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Abstract 

 

This dissertation investigates innovative data mining methodologies in the biomedical 

field, placing special emphasis on the identification and analysis of microRNAs as 

potential biomarkers for various diseases, devoting specific attention to COVID-19 in 

the hospitalized elderly population. Using Ingenuity Pathway Analysis, the research 

examines in detail the complex biological processes and molecular mechanisms 

influenced by microRNAs, exploring their regulation and potential roles in disease 

development and response to treatments. The present study not only enriches our 

understanding of the functions and control of miRNAs in the biomedical context, but 

also highlights how state-of-the-art bioinformatics tools can facilitate in silico 

research, opening new horizons for biomarker identification and elucidation of 

complex biological phenomena. The thesis highlights the importance of combining 

sophisticated data mining techniques with molecular biology to increase the predictive 

accuracy of potential biomarkers. 
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1. Introduction 
 
Biomarker discovery in biomedical research represents a rapidly evolving field that aims 
to identify molecular signatures for the diagnosis, prognosis, and therapeutic efficacy of 
diseases [Mayeux, 2004]. Circulating microRNAs (miRNAs), small molecules of 
noncoding RNA, have emerged as reliable biomarkers for a wide range of clinical 
conditions, including cardiovascular disease, cancer, dementia, and infectious diseases 
such as COVID-19 [Mayeux, 2004]. Identification and analysis of miRNA signatures offer 
crucial insights into disease pathogenesis, particularly in COVID-19, where deregulation 
of miRNAs is associated with severity and mortality, underscoring their potential as new 
tools for predicting disease outcomes and tailoring therapeutic strategies [Fulzele et al., 
2020]. 
 
Population aging is a global phenomenon that reflects the success of public health and 
socioeconomic development policies in some geographic areas. However, society must 
adapt to this new scenario to maximize the functional capacity and health of the elderly 
and promote their social inclusion. In addition, the aging population poses new public 
health problems, such as a high prevalence of chronic noncommunicable diseases and 
associated comorbidities [Beard et al., 2016]. The COVID-19 pandemic caused by 
SARS-CoV-2 virus infection has resulted in high mortality in at-risk populations, such as 
the elderly, and their social isolation exacerbates the situation. The vulnerability of the 
elderly population is related to the physiological effects of aging, which affect immune 
function, promoting morbidity and mortality from infectious diseases [Onder et al., 2020]. 
 
Recent advances in next-generation sequencing (NGS) and microarray technologies 
have greatly enhanced our ability to analyse miRNAs at the genome-wide level. These 
technologies enable the identification of deregulated miRNAs by comparing samples 
from diseased and healthy individuals, facilitating biomarker discovery. However, 
interpreting the large volume of data generated and understanding the functional 
implications of these miRNAs requires sophisticated analytical approaches [Wang et al., 
2009]. The use of databases such as Gene Ontology (GO) and Kyoto Encyclopaedia of 
Genes and Genomes (KEGG) helps determine whether specific miRNAs are significantly 
enriched in pathways or biological processes associated with observed phenotypes 
[Kanehisa et al., 2017]. The Ingenuity Pathway Analysis (IPA) tool complements these 
efforts by providing an integrated platform to explore regulatory networks and pathways 
involving miRNAs, facilitating a deeper understanding of the roles miRNAs play in 
biological processes and disease pathways, improving interpretation of complex data, 
and identifying potential therapeutic targets. This approach exemplifies the significant 
advances made in biomarker discovery, highlighting the essential role of advanced 
bioinformatics tools in the modern biomedical research landscape  [Krämer et al., 2014]. 
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1.1 Significance of microRNAs as biomarkers 
 

MicroRNAs (miRNAs), about 22 nucleotides long, constitute a highly conserved class 
of non-coding RNAs through evolutionary history. These miRNAs originate as 
primary miRNAs (pri-miRNAs), long strands of ribonucleic acid that undergo the 
process of capping and adenylation by polymerase II within the nucleus. These pri-
miRNAs, of about 70 nucleotides, are subsequently processed by Drosha proteins 
and DiGeorge syndrome critical region 8 (DGCR8). Transferred into the cytoplasm 
via the 5-RAN exportin complex, these molecules are further finished by 
endonucleases into mature miRNAs. The function of miRNAs is to bind to the 3' 
untranslated regions of messenger RNAs (mRNAs), inhibiting their translation or 
promoting protein catabolism. In addition, miRNAs can be encapsulated in vesicles 
known as exosomes in the extracellular space or associated with lipoproteins and 
argonaut proteins for circulation [Backes et al., 2017a]. 
 
Long non-coding RNAs (lncRNAs), which regulate the regulatory framework 
governing gene expression in the transcriptional, post-transcriptional and 
translational phases, do not code for proteins and exceed 200 nucleotides in length 
[Huang et al., 2008]. Deviations in lncRNA expression patterns have been linked to 
a range of human diseases, underscoring the need for a better understanding of 
disease pathogenesis to advance diagnostic, prognostic, and therapeutic 
methodologies. lncRNAs are classified into various types, including sense, 
antisense, bidirectional, intronic, and intergenic, depending on their transcriptional 
origins with respect to known protein-coding genes. They play a crucial role in the 
regulation of gene expression and influence fundamental cellular functions and 
metabolic pathways, particularly through their involvement in chromatin structure 
modification, epigenetic variation, and subcellular organization [Riffo-Campos et al., 
2016]. 
 
Circular RNAs (circRNAs), composed of continuous ribonucleotide chains without 
polyadenylated ends and forming a closed loop structure, are generally considered 
non-coding maintenance RNAs, although some are capable of encoding specific 
proteins. Notably, 1976 small circular noncoding RNA fragments, identified as 
splicing byproducts, have been isolated from plant-infecting viroids. These fragments 
have been used in the identification of eukaryotic cells, including yeast mitochondrial 
RNAs and hepatotropic virus δ [Huang et al., 2008]. 
 
MicroRNAs (miRNAs) have emerged as key biomolecular entities for their crucial 
role in the posttranscriptional regulation of gene expression, and their stable 
presence in various body fluids makes them ideal candidates as non-invasive 
biomarkers. These small noncoding RNA molecules influence a multitude of cellular 
processes, from ontogeny to apoptosis, and dysfunction of their expression is often 
linked to disease pathogenesis [Ambros, 2004; Bartel, 2004]. Characterized by 
remarkable resistance to RNAase activity and robustness in extracellular 
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environments, miRNAs are essential for their potential as biomarkers [Mitchell et al., 
2008]. Numerous studies have highlighted the utility of circulating miRNAs in blood 
plasma as reliable diagnostic and prognostic tools for various diseases, including 
cancer, cardiovascular disease, and neurological disorders [Chen et al., 2008; 

Creemers et al., 2012; Gupta et al., 2010]. 
 
In addition, tissue-specific miRNA expression profiles have provided insights into the 
tissue origin of diseases, facilitating targeted therapeutic approaches [Lu et al., 
2005]. Advances in high-throughput sequencing technologies and miRNA arrays 
have greatly accelerated the discovery and validation of miRNA signatures as 
biomarkers for disease detection and monitoring [Mendell and Olson, 2012]. 
However, challenges such as the standardization of miRNA extraction and 
quantification methods, as well as the need for large-scale validation studies, remain 
and must be addressed to fully integrate miRNA-based biomarkers into clinical 
practice [Moldovan et al., 2014]. Despite these challenges, the potential for miRNAs 
to revolutionize the field of molecular diagnostics is considerable, underscoring the 
need for continued research and development in this promising field. 
 

1.2 Regulation of NF-κB: 
 

The transcription factor NF-κB, consisting of the p50/p65 heterodimer, was identified 
nearly four decades ago as a rapidly induced κ light chain enhancer for activated B 
lymphocytes, playing a role in the humoral immune response [Sen and Baltimore, 
1986; Kaltschmidt et al., 1993; Taganov et al., 2006]. Since then, its recognition sites 
have been found in numerous gene promoters, and NF-κB has been recognized as 
an influential promoter of a wide range of gene expression patterns in various cell 
types, critical in the management of innate and adaptive immune responses. This 
includes roles in the elimination of waste molecules from the cytoplasm, inflammatory 
signalling, cell differentiation, growth, oncogenesis, and neuronal degeneration 
[Taganov et al., 2006; Zhang et al., 2017b; Baltimore, 2019]. Inactive NF-κB exists in 
a complex with the inhibitory protein IκB in resting cells. However, it can be rapidly 
activated in response to pro-inflammatory agents such as IL-1β, IL-6, TNFα, and 
lipopolysaccharide (LPS)-the latter a potent inflammatory stimulant derived from 
Gram-negative bacteria-along with Aβ peptides, viral components, irradiation, and 
ROS-inducing substances. These factors lead to degradation of IκB via specific 
phosphorylation of the IKK complex, ubiquitin proteasome-mediated degradation, 
and subsequent initiation of NF-κB-driven transcription targeted to pro-inflammatory 
gene promoters. 
 
It has been noted that a persistent supply of LPS from Gram-negative bacteria into 
the microbiome could chronically increase NF-κB levels in the central nervous 
system (CNS), as observed in cultured human neurons and in AD-affected temporal 
lobe neocortex regions, a primary site of AD pathology [Lukiw and Bazan, 1998; 
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Zhang et al., 2017a; Zhan et al., 2018; Zhan et al., 2021; Zhao and Lukiw, 2018; 

Alexandrov et al., 2019; Zhao et al., 2019; Singh, 2022]. 
 
Given the central importance of NF-κB pathways in various immunity- and 
inflammation-related diseases, ranging from cancer to neurodegeneration, 
significant efforts have been made to design and test both natural and synthetic NF-
κB inhibitors. These efforts aim to mitigate NF-κB activation in cells without causing 
off-target effects. Several therapeutic strategies are under development, such as 
blocking initial stimulatory signals, targeting phosphorylation pathways that facilitate 
NF-κB activation, modulating the IκB complex, and preventing DNA binding. These 
strategies are the subject of intense research and include antioxidants that neutralize 
ROS, alterations in phosphorylation that affect the transcriptional specificity of NF-
κB, genomic editing to limit the abundance of specific NF-κB subunits, and masking 
of DNA binding sites [Kaur et al., 2015; Barnabei et al., 2021; Jover-Mengual et al., 
2021; Pogue and Lukiw, 2021; Christian et al., 2016; Wang et al., 2022; Dai et al., 

2020; Katti et al., 2022; Yoon et al., 2022]. In addition, approaches to modulate 
overregulated miRNAs, targeted delivery systems to minimize off-target effects, and 
the long-standing use of dietary NF-κB inhibitors to reduce inflammatory signaling 
have been highlighted [Gilmore and Herscovitch, 2006; Li et al., 2020b; Li et al., 

2020c; Olajide and Sarker, 2020; Al-Khayri et al., 2022; Das and Rao, 2022]. About 
80 pharmaceutical companies are actively seeking more specific NF-κB inhibitors for 
clinical use in diseases characterized by excessive NF-κB activity (Future Market 
Insights, GlobeNewswire, 360 Research Reports) 
 

1.3 Strengthening miRNA Research through Comprehensive Databases and 

Analytical Tools. 
A wide range of resources have enriched our understanding of miRNAs, particularly 
miRBase [Kozomara et al., 2018], which boasts a large collection of miRNA 
sequences and functionalities for more than 271 organisms. 

miRBase 

miRBase is the leading public repository and online resource for microRNA 
sequencing and annotation (http://mirbase.org/). Established in 2002 (initially 
named microRNA Registry), miRBase is in charge of microRNA gene 
nomenclature and has been assigning gene names for new microRNA 
discoveries ever since. The microRNA gene naming system has been 
discussed in a number of miRBase publications [Kozomara and Griffiths-
Jones, 2014; Kozomara and Griffiths-Jones, 2011; Griffiths-Jones et al., 2006; 

Griffiths-Jones et al., 2008; Griffiths-Jones, 2004] and on the miRBase blog 
(http://mirbase.org/blog/). The miRBase website provides a wide range of 
information on published microRNAs, including their sequences, biogenesis 
precursors, genomic coordinates and context, literature references, deep 
sequencing expression data, and community-driven annotation. miRBase also 
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serves as a portal for third-party information on microRNA genes and 
sequences, linking to other resources that include predicted and 
experimentally validated targets of microRNAs. 

The latest version of the miRBase database (v22) contains 38,589 entries 
representing hairpin-shaped precursor microRNAs from 271 organisms. This 
represents an increase in sequences by more than one-third from the previous 
version. These hairpin precursors produce a total of 48,860 different mature 
microRNA sequences. Vertebrate genomes contain thousands of microRNAs: 
for example, the human genome contains 1917 annotated hairpin precursors 
and 2654 mature sequences. The well-annotated genomes of both 
invertebrates and plants contain hundreds of microRNAs (e.g., Drosophila 
melanogaster: 258 hairpins, 469 mature sequences; Caenorhabditis elegans: 

253 hairpins, 437 mature sequences; Arabidopsis thaliana: 326 hairpins, 428 

mature sequences). 

This repository, together with miRCarta [Backes et al., 2017a] and mirGeneDB 
[Fromm et al., 2019], forms the basis of miRNA research, providing insights into both 
predicted and experimentally validated miRNAs. 

miRCarta  

miRCarta complements the miRBase database, adding new miRNA 
candidates, expression data, updated organisms and genomes, serving as an 
entry point for miRNA researchers. It offers basic functionality such as 
navigation, which lists all miRNAs and precursors for a selected organism, 
showing normalized counts of mapped reads from NGS data, with or without 
mismatches. This allows users to assess whether the expression profile on a 
precursor (putative or known) seems likely for miRNA expression and to 
identify true precursors/miRNAs more quickly than false-positive annotations. 

The advanced search allows users to narrow query results to specific miRNAs 
or precursors, validated by certain experiments. Precursor families, 
supplemented by miRBase content, and precursor genomic clusters are other 
features offered. Read mapping distribution is visualized for human 
precursors, showing pileup plots in precursor-specific views and tabular 
overviews for H. sapiens. 

Structural analysis, performed with RNAfold [Lorenz et al., 2011]  and 
visualized with FornaContainer [Kerpedjiev et al., 2015], is available in the 
precursor-specific views. For annotation, miRCarta provides a combined 
miRNA and target search using experimentally validated or predicted targets, 
respectively. If all three databases are selected, the resulting table will contain 
a column for each database with an input of 0 or 1, which can be used for 
filtering the results. For potential target pathways, links to the MiRTargetLink 



7 

 

[Hamberg et al., 2016] and miRPathDB [Backes et al., 2017b] tools for 
miRNAs are included. Links to tissue distribution via the TissueAtlas tool 
[Ludwig et al., 2016] and disease association via links to miRNAs in 
miR2Disease [Jiang et al., 2009] and precursors in HMDD [Li et al., 2014] are 
also provided. 

mirGeneDB 

MirGeneDB is a manually curated database dedicated to microRNA genes, 
based on consistent annotation and nomenclature criteria [Fromm et al., 
2015]. Originally limited to a few species, MirGeneDB was expanded in its 
version 2.0 to include 10,899 authentic and consistently named microRNAs, 
representing 1,275 microRNA families from 45 species, covering every major 
metazoan group. This expansion benefited from the analysis of more than 400 
publicly available small RNA sequencing datasets processed using 
sRNAbench [Aparicio-Puerta et al., 2019] and miRTrace [Kang et al., 2018], 
allowing uniform and consistent annotation of miRNAomes for each species 
using MirMiner [Wheeler et al., 2009]. 

MirGeneDB 2.0 improved annotations for species such as human, mouse, 
chicken, and zebrafish, and refined human and zebrafish annotations using 
available CAGE data [de Rie et al., 2017]. It also made use of data on the 
absence of Dicer, Drosha, and Exportin 5 to further refine the human 
annotations. The database places special emphasis on accurate annotation of 
the 5p and 3p arms of microRNAs, allowing better identification of miRNA 
isoforms and including features such as Group 2 miRNAs, marked by mono-
uridylation at their 3' ends, and processing variants where alternative 
Drosha/Dicer cuts significantly affect the mature sequence [Manzano et al., 
2015]. 

MirGeneDB stands out for its commitment to annotation quality, aiming to be 
free of false positivity. Unlike other databases that may allow community 
annotation, MirGeneDB uses a well-defined set of criteria for microRNA 
inclusion, ensuring that the nearly complete repertoire of microRNAs from 
each taxon is added to the database [Fromm et al., 2015; Ambros et al., 2003; 

Tarver et al., 2013]. This approach allows for consistent and complete 
annotation, facilitating comparative studies and supporting the utility of 
microRNAs as reliable phylogenetic markers [Reinhart et al., 2000; Tarver et 

al., 2018; Kang et al., 2018; Tarver et al., 2013]. 

In conclusion, MirGeneDB 2.0 offers microRNA researchers a valuable 
resource for high-quality annotations, a comprehensive dataset, and tools for 
comparative analyses, supporting evolutionary and functional studies in the 
field of microRNAs. 
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Integration of data from diverse sources, such as miRMaster [Fehlmann et al., 2017], 
TCGA and NCBI SRA, has improved the accuracy of miRNA detection, as illustrated 
by Alles et al. [Alles et al., 2019], with their validation of 2300 true human mature 
miRNAs.  

miRMaster 

MiRMaster is a web-based tool developed to analyze NGS data of small 
RNAs, including the discovery of novel miRNAs, isomiRs, mutations, and 
exogenous RNAs. This tool provides a wide range of modules that enable 
quantification of miRNAs and other non-coding RNAs, identification of new 
miRNAs, discovery of variants, and analysis of specific motifs. With its ability 
to process large datasets quickly and accurately, miRMaster proves to be a 
valuable tool for biomedical research, especially for large-scale studies that 
aim to better understand miRNA-mediated gene regulation [Fehlmann et al., 
2017]. 

The software is based on the principles of miRDeep2, a renowned prediction 
tool for miRNAs, but extends its functionality by including a broader feature set 
to improve prediction accuracy. MiRMaster is designed to facilitate the analysis 
of high-resolution sequencing data from raw files in FASTQ format, and covers 
a wide range of analyses, from quantifying miRNA expression to mapping 
nonhuman RNAs. It also implements application programming interfaces 
(APIs) for web-based tools, enabling advanced miRNA targetome analyses 
and miRNA enrichment sets [Fehlmann et al., 2017]. 

TGCA 

The Cancer Genome Atlas (TCGA) project represents a significant initiative in 
the field of cancer genomics, having molecularly characterized more than 
20,000 samples of primary cancer and corresponding normal tissues, covering 
33 types of cancer. Jointly launched by the National Cancer Institute (NCI) and 
the National Human Genome Research Institute (NHGRI), part of the National 
Institutes of Health (NIH), TCGA aimed to improve understanding of the 
molecular basis of cancer through advanced genome analysis technologies, 
including large-scale genome sequencing. 

TCGA has greatly advanced the field of cancer genomics, providing a valuable 
resource for researchers to understand the genetic mechanisms underlying 
cancer, which can lead to new methods of diagnosis, treatment and 
prevention. The project used advanced genomic analysis techniques to 
explore the complex interplay of genetic mutations in cancer, offering insights 
into tumor classification, molecular aberrations and potential therapeutic 
targets. 
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TCGA-generated data have been pivotal in identifying genomic alterations in 
various cancers, elucidating potential biomarkers for cancer diagnosis and 
prognosis, and shedding light on potential therapeutic targets. The widespread 
availability of TCGA data has enabled a wide range of secondary analyses, 
leading to thousands of studies that extend beyond the original scope of the 
project, thus amplifying its impact on cancer research [NCI, 2022] 

NCBI SRA 

The Sequence Read Archive (SRA) is a database maintained by the National 
Center for Biotechnology Information (NCBI) that archives sequence data 
obtained from next-generation sequencing technology. Launched in 2009, the 
SRA includes 9 million records and 12 petabytes of data, representing a vast 
collection of DNA and RNA sequences that reflect genomic diversity across 
the tree of life. This database allows researchers to search metadata for these 
sequences to locate sequence beds for further analysis. 

The SRA is part of the International Nucleotide Sequence Database 
Collaboration (INSDC), which also includes the European Bioinformatics 
Institute (EBI) and the DNA Database of Japan (DDBJ). Data submitted to any 
of these organizations are shared among them, making the SRA a publicly 
available resource of high-throughput sequencing data. It accepts data from 
all branches of life, as well as metagenomic and environmental surveys, and 
stores raw sequencing data and alignment information to improve 
reproducibility and facilitate new discoveries through data analysis.[NIH, 2024] 

Specific databases such as HMDD [Huang et al., 2018] and miRCancer [Xie 
et al., 2013] emphasize the importance of miRNAs in human diseases, 
emphasizing the importance of accurately identifying authentic miRNA signals 
among potential false positives within these vast datasets. 

HMDD v3.0 

HMDD v3.0 is an advanced version of the Human microRNA Disease 
Database, which has collected 32,281 experimentally supported miRNA-
disease association entries, covering 1,102 miRNA genes and 850 diseases 
from 17,412 articles.  

HMDD v3.0 is to offer a comprehensive and accessible web resource where 
users can search, browse, download, and analyze experimentally supported 
miRNA-disease associations. Data were collected by analyzing abstracts of 
microRNA-related publications on PubMed, standardizing miRNA names 
according to miRBase, and disease names according to Disease Ontology 
and MeSH terms. 
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The miRNA-disease associations are grouped into eight types according to 
the disease hierarchy provided by Disease Ontology. HMDD v3.0 provides 
detailed evidence codes for each entry, allowing users to assess the level of 
reliability of miRNA-disease associations. This version of the database is 
distinguished by accurate standardization of disease names, detailed 
evidence code classification, and significant accumulation of data, thus greatly 
enhancing the quality and usefulness of HMDD as a resource for research on 
miRNA-disease associations [Li et al., 2014; Barupal et al., 2015; Liberzon et 

al., 2015]  

miRCancer 

MiRCancer is a specialized database that collects microRNA (miRNA) 
expression profiles in various forms of human cancer, collected systematically 
from peer-reviewed publications indexed on PubMed. This resource uses 
advanced text mining techniques to collect relevant information, ensuring the 
accuracy of the data through successive manual reviews to ensure reliability. 
The database is critical for researchers, providing a searchable platform where 
users can make queries specific to miRNAs or cancer types. It also provides 
tools for sequence analysis, such as clustering and chi-square analysis, 
allowing users to perform in-depth analyses on miRNA sequences related to 
different cancers. 

The importance of such a database extends to its role in cancer research, 
where miRNA expression profiles are crucial to understanding the complex 
mechanisms of cancer progression and initiation. miRNAs are known to 
function as oncogenes or tumor suppressors, influencing gene expression 
involved in cancer pathways. Centralizing miRNA data in miRCancer helps in 
the identification of potential biomarkers for cancer diagnosis, prognosis, and 
therapy, enhancing the understanding of miRNA involvement in oncogenic 
processes [Rajan et al., 2021; Peng and Croce, 2016] 

Crucial to the evaluation of gene lists, enrichment analyses often depend on indirect 
annotations via miRNA target genes to infer involvement in biological pathways. 
However, databases are emerging that allow direct annotations of miRNAs, facilitating 
direct association of miRNAs with curated functions and avoiding the limitations of 
indirect annotations. This approach is demonstrated by Huntley et al. [Huntley et al., 
2018; Huntley et al., 2016], who used Gene Ontology for direct annotation of miRNA 
function. 

Complementing these methodologies, Ingenuity Pathway Analysis (IPA) offers a more 
integrated and sophisticated framework for understanding the involvement of miRNAs in 
biological processes and disease pathways [Shaath et al., 2021].   
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Ingenuity Pathway Analysis (IPA)  

IPA is an advanced analytical tool that supports researchers in interpreting 
large datasets from genetic, transcriptional, and proteomic studies. IPA allows 
users to visualize, integrate and understand biological data within a context of 
biological pathways and networks. The application uses a large database of 
molecular interactions, gene functions, and validated biological properties, 
enabling users to explore the connections between proteins, genes, 
metabolites, drugs, and diseases [Qiagen, 2024]. 

Key functionalities of IPA include: 

Pathway analysis: IPA can identify the most significant biological pathways 
associated with experimental data, offering insights into the cellular functions 
involved and suggesting potentially altered biological mechanisms. 

Network analysis: Users can construct interactive networks of protein 
interactions, showing how genes and proteins interact with each other within 
cells. This helps identify new therapeutic targets or biomarkers for specific 
diseases. 

Prediction of transcription factor activities: IPA can predict activation or 
inhibition of transcription factors based on gene expression analysis, offering 
information on the possible functional consequences of changes in gene 
expression. 

Molecular Connections: IPA can link molecular data to disease processes, 
pathways and functions, providing a deeper understanding of diseases and 
potential therapies. 

Comparative analysis: Allows comparison of trends and patterns across 
different datasets, experiments or conditions, facilitating the discovery of 
common or unique patterns. 

Upstream and downstream analysis: Identifies molecules that are 
potentially responsible for the effects observed in experimental data, allowing 
users to examine the causes and effects of gene and protein variations. 

Visualization tools: Offers a wide range of data visualization options, 
including graphs, pathway maps and network representations, which help 
interpret complex biological interactions in an intuitive way. 

Extensive and up-to-date database: IPA is supported by one of the largest 
databases of biological knowledge, which is constantly updated with the latest 
scientific publications, ensuring that users have access to the latest and most 
relevant information. 
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The value of IPA lies in its ability to transform large amounts of biological data 
into testable understandings and hypotheses, thereby accelerating biomedical 
and pharmaceutical research. The extensive use of IPA in various fields of 
biology and medicine is documented in a wide range of scientific publications, 
attesting to its significant impact in advancing research and therapeutic 
development. 

Using IPA, researchers can explore the complex regulatory networks and 
pathways associated with miRNAs, improving the interpretation of complex 
data and identifying potential therapeutic targets. The integration of IPA into 
miRNA research represents a significant advance, enabling a more in-depth 
exploration of the roles of miRNAs as biomarkers and their disease-related 
implications.  

1.4 Analysis of NF-kB-responsive microRNAs in inflammatory processes: 

Implications in age-related diseases 

In the context of this thesis, has been applied advanced data mining techniques to 
investigate the role of the transcription factor NF-kB, which is known for its 
predominant involvement in inflammatory processes by modulating the expression of 
pro-inflammatory genes. A particularly interesting aspect is the ability of NF-kB to 
promote transcriptional activation of post-transcriptional modulators of gene 
expression, such as noncoding RNAs (miRNAs). Although the role of NF-kB in 
inflammation-associated gene expression has been extensively studied, the 
interaction between NF-kB and genes encoding for miRNAs deserves further 
investigation. 

The scientific project covered in this thesis employed a data mining approach to 
identify miRNAs with potential binding sites for NF-kB at their transcriptional start 
sites, using in silico analysis using PROmiRNA software. This allowed us to assess 
the propensity of genomic regions to be cis-regulatory elements of miRNAs, 
generating a list of 722 human miRNAs, of which 399 were expressed in at least one 
tissue involved in inflammatory processes. Our selection of "high reliability" hairpins 
in miRBase identified 68 mature miRNAs, many of them previously identified as 
inflammamiRs. Identification of target pathways and diseases revealed their 
involvement in the most common age-related diseases. Taken together, our results 
strengthen the hypothesis that persistent NF-kB activation may unbalance the 
transcription of specific inflammamiRNAs, the identification of which could have 
diagnostic, prognostic, and therapeutic relevance for the most common inflammation- 
and age-related diseases. 

The results of this project have been detailed and discussed in the published scientific 
article, titled "A Data-Mining Approach to Identify NF-kB-Responsive microRNAs in 
Tissues Involved in Inflammatory Processes: Potential Relevance in Age-Related 
Diseases,"[Micolucci et al., 2023] which makes a significant contribution to the 
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existing literature, opening up new research perspectives in the molecular dynamics 
that interconnect inflammation, miRNAs and age-related diseases. 

2. Aim of the study 

The nuclear factor (NF)-kB is a transcription factor (TF) activated by an evolutionarily 
conserved inflammatory signalling, induced by a wide range of external and internal danger 
signals [Salminen et al., 2008b; Salminen et al., 2008a; Liu et al., 2022]. The complex 
modulation of this signalling can be envisaged considering the different activation strategies, 
well known as “canonical” and “non-canonical” NF-kB activation signalling (reviewed in 
[Dorrington and Fraser, 2019; Olivieri et al., 2021]). A fine-tuning activation of NF-kB 
promotes the expression of pro-inflammatory genes and participates in the regulation of 
survival, activation, and differentiation of innate immune cells and T cells [Liu et al., 2017]. 
On the contrary, a persistent activation of NF-kB signalling was described in conditions of 
cellular senescence and organismal aging, as well as in patients affected by the most 
common age-related degenerative diseases (ARDs) [Adler et al., 2007; Tilstra et al., 2011; 
Bernal-Lopez et al., 2013]. Many efforts have been made to understand which pathways are 
regulated by NF-kB and how the NF-kB pathway itself is modulated [Bektas et al., 2014; 
Rothschild et al., 2018]. It has become clear that not only TFs but also a series of epigenetic 
factors, including non-coding microRNAs (miRNAs), are involved in the regulation of almost 
all the human transcriptional programs, both as inhibitors of mRNAs translation and as 
enhancers of mRNAs transcription [Arora et al., 2013; Iwama, 2013; Elizarova et al., 2021]. 
Increasing evidence confirmed that these epigenetic factors play key roles in the 
development and progression of the most common human ARDs [Li et al., 2020d; Peng, 
2021]. 
 
Regarding the canonical pathway of miRNA processing, that regulates gene expression at 
the post-transcriptional level, a primary transcript called pri-miRNA is cleaved to a precursor 
miRNA hairpin structure (pre-miRNA) in the nucleus by the Drosha/Pasha complex and 
transported into the cytoplasm, where the pre-miRNA is further processed into a 
miRNA:miRNA* duplex [Akhtar et al., 2015]. After being separated, the mature miRNA is 
loaded into the Argonaute 2 (Ago 2) containing RNA-induced silencing complexes (RISCs) 
and drives it to regulate its target mRNAs [Akhtar et al., 2015]. 
 
On one hand, a few miRNAs targeting mRNAs belonging to NF-kB pathway have already 
been identified, highlighting the activation of feedback loops aimed to restrain the 
inflammatory process triggered by NF-kB. Notably, some miRNAs involved in these 
feedback circuits were identified as deregulated in ARDs [Olivieri et al., 2021; Lukiw, 2012; 
Wang et al., 2012; Yang et al., 2015; Markopoulos et al., 2018]. 
 
On the other hand, the full elucidation of miRNA biogenesis would be of paramount 
importance to identify their regulators and the role they might play in complex regulatory 
networks. Even if computational models were extensively applied to disentangle the 
complex effects of non-coding RNA in human diseases [Chen et al., 2020], for a long time, 
the difficulty of experimentally detecting miRNA promoters has limited the ability to identify 
the NF-kB binding sites in DNA sequences coding for miRNAs. However, the annotation of 
miRNA promoters, using high-throughput genomic data, allowed us to partially overcome 
this difficulty [Marsico et al., 2013]. As important transcriptional regulators, miRNAs can 
upregulate or downregulate many target genes involved in the NF-kB signalling pathway via 
negative or positive feedback loops, and are involved in several human diseases, too, 
including the recentCOVID-19pandemic [Wu et al., 2018; Amini-Farsani et al., 2021]. Since 
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it is conceivable that age-related NF-kB activation could induce an overexpression of NF-kB 
responsive miRNAs, the identification of such miRNAs, and their targeted mRNAs and 
pathways, could contribute to clarifying the complex mechanisms that modulate healthy or 
unhealthy aging trajectories. 
In this work, we aimed to: (i) identify all human miRNAs potentially modulated by NF-kB, (ii) 
select and characterize those NF-kB-responsive miRNAs that are specifically expressed in 
healthy tissues involved in the modulation of the inflammatory processes (such as cells of 
the immune system, liver, blood, and bone marrow), (iii) discover their targeted mRNAs and 
relative pathways, and finally (iv) evaluate the involvement of such pathways in the 
development of human diseases, including ARDs and severity of COVID-19 pneumonia 
(case study). 
 
3. Results 

 
3.1. Putative NF-kB Responsive miRNAs 

 
To select NF-kB responsive miRNAs, we analysed the PROmiRNA database 
[Marsico et al., 2013] , FAN-TOM4 Libraries [Kawaji et al., 2011], “High confidence 
hairpins” in miRbase [Kozomara and Griffiths-Jones, 2014], and “Human expression 
dataset” [Betel et al., 2008], following the data-mining process highlighted in the data 
flow diagram in Figure 1. 
 
We analysed primarily genome-wide PROmiRNA predictions, as well as TF-binding 
site predictions as reported in [Marsico et al., 2013], to identify miRNAs with potential 
NF-kB binding sites in their promoter sequences. PROmiRNA is a miRNA promoter 
recognition method, based on a semi-supervised statistical model trained on multi-
tissue deepCAGE FANTOM4 libraries and other sequence features. It is tailored to 
score the potential of CAGE-enriched genomic regions to be promoters of either 
intergenic or intragenic miRNAs, thereby modulating miRNA expression in a tissue-
specific manner [Marsico et al., 2013]. To identify the TFs that regulate specific 
miRNAs, for each predicted miRNA transcription start site (TSS), we retrieved the 1 
kb cantered on it and used the TRAP approach [Thomas-Chollier et al., 2011] to 
compute the affinity of TF binding sites for all predicted miRNA promoters using TF 
models stored in the JASPAR database [Portales-Casamar et al., 2009].  
 

 
Figure 1. Data flow diagram. Figure depicts the whole data-mining process. 

 
NF-kB appears among the first 10 TFs with the highest affinity for the 1000 bp-long 
region surrounding the predicted TSSs for 722 miRNA hairpin precursors (Table S1 
in Supplementary Materials). 
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Since tissues show specific miRNA expression patterns, we aimed to highlight the 
list of putative NF-kB-responsive miRNAs expressed in tissues strictly involved in 
the modulation of the inflammatory processes, including inflammaging. To achieve 
this goal, we focused our subsequent research on those miRNAs transcribed in 
human tissues such as “T cells”, “T cells 2”, “monocytic-cells”, “immune system 
cells”, “bone marrow”, “blood”, and “liver”. Only the libraries relative to healthy tissues 
have been taken into consideration. This approach retrieved 399 miRNA hairpin 
precursors showing “expression at the promoter level” in at least one of these tissues 
(Table S2 in Supplementary Materials). In general, this is a good indication that the 
mature forms of these miRNAs are expressed in a specific tissue. However, each 
step from DNA–RNA transcription to mature miRNA expression can be modulated, 
thereby modifying or blocking the final expression. Moreover, FANTOM4 libraries are 
characterized by a certain level of “transcriptional noise”, so we should expect false 
positives in mature miRNA predictions [Marsico et al., 2013]. Therefore, among these 
putative NF-kB responsive miRNAs, we selected the “high confidence” hairpins in 
miRbase [Kozomara and Griffiths-Jones, 2014], retrieving 73 pre-miRNAs (Table S3 
in Supplementary Materials). A growing body of evidence suggests that mature 
sequences derived from both arms of the hairpin might be biologically functional and 
even that the dominant mature sequence can be processed from opposite arms 
[Griffiths-Jones et al., 2011]. Following the approach of selecting only the “high 
confidence” miRNA hairpins and filtering the dataset for “Human Expression dataset” 
[Betel et al., 2008], 68 “high confidence” expressed miRNAs were identified. This 
pool of miRNAs, reported in Table 1, constitutes our final set of putative NF-kB 
responsive miRNAs expressed in healthy tissues linked to inflammatory processes. 
 

3.2. Genomic Features of Putative NF-kB Responsive miRNAs 
 
According to their genomic location, it is possible to distinguish two classes of 
miRNAs: “intergenic miRNAs” are those located in intergenic regions of the genome, 
whereas “intra-genic miRNAs” are those embedded in introns or exons of annotated 
genes [Marsico et al., 2013]. Among the latter, “intronic miRNAs” are those located 
inside the introns of other genes and can either be co-transcribed with their host 
gene [Schanen and Li, 2011] or have an independent promoter [Davis and Hata, 
2009; Ozsolak et al., 2008; Monteys et al., 2010], whereas intergenic miRNAs can 
derive from a primary miRNA transcript (pri-miRNAs) located in independent gene 
units [Marsico et al., 2013; Krol et al., 2010]. Parallelly, it is possible to distinguish 
different categories of miRNA promoters: “intergenic promoters” are promoters 
assigned to inter-genic miRNAs; “intragenic promoters” are promoters assigned to 
intragenic miRNAs and include both “host gene promoters” and “intronic promoters”; 
finally, “hybrid promoters” are those promoters that fall into intergenic regions 
upstream of intragenic miRNAs and could not be assigned unambiguously to the 
miRNA [Marsico et al., 2013]. 
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Table 1. The sixty-eight putative NF-kB responsive miRNAs expressed in healthy 
human tissues linked to inflammatory processes. The following attributes are 
reported: name of the mature miRNAs which derives from the pre-miRNAs 
previously identified, type of predicted TSS (“intergenic”, “host gene”, “intronic”, or 
“hybrid”), names of the healthy “Human Expression dataset” libraries in which the 
miRNAs are expressed (i.e., “liver” and “immune system”), the chromosome where 
the miRNA precursor is located, the age of the miRNAs corresponding to the 
predicted TSSs 
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Note: miRNAs highlighted in bold are those processed starting from two or more pre-
miRNA hairpins, each one transcribed starting from two different promoter types. * In 
PROmiRNA, NF-kB is among the top 10 TFs with the highest affinity for the 1000 bp-long 
region surrounding the predicted TSSs. ** Mature miRNAs have been selected based on 
the “Human Expression dataset” (microrna.org, accessed on 10 January 2023). This 
selection allows to review mature miRNA expression patterns across the tissues of 
interest. 

 
As shown in Table1, among the promoter locations of the 68 putative NF-kB 
responsive miRNAs, 19 are “intergenic”, 15 are “host gene”, and 28 “intronic”. 
Interestingly, miR-15a, miR-16, miR-103, miR-186, and miR-33b can be modulated 
by both “host gene” and “intronic” promoters, whereas miR-194 is regulated by both 
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“host gene” and “intergenic promoters”. Growing evidence indicates that alternative 
promoters are a mechanism for creating diversity in miRNA transcriptional 
regulation, as ascertained for protein-coding genes [Carninci et al., 2006]. 
Regarding the phylogenesis of the 68 putative NF-kB responsive miRNAs, we 
showed that 22 miRNAs are conserved up to the vertebrate lineage (v), 38 miRNAs 
are conserved up to the mammal lineage (m), miR-194 and miR-19b up to the 
mammal and vertebrate lineage, and, finally, only 6 miRNAs are conserved in the 
primate lineage (p). 
 

3.3. Characterization of the Interplay Linking NF-kB, miRNAs, and Their Host 
Genes 
 
To better characterize miRNAs that share the promoters of the host gene and to 
determine whether those host genes are also known to be regulated by NF-kB, 
multiple assessments were conducted. Firstly, we retrieved available information 
regarding the host genes and their intragenic miRNAs, as reported in Table 2, 
whereas expression correlation plots between miRNAs and their host gene are 
shown in Figure S1 (Supplementary Material).  
 
No experimental evidence was found regarding the host gene of hsa-mir-374a, hsa-
mir-545, and hsa-mir-15a. All the others are intronic miRNAs of genes involved in 
various biological processes ranging from DNA replication to differentiation: 
 

• NFYC (Nuclear transcription factor Y subunit gamma) is a component of the 
sequence-specific heterotrimeric transcription factor (NF-Y) which specifically 
recognizes a 5’- CCAAT-3’ box motif found in the promoters of its target 
genes. NF- Y can function as both an activator and a repressor, depending 
on its interacting cofactors [Nakshatri et al., 1996]; 

• ZRANB2 (Zinc finger Ran-binding domain-containing protein 2) is a splicing 
factor required for alternative splicing of TRA2B/SFRS10 transcripts. May 
interfere with constitutive 5’-splice site selection [Adams  et al., 2001]; 

• IARS2 (Isoleucine--tRNA ligase, mitochondrial) is a nuclear gene encoding 
mitochondrial isoleucyl–tRNA synthetase on which depends the translation of 
mitochondrial-encoded proteins [Schwartzentruber et al., 2014]; 

• SMC4 (Structural maintenance of chromosomes protein 4) is the central 
component of the condensing complex, a complex required for the conversion 
of interphase chromatin into mitotic-like condense chromosomes [Kimura et 
al., 2001]; 

• MCM7 (DNA replication licensing factor MCM7) acts as a component of the 
MCM2-7 complex (MCM complex) which is the replicative helicase essential 
for “once per cell cycle” DNA replication initiation and elongation in eukaryotic 
cells. It is the core component of CDC45-MCM-GINS (CMG) helicase, the 
molecular machine that unwinds template DNA during replication, and around 
which the replisome is built [Rzechorzek et al., 2020; Jones et al., 2021; 
Jenkyn-Bedford et al., 2021; Baris et al., 2022; Ishimi and Irie, 2015; Ishimi, 
1997]. 

• NR6A1 (Nuclear receptor subfamily 6 group A member 1) is an orphan 
nuclear receptor that binds to a response element containing the sequence 
5’-TCAAGGTCA-3’. By similarity, it may be involved in the regulation of gene 
expression in germ cell development during gametogenesis. It is involved in 
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regulating embryonic stem cell differentiation, reproduction, and neuronal 
differentiation [Wang et al., 2015]; 

• TENM4 (Teneurin-4) is involved in neural development, regulating the 
establishment of proper connectivity within the nervous system. It plays a role 
in the establishment of the anterior-posterior axis during gastrulation. Also, it 
regulates the differentiation and cellular process formation of 
oligodendrocytes and myelination of small-diameter axons in the central 
nervous system (CNS) [Hor et al., 2015]; 

• COPZ1 (Coatomer subunit zeta-1) is a cytosolic protein complex involved in 
intracellular trafficking, endosome maturation, lipid homeostasis, and 
autophagy [Beck et al., 2009; Razi et al., 2009]. It is associated with iron 
metabolism through the regulation of transferrin [Ward et al., 1991; Zhang et 
al., 2021]; 

• DDIT3 (DNA damage-inducible transcript 3 protein) is a multifunctional 
transcription factor in endoplasmic reticulum stress response. It plays an 
essential role in the response to a wide variety of cell stresses and induces 
cell cycle arrest and apoptosis [Yamaguchi and Wang, 2004; Ohoka et al., 
2005; Oliveira et al., 2009]; 

• WWP2 (NEDD4-like E3 ubiquitin-protein ligase WWP2) plays an important 
role in protein ubiquitination and inhibits activation-induced T-cell death by 
catalyzing EGR2 ubiquitination [Chen et al., 2009]. In human embryonic stem 
cells, WWP2 promotes the degradation of transcription factor OCT4 which not 
only plays an essential role in maintaining the pluripotent and self-renewing 
state of embryonic stem cells but also acts as a cell fate determinant through 
a gene dosage effect [Yamaguchi and Wang, 2004]; 

• HOXB3 (Homeobox protein Hox-B3) is a sequence-specific transcription 
factor that is part of a developmental regulatory system that provides cells 
with specific positional identities on the anterior-posterior axis. Therefore, it 
may regulate gene expression, morphogenesis, and differentiation [Verma et 
al., 2022]; 

• SREBF1(Sterol regulatory element-binding protein 1) is a precursor of the 
transcription factor form (Processed sterol regulatory element-binding protein 
1), which is embedded in the endoplasmic reticulum membrane [Xu et al., 
2020]. Its processed form is a key transcription factor that regulates the 
expression of genes involved in cholesterol biosynthesis and lipid 
homeostasis [Xu et al., 2020; Yokoyama et al., 1993; Amemiya-Kudo et al., 
2002]; 

• PANK2 (Pantothenate kinase 2) is the mitochondrial isoform that catalyses 
the phosphorylation of pantothenate to generate 4'-phosphopantothenate in 
the first and rate-determining step of coenzyme A (CoA) synthesis [Kotzbauer 
et al., 2005; Leonardi et al., 2007b; Leonardi et al., 2007a; Zhang et al., 2006]. 
It is required for angiogenic activity of the umbilical vein of endothelial cells 
(HUVEC) [Pagani et al., 2018]. 

 
Notably, five genes out of thirteen are engaged in transcription regulation (NR6A1, 
DDIT3, HOXB3, SREBF1, and NFYC), and only three are considered housekeeping 
genes (NFYC, ZRANB2, and COPZ1). 
Experimentally validated interactions shared among the three groups of molecules, 
namely i) the 21 NF-kB responsive miRNAs sharing the host gene promoter, ii) their 
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host genes, and iii) the three TF members (NFKB1, REL, and RELA) are depicted in 
Figure 2.  
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Figure 2. TF–miRNA co-regulatory network from experimentally validated data. In 
this visualization, a tripartite layout has been chosen. This provides an easy 
abstraction of relations between different types of molecular entities in complex 
networks composed of several types of nodes, such as miRNAs, genes, and TFs 
[Chang et al., 2020; Pavlopoulos et al., 2018] 

 
Important nodes can be identified on the basis of their node centrality measures, 
such as degree and betweenness. The degree of a node is the total number of 
connections to other nodes. High-degree nodes are considered important “hubs” in 
a network [Fan and Xia, 2018; Zhu et al., 2007]. The betweenness measures the 
number of shortest paths going through a node, taking into consideration the global 
network structure. Nodes with higher betweenness are important “bottlenecks” in a 
network [Fan and Xia, 2018; Zhu et al., 2007]. Nodes identified by NFKB1, REL, 
miR-16-5p, miR-103a-3p, and NR6A1 have high degree centrality values; whereas 
RELA, miR-10a-5p, and miR-30e-5p represent nodes that occur between two dense 
clusters and have a high betweenness centrality even if their degree centrality values 
are not high. 
Therefore, we performed an explorative evaluation of known and potential Pro-tein-
Protein Interactions among REL, RELA, NFKB1, and miRNA-host genes (Figure 3) 
by querying STRING Database [Szklarczyk et al., 2021; Szklarczyk et al., 2018; 
Szklarczyk et al., 2016]. 
The STRING network shows that almost all host gene proteins have some degree 
of interaction. Experimental and biochemical data confirm the functional association 
of NFKB1, REL, and RELA. On the other hand, the higher confidence interaction 
values suggest a functional link between DDIT3, NFYC, MCM7, and SREBF1, as 
well as be-tween IARS2, SMC4, and WWP2. Of note, experimental evidence in 
Figure 2 indicated that NFBK1, REL, RELA, DDIT3, NFYC, MCM7, SREBF1, and 
SMC4 are all targets of miR-16-5p, but miR-103a-3p, in turn, regulates IARS2, 
MCM7, and WWP2. 
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Figure 3. Protein-Protein Interaction Network. Network nodes represent proteins: 
splice isoforms or post-translational modifications are collapsed, i.e., each node 
represents all the proteins produced by a single, protein-coding gene locus. Edges 
represent protein-protein associations and are meant to be specific and 
meaningful, i.e., proteins jointly contribute to a shared function; this does not 
necessarily mean they are physically binding to each other [Szklarczyk et al., 2021; 
Szklarczyk et al., 2018; Szklarczyk et al., 2016]. The greater the number of edges 
shared between two nodes, the greater the confidence of the interaction score. 
The line colour indicates the type of interaction evidence. 

 
Finally, the significantly differentially expressed host genes in age-related conditions 
have been identified (Table 3). Worth a mention is the downregulation of DDIT3, 
SMC4, and TENM4 in replicative senescence of human fibroblasts; the upregulation 
of SMC4 and MCM7 after Vitamin C treatment; the upregulation of HOXB3 and 
TENM4 in Alzheimer’s disease; and the deregulation of DDIT3 and SMC4 in Covid-
19 disease.
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3.4. Pathways targeted by the 68 putative NF-kB responsive miRNAs 
 

By performing an Ingenuity Pathway Analysis (IPA) Target Filter Analysis, we 
identified mRNAs targeted by the putative NF-kB responsive miRNAs. 18095 
mRNAs were retrieved, of which 9613 were experimentally observed or highly 
predicted. The significance was reported as p-value in Table S4. The let7a-5p was 
the miRNAs with associated the highest number of mRNA targets (2014 targets). 
Then, we performed a network analysis focusing on putative NF-kB responsive 
miRNAs targeting mRNAs coding for molecules belonging to the NF-kB pathways 
(Figure 4). 
 

 
Figure 4. IPA Path Designer NF-kB Target network. Molecules belonging to NF-
kB pathway targeted by NF-kB responsive miRNAs. 

 
Interestingly, the NF-kB responsive miRNAs do not directly target genes coding for 
the NF-kB different subunits, but most of them are able to target genes coding for 
molecules belonging to NF-kB activation pathways, such as TLR and MYD88. This 
re-sult is very interesting, considering that the modulation of NF-kB biological activity 
is related to its activation, rather than to the modulation of NF-kB subunits 
expression. 
Further, to discover the main diseases and functions associated with the selected 
miRNAs dataset we performed an IPA Core Analysis (Figure 5). The Diseases and 
Functions are shown by bar chart, sorted by their -log p-value (p-value from Fisher’s 
Exact test). 
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Figure 5. Most relevant human diseases associated with molecular pathways 
targeted by putative NF-kB responsive miR-NAs. The Diseases and Functions 
associated with molecular pathways targeted by putative NF-kB responsive 
miRNAs are shown by the bar chart, sorted by their -log p-value (Fisher’s Exact 
test p-value). 23 relevant human diseases are listed. 

 
Cancers, immunological diseases, neurological diseases, and metabolic diseases, 
all well-recognized as inflammatory-based diseases, are among the diseases 
associated with the highest probability with NF-kB responsive miRNAs. Focusing on 
metabolic diseases, the most affected diseases are the non-insulin dependent 
diabetes mellitus (-log p-value 11.955), Alzheimer disease (-log p-value 9.532), and 
diabetes mellitus (-log p-value 7.680). 
To better explain the association of identified NF-kB putative responsive miRNAs 
with these human diseases, we depicted miRNAs-diseases relationship in Figure 6. 
Figure 6 panel A depicts NF-KB putative responsive miRNAs associated with meta-
bolic diseases, whereas Figure 6, panels B, C and D show the association between 
identified NF-kB responsive miRNAs and cardiovascular diseases, neurological dis-
eases, and cancer, respectively. 
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Figure 6. IPA Diseases Networks. Diseases Networks targeted by NF-kB 
responsive miRNAs. Metabolic disease (panel A), cardiovascular diseases (panel 
B) neurological diseases (panel C) and cancer (panel D). 

 
3.5. The 68 putative NF-kB responsive miRNAs and previously identified 

inflammamiRs  
 
To test whether the 68 putative NF-kB responsive miRNAs could have a biological 
value in the context of the previous evidence, we compared our results with those 
already present in the literature. Among these 68 miRNAs, 21 have been 
experimentally validated to be transcribed by NF-kB1: miR-16-2 [75], miR-10a [76], 
miR-140-3p, miR-140-5p [77], miR-148b [78], miR-15b [79], miR-186 [80], miR-
146a, miR-155, miR-19b, miR-20a, miR-19a, miR-17, miR-221, miR-222, miR-18a, 
miR-92a, miR-101, miR-23a, miR-27a, and miR-30c [Markopoulos et al., 2018]. 
In addition, we have chosen as a reference all available data on the miRNAs relevant 
to aging, inflammation, and immunity, that can be referred as inflammamiRs 
[Prattichizzo et al., 2017]. A detailed comparison table has been provided in Table 
S5. 
Figure 7A shows the “word cloud” with the 68 “high confidence” expressed miRNAs. 
The more features a specific miRNA holds (such as: the number of promoter types, 
the number of miRNA precursors, if it is expressed in more than one tissue, and 
finally if it is known to target NF-kB), the bigger and bolder it appears in the figure. 
Figure 7B depicts a Venn diagram modified from [Prattichizzo et al., 2017], displaying 
the miRNAs related to inflammation, immunity, and aging based on their circulating 
shuttles. In the inner circles are grouped exosome-associated miRNAs, while in the 
outer circles the circulating miRNAs associated with Ago-2, HDL, or other 
microparticles. In this version, it is important to note that bold characters indicate 
miRNAs overlapping among the two groups. Most of the 68 high-confidence NF-kB 
responsive miRNAs (reported in panel A) were previously identified as circulating 
miRNAs associated with aging, immunological functions, and inflammation, i.e. 
inflammaging [Prattichizzo et al., 2017]. Only 3 miRNAs, such as miR-154, -377, and 
-885-5p, were not retrieved in previous analysis [Prattichizzo et al., 2017]. However, 
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based on recent literature, all of them are related to NF-kB/inflammation pathways 
[Kim et al., 2021; Liu et al., 2018; Solé et al., 2023]. All the 68 NF-kB responsive 
miRNAs are therefore included in the Venn diagram reported in panel B, highlighting 
that these miRNAs identified as tissues expressed miRNAs are also detectable in 
blood and most of them were identified inside extracellular vesicles, i.e., exosomes 
(miRNAs depicted in inner circles Fig.7 panel B). 
 

 

Figure 7. (A) Word Cloud of the 68 putative NF-kB responsive miRNAs. The “word 
cloud” has been used to highlight the values of a miRNA based on its 
characteristics (such as: the number of promoter types, the number of miRNA 
precursors, if it is ex-pressed in more than one tissue, and finally if it is known to 
target NF-kB). The more features a specific miRNA holds, the bigger and bolder it 
appears in the “word cloud”. This Word cloud has been drawn using Wordaizer 
version 6.0 APP Helmond (www.apphelmond.com). (B) Venn diagram showing the 
NF-kB and inflammamiRs research in context. Modified version of the Venn 
diagram from [Prattichizzo et al., 2017]. The Venn diagram displays the 68 NF-kB 
responsive miRNAs related to inflammation, immunity, and aging based on their 
circulating shuttles. In bold, the 21 experimentally validated miRNAs; in red, the 
47 not yet experimentally validated miRNAs. In the inner circles are grouped 
exosome-associated miRNAs, while in the outer circles the circulating miRNAs 
associated with Ago-2, HDL, or other microparticles. 
 

3.6.  mRNAs targeted by the 68 putative NF-kB responsive miRNAs belonging to 
pathways involved in aging process and/or age-related diseases. 
 
By further analysing the IPA Target Filter Analysis results, we finally identified the 
mRNAs, either experimentally validated or highly predicted, to be targeted by the 68 
putative NF-kB responsive miRNAs, belonging to pathways related to aging or to the 
most common age-related conditions. Among the 9613 mRNAs predicted to be 
target-ed by such NF-kB responsive miRNAs, 189 mRNAs targeted by 46 out of 68 
miRNAs, were associated to “cellular senescence pathway” (Table S6 

B A 
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Supplementary Materials). In addition, out of the 9613, quite all, 8599 mRNAs were 
related to diseases reported in Figure 6, such as metabolic diseases, cardiovascular 
diseases, neurological diseases, and cancer. All these conditions share an 
inflammatory etiopathogenesis and are prototypical ARD. 
 

3.6.1. Association between clinical and blood-based features with lung 
involvement and survival 

 
Seventy-three patients with COVID-19 pneumonia were evaluated by chest CT 
and blood sampling at admission. The median age was 85 years, with an 
interquartile range (IQR) of 82-90. The female:male ratio was 1.35. 
As baseline clinical characteristics, the distribution of myocardial infarction, 
dementia, chronic kidney disease (CKD), hypertension, stroke, COPD, atrial 
fibrillation, cancer, congestive heart failure (CHF), diabetes, Charlson index (0 
to 2), and median values with IQR of oxygen saturation, days from infection to 
admission, and days from symptoms to admission were assessed. Mean values 
with IQR of white blood cells (WBC), neutrophils, lymphocytes, monocytes, and 
platelets (PLT) were included as baseline blood characteristics, neutrophil-
lymphocyte ratio (NLR), neutrophil-lymphocyte derived ratio (dNLR), platelet-
lymphocyte ratio (PLR), lymphocyte-monocyte ratio (LMR), miR-483-5p, miR-
320b, cfDNA [pg/μl], CD163, elastase. 
Exploring the association between these features and survival status, and CT 
score, percentage of healthy lung (HL%), percentage of ground-glass opacity 
(GGO%), percentage of lung consolidation (LC%) (Table 4), a significant 
association was found between radiological parameters and some clinical 
features, but not with blood-based ones. For example, patients with low CT 
scores were more often female. A low HL% was associated with a higher 
frequency of CKD, stroke and moderate-severe severity on CT. Regarding 
survival, deceased patients were older and had more frequent stroke, COPD 
and shorter time from infection to admission, but were less frequently diabetic. 
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Table 4. Patient’s characteristics according to survival status. 

 

 Total Survived Deceased p 
 N=76 N=54 N=22  

Female Gender, n(%) 44(57.9%) 31(57.4%) 13(59.1%) 0.893 
Infarction, n(%) 7(9.2%) 4(7.4%) 3(13.6%) 0.394 
Dementia, n(%) 23(30.3%) 17(31.5%) 6(27.3%) 0.717 
CKD, n(%) 14(18.4%) 8(14.8%) 6(27.3%) 0.204 
Hypertension, n(%) 50(65.8%) 36(66.7%) 14(63.6%) 0.801 
Stroke, n(%) 10(13.2%) 3(5.6%) 7(31.8%) 0.002 
COPD, n(%) 10(13.2%) 3(5.6%) 7(31.8%) 0.002 
Atrial Fibrillation, n(%) 20(26.3%) 13(24.1%) 7(31.8%) 0.487 
Cancer, n(%) 16(21.1%) 13(24.1%) 3(13.6%) 0.311 
CHF, n(%) 22(28.9%) 14(25.9%) 8(36.4%) 0.363 
Diabetes, n(%) 19(25%) 18(33.3%) 1(4.5%) 0.009 
Charlson index, n(%)    0.856 

0 38(50.0%) 26(48.2%) 12(54.6%)  
1 24(31.6%) 18(33.3%) 6(27.3%)  
2 14(18.4%) 10(18.5%) 4(18.2%)  

CT severity, n(%)    0.167 
Mild (<8) 38(50%) 29(53.7%) 9(40.9%)  
Moderate (9-15) 31(40.8%) 22(40.7%) 9(40.9%)  
Severe (>15) 6(7.9%) 2(3.7%) 4(18.2%)  
NA 1(1.3%) 1(1.9%) 0(0%)  

Age, median(IQR) 86(82-90) 85(82-90) 90(87-93) 0.003 
Saturation, median(IQR) 97(95-98) 97(95-98) 97(95-98) 0.826 
Days from Infection to 
Admission, median(IQR) 

2(0-3) 2(0-3) 1(0-1) 0.025 

Days from Contagion to 
Admission, median(IQR) 

10(8-14) 11(8-14) 8(8-17) 0.574 

Days from Symptoms to 
Admission, median(IQR) 

5(1-8) 5.5(1-8) 4(1-8) 0.815 

WBC, median(IQR) 8.5(5.9-11.8) 7.9(4.9-10.1) 13.7(7.1-16.9) 0.006 
Neutrophils (×103/ μL), median 
(IQR) 

44.5(20.1-61.8) 51.7(28.2-61.8) 21.1(15.1-59.5) 0.103 

Lymphocytes (×103/ μL), median 
(IQR) 

1.2(0.8-1.8) 1.2(0.9-1.7) 0.9(0.5-1.8) 0.087 

Monocytes (×103/ 
mm3), median(IQR) 

0.5(0.4-0.7) 0.6(0.4-0.7) 0.4(0.3-0.5) 0.033 

PLT, median(IQR) 233(177-297) 246.5(180-301) 218(177-257) 0.208 
NLR, median(IQR) 34.4(17.5-53.9) 35.0(21.0-51.0) 27.5(15.3-57.3) 0.686 
dNLR, median(IQR) -1.2(-1.2--1.1) -1.2(-1.2--1.1) -1.1(-1.2-6.1) 0.073 
PLR, median(IQR) 194.7(129.1-328.8) 188.4(131.2-283.0) 242.5(127.4-384.4) 0.210 
LMR, median(IQR) 2.2(1.6-3.4) 2.3(1.7-3.4) 2.0(1.2-3.3) 0.353 
miR-483-5p, median(IQR) 0.1(0.0-0.2) 0.1(0.0-0.2) 0.1(0.0-0.2) 0.330 
CT Total Score, median(IQR) 8(5.5-12) 8(5-11) 10.5(6-15) 0.143 
HL (l) , median(IQR) 1.5(1.0-2.3) 1.8(1.1-2.5) 1.1(0.7-2.0) 0.046 
GGO (l) , median(IQR) 0.9(0.6-1.2) 0.9(0.6-1.2) 0.8(0.5-1.2) 0.388 
Consolidation (l) , median(IQR) 0.2(0.1-0.3) 0.2(0.1-0.3) 0.3(0.1-0.4) 0.238 
Lung volume (l) , median(IQR) 2.8(2.2-3.5) 2.9(2.4-3.8) 2.5(1.7-2.9) 0.018 
HL (%), median(IQR) 59.9(38.5-72.8) 61.0(42.8-72.8) 45.0(35.8-70.5) 0.254 
GGO (%), median(IQR) 32.5(21.1-46.4) 30.7(22.7-45.3) 38.5(19.6-48.7) 0.590 
Consolidation (%), median(IQR) 7.5(4.2-13.6) 6.7(3.5-11.7) 10.0(4.9-16.8) 0.050 
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3.6.2. Correlation between radiological parameters and microRNAs 
 
The correlation between the 4 radiological parameters and two biological 
biomarkers, miR-483-5p and cfDNA, which showed a p-value <0.1 in univariate 
analysis, potentially associated with hospital mortality for COVID-19 [Giuliani et 
al., 2022; Cardelli et al., 2022], was examined. A slight increase in miR-483-5p 
levels was observed with higher GGO% (correlation 0.28; p = 0.018) and a slight 
decrease with higher HL% (correlation -0.27; p = 0.023). No significant 
associations were found between miR-483-5p and the other radiological 
parameters, nor correlations between cfDNA and radiological parameters (Table 
5). Scatter plots were provided to illustrate statistically significant correlations 
(Figure 8). Significant enrichment of lung disease-related biological processes 
associated with miR-483-5p was observed in the PAH analysis (Figure 9).  
 

 
Figure 8. Scatter plots with regression line of the correlations between miR-
483-5p and HL% (A) and GGO% (B). 
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Figure 9. Relationship generated by the Ingenuity Pathway Analysis 
programme (IPA). The shown associations among the miR-483-5p and the 
Diseases and Functions have been selected as related to lung diseases and 
functions. 

 
Table 5. Coefficients of the correlation between radiological parameters and microRNAs. 
 

 
miR-483-5p  miR-320b 

 Coefficient p Coefficient p 

CT Total Score 0.02 0.888 -0.03 0.782 

HL (%) -0.28 0.017 -0.07 0.582 

GGO (%) 0.29 0.013 0.05 0.675 

Consolidation (%) 0.06 0.631 -0.04 0.736 

 
 
 

 
  



34 

 

4. Discussion 
 
NF-kB is an ubiquitously and evolutive conserved TF activated by a plethora of external and 
internal proinflammatory stimuli [Fukata et al., 2009; Salminen et al., 2012; Hayden and 
Ghosh, 2012]. The crucial role as a mediator of the inflammatory responses, together with 
the finding that the activation or inhibition of NF-kB can induce or reverse respectively the 
main features of aged organisms, has brought NF-kB under consideration as a key TF that 
drives the biological aging process [García-García et al., 2021]. In this framework, the 
identification of genes modulated by NF-kB can be considered a cutting-edge issue [Bass 
et al., 2021; Kizilirmak et al., 2022; Liu et al., 2020]. 
NF-kB-responsive genes were extensively investigated, whereas NF-kB-responsive genes 
for non-coding RNAs were only recently highlighted. 
Here we demonstrated that applying a data-mining approach, it has been possible to select 
the most reliable NF-kB responsive miRNAs. Most notably, the availability of data on TFs 
binding sites on human miRNAs sequences constituted a starting point and the foundation 
for studying all human miRNAs with potential NF-kB binding sites in their promoter regions. 
Some years ago, it has been advanced a general hypothesis that the aging process and the 
development of the most common ARDs could be fostered by a low-grade, chronic, systemic 
inflammatory process named “inflammaging” [Franceschi et al., 2000]. Inflammaging, which 
is principally sustained by the activation of the innate immune cells, is paralleled by the 
increased burden of senescent cells acquiring a senescence-associated secretory 
phenotype (SASP), that turns senescent cells into proinflammatory cells [Salminen et al., 
2012; Franceschi et al., 2000; Laberge et al., 2012; Freund et al., 2010; Fulop et al., 2018]. 
In immune cells and tissues obtained from patients affected by the most common ARDs, 
NF-kB is commonly constitutively activated [Songkiatisak et al., 2022]. Of note, NF-kB 
activation should be an inducible, but transient event in physiological conditions. However, 
despite the presence of multiple checks and balances that control NF-kB activation, in 
cellular and organismal aging, as well as in many ARDs, NF-kB activation becomes 
persistent [Josephson et al., 2021; Haga and Okada, 2022]. In this study, using PROmiRNA 
software and a data mining approach, we provide a list of 73 putative “high confidence” pre-
miRNAs sequences corresponding to 68 NF-kB responsive mature miRNAs sequences.  
Likewise, we highlighted the presence of distinct types of promoters that can regulate NF-
kB responsive miRNAs.  
Thirty-three miRNAs of the 68 high confidence expressed miRNAs identified have an 
“intronic” promoter and 5 of these have both an “intronic” and “host gene” promoter, whereas 
only one microRNA (miR-194) shares both “intergenic” and “host-gene” promoter. 
Alternative promoters are a common mechanism to create diversity in the transcriptional 
regulation of microRNA [Carninci et al., 2006]. 
It has been demonstrated that “intronic” promoters convey an additional degree of freedom 
over intragenic microRNA transcriptional regulation by virtue of some peculiar 
characteristics, thus allowing the modulation of miRNA expression levels in a tissue- and 
condition-specific manner [Marsico et al., 2013]. Besides the other features, in this context, 
it is important to stress that: “intronic” promoters can explain cases of poor correlation 
between host gene and microRNA expression, functioning as a real alternative promoter 
[Marsico et al., 2013]. As shown in Figure S1, the expression levels of NF-kB-miRNAs 
modulated by both “host gene” and “intronic” promoters (i.e., miR-16, miR-103, miR-186, 
and miR-33b) or by both “host gene” and “intergenic promoters” (i.e., miR-194) are not 
correlated with the expression levels of their host gene. Whereas mostly of the miRNAs that 
share the host gene promoters are characterized by directly (e.g., miR-15b) or inversely 
(e.g., miR-30c, miR-616, and miR-93) correlated transcription levels. 
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“Intronic” promoters are expressed in a tissue-specific manner, but “host gene” promoters 
are considered primarily for housekeeping gene regulation [Marsico et al., 2013]. 
Housekeeping genes are required for the maintenance of essential functions of any cell 
type, so they are expected to be constitutively expressed in all cells and at any development 
stage [Hounkpe et al., 2020]. Among the NF-kB-miRNA host genes, COPZ1, NFYC, and 
ZRANB2 have been catalogued as housekeeping genes (Table 2). 
“Intronic” promoters are mainly triggered by tissue-specific master regulator TFs, instead 
TFs of “host gene” promoters broadly overlap with those of protein coding genes and can 
be considered mainly for housekeeping. (“Intergenic” promoters are regulated by a 
combination of intronic-specific and host-gene specific TFs). This suggests a different 
evolutionary mechanism [Marsico et al., 2013]. In this study, the expression levels of the 
three housekeeping host gene (COPZ1, ZRANB2, and NFYC) and their miRNAs 
(respectively miR-148b-3p, miR-186-5p, and lastly miR-30c-5p and miR-30e-5p) are mainly 
inversely correlated or not showing clear correlation trends (Figure S1). 
“Intronic” microRNA promoters are less evolutionarily conserved than either “intergenic” and 
“host gene” promoters [Marsico et al., 2013]. 
Conversely, evolutionarily conserved miRNAs are more likely to be regulated by an “intronic” 
promoter [Marsico et al., 2013]. 
Moreover, those intragenic miRNAs that share the promoters of the host gene, interact with 
their own host genes (miR-16-2::MSC4; miR-106b::MCM7, miR-181b-2::NR6A1, miR-
708::TENM4, miR-148b::COPZ1, and miR-10a::HOXB3), but also with the other functionally 
related host genes creating a complex regulatory mechanism (Figure 2). NFKB1, REL, miR-
16-5p, miR-103a-3p, and NR6A1 are the most important hub nodes in the network, whereas 
miR-10a-5p connects the hub nodes identified by NFKB1, NR6A1, and HOXB3 as well as 
miR-30e-5p connects REL, NR6A1, and ZRAMB2 hubs. Interestingly, in the network it is 
possible to identify a clear TF-miRNA feed-forward loop involving DDIT3, miR-16-5p, and 
NFYC. In a TF-miRNA feed-forward loop, TF and miRNA co-regulate the target genes: in a 
“coherent” feed-forward loop the TF and miRNA have the same effects on their common 
targets, whereas in an “incoherent” feed-forward loop, the TF and miRNA carry out opposing 
effects, which precisely fine-tune gene expressions to minimize noise an maintain stability 
[Chang et al., 2020; Bracken et al., 2016]. TF-miRNA feed-forward loops have a specific 
function in noise buffering effect, which can minimize the response of stochastic signalling 
noise to maintain steady-state target level [Inui et al., 2010; Xie et al., 2019]. Disruption of 
feed-forward loops could lead to serious dysregulations at the origin of diseases and 
cancers, e.g., the interference in NF-kB/miR-19/CYLD loop can induce T-cell 
leukemogenesis [Xie et al., 2019; Ye et al., 2012]. Therefore, investigating the regulatory 
motifs among DDIT3, 16-5p, and NFYC could provide valuable insights to dissect the 
molecular mechanisms underlying biological processes and diseases triggered by NF-kB 
constitutive activation. 
Protein–protein interaction analysis of protein-coding host genes, revealed that most of them 
could be functionally related (Figure 3). Beyond the well-known functional association of 
NFKB1, REL (cREL), and RELA, several data highlighted the association with the 
endoplasmic reticulum stress providing opportunities to fine-tune cellular stress responses 
[Schmitz et al., 2018]. In the framework of atherosclerosis, multiple links between NF-kB 
and ER stress were suggested. A disturbed flow can cause endoplasmic reticulum stress 
leading to SREBF1 activation with nuclear localization, and to DDIT3 expression triggered 
by endoplasmic reticulum stress response elements [Le et al., 2017]. NFYC is a subunit of 
a trimeric complex (NFY) known to interact with several TFs to enable the synergistic 
activation of specific classes of promoters. NFY directly controls the expression of TF genes 
such as P53 (DNA-damage), XBP1, CHOP/DDIT3 (endoplasmic reticulum stress), and 
HSF1 (Heat shock) [Dolfini et al., 2012; Vaiman et al., 2013]. Of note, experimental data 
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have shown the upregulation of both SMC4 and MCM7 in mesenchymal stem cells after 
Vitamin C treatment, the downregulation of DDIT3, SMC4, and TENM4 in replicative 
senescence of human fibroblasts; the upregulation of HOXB3 and TENM4 in Alzheimer’s 
disease; and finally, the deregulation of DDIT3 and SMC4 in Covid-19 disease (Table 3). 
In this scenario, targeting NF-kB signalling is becoming a promising strategy for drugs 
development and ARDs treatment [Liu et al., 2020; Mato-Basalo et al., 2021].  
Almost all the 68 miRNAs that we identified in our current analysis were previously 
associated with inflammaging process and with the most common ARDs, such as metabolic 
diseases, cardiovascular diseases, neurodegenerative diseases, and cancers [Slota and 
Booth, 2019; Grants et al., 2020]. 
Out of the 9613 mRNAs targeted by the 68 NF-kB responsive miRNAs, quite all, 8599 
mRNAs were related to such diseases. Of note, 189 mRNAs were associated with “cellular 
senescence pathway”, which is recognized as the main culprit of the aging process.  
Most of the NF-kB responsive miRNAs are involved in a negative feedback loop to restrain 
exacerbated inflammation [Olivieri et al., 2021; Ward et al., 1991; Leonardi et al., 2007a; 
Zhang et al., 2006; Pagani et al., 2018; Chang et al., 2020; Pavlopoulos et al., 2018; Fan 
and Xia, 2018]. 
Notably, the identified NF-kB responsive miRNAs are not able to directly modulate gene 
expression of NF-kB subunits but are able to target molecules belonging to NF-kB activation 
pathways (canonical and non-canonical pathway). Interestingly, among the NF-kB-
responsive miRNAs genes identified with our approach, the most relevant examples of 
mRNAs that can target molecules belonging to the NF-kB canonical and-non-canonical 
pathways or related molecules are miR-146a and miR-155. In fact, MiR-146a and miR-155, 
control NF-kB activity during inflammation by a combinatory action without targeting directly 
NF-KB subunits [Mann et al., 2018]. MiR-155 is rapidly upregulated by NF-kB during the 
early phase inflammatory response through a positive feedback loop necessary for signal 
amplification. MiR-146a is rather gradually upregulated by NF-kB and forms a negative 
feedback loop attenuating NF-kB activity in the late phase of inflammation. The combined 
action of these two positive (NF-kB::miR-155) and negative (NF-kB::miR-146a) NF-kB-
miRNA regulatory loops provides optimal NF-kB activity during inflammatory stimuli, and 
eventually lead to the resolution of the inflammatory response in physiological condition. 
Another example is miR-16 that targets the IKKα/β complex of the NF-kB canonical pathway 
polarizing macrophages toward an M2 phenotype [Khalife et al., 2019].These results are in 
line with the known modulation of NF-kB biological activity, based on based on the activation 
and not on the expression of its subunits [Olivieri et al., 2021]. 
Interestingly, all the 68 NF-kB responsive miRNAs are detectable in blood and most of them 
were identified inside extracellular vesicles, i.e., exosomes. Exosomes are currently 
considered as a crucial intercellular cross-talk mechanism, acting both at paracrine and 
systemic levels [Mensà et al., 2020].This result highlights the complexity of the feed-back 
loops between NF-kB activation in specific tissues, the expression of NF-kB responsive 
miRNAs and their release in the bloodstream as a systemic intercellular communication 
mechanism. A further level of complexity can be envisaged considering that NF-kB is known 
to indirectly regulate miRNA expression through the modulation of other transcription factors. 
NF-kB can modulate AP-1 transcription factor [Fujioka et al., 2004], which in turn is able to 
modulate different miRNAs genes, i.e. miR-21[del Mar Díaz-González et al., 2019]. 
Of note, our analysis confirmed previous evidence on the potential role of some miRNAs in 
physiological and pathological aging. Of note, among the 68 miRNAs, 21 were already 
experimentally identified as NF-kB responsive, reinforcing the reliability of ours results. Our 
data also highlight the potential value of the 47 NF-kB putative responsive miRNAs (listed 
in figure 7, panel B) that are yet to be experimentally validated. 



37 

 

Our results are of interest in the framework of the research on the biomarkers/drugs of aging 
and inflammation related diseases. If NF-kB responsive miRNAs are hyper-transcribed in 
tissues involved in the modulation of inflammatory responses, the hypothesis that circulating 
miRNAs could be useful tools to track the trajectories of healthy or un-healthy aging is 
reinforced [Olivieri et al., 2017; Zhavoronkov et al., 2019; Hamdan et al., 2021; Kinser and 
Pincus, 2020; Rovčanin Dragović et al., 2022] and possible therapeutic strategies based on 
the inhibition of those miRNAs could be further tested. 
 

The case study compared chest CT parameters in COVID-19 pneumonia and novel 
circulating biomarkers of immune cell activation/inflammation, such as circulating 
MicroRNAs previously identified as biomarkers of mortality risk in elderly patients with 
COVID-19. Two microRNAs, miR-320b and miR-483-5p, already analysed in a cohort of 116 
COVID-19 patients, were selected for the study [Giuliani et al., 2022]. In addition, lung injury 
was associated with several deregulated microRNAs; in particular, up-regulation of miR-150 
was correlated with lung improvement at hospital discharge [Bueno et al., 2022]. The results 
confirm the prognostic value of CT score and lung involvement, which has already been 
described in the literature [Jayachandran et al., 2022; Li et al., 2020a; Zakariaee et al., 2022; 

Colombi et al., 2020]. A significant association between LC% and risk of death was reported 
by Li et al . In the current study, LC% emerged as frequent in cases with the worst prognosis, 
confirming its negative prognostic role associated with death [Cardelli et al., 2022]. The 
negative correlation between HL% and mortality reflects the risk of death related to the 
reduction of healthy lung parenchyma. Recent results provide support for the involvement 
of miR-483-5p in infectious diseases. It was observed that elevated levels of miR-483-5p 
showed more than 90% sensitivity and specificity in discriminating between patients with 
COVID-19 and healthy subjects. In another study on pulmonary tuberculosis (TB), six serum 
miRNAs, including miR-483-5p, were identified as specific for pulmonary TB patients 
compared with non-TB patients. In addition, miR-483-5p was found to be increased in 
pediatric pneumonia and severe pneumonia. [Giannella et al., 2022; Zhang et al., 2013; 

Feng et al., 2021; Huang et al., 2017]. The positive correlation between GGO% and miR-
483-5p in early stages could indicate intense activation of immunity associated with GGO%. 
However, no association was found between miR-483-5p and lung consolidation, 
suggesting that miR-483-5p might mainly reflect activation of GGO-associated immune 
responses. It can be reasonably assumed that the intensity of the early immune response, 
together with increased GGO%, may contribute to a percentage increase in lung 
consolidation (LC%) at a later stage, which has been correlated with poorer prognosis in 
both early and late stages, as documented in the existing literature. [Jayachandran et al., 
2022; Francone et al., 2020; Li et al., 2020a; Zakariaee et al., 2022; Li et al., 2020e; Colombi 

et al., 2020]. The main limitation of this case study is the small sample size, which might 
limit the generalization of the results. Further studies with larger samples and a longitudinal 
approach are needed to explore the role of miR-483-5p and other microRNAs in lung 
involvement and disease progression in COVID-19. 
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5. Conclusions 
 

The transcription factor NF-κB is universally recognized as a crucial regulator in 
inflammatory responses, as it influences the expression of inflammation-associated genes. 
In addition to this, it has a complex role in transcriptional activation of gene expression 
genesis through post-transcriptional modulators, such as noncoding RNAs, including 
microRNAs (miRNAs). Although the involvement of NF-κB in the regulation of inflammation-
related genes is well documented, the dynamics between NF-κB and miRNA-producing 
genes requires further investigation. In our study, has been employed PROmiRNA software 
to conduct an in silico analysis to predict miRNA promoters, allowing us to assess the 
likelihood that specific genomic regions are cis-regulatory elements for miRNAs. From this 
analysis, has been compiled a list of 722 human miRNAs, of which 399 were active in at 
least one inflammatory tissue. Using miRBase, have been then identified 68 mature miRNAs 
of "high reliability," many of which have already been categorized as inflamma-miRs. Our 
research on the targeted pathways and diseases associated with these miRNAs reveals 
their significant role in prevalent age-related diseases. Our findings support the hypothesis 
that sustained NF-κB activity may impair the transcriptional balance of specific inflammatory 
miRNAs, suggesting that identification of these miRNAs could be crucial for the diagnosis, 
prognosis, and treatment of common inflammatory and age-related conditions. In the case 
study, has been evaluated the potential of microRNAs as biomarkers for COVID-19 disease. 
Has been used IPA analysis to confirm the role of miR-483-5p and selected lung-related 
diseases and functions. In this dissertation, has been demonstrated overall that established 
data mining methodologies can reveal the most reliable microRNAs (miRNAs) that play 
crucial roles in regulating specific biological pathways of interest. Unraveling the interactions 
between miRNAs and NF-κB represents a critical avenue of research to understand the 
complex disruptions of various metabolic pathways associated with both normal and 
pathological aging. Further research is imperative to confirm the importance of identifying 
these miRNAs, which could have diagnostic, prognostic, and therapeutic value for common 
inflammatory and age-related conditions. Through our case studies, has been highlighted 
the importance of using state-of-the-art data mining techniques and incorporating new 
bioinformatics tools. These methodologies improve our in silico understanding and facilitate 
the integration of literature and clinical data, simplifying the understanding of complex 
biological processes. Our focused approach aims to refine biomarker discovery, thereby 
contributing to the advancement of precision medicine. 
Furthermore, the assessment of miR-483-5p-expressed inflammation and the degree of 
lung involvement seem to be promising tools for prognostic evaluation of COVID-19 
pneumonia in elderly patients. Their integration could improve the understanding of the 
disease and contribute to better patient outcomes. 
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6. Methodology 
 

6.1. Data-mining process 
 
In the field of Knowledge Discovery in Databases (KDD), a data-mining approach is 
used to extract meaningful information and to develop significant relationships 
among variables stored in large data sets [Sahu et al., 2011]. In this study, we have 
mined and integrated data from multiple databases to select NF-kB responsive 
miRNAs, and the process has been tailored based on the research question. Four 
main steps can be distinguished: 
 

6.1.1. Database selection 
 

The following data sources have been investigated to retrieve the data and 
develop the study: PROmiRNA [Marsico et al., 2013], FANTOM4 libraries 
[Kawaji et al., 2011; Betel et al., 2008], “High confidence human hair-pins” in 
miRBase [Kozomara and Griffiths-Jones, 2014], and “Human Expression” 
dataset (microrna.org) [Betel et al., 2008]. 
 
• PROmiRNA provides an interesting approach for miRNA promoter 
annotation based on a semi-supervised statistical model trained on 
deepCAGE data and sequence features [Marsico et al., 2013]. It has been 
used to identify all human miRNAs potentially modulated by NF-kB, i.e.: “NF-
kappaB”, “NFKB1”, “REL”, and “RELA”. 
 
• FANTOM4 libraries, generated by the FANTOM4 project [Kawaji et al., 
2011], collect a wide range of genome-scale data from several tissues. The 
analysis of FANTOM4 libraries retrieved those miRNAs showing “expression 
at the promoter level” in different human tissues. The following libraries from 
healthy tissues have been selected: “blood”, “bone marrow”, “immune system 
cells”, “liver”, “monocytic-cells”, “T cells”, and “T cells 2”. 
 
• miRBase database is the public repository for all published miRNA 
sequences and associated annotations [Kozomara and Griffiths-Jones, 2014; 
Kozomara et al., 2018; Kozomara and Griffiths-Jones, 2011; Griffiths-Jones et 
al., 2008; Griffiths-Jones et al., 2006; Griffiths-Jones, 2004]. “High confidence 
human hairpins” dataset [Kozomara and Griffiths-Jones, 2014] has been 
downloaded to identify all human miRBase entries with high confidence levels 
assessed using the deep sequencing data sets collated in miRbase (Datasets 
have been downloaded from this link: 
https://www.mirbase.org/blog/2014/07/high-confidence-mirna-set-available-
for-mirbase-21/). 
• Finally, microRNA.org [Betel et al., 2008], a comprehensive resource 
of microRNA target pre-dictions and expression profiles, has been searched 
to extract the “Human Ex-pression dataset”, meaning the mature microRNA 
expression profiles in various tissues as presented by Landgraf et al. [Landgraf 
et al., 2007]. Expressed miRNAs from the following healthy tissues have been 
selected (library names for each sample type are indicated in brackets): liver 
(hsa_Liver), pluripotent hematopoietic stem cell (hsa_HSC-CD34), B cells 
from peripheral blood (hsa_B-cell-CD19, hsa_B-cell-CD19-2, hsa_B-cell-
CD19-pool), T-lymphocytes (hsa_T-cell-CD4, hsa_T-cell-CD4-2, hsa_T-cell-
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CD4-effector, hsa_T-cell-CD4-memory, hsa_T-cell-CD4-naïve, hsa_T-cell-
CD8, hsa_T-cell-CD8-2 hsa_T-cell-CD8-naïve), NK cells (hsa_NK-CD56), 
monocytes (hsa_Monocytes-CD14), granulocytes (hsa_Granulocytes-CD15), 
and Dendritic cells (hsa_DC-unstim). Libraries from cell lines, tumor samples, 
genetic disorders, and so on, have been discharged. (Datasets have been 
downloaded from this link: 
http://www.microrna.org/microrna/getDownloads.do). 
 

6.1.2. Data extraction and integration 
 

This phase includes downloading, extracting, filtering, and combining the data 
from the databases previously identified. The integration of multiple datasets 
has been possible through the following steps.  
 

6.1.3. Data cleaning and transformation 
 
Because the data originates from multiple sources, the integration often 
involves converting data format, cleaning, removal of incorrect data, 
generating new variables, resolving redundancy, and checking against miRNA 
nomenclature consistency both between miRNAs name originating in different 
miRBase versions, and between the names of pri-miRNAs and the mature 
forms. This issue has been manually curated by comparing miRNA names in 
miRBase database version 21. 
 

6.1.4. Assessment of the results 
 

This is the final stage of a KDD process involving the translation of aggregated 
data into comprehensible knowledge. The validity and reliability of the data 
have been tested by comparing the results obtained in the data-mining 
process with those already published in the literature. 
The whole data-mining process is illustrated in the Data Flow Diagram in 
Figure 1. Data obtained at each intermediate step are provided in 
Supplementary Tables (S1, S2, S3 Supplementary materials). The final 
miRNA-pool is reported in Table 1. 
 

6.2. Bioinformatic evaluations 
 

6.2.1. Evaluation of miRNA-Host Gene-Transcription Factor interactions 
 

Host gene and intragenic miRNAs information (Table 2) as well as expression 
correlation data between miRNAs and their host gene (Figure S1) have been 
retrieved from MiRIAD, a database integrating microRNA inter- and intragenic 
data (https://www.miriad-database.org/)[Hinske et al., 2014]. In Table 2, host 
gene biological process have been obtained from UniProt database (Release 
2022_05) (https://www.uniprot.org/) [Consortium, 2022]; the Housekeeping 
and Reference Transcript Atlas (HRT Atlas v1.0) 
(https://housekeeping.unicamp.br/) [Hounkpe et al., 2020] has been 
investigated to discover those host gene cataloged as housekeeping genes. 
Experimentally validated interactions shared among NFKB1, REL, RELA, the 
NF-kB-responsive miRNAs sharing the host gene promoter, and their host 
genes, have been identified (Figure 2) by querying: i) DIANA-TarBase v8 
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(http://www.microrna.gr/tarbase) retrieving experimentally supported miRNA-
gene interactions [Karagkouni et al., 2017]; ii) TRRUST v2 
(www.grnpedia.org/trrust) a manually curated data-base of transcriptional 
regulatory interactions [Han et al., 2018]; iii) and STRING v10 to highlight the 
protein-protein interactions, with the constrain to retrieve only experimental 
evidences [Szklarczyk et al., 2015]. The whole process, including the final 
network creation and visualization, has been handled using miRNet (version 
2.0), a miRNA-centric network visual analytics platform 
(https://www.mirnet.ca/) [Chang et al., 2020; Fan and Xia, 2018; Fan et al., 
2016]. 
STRING database Version 11.5 (https://string-db.org/) has been used to 
discover known and potential interactions among REL, RELA, NFKB1, and 
miRNA-host gene proteins (Figure 3). STRING is a database of predicted and 
known protein-protein interactions. The interactions include direct (physical) 
and indirect (functional) associations; these stem from knowledge transfer 
between organisms, from interactions aggregated from other (primary) 
databases, and from computational prediction [Szklarczyk et al., 2021; 
Szklarczyk et al., 2016]. The network has been created by setting a minimum 
required interaction score of 0.15. 
The RNA-seq datasets in Aging Atlas (https://ngdc.cncb.ac.cn/aging/index) 
have been examined to explore age-related changes in host gene expression 
[Consortium, 2021]. Table 3 shows differentially expressed host genes in 
strictly age-related conditions, only those genes showing |log2FC| > 1 and q-
value < 0.005 (or p-value < 0.005 if q-value was not provided) have been 
reported. Data relative to particular experimental conditions (e.g., gene 
knockdown) have not been reported. 

 
6.2.2. Ingenuity Pathway Analysis 

 
Bioinformatic evaluations (networks and diseases analysis) were performed 
by the Ingenuity Pathway Analysis software (Qiagen, Hilden, Germany). The 
putative NF-kB responsive miRNAs identified through the data-mining process 
were analyzed to ex-plore the Experimentally Observed or High Predicted 
mRNA targets via the microRNA Target Filter Analysis.  
Furthermore, an IPA Core Analysis was performed to define the associated 
Dis-eases and Functions. Direct and Indirect Relationships from the Ingenuity 
knowledge Base (gene only) datasets were considered. We filtered only 
molecules and/or relationships experimentally observed in any tissue from 
human, rat, or mouse. Across the observations, 51 miRNAs were ready to be 
analyzed (Table S4) [Krämer et al., 2014]. All the networks and diseases and 
biological functions were assessed using IPA software (Qiagen, Hilden, 
Germany). 
 

6.3. Case study. Analysis of COVID-19-relevant microRNAs in the hospitalized 
elderly population: the use of IPA to discover novel miRNA markers. 

 
Population aging is a global phenomenon that reflects the success of public health 
and socioeconomic development policies in various geographic regions. However, 
societal adaptation to this reality is essential to maximize the health and functionality 
of the elderly and promote their social inclusion. Aging presents challenges, such as 
the high prevalence of chronic diseases and comorbidities. The COVID-19 pandemic 
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has caused high mortality in the elderly, compounded by their social isolation. The 
vulnerability of the elderly is related to the physiological effects of aging, with a higher 
incidence of infectious diseases. Frailty is more evident in the hospitalized elderly, 
with more severe symptoms of COVID-19. Daily activities of the elderly are further 
compromised by pneumonia, especially in elderly patients with COVID-19 and history 
of chronic diseases [Piccininni et al., 2020; Faraji and Metz, 2021; Knopp et al., 2020; 
Trotter et al., 2008; Miyashita et al., 2022] 

 

6.4. Imaging parameters for the severity of COVID-19 pneumonia. 
 

Several chest CT abnormalities in COVID-19 pneumonia have been reported in 
various studies; conclusions may vary depending on the stage and severity of the 
disease. Chest CT can accurately assess lung injury, and the use of the severity score 
(CTSS) has been shown to be useful in the objective assessment of lung involvement 
[Jayachandran et al., 2022]. This score could be useful in predicting short-term 
outcome [Francone et al., 2020]. Common abnormalities include ground-glass 
opacities (GGO), consolidations, and "crazy pavement" patterns [Li et al., 2020a]. 
Lesions are mainly described as bilateral, multifocal with a peripheral or multilobular 
distribution, mainly involving the lower lobes [Churruca et al., 2021]. Other 
abnormalities, such as lymph node enlargement and effusions, may indicate severe 
inflammation [Li et al., 2020a]. 

 

6.5. MicroRNAs in the diagnosis and prognosis of COVID-19 
 

MicroRNAs (miRNAs) are small noncoding RNA molecules that play key roles in 
various biological processes, targeting complementary mRNA and leading to 
suppression of protein synthesis [Visacri et al., 2021]. Circulating miRNAs have been 
proposed as biomarkers for diagnosis and/or prognosis as well as for understanding 
the pathophysiology of clinical conditions such as cardiovascular disease, cancer, 
and dementia, including COVID-19 [Viereck and Thum, 2017; Wang et al., 2018; 
Blount et al., 2022; Condrat et al., 2020]. The identification of miRNA signatures is 
crucial in providing clues to the pathogenesis of COVID-19, highlighting correlations 
between severe disease and impaired pathways related to inflammation, interferon 
responses, organ damage, and cardiovascular failure [Giannella et al., 2022; De 
Gonzalo-Calvo et al., 2021]. The association between miRNA levels and COVID-19 
outcome could develop models for early prediction of severity and personalized 
therapeutic strategies [De Gonzalo-Calvo et al., 2021]. Recently, miR-483-5p and 
miR-320b were identified as biomarkers associated with increased risk of mortality in 
elderly patients hospitalized for COVID-19 [Giuliani et al., 2022]. However, the 
association between miRNAs and lung conditions in the elderly has not been 
investigated [Giuliani et al., 2022]. 

 

6.6. Circulating cfDNA and other biomarkers in the diagnosis and prognosis of 
COVID-19 
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Circulating cell-free DNA (cfDNA) originates from apoptotic or necrotic cells or from 
neutrophil extracellular trap (NET) formation [Barnes et al., 2020; Thierry and Roch, 
2020; Zuo et al., 2020]. Although its plasma concentration is generally low in healthy 
subjects, it increases significantly in pathological conditions, including tumors and 
inflammatory diseases [Kustanovich et al., 2019; Han and Lo, 2021]. In the context 
of COVID-19, plasma cfDNA has been associated with systemic inflammation and 
disease progression [Cheng et al., 2021; Storci et al., 2021]. In a recent study, has 
been found that elevated cfDNA levels in the plasma of elderly patients hospitalized 
for COVID-19 are associated with an increased risk of in-hospital mortality, while 
reduced cfDNA integrity correlates with a worse prognosis [Cardelli et al., 2022]. In 
addition, increased levels of circulating proteins associated with neutrophil (neutrophil 
elastase, LL-37) and macrophage (sCD163) activation have been linked to an 
increased risk of in-hospital mortality in patients [Cardelli et al., 2022]. 

 

6.7. Study design and patient recruitment for the case study on COVID-19. 
 

This is a single-centre retrospective study of a cohort of patients with COVID-19 
pneumonia undergoing computed tomography (CT) scan of the chest on admission, 
with collection of clinical data and serum samples. 
The patients were recruited as part of the Report-Age COVID-19 project, an 
observational study conducted at the Italian National Center for Aging (IRCCS 
INRCA), Ancona, Italy. Approval was obtained from the IRCCS INRCA Ethics 
Committee (Reference ID: CE-INRCA-20008), and the study protocol was registered 
in the ClinicalTrials.gov database (Reference ID: NCT04348396). The study protocol 
was performed in accordance with local and international guidelines as well as the 
Declaration of Helsinki. Seventy-three patients were selected from the database 
based on the availability of plasma and chest CT samples at hospital admission. 

 

6.8. Blood sample collection 
 

Peripheral venous blood was processed within 2 h after collection. Blood cell count 
samples were centrifuged at 2'500 x g at 4°C for 15 min. Thereafter, plasma and 
serum were immediately processed for routine analysis or divided into 500-µl aliquots 
and stored at -80°C for further analysis. 

 

6.9. Biological Parameters. 
 

Biological parameters included total white blood cell, monocyte and platelet counts, 
measured by standard automated procedures. Serum concentrations of CRP, D-
dimer, sodium, potassium and procalcitonin were assessed by standard procedures. 
Glomerular filtration rate (GFR) was estimated using the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) equation[Levey et al., 2009]. Circulating 
levels of microRNAs were analyzed as previously described [Giuliani et al., 2022], 
including total RNA extraction from plasma, miRNA retrotranscription, and cDNA 
amplification by qRT-PCR. Starbase website was used to identify miR-483-5p target 
genes, with a threshold of at least 3 prediction programs used to filter miRNA targets. 
IPA was employed to explore mRNAs targets of miR-483-5p and associated 
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biological functions and diseases. Circulating nucleic acids were extracted from 
plasma using a QIAamp Viral RNA Mini Kit, stored at -80°C and analyzed by Cell-free 
DNA Screen Tape Assay to estimate the concentration of double-stranded DNA 
fragments. NE and CD163 levels were measured by ELISA kits, following a previously 
published procedure [Cardelli et al., 2022]. 
 

6.10. Statistical Analyses 
 

Regarding descriptive statistics, normality in the distribution of continuous variables 
was assessed by the Shapiro-Wilk test; mean and standard deviation or median and 
interquartile range were reported, depending on the distribution. Comparison of 
variables between groups was done by unpaired Student's t test or Mann-Whitney's 
U test, as appropriate. Categorical variables were expressed as absolute numbers 
and percentages, and statistical significance was assessed by Chi-square test. 
Image-derived parameters (e.g., CT Score, HL%, GGO%, and % consolidation) were 
dichotomized into values below or above (or equal to) the median of the same 
variable. The association of image-derived parameters with mortality during 
hospitalization was explored by Kaplan-Meyer curves and evaluated by log-rank test 
for equality. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were 
estimated by four proportional Cox regression models. To test the possible 
association between biological and image-derived parameters, Spearman correlation 
coefficients were calculated for all pairs of variables with p < 0.01, reporting 
correlation coefficients (rho) and significance levels (p). For statistically significant 
correlations, two-dimensional scatter plots with regression line were drawn. A two-
tailed p value <0.05 was considered significant. Data were analysed using the 
statistical software package STATA version 15.1 for Windows (StataCorp, College 
Station, TX, USA). 
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7. Supplementary Materials 
 
The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/ijms24065123/s1. Reference [Russo et al., 
2017] is cited in the Supplementary Materials. 
 

• Figure S1. Expression correlation plots between NF-kB-miRNAs and their 
host gene. (Database URL: http://www.miriad-database.org).; 
 

• Table S1. Seven-hundred-twenty-two pre-miRNAs transcribed in different 
human tissues and predicted to have miR-NA-promoters containing putative 
NF-kB binding sequences. The following attributes are reported: name of the 
pre-miRNA corresponding to the predicted TSS, type of predicted TSS 
(“intergenic”, “host gene”, “intronic” or “hybrid”), the FANTOM4 libraries, the 
chromosome where the miRNA precursor is located, the age of the miRNAs 
corresponding to the predicted TSSs. Note: each pair of pre-mRNAs 
highlighted in bold are the hairpin precursors of the same mature miRNA but 
transcribed starting from two different promoter types. * In PROmiRNA, NF-
kB is among the top 10 transcription factors with highest affinity for the 1000 
bp-long region surrounding the predicted TSSs of the reported miRNAs. § All 
human tissues retrieved from FANTOM4 Li-braries, where the pre-miRNAs 
have an “expression at the promoter level”. “v” indicates that the miRNA is 
conserved up to the vertebrate lineage; “m” indicates that the miRNA is 
conserved up to the mammal lineage and “p” indicates that the miRNA is 
conserved only in the primate lineage.; 
 

• Table S2. Three-hundred-ninety-nine pre-miRNAs transcribed in healthy 
human tissues linked to inflammatory processes and predicted to have 
miRNA-promoters containing putative NF-kB binding sequences. The 
following attributes are reported: name of the pre-miRNA corresponding to the 
predicted TSS, type of predicted TSS (“intergenic”, “host gene”, “intronic” or 
“hybrid”), the healthy FANTOM4 libraries selected for analysis (i.e., liver, 
blood, bone marrow, immune system cells, monocytic-cells, T cells, and T 
cells 2), the chromosome where the miRNA precursor is located, the age of 
the miRNAs corresponding to the predicted TSSs. Note: each pair of pre-
mRNAs highlighted in bold are the hairpin precursors of the same mature 
miRNA but transcribed starting from two different promoter types. * In 
PROmiRNA, NF-kB is among the top 10 transcription factors with highest 
affinity for the 1000 bp-long region surrounding the predicted TSSs of the 
reported miRNAs. § Healthy human tissues linked to inflammatory processes 
and retrieved from FANTOM4 Libraries, where the pre-miRNAs have an 
“expression at the promoter level”. “v” indicates that the miRNA is conserved 
up to the vertebrate lineage; “m” indicates that the miRNA is conserved up to 
the mammal lineage and “p” indicates that the miRNA is conserved only in the 
primate lineage.; 
 

• Table S3. Seventy-three “high confidence” pre-miRNAs transcribed in healthy 
human tissues linked to inflammatory processes and predicted to have 
miRNA-promoters containing putative NF-kB binding sequences. The 
following attributes are reported: name of the pre-miRNA corresponding to the 
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predicted TSS, type of predicted TSS (“intergenic”, “host gene”, “intronic” or 
“hybrid”), the healthy FANTOM4 libraries selected for analysis i.e., “liver” and 
“immune system” (the latter includes blood, bone marrow, immune system 
cells, monocytic-cells, T cells, and T cells 2 libraries), the chromosome where 
the miRNA precursor is located, the age of the miRNAs corresponding to the 
predicted TSSs. Note: each pair of pre-mRNAs highlighted in bold are the 
hairpin precursors of the same mature miRNA but transcribed starting from 
two different promoter types. * In PROmiRNA, NF-kB is among the top 10 
transcription factors with highest affinity for the 1000 bp-long region 
surrounding the predicted TSSs of the reported miRNAs. ** Pre-miRNAs have 
been selected based on the “High Confidence dataset” (miRBase.org). The 
main intention of this selection is to provide a subset of miRNA precursors 
that you can be positive are real. § Healthy human tissues linked to 
inflammatory processes and retrieved from FANTOM4 Libraries, where the 
pre-miRNAs have an “expression at the promoter level”. “v” indicates that the 
miRNA is conserved up to the vertebrate lineage; “m” indicates that the 
miRNA is conserved up to the mammal lineage and “p” indicates that the 
miRNA is conserved only in the primate lineage.; 
 

• Table S4. IPA Core Analysis. Diseases and Functions associated to the 
putative NF-kB responsive miRNAs.; 
 

• Table S5. Comparison between NF-kB responsive miRNAs and miRNAs 
relevant to aging, inflammation, and immunity. The following attributes are 
reported: miRNA names and their group type as retrieved from [81], NF-kB-
responsive miRNAs, names of the healthy “Human Expression dataset” 
libraries in which the miRNAs are expressed (i.e., “liver” and “immune 
system”), the miRandola extracellular RNA (exRNA) form retrieved from 
http://mirandola.iit.cnr.it/ [Russo et al., 2017]. 

 
• Table S6. List of mRNAs resulting from Target Filter Analysis belonging to the 

IPA canonical pathway 'cellular senescence. 
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