xi can be unfolded into a large size matrix Xi, to k
nearest neighbours tensors correspond k large size matri-
ces X (k)

i . The alignment techniques aims to obtain the pro-
jection matricesUk that map the unfolding tensors X (k)

i into a
low-dimensional unfolding tensors Y (k)

i , Uk : X
(k)
i → Y (k)

i .
Unfortunately none of the aforementioned techniques is

able to satisfy the key requirements in order to accurately cap-
ture the local geometry of tensors embedded in a manifold,
i.e. nonlinearity, explicit modeling and ID estimation.

III. OUR METHOD
In this article we address the problem of unsupervised learn-
ing of tensors. In this case one has a set of N observations,
the data � = {X (1), . . . ,X (N )

}, of a random M -order ten-
sor X . The goal is to derive a model that depends on a
reduced set of parameters, the latent variables, that is able
to reconstruct the data. To be effective the dimension d of
parameters in the model must be less than the dimension L of
the tensor linear space.

Mathematically this problem is equivalent to determine a
d-dimensional manifoldM embedded inRI1×I2×...×IM (d �
L =

∏M
j=1 Ij) characterized by a nonlinear map

X = γ (β ′′), β ′′ ∈ U ⊂ Rd , X = RI1×I2×...×IM (1)

from low-dimensional space U ⊂ Rd to high-dimensional
space RI1×I2×...×IM .

The main steps of our approach are:
• Given the data set � = {X (1),X (2), . . . ,X (N )

} the
Gram-Schmidt procedure is applied to L observations
{X̂ (1), X̂ (2), . . . , X̂ (L)

} so that an orthonormal basis
{U (1),U (2), . . . ,U (L)

} is obtained.
• The generic tensor X of the set � can be represented as
the summation

X =
L∑
i=1

αiU (i), L =
M∏
j=1

Ij (2)

where α = (α1, α2, . . . , αL)T is the coefficient vector.
Thus to the dataset � = {X (1),X (2), . . . ,X (N )

} corre-
sponds a set of N vectors {α(1), α(2), . . . , α(N )

} in RL .
• We assume these vectors are points sampled from aman-
ifoldM of dimension d embedded in the L-dimensional
observation space, so that a local parametrization

α = F(θ ), θ ∈ Rd , d ∈ RL , (3)

exists, with d < L, where θ is the vector of latent
variables and d is the so-called intrinsic dimension.

• Since θ is hidden, i.e. not known, it will be shown that
a local parametrization γ of the manifold, through a
partition α = ϕ(α′′) =

(
α′′,G(α′′)

)T of the vector α
can be derived.
This is an explicit modeling of the manifold depending
on known variables α′′ ∈ Rd with d = ID. The model is
completely defined onceα andG(·) have been estimated.
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• By estimating the variance vector σα = (σα1 , . . . , σαL )
T

of α, their elements are put in decreasing order and the
corresponding terms {Û (1), Û (2), . . . , Û (L)

} are ordered
accordingly. In this way a new representation of the
tensor X is obtained

X =
L∑
i=1

βiÛ (i)
=

d∑
i=1

β ′′i Û
(i)
+

∑
i>d

Gi(β ′′)Û (i) (4)

in terms of the new vector β = (β1, β2, . . . , βL)T such
that σβ1 ≥ σβ2 ≥ . . . ≥ σβL . It is worth to notice that as
the values σβi are in decreasing order, then the higher the
index i, the lower the importance of the corresponding
component. An overview diagram that explains the main
steps of the approach is reported in Fig. 1.

• On the basis of this result, a low-dimensional represen-
tation of tensor X can be simply obtained by truncating
the summation in (4) to the first r terms

X ∼=
r∑
i=1

βi Û (i), (5)

thus obtaining a truncation error

Er =
∑
i>r

σβi (6)

that decreases as r increases. Following this property
the proposed technique has been called principal tensor
embedding (PTE).

• Assuming the ID has been determined with one of the
methods known in literature, to estimate the function
G(·) an effective method for nonparametric input-output

FIGURE 1. Overview diagram of the proposed method.

nonlinear function regression in tensor space, called
nonparametric regression kernel (NPKR), will be used.

It is worth to notice that the proposed approach satisfy non-
linearity, explicit modeling and ID estimation, i.e. all the
key aspects of ML, thus representing a real advancement to
previous techniques.

IV. THE FINITE DIMENSIONAL LINEAR SPACE
OF TENSORS
Let us refer to tensors, regarded as multidimensional arrays
and denoted by Euler script calligraphic letters, e.g. X ∈
RI1×I2×...×IM , where× represents the Cartesian product. The
number of dimensions M , also known as modes, of a tensor
denotes the order of a tensor. The elements of an M -order
tensor X will be represented by

xi1,i2,...,iM , il = 1, 2, . . . , Il, l = 1, 2, . . . ,M . (7)

The inner product of two tensors of the same size X , Y ∈
RI1×I2×...IM is defined as

〈X ,Y〉 =
I1∑

i1=1

. . .

IM∑
iM=1

xi1i2...iM yi1i2...iM . (8)

From this definition it follows that the norm of a tensor is
given by

‖X‖ =
√
〈X ,X 〉. (9)

The outer product of tensor X = xi1 i2...iM ∈ RI1×I2×...×IM

with tensorY = yj1 j2...jL ∈ RJ1×J2×...×JL is the (M+L)-order
tensor Z defined as

Z = X ◦ Y (10)

where the generic element of Z is given by

zi1i2...iM j1j2...jL = xi1i2...iM · yj1j2...jL (11)

In particular for two vectors x and y the generic element of
outer product Z = x ◦ y is the matrix

zij = xi yj. (12)

With reference to the canonical basis e1 = (1, 0, . . . ,
0), . . . , eIl = (0, 0, . . . , 1) for RIl , an M order tensor X can
be decomposed as

X =
I1∑

i1=1

. . .

IM∑
iM=1

xi1i2...iM ei1ei2 . . . eiM (13)

where the outer product ei1ei2 . . . eiM is theM -order canonical
basis tensor. As this basis is of size

∏M
j=1 Ij, thus the set of

M -order tensors form a linear space of dimensionality L =∏M
j=1 Ij. As an example forM = 2 and I1 = I2 = M we have

e1 e1 =

 1 0 0
0 0 0
0 0 0

 ,
e1 e2 =

 0 1 0
0 0 0
0 0 0

 ,
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e1 e3 =

 0 0 1
0 0 0
0 0 0

 , . . . (14)

For easy of reference Table 1 reports some notations, that
will be frequently used in the following.

TABLE 1. Basic notation.

V. A BASIS FROM DATA
One of the main problems in representing elements of a linear
space, is to find a basis. For vectors v ∈ RI1 the problem can
be solved estimating the covariance function

Rvv = E{vvT } (15)

from data. Assuming a set {v(1), v(2), . . . , v(N )
} of observa-

tions is collected, then (15) can be approximated as

Rvv ∼=
1
N
VV T (16)

where V = [v(1), v(2), . . . , v(N )] ∈ RI1×N is the data matrix.
Thus, once an estimation of Rvv is derived, the problem
reduces to the decomposition of Rvv

Rvv = U6UT (17)

By noting that vvT = v ◦ v, (15) can be generalized to tensor
space by simply substituting v with X , thus obtaining

Rχχ = E{X ◦ X } (18)

where Rχχ is a tensor of 2M order. Even though some
techniques for the decomposition of a tensor are known in
literature, the dimension of tensor Rχχ in (18) can be very
large, so that these approaches cannot be used in practice.

A more effective approach for this purpose can be derived
using the well known Gram-Schmidt procedure. Extracting
from a given dataset � = {X (1),X (2), . . . ,X (N )

}, L =∏M
j=1 Ij observations3 = {X̂ (1), X̂ (2), . . . , X̂ (L)

} and assum-
ing they are independent each other, the tensor version of
Gram-Schmidt procedure is as follows.

1. Y (1)
= X̂ (1), U (1)

=
Y (1)

‖Y (1)‖

2. Y (2)
= X̂ (2)

−

〈
X̂ (2),U (1)

〉
U (1), U (2)

=
Y (2)

‖Y (2)‖

k. Y (k)
= X̂ (k)

−

k−1∑
i=1

〈
X̂ (k),U (i)

〉
U (i), U (k)

=
Y (k)

‖Y (k)‖
.

(19)

It is straightforward to show that the tensors so obtained
U (1),U (2), . . . ,U (L) are orthonormal, meaning that〈

U (i),U (j)
〉
=

{
1, i = j
0, i 6= j

. (20)

Having derived a basis U = {U (1),U (2), . . . ,U (L)
}, then the

generic tensor X ∈ RI1×I2×...×IM can be represented as the
summation

X =
L∑
i=1

αiU (i), L = I1 · I2 · . . . · IM (21)

where αi =
〈
X ,U (i)

〉
is the i-th coordinate with respect to the

element U (i) of the basis. Due to the randomness of X thus
α = (α1, α2, . . . , αL)T is a realization of a random vector α.
Here a bold face character is used for random variables. In
such a way the correspondence ξ

ξ : α ∈ RL
⇐⇒ X =

L∑
i=1

αiU (i) (22)

is defined, or that is the same

ξ : α ∈ RL
⇐⇒ α ∈ H (23)

where H is the space of random variables. For every obser-
vation X (k) of dataset �, let us determine the vector

α(k) = (α(k)1 , . . . , α
(k)
L )T , k = 1, . . . ,N (24)

where

α
(k)
i =

〈
U (i),X (k)

〉
, i = 1, . . . ,L, k = 1, . . . ,N . (25)

Thus the following correspondence

A = [α(1), . . . , α(N )]⇐⇒ � = {X (1), . . . ,X (N )
} (26)

holds, where A ∈ RL×N is the data matrix of the coefficient
random vector α. To represent this correspondence in a more
compact way we use the concept of cell array in which the
elements, the cells, are containers that can hold arrays of
different sizes. Using this concept (26) becomes

{A|�} = {α(k)|X (k), k = 1, . . . ,N }. (27)

VI. LOCAL PARAMETRIZATION OF DATA
On the basis of previous results for a generic tensorX we can
write

X =
L∑
i=1

αi U (i) (28)

which establishes a one-to-one correspondence (an isomor-
phism) between RL and the space of tensors.
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To reduce the dimensionality of the above representation,
a Manifold Learning (ML) approach will be used. In this
context the problem can be formalized as follows.

To the dataset � = {X (1), . . . ,X (N )
} ⊂ RI1×I2×...IM

in tensor space corresponds a set of N data points A =
{α(1), . . . , α(N )

} ⊂ RL , which are assumed to be sam-
pled from a manifold M of dimension d embedded in the
L-dimensional observation space. We further assume that the
data points do not contain either noise or outliers. This implies
that a local parametrization

α = F(θ ), θ ∈ Rd , α ∈ RL (29)

exists, with d < L. The dimension d represents the so-called
intrinsic dimension (ID), which may be interpreted as the
minimum number of parameters required to represent the
data [65].

From differential geometry [69], [70] it can be shown that
assuming the values of α lie on amanifoldM of dimension d ,
then a local parametrization ϕ exists represented by the graph
of a function G(·) such that

α = ϕ(α′′) = (α′′,G(α′′))T = (α′′,α′)T ,

α′′ ∈ Rd , α′ ∈ Rm, m = L − d (30)

where (α′′,α′)T is a partition of α and α′′,α′ are row vec-
tors. A proof of this result is reported in the Appendix IX for
ease of reference.

Comparing (29) and (30) it clearly results θ = α′′ and
F(·) = ϕ(·). In this way the data matrix A can be partitioned
accordingly

A =
[
A′′

A′

]
, A′′ ∈ Rd×N , A′ ∈ Rm×N (31)

where A′′ and A′ are the data matrices of α′′ and α′ = G(α′′),
respectively.

A. PRINCIPAL TENSOR EMBEDDING
Being α a random variable, the mean vector µα =

(µα1 , . . . , µαL )
T

µα , E{α} =
1
N

N∑
k=1

α(k) ∈ RL×1 (32)

and the variance vector σα = (σα1 , . . . , σαL )
T

σα , diag E{(α − µα)(α − µα)T }

= diag

[
1
N

N∑
i=1

(α(k) − µα)(α(k) − µα)T
]
∈ RL×1 (33)

can be computed from the set A, so that the following cell
array

{σα|U} = {σαi |U (i), i = 1, . . . ,L} (34)

can be defined. If the elements (σα1 , . . . , σαL ) of σα
are put in decreasing order and the corresponding terms

{U (1), . . . ,U (L)
} are ordered accordingly, then a new cell

array is derived

{σβ | Û} (35)

where β = (β1, . . . ,βL)T is a random vector such that σβ1 ≥
σβ2 ≥ . . . ≥ σβL and a bold face character is used, following
the convention previously adopted for random variables. In
this way for every X (k) it results

X (k)
=

L∑
i=1

β
(k)
i Û (i), k = 1, . . . ,N (36)

where the terms

β
(k)
i =

〈
Û (i),X (k)

〉
, i = 1, . . . ,L, k = 1, . . . ,N (37)

correspond to the cell arrays

{β(k)| Û}, k = 1, . . . ,N . (38)

It is worth to notice that when β is used in normal face it rep-
resents an observation or realization of the random variable β.
Having reordered the basis elements, the correspondence (27)
becomes

{B|�} = {β(k)|X (k), k = 1, . . . ,N } (39)

where B =
[
β(1), . . . , β(N )

]
∈ RL×N is the new data matrix

of coefficients in the basis Û = {Û (1), . . . , Û (L)
}. As a main

result of this reordering, to the dataset B corresponds the new
random vector

β = (β′′,β′)T (40)

where the components of β are such that σβ1 ≥ . . . ≥ σβL .
Among the possible choices the vector α can be partitioned,
(40) has the following useful property. By choosing a generic
index r < L, (28) can be rewritten as

X =
r∑
i=1

αi U (i)
+

∑
i>r

αi U (i)
= Xr +N (41)

where Xr =
∑r

i=1 αi U (i). Assuming Xr is a good approxi-
mation of X and µα = 0 for the sake of notation simplicity,
then the truncation error in approximating X with the first r
components is given by the norm of residual N = X − Xr ,
i.e.,

Er = E{〈N ,N 〉} = E{〈X − Xr ,X − Xr 〉}

= E{
∑
i>r

α2i } =
∑
i>r

σαi . (42)

As the values σβi are in decreasing order, thus the parti-
tion (41) ensures the truncation error (42) is minimum when
σαi = σβi .
With reference to the new partition (40), the local

parametrization of corresponding data {β(1), . . . , β(N )
} can

be written as

β = ϕ(β′′) = (β′′,G(β′′)T = (β′′,β′)T , β′′ ∈ Rd (43)
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and the generic observation of dataset � can be modeled by

X (k)
=

d∑
i=1

β
′′(k)
i Û (i)

+

∑
i>d

Gi(β ′′(k))Û (i), k = 1, . . . ,N

β
′′(k)
i = 〈Û (i),X (k)

〉, i = 1, . . . , d, k = 1, . . . ,N . (44)

The data matrix B of β can be partitioned accordingly

B =
[
B′′

B′

]
, B′′ ∈ Rd×N , B′ ∈ Rm×N (45)

where B′′ and B′ are the data matrices of β′′ and β′ = G(β′′)
respectively. As you can see from (44) the tensor dataset
� of dimension L × N is represented by the data matrix
B′′ of dimension d × N , thus a reduction of complexity in
representing data from L × N to d × N is obtained with the
model (44). Formally this model is equivalent to the following
correspondence

B′′ = [β ′′(1), . . . , β ′′(N )]⇐⇒ � = {X (1), . . . ,X (N )
} (46)

which can be rewritten in a more compact form as

{B′′|�} = {β ′′(k)|X (k), k = 1, . . . ,N }. (47)

The values X (k) in (44) can be interpreted as observations of
a random tensor X , thus the following stochastic model

X = γ (β′′) =
d∑
i=1

β′′i Û
(i)
+

∑
i>d

β′i (β
′′)Û (i), β′ = G(β′′)

(48)

that established a one-to-one correspondence between the
random tensorX and the randomvectorβ′′, holds. In the con-
text of randommodels for tensors, β′′ represents the vector of
latent variables, that is a smaller set of variables that cannot be
observed directly, and γ (β′′) is a local parametrization of X .
Once the new basis Û is obtained from U by the reordering
procedure previously described, the hyperparameter vector
β ′′(k) for a generic observation X (k), can be easily derived
by the inner product (44).

On the basis of previous results, a low-dimensional repre-
sentation of the tensor X can be obtained by truncating the
summation in (48) to the first r terms

X ∼=
r∑
i=1

βi Û (i) , (49)

thus giving a truncation error

Er ∼=
∑
i>r

σβi (50)

that decreased as r increases.
As the terms in (49) correspond to the most important com-

ponents in the representation of the tensor X , this approach
for tensor learning can be called principal embedded ten-
sor (PTE) technique.

B. THE METRIC OF THE MANIFOLD M
A relationship between the metric on the manifoldM, that is
the geodesic distance of all pairs of points on the manifold,
and the Euclidean metric of the corresponding points in Rd ,
can be derived as follows. By taking advantage of the one-
to-one property of the correspondence (48), the geodesic
distance between two points X (i) and X (j) on the manifold
can be defined as

d(X (i),X (j))=‖β ′′(i) − β ′′(j)‖=‖γ−1(X (i))− γ−1(X (j))‖

(51)

where β ′′(i), β ′′(j) are the corresponding points in low-
dimensional space Rd and γ−1 is the inverse of γ . Besides
a relationship for the Euclidean distance between two points
X (i) and X (j) on the manifold is given by

‖X (i)
− X (j)

‖ = ‖γ (β ′′(i))− γ (β ′′(j))‖. (52)

Using the property of differentiability of local parametriza-
tion we can apply the first-order Taylor expansion at β ′′0 to
represent a generic point on the manifold at β ′′

X = γ (β ′′) = γ (β ′′0 )+ J (γ )(β
′′
− β ′′0 )

T
+ o(‖β ′′ − β ′′0 ‖)

(53)

where J (γ ) is the Jacobian of γ . Choosing β ′′(j) = β ′′0 and
β ′′(i) = β ′′ and substituting (53) into (52) we have

‖X (i)
− X (j)

‖=‖J (γ )(β ′′ − β0)T+o(‖β ′′ − β ′′0 )‖)‖. (54)

This relationship clearly shows that the geodesic distance
between two points X (i),X (j), defined by (51), is different
from their Euclidean distance.

VII. NONPARAMETRIC KERNEL REGRESSION (NPKR)
Assuming the ID of datasetB has been determinedwith one of
the methods known in literature [71]–[75], the unsupervised
learning of the stochastic process (s.p.) X that generates the
data�, reduces to the estimation of the input-output function
G(·) in (43). In this way the initial problem of unsupervised
learning reduces to a supervised learning problem as the
input data B′′ of G(·) are known. The function G(·) repre-
sents a mapping (in general nonlinear) from data B′′ in the
low-dimensional feature space to high-dimensional data B′.
The estimation of this function is a regression problem that
can be solved using several different approaches.
In this context an effective method for non parametric

input-output nonlinear function regression in tensor space has
been recently proposed [76]. The method can be summarized
as follows. Given any continuous and bounded function f (x)
of the n-dimensional variable x = (x1, . . . , xn), defined in a
compact subset I ∈ Rn, then some sequences km(x), named
kernel functions, exists such that the convolution

fm(x) = km ∗ f (x) =
∫
I
f (t)km(x − t)dt (55)

converges uniformly to f (x) on I , as m → ∞. Examples of
these functions are:
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i) the polynomial kernel defined as

km(x) =
{ (1− ‖x‖2)m

Cm
, ‖x‖ ≤ 1

0, ‖x‖ > 1
(56)

where ‖x‖ = (xT x)1/2 is the norm of X and Cm is a normal-
ized factor given by

Cm =
∫
I
(1− ‖t‖2)mdt (57)

ii) the Gaussian kernel defined as

km(x) =
mn

(2π)n/2
exp

(
−
1
2
m2
‖x‖2

)
. (58)

As a consequence of property (55) we have

f (x) ∼= fm(x), for m� 1 (59)

which can be considered as a universal approximating rela-
tionship. The main issue of (59) is that it requires calculating
the integral on the right hand side of (55). To overcome this
problem, suppose we want to compute the mean value of the
n-dimensional function g(t), t = (t1, . . . , tn), in the interval I

E(g(t)) =
∫
I
g(t)p(t)dt (60)

where t is a realization of the random variable (r.v.)
t D (t1, . . . , tn), with probability density function (pdf)
p(t), and E(·) denotes the expected value. To numerically
solve the integral in (60) a Monte Carlo integration tech-
nique [77], [78] can be derived as follows. Let us select at
random N points (t1, . . . , tN ) sampled from pdf p(t), then the
Monte Carlo approximation of (60) is

E(g(t)) ∼=
1
N

N∑
i=1

g(ti). (61)

By applying this approach to the convolution gm(x) = km ∗
g(x), where g(x) = f (x)p(x), we have

gm(x) = km ∗ g(x) = E(f (t)km(x − t))

∼=
1
N

N∑
i=1

f (ti)km(x − ti) (62)

and in particular for f (x) = 1(x) = {1|x ∈ I }

1m(x) = km ∗ p(x) = E(km(x − t)) ∼=
1
N

N∑
i=1

km(x − ti).

(63)

Combining (62) and (63) we finally get

f (x) ∼= fm(x) =

∑N
i=1 f (ti)km(x − ti)∑N
i=1 km(x − ti)

. (64)

The function approximation (64) is a non-parametric model
of function f (x) as it only depends on the observations f (ti)
and not on parameters to be estimated. The method described
above, named nonparametric kernel regression (NPKR), can

be used for the approximation of the function G(·) in (48),
thus giving the following relationship

G(β ′′) ∼= Gm(β ′′) =

∑N
k=1 β

′(k) km(β ′′ − β ′′(k))∑N
k=1 km(β ′′ − β ′′(k))

(65)

where km(·) is a given kernel function, β ′′(k) and β ′(k) are the
input and output training points respectively and β ′′ is a test-
ing point, chosen from data matrix B′′ = [β ′′(1), . . . , β ′′(N )].
It is worth to notice that the previous relationship has the
same form as the well-known Nadaraya-Watson nonparamet-
ric kernel estimator [79]–[81] that was proposed for the esti-
mation of the regression function of data (x1, y1), . . . , (xn, yn)
sampled from a population having a density f (x, y), thus
giving a link between the two theories.

VIII. EXPERIMENTS
The experiments for the validation of the proposed tensor
learning approach address two different problems, namely
data reconstruction and classification.

Data reconstruction aims at reconstructing the original
dataset � = {X (1), . . . ,X (N )

} by the embedded vectors
B′′ = {β

′′(k), k = 1, . . . ,N } using the model given by (48)
and (65).

A pseudo-code of the algorithm used for the estimation of
the model from the dataset � is reported in Algorithm 1.

Algorithm 1 PTE
INPUT: dataset
� = {X (1), . . . ,X (N )

}, X (i)
∈ RI1×...×IM , L =

∏M
j=1 Ij

1. Extract L observations at random
3 = {X̂ (1), . . . , X̂ (L)

}

2. Compute a basis by Gram-Schmidt procedure
U = {U (1), . . . ,U (L)

}

3. Compute the data matrix A = [α(1), . . . , α(N )] such that
α
(k)
i =

〈
U (i),X (k)

〉
, i = 1, . . . ,L, k = 1, . . . ,N

4. Determine the reordered basis Û = {Û (1), . . . , Û (L)
}

such that σβ1 ≥ σβ2 ≥ . . . ≥ σβL ,

β
(k)
i =

〈
Û (i),X (k)

〉
, i = 1, . . . ,L, k = 1, . . . ,N

5. Estimate the intrinsic dimension d of data matrix B =
[β(1), . . . , β(N )] and extract B′′ such that

B =
[
B′′

B′

]
, B′′ ∈ Rd×N

6. Approximate the function β ′ = G(β ′′) by NPKR,
with Gm(β ′′) given by (65)
OUTPUT: the model of dataset �
X = γ (β ′′) =

∑d
i=1 β

′′
i Û (i)

+
∑

i>d β
′
i (β
′′)Û (i), β ′ =

G(β ′′)

As far as the extraction of L observations is concerned,
the following considerations are useful. A complete basis can
be derived provided the number N of observations is larger
than the dimensionality L of tensor X . In this case to obtain
a set of non-zero orthonormal tensors the selected L data are
required to be independent. In general this assumption is nat-
urally satisfied since each element in the database is obtained
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independently from each other. Nevertheless independence
can be easily proven by checking that the elements obtained
by the Gram-Schmidt procedure are non-zero, as they are a
linear combination of dataset. In case we have less data, i.e.
N < L, a complete basis cannot be obtained but the method
for manifold nonlinear dimensionality reduction can still be
applied provided the condition d � N is satisfied. However,
in this case, themain consequence of having a reduced dataset
is a large error in the estimation of data ID, as it will be
discussed in the experiment VIII-B for classification.

In order to visually assess the quality of Algorithm 1,
a simple experiment on a synthetic dataset was preliminary
performed. To this end data X ∈ R3 in a low dimensional
space were generated by the following parametrized function

X = α′′1φ
(1)
+ α′′2φ

(2)
+ G(α′′1 , α

′′

2 )φ
(3) (66)

where

α′ = G(α′′1 , α
′′

2 ) = (α′′1 )
3
− 3α′′1 (α

′′

2 )
2 (67)

and the vectors

φ(1) = ( 1 0 0 )T ,

φ(2) = ( 0 1 0 )T , φ(3) = ( 0 0 1 )T (68)

form the canonical basis φ =
[
φ(1), φ(2), φ(3)

]
∈ R3×3. (66)

represents a parametrized surface in R3 known as Monkey
Saddle whose behaviour is plotted in Fig. 2. From (66) a
dataset � = {X (1), . . . ,X (N )

} was achieved by N val-
ues of α′′ = (α′′1 , α

′′

2 ) randomly chosen in the interval
[−1.5, 1.5] × [−1.5, 1.5], thus obtaining the data matrix
A = [α(1), . . . , α(N )] ∈ R3×N , where α = (α′′, α′)T . Using
� as the input dataset in Algorithm 1, the model X = γ (β ′′)
has been derived. Fig. 3 depicts the surface achieved with
the points sampled from the model. As you can see the
model is able to reconstruct the manifold embedded in the
high-dimensional space of data.

FIGURE 2. Monkey Saddle surface.

In all the experiments a Gaussian kernel was used for the
regression of function G(·) in (48), using the NPKR method.

Classification aims at classifying the data � by the
kNN algorithm, using the embedded vectors B′′ as
low-dimensional features.

FIGURE 3. Monkey Saddle surface reconstructed.

A. DATA RECONSTRUCTION
The capability of the proposed method to model data with a
reduced dimensionality, has been validated by three exper-
iments conducted on different datasets, namely CIFAR-10,
RGB-D Object Dataset, AT&T Faces Dataset.

1) EXPERIMENT ON CIFAR-10 (3D-TENSOR)
CIFAR-10 dataset [82], [83] consists of 60000, 32×32 colour
images divided in 10 classes, with 6000 images per class,
of which 50000 are for training and 10000 for testing.

In this experiment, we use the 50000 RGB images of the
training set for image reconstruction by the model (48)-(65).
For this purpose, the data has been organized in a 3D-tensor
dataset � = {X (1), . . . ,X (N )

}, with N = 50000, X ∈
R32×32×3, so that the dimension of the basis is L = 32·32·3 =
3072. Once a basis U is derived with the Gram-Schmidt
procedure, to the set � corresponds the data matrix A =[
α(1), . . . , α(N )

]
where the columns can be considered as

realizations of the random vector α. For the set chosen in this
experiment the estimated value of the vectors µα and σα are
reported in Fig. 4.

FIGURE 4. Vectors µα and σα for Experiment VIII-A1 (x-axis truncated to
value 500).

To estimate the intrinsic dimension d of data matrix
B we used the following relevant state-of-the-art intrin-
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sic dimension (ID) estimators: Dimensionality from Angle
and Norm Concentration (DANCo) and its faster variant
(FastDANCo) [84], [85], Minimum Neighbor Distance -
Maximum Likelihood (MiNDML) and Minimum Neighbor
Distance - Kullback Leibler (MiNDKL) [86], Maximum
Likelihood Estimation (MLE) [87], Intrinsic Dimensional-
ity Estimation of Submanifolds in Rd (Hein) [88]. Table 2
reports the values of intrinsic dimension as obtained with
the author’s Matlab implementation1 of the above mentioned
methods for ID estimation. As you can see, although the value
of ID so obtained show a large spread, they are all of the same
order and significantly reduce the dimensionality of tensor
data, which is two-orders higher (L = 3072). To stress the
model and prove the dimensionality reducing capability of
the approach we chose the minimum value of ID.

TABLE 2. ID of the data matrix B achieved from CIFAR-10 dataset,
as estimated with the methods DANCo, FastDANCo, MiNDML, MiNDKL,
MLE and Hein.

Fig. 5 shows a set of original images and the corresponding
images reconstructed with the model (48)-(65) and d = 10.
Table 3 reports the root mean squared error (RMSE) for
each processed images, computed using the NPKR method
for regression of function G(·) in (48), (here a Gaussian
kernel and m = 2 are used in (58)), and compared with
two well-known regression methods, namely Support Vector
Machine (SVM) (with different kernels) and Regression Tree.
Table 3 shows that the NPKRmethod for the regression of the
functionG(·) gives the better results, as it is able to reconstruct
the data with the minimum error.

FIGURE 5. Comparison of the original images extracted from the
CIFAR-10 dataset and the corresponding reconstructed images with the
proposed approach.

In order to study how robust is the NPKR method with
respect to hyperparameters, the sensitivity of RMSE and
PSNR (peak signal-to-noise ratio) to the dimension d of β ′′

is reported in Fig. 6 and Fig. 7 for different values of m. The
mathematical representation of the PSNR is as follows:

PSNR = 20 log10

(
max(f )
√
MSE

)
(69)

1https://it.mathworks.com/matlabcentral/fileexchange/40112-intrinsic-
dimensionality-estimation-techniques
http://www.stat.lsa.umich.edu/∼elevina/mledim.m
https://www.ml.uni-saarland.de/code/IntDim/IntDim.htm

TABLE 3. RMSE for the reconstruction of random images extracted from
CIFAR-10 dataset.

FIGURE 6. Sensitivity of RMSE to the dimension d of β′′ for different
values of m for Experiment VIII-A1.

where f represents the original image and MSE the mean
squared error. PSNR and MSE are used to compare the
squared error between the original image and the recon-
structed image. There is an inverse relationship between
PSNR and MSE. So a higher PSNR value indicates a higher
quality of the image.

2) EXPERIMENT ON RGB-D OBJECT DATASET (4D-TENSOR)
The RGB-DObject Dataset [89] contains 300 objects divided
in 51 categories. For each object the dataset provides a num-
ber of images ranging from a minimum of 506 to a maximum
of 852 for a total of 207920 frames. In this experiment we
used the subset Cropped RGB and depth images with object
segmentation masks [90] that contains the cropped RGB-D
frames and tightly include the object as it is spun around on a
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FIGURE 7. Sensitivity of PSNR to the dimension d of β′′ for different
values of m for Experiment VIII-A1.

FIGURE 8. Vectors µα and σα for Experiment VIII-A2 (x-axis truncated to
value 500).

turntable.We used all the 207920 images, resized into 32×32
pixel box. In particular, we divided each class in 5 frames of
32× 32× 3 RGB images to obtain a 4D-tensor dataset � =
{X (1), . . . ,X (N )

}, with N = 207920, X ∈ R32×32×3×5,
resulting in a dimension L = 15360 of the basis. Once a
basis U is derived with the Gram-Schmidt procedure, to the
set� corresponds the datamatrixA =

[
α(1), . . . , α(N )

]
where

the columns can be considered as realizations of the random
vector α. For the set chosen in this experiment the estimated
value of the vectors µα and σα are reported in Fig. 8.

Table 4 reports the results obtained with the same ID
estimators used in Experiment VIII-A1. Choosing an intrinsic
dimension d = 5 for data matrix B′′, thus a reduction of
dimensionality from L = 15360 to d = 5 is obtained with
the model (48). Then we applied the proposed reconstruction
method to different 4D-tensors, that is 32 × 32 RGB videos
of 5 frames each.

Figs. 9-13 show the 5 frames that composed the original
videos and the corresponding reconstructed frames obtained

TABLE 4. ID of the data matrix B achieved from the RGB-D Object
Dataset, as estimated with the methods DANCo, FastDANCo, MiNDML,
MiNDKL, MLE and Hein.

FIGURE 9. Comparison of the 5 frames (extracted from the RGB-D Object
Dataset) that composed the original video V1 and the corresponding
reconstructed frames obtained with the proposed approach.

FIGURE 10. Comparison of the 5 frames (extracted from the RGB-D Object
Dataset) that composed the original video V2 and the corresponding
reconstructed frames obtained with the proposed approach.

FIGURE 11. Comparison of the 5 frames (extracted from the RGB-D Object
Dataset) that composed the original video V3 and the corresponding
reconstructed frames obtained with the proposed approach.

with the proposed approach, demonstrating the validity of this
approach.

Table 5 reports the RMSE for each processed 4D-tensors,
obtained using NPKR method with Gaussian kernel and m =
5 in (58), showing that the method is able to reconstruct the
data with a very low error.

In this case, as well, to assess the robustness of the PTE
method with respect to hyperparameters, the sensitivity of
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FIGURE 12. Comparison of the 5 frames (extracted from the RGB-D Object
Dataset) that composed the original video V4 and the corresponding
reconstructed frames obtained with the proposed approach.

FIGURE 13. Comparison of the 5 frames (extracted from the RGB-D Object
Dataset) that composed the original video V5 and the corresponding
reconstructed frames obtained with the proposed approach.

TABLE 5. RMSE for the reconstruction of random sequences of images
extracted from RGB-D Object Dataset.

RMSE and PSNR to the dimension d of β ′′ is reported
in Fig. 14 and Fig. 15 for different values of m.

3) EXPERIMENT ON AT&T FACES DATASET (2D-TENSOR)
The AT&T Faces Dataset [91], [92] contains 10 different
images for each of 40 distinct peoples. The size of each image
is 92× 112, with 256 gray levels per pixel.
In this experiment, we applied the proposed approach

on the original and occluded images achieved from AT&T
Faces Dataset, with the same procedure described in [61].
Here, 20 distinct persons are selected and each face image is
resized into 56× 46 format. In addition to original face data,
we also test our method on the partially occluded face data.
Here, 20% images were selected randomly and corrupted
manually for each person class, and the size of corruption is
11 × 10. To apply the proposed method, the data has been
organized in a 2D-tensor dataset� = {X (1), . . . ,X (N )

}, with

FIGURE 14. Sensitivity of RMSE to the dimension d of β′′ for different
values of m for Experiment VIII-A2.

FIGURE 15. Sensitivity of PSNR to the dimension d of β′′ for different
values of m for Experiment VIII-A2.

N = 200, X ∈ R56×46 resulting in a dimension of the
basis of L = 2576. Once a basis U is derived with the
Gram-Schmidt procedure, to the set � corresponds the data
matrix A =

[
α(1), . . . , α(N )

]
where the columns can be

considered as realizations of the random vector α. For the set
chosen in this experiment the estimated value of the vectors
µα and σα are reported in Fig. 16.

On the basis of the estimated ID values reported in Table 6,
we select an optimal intrinsic dimension d = 6 for the
reconstruction of this dataset.

TABLE 6. ID of the data matrix B achieved from the AT&T dataset,
as estimated with the methods DANCo, FastDANCo, MiNDML, MiNDKL,
MLE and Hein.
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FIGURE 16. Vectors µα and σα for Experiment VIII-A3 (x-axis truncated to
value 200).

FIGURE 17. Sensitivity of RMSE to the dimension d of β′′ for different
values of m for Experiment VIII-A3.

Also in this case to assess the robustness of the PTEmethod
with respect to hyperparameters, the sensitivity of RMSE and
PSNR to the dimension d of β ′′ is reported in Fig. 17 and
Fig. 18 for different values of m.
Fig. 19 and Fig. 20 show a set of original images and the

corresponding reconstructed images with the model (48) -
(65), demonstrating the validity of this approach. Further-
more, Fig. 21 and Fig. 22 report a set of original partially
occluded images and the corresponding reconstructed images
showing the good noise tolerance of the method. Table 7
reports the reconstruction residuals for different reconstruc-
tion methods. The methods used to evaluate the PTE method
are: PCA-based methods (PCA [27], gLPCA [66]) and tensor
decomposition methods (TD [37], GLTD [61]). In this table
the average residual for reconstructed tensor Res(X ) has been
defined as:

Res(X ) =

√√√√ 1
N

N∑
k=1

‖X (k)
0 − X (k)‖2, (70)

FIGURE 18. Sensitivity of PSNR to the dimension d of β′′ for different
values of m for Experiment VIII-A3.

FIGURE 19. Comparison of the original images extracted from the AT&T
dataset and the corresponding reconstructed images with the proposed
approach, on subject 8.

FIGURE 20. Comparison of the original images extracted from the AT&T
dataset and the corresponding reconstructed images with the proposed
approach, on subject 12.

FIGURE 21. Comparison of the partially occluded original images
extracted from the AT&T dataset and the corresponding reconstructed
images with the proposed approach, on subject 8.

where X0 = (X (1)
0 , · · · ,X (N )

0 ) represents the original N
images and X = (X (1), · · · ,X (N )) the reconstructed images.
Meanwhile, for the occluded image data, the same equa-
tion (70) defines the average noise-free residual (NF-Res),
being X0 in this case the set of original non occluded signals.

B. CLASSIFICATION
1) EXPERIMENT ON CLASSIFICATION OF 2-ORDER TENSORS
This experiment was addressed to the classification of data
collected from the following datasets.
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FIGURE 22. Comparison of the partially occluded original images
extracted from the AT&T dataset and the corresponding reconstructed
images with the proposed approach, on subject 12.

TABLE 7. Residual of different methods on both original AT&T face and
AT&T noisy face datasets, respectively.

• AT&T Faces dataset: as described in the experiment of
Section VIII-A3.

• MNIST dataset: is consisted of 8-bit gray-scale images
of digits from "0" to ‘‘9’’. There are about 6000 exam-
ples for each class [93]. Each image is centered on a
28 × 28 grid. In our experiments, we randomly choose
50 images for each class.

• COIL-20 dataset: contains 20 objects [94]. Each object
has 72 images. The size of each image is 32×32 pixels,
with 256 gray levels per pixel. We use the first 32 images
for each object in our experiments.

It is worth to notice that for all such datasets the number
of images in each class is far less the dimension of the
corresponding basis. The main consequence of this mismatch
is a large error in the estimation of intrinsic dimension of
data, so that all the methods for ID estimation fails. However,
although the intrinsic dimension of data cannot be deter-
mined with a certain degree of reliability, the model given
by (48) - (65) continuous to be valid with an uncertainty on
the dimension d . As a consequence, in all the experiments
the dimension d was empirically determined, to obtain a
good modeling of data, instead of using the method for ID
estimation.

We perform semisupervised learning on different datasets,
by training the classifier on the labeled data (20% of dataset)
and use the rest as unlabeled data (80% of dataset). In partic-
ular 20% of data points for each class were randomly selected
as labeled data, and the rest was used as unlabeled data. The
classifier was trained on the labeled data and the class labels
were predicted on the unlabeled data.

We performed classification using k-nearest neighbor
(kNN) algorithm [28], and compared the results obtained
with features extracted by our model (matrix B′′) and several
other tensor learning methods, including PCA-based meth-
ods (PCA [27], gLPCA [66]), tensor decomposition methods

(TD [37], GLTD [61]). Although other valuable methods
for classification exist, we choose to use kNN algorithm
since it is common in the literature of manifold learning
[60], [62], thus making comparison with other tensor learning
techniques easier.

Table 8 reports the results for the classification experiment
as achieved by the methods used in [61] and PTE method.
Also in this case the intrinsic dimension d was empirically
determined. As you can see, our method outperforms all the
other methods.

TABLE 8. Comparison of classification results of 2-order tensors datasets
using kNN classification algorithm (train set = 20%, test set = 80%). The
best results are marked by bold font.

2) EXPERIMENT ON CLASSIFICATION OF 3-ORDER TENSORS
In order to compare the proposed method with some other
tensor-based learning methods, a last experiment was per-
formed on the following datasets.

• Weizmann Action Database: an high-order dataset com-
monly used for human action recognition. The database
includes 90 videos coming from 10 categories of actions
- a) bending (bend), b) jacking (jack), c) jumping (jump),
d) jumping in places (pjump), e) running (run), f) gal-
loping sideways (side), g) skipping (skip), h) walking
(walk), i) single-hand waving (wave1), g) both-hands
waving (wave2) - which were performed by nine sub-
jects [95], [96]. A tensor samples of size 32× 24× 10,
represented in a spatio-temporal domain, is formed by
10 successive frames of each action, each of which was
normalized to the size 32× 24 pixels.

• Cambridge Hand Gesture Database: consists of
900 image sequences of nine gesture classes, which are
defined by three primitive hand shapes and three prim-
itive motions [97], [98]. Each class contains 100 image
sequences (5 different illuminations × 10 arbitrary
motions × 2 subjects). The procedure to format data is
the same as in the Weizmann action database.

In these experiments, we randomly selected six action
tensors of each category for training and the remaining ten-
sors were used for testing. The experiments were indepen-
dently performed 10 times using the kNN algorithm with
Euclidean distance for classification, following the procedure
in [58].
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TABLE 9. Comparison of classification results of 3-order tensors datasets
using kNN classification algorithm. The best results are marked by bold
font.

The methods used to evaluate the proposed PTE are: the
baseline method (nearest classifier on the original data),
multilinear PCA (MPCA) [31], tensor locality preserv-
ing projection (TLPP) and tensor neighborhood preserving
embedded (TNPE) [67], orthogonal tensor neighborhood pre-
serving embedded (OTNPE) [68], sparse tensor alignment
(STA) [58].

Table 9 reports the results for the classification exper-
iment as achieved by the aforementioned methods and
PTE method. Also in this case the intrinsic dimension d
was empirically determined. As you can see the proposed
PTE outperforms the other methods in terms of recognition
rate.

IX. CONCLUSION
In this article a nonlinear, explicit model of tensor data that
depends on a reduced set of latent variables is derived. The
main steps required for the estimation of the model from data
are:

i) compute a basis by a Gram-Schmidt procedure;
ii) reorder the basis in such a way the variances of coeffi-

cients are in decreasing order;
iii) estimate the intrinsic dimension d of data;
iv) define a data parametrization of dimension d ;
v) approximate the nonlinearity in the parametrization by a

regression model.

The capability of the proposed approach for data reconstruc-
tion has been validated by performing several experiments on
datasets with tensors of different orders. In these experiments
several methods for regression, i.e. SVM with different ker-
nels and NPKR method, have been adopted. In all cases the
proposed tensor learning approach gives good performance
for data reconstruction, nevertheless the PTE method is able
to reconstruct data with minimum error. Additionally the
proposed tensor learning approach has proven to be effective
for classification problem, using data of reduced dimension-
ality. To show this ability, classification on several different
datasets has been performed. The comparison of the results
obtained with feature extracted by the proposed approach
and state-of-the-art tensor learning methods (PCA, gLPCA,
TD, GLTD, MPCA, TLPP, TNPE, OTNPE, STA), shows the
effectiveness of the suggested model.

APPENDIX
LOCAL PARAMETRIZATION OF DATA EMBEDDED IN A
MANIFOLD
Assume all the values of α embedded in the manifoldM are
described by the following parametrized surface in RL

α = F(θ ), θ ∈ U ⊂ Rd , α ∈ RL , d < L. (71)

This means that a bijective and differentiable function f (x)
defined on a subset V = U × Rm

⊂ RL , given by

f (x) = f (θ , t) = F(θ )+
(
0
t

)
, f : U × Rm

→ RL

(72)

exists, where x = (θ , t)T ∈ V , t ∈ Rm, m = L − d .
This ensures that a one-to-one correspondence is established
between a point x = (θ , 0)T in V and a point α in the
manifold M. As a consequence f is invertible and unique.
Rearranging (72) according to the dimension d of θ we
have

f (x) =
(

F ′′(θ )
F ′(θ )+ t

)
, F ′′ ∈ Rd (73)

and from differentiability of f one gets

J (f ) = (Jθ (f ), Jt(f )) =
(
J (F ′′) 0
J (F ′) Imm

)
(74)

where Imm is an (m × m) diagonal identity matrix and J (f )
is the Jacobian of f . In order that f (x) to be invertible,
as it is a bijective mapping, the condition det J (f ) 6= 0 on
Jacobian must be satisfied. As a consequence from (74) we
have det J (F ′′) 6= 0, meaning that the function F ′′(θ ) =
α′′ is invertible. Thus the inverse F

′′
−1 of F ′′ exists such

that

θ = F
′′
−1(α′′). (75)

Combining (71) and (75) it results

α =

(
α′′

F ′
(
F
′′
−1(α′′)

))
=

(
α′′

G(α′′)

)
(76)

where G(·) = F ′
(
F
′′
−1(·)

)
, and this proves (30).
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