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A lightweight approach to extract interschema properties from

structured, semi-structured and unstructured sources in a big data

scenario

Abstract

The knowledge of interschema properties (e.g., synonymies, homonymies, hyponymies, sub-

schema similarities) plays a key role for allowing decision making in sources characterized by

disparate formats. In the past, a wide amount and variety of approaches to derive interschema

properties from structured and semi-structured data have been proposed. However, currently, it

is esteemed that more than 80% of data sources are unstructured. Furthermore, the number of

sources generally involved in an interaction is much higher than in the past. As a consequence,

the necessity arises of new approaches to address the interschema property derivation issue in this

new scenario. In this paper, we aim at providing a contribution in this setting by proposing an

approach capable of uniformly extracting interschema properties from a huge number of structured,

semi-structured and unstructured sources.

Keywords: Unstructured sources; Interschema Property Derivation; Structuring Unstructured

Data; Big Data

1 Introduction

In the last few years, we are assisting to a real revolution in the information system scenario. In

fact, the number and the size of available data sources have dramatically increased. Furthermore,

most of them (i.e., more than 80%) are unstructured [18, 17]. These facts are rapidly changing the

scientific and technological “coordinates” of the information system research field [9, 35, 33]. As a

consequence of this phenomenon, even issues successfully addressed in the past must be re-considered

and re-investigated. One of these issues is certainly the derivation of interschema properties (i.e.,

intensional relationships between concepts represented in different data sources [53], like synonymies,

homonymies, hyponymies, overlappings, subschema similarities). This topic has been widely studied in

the past [61, 10]; however, the proposed approaches generally considered structured or, at most, semi-

structured sources. Furthermore, the number of involved sources, for which most of past approaches

were targeted to, was very small, if compared with a typical current source interaction and cooperation

scenario.

Interschema property derivation is not just one of the many topics to re-investigate in information

systems cooperation field. Actually, it represents the basis of most of the other issues: for instance,
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the knowledge of interschema properties is necessary for source integration, the construction of data

warehouses and data lakes, data analytics, and so forth.

In this paper, we aim at providing a contribution in this setting. Indeed, we propose a novel ap-

proach to uniformly perform the extraction of interschema properties from structured, semi-structured

and unstructured sources. Our approach has been specifically conceived having in mind two peculiar-

ities that should characterize it, namely: (i) the capability of handling unstructured sources; (ii) the

lightweightness, making it capable of managing a huge number of data sources.

As for the capability of handling unstructured sources, our approach is provided with a preliminary

step capable of “structuring” unstructured sources, i.e., of (at least partially) deriving a structure for

them. This is possible because it assumes that each unstructured source (e.g., a video, an audio,

an image, a text) has associated a list of keywords describing it. The “structuring” process is based

exactly on these keywords. This is another main contribution of this paper, which, generally speaking,

allows the unstructured sources to be uniformly handled as the structured and the semi-structured

ones. With regard to this aspect, some clarifications of what we intend with the terms “structured”

and “semi-structured” sources are in order. In particular, we use these terms as they are generally

adopted in databases and information systems research field. Here, a structured source consists of

some concepts, each having a precise set of attributes and relationships with other concepts of the

source. A semi-structured source has similar characteristics, but the set of attributes and relationships

characterizing a given concept is handled in a more flexible fashion. Indeed, given a property p or

a relationship r of a concept c, some instances of c might have exactly one instance of r and/or

one instance of p; other instances of c might have more instances of r and/or more instances of p;

finally, other ones might have no instances of r and/or no instances of c. A classical example of

structured sources is a relational database (that can be conceptually represented by means of an

E/R diagram). A classical example of a semi-structured source is an XML document (that can be

conceptually represented by means of a DOM).

Unstructured sources are videos, audios, images or texts. They do not generally have a conceptual

representation showing their concepts, along with the corresponding properties and relationships.

However, they are generally provided with a set of keywords, denoting the main concepts they are

representing. The purpose of our approach for “structuring” unstructured sources is exactly the

derivation of the relationships existing among the concepts represented by the keywords associated with

unstructured sources. If we are capable of performing this task, unstructured sources can be handled

similarly to structured and semi-structured ones. Furthermore, their analysis and management could

benefit from the wide amount of results found in the past for structured and semi-structured sources.

Finally, the integration, the cooperation and the simultaneous querying of structured, semi-structured

and unstructured sources are possible.

Our approach also differs from other ones previously presented in related research fields and that

could be in principle extended to address the problem we are considering in this paper. Think, for

instance, of ontologies. We could link each available keyword to an ontology and use this last one

as the “infrastructure” through which establishing the relationships among the keywords, once these

last have been linked to it. This approach is certainly valid, but it needs a support ontology. As

a consequence, it can be employed only in those application fields for which an ontology exists and

only if all the involved information sources can be mapped onto a unique ontology. If only some
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of the involved unstructured sources can be referred to an ontology and/or some of them can be

mapped onto another ontology and/or, finally, some of them cannot be referred to any ontology,

this way of proceeding cannot be adopted. From this point of view, our approach is more general

because it can be applied in all cases, independently of the presence of none, one or more ontologies,

which the unstructured sources can be referred to. It only needs a thesaurus. If there exists a specific

thesaurus for the scenario which the unstructured sources into examination belongs to, then it uses this

theasurus. Otherwise, it can still work with a general-purpose thesaurus, like BabelNet [50]. Clearly,

if the unstructured sources are specific of a certain field, the availability of a specific thesaurus can

help to obtain a better accuracy. However, if this kind of thesaurus is not available, a general-purpose

one is sufficient to proceed even if, in this case, accuracy could be lower.

As for the lightweightness of our approach, we observe that, in a big data scenario, such as the one

currently characterizing the information system field, a new proposed approach must take scalability

into a primary consideration [40, 39]. As a matter of fact, the sources interacting in every task are

always very numerous and large (think, for instance, of a data lake constructed to support data

analytics in an organization) and the time allowed for each transaction is very limited (think, for

instance, of streaming applications). As a consequence, even approaches considered very scalable in

the past (such as DIKE [55], MOMIS [7], and Cupid [41]) are not adequate anymore. In our opinion,

the tests performed to evaluate our approach and described in Section 6 confirm that it is really

capable of satisfying the lightweightness requirement without sacrificing, if not to a very small extent,

result accuracy.

Summarizing, the main contribution of this paper is an overall procedure capable of extracting

interschema properties from structured, semi-structured and unstructured sources. Our procedure is

lightweight because it has been specifically conceived to operate on big data. This feature is deeply

investigated in the paper, where we analyze its computational requirements and compare them with

the one of similar approaches conceived to work on smaller (only) structured and semi-structured data

sources. In spite of its lightweightness, the accuracy of our procedure is very satisfying, as witnessed

by the quantitative evaluations presented in the paper. An important component of our approach,

which could also be extrapolated to other contexts, is the technique for “structuring” unstructured

sources whose distinctive peculiarities have been described above.

The rest of this paper is organized as follows: in Section 2, we examine related literature. In

Section 3, we introduce a source representation model that we exploit in our tasks. In Section 4, we

show our approach for the construction of a “structured representation” of unstructured data sources.

In Section 5, we present our interschema property derivation approach. In Section 6, we present some

experiments that we performed to test our approach. Finally, in Section 7, we draw our conclusions

and have a look at some possible future developments of this research.

2 Related Literature

2.1 Schema matching for structured and semi-structured sources

Schema matching is one of the most investigated topics in past database research. The first schema

matching approaches proposed by researchers were manual and operated only on structured databases.
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Subsequently, researchers proposed semi-automatic or automatic schema matching approaches capa-

ble of handling both structured and semi-structured data sources. With the advent of big data,

unstructured sources are becoming more and more frequent and important.

Schema matching approaches were thought to consider several kinds of heterogeneity; the most

relevant of them are lexicographic, structural and semantic ones. The first deals with names and

terms; the second considers type formats, data representation models and structural relationships

among concepts; the third regards the meaning of involved data.

Let us see, now, in more detail, an overview of several approaches to perform schema matching

from the beginning to the present day.

In [14], an approach to transform structured documents by leveraging schema graph matching

is proposed. In particular, an XML schema to map each structured document is defined; for this

purpose, some XSLT scripts are automatically generated. In [41], Cupid, a system for deriving inter-

schema properties among heterogeneous sources, is proposed. Cupid leverages two different matchings,

namely the structure and the linguistic ones. In [7], MOMIS, a system supporting querying and infor-

mation source integration in a semi-automatic fashion, is presented. MOMIS implements a clustering

procedure for the extraction of interschema properties. DIKE and XIKE [55, 19, 54], as well as the

approaches described in [16, 20], also belong to this generation. An overview of this generation of

schema matching approaches can be found in [61, 10].

More recent approaches, which significantly differ from the classical ones, are based on probabilistic

methods, applied to networks of schemas [26]. They allow the definition of network-level integrity

constraints for matching, as well as the analysis of query/click logs [21, 49], specifying the class of

desired user-based schema matching.

In [3], an XML-based schema matching approach conceived to operate on large-scale schemas is

presented. This approach leverages Prufer sequences. It performs a two-step activity; during the

former step it parses XML schemas in schema trees; during the latter one, it exploits Label Prufer

Sequences (LPS) to capture schema tree semantic information. In [51], SMART, a Schema Matching

Analyzer and Reconciliation Tool, designed for the detection and the subsequent reconciliation of

matching inconsistencies, is proposed. SMART is semi-automatic because it requires the intervention

of an expert for the validation of results. In [44], the authors propose an approach to determine

the semantic similarity of terms using the knowledge present in the search history logs from Google.

For this purpose, they exploit four techniques that evaluate: (i) frequent co-occurrences of terms in

search patterns; (ii) relationships between search patterns; (iii) outlier coincidence on search patterns;

(iv) forecasting comparisons. In [5], a framework for the management of a data lake through the

corresponding metadata is proposed. This framework leverages schema matching techniques to identify

similarities between the attributes of different datasets. These techniques consider both schemas

(specifically, attribute types and dependencies) and instances (specifically, attribute values) [10]. The

framework integrates different schema matching approaches proposed in the last years, like graph

matching, usage-based matching, document content similarity detection and document link similarity

detection. [45] proposes an instance-based approach to find 1-1 schema matches. It combines the

semantics provided by Google and regular expressions. It does not work well in a scenario where

sources are very heterogeneous and data are stored in their raw way. Another instance-based approach

is presented in [27]. It faces the heterogeneity of the different schemas by leveraging an ad-hoc mapping
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language.

Most schema matching approaches based on similarities often filter out unnecessary matchings and

information [59] in such a way as to operate easier and faster.

As we have seen in this overview, schema matching has been widely investigated in the past for

very heterogeneous scenarios, and very different approaches have been adopted to reach disparate

goals. In this “mare magnum” of approaches, ours is characterized by the following features: (i) it

has been specifically conceived to handle also unstructured sources; (ii) it has been designed to be

scalable and, therefore, it is lightweight; (iii) it is automatic; (iv) in spite of these two last features, it

presents a good accuracy, as we will see in Section 6.

2.2 Approaches to represent unstructured sources

The representation mechanisms of unstructured sources (basically texts) are mainly based on two

strategies, namely analysis of contents and analysis of references [66]. The former infers a representa-

tion of a document from the corresponding content, whereas the latter focuses on relationships among

documents. Clearly, our interest is mainly on the former strategy, because its objective is similar to

the one of our approach.

The most basic approach to represent texts leverages Bags of Words (BOW) [6, 65]. In this case,

machine learning techniques are used to identify the set of words that mostly characterizes a text

[34, 38]. Some more sophisticated strategies are based on the extraction of sentences [22]. In this

case, a text is mapped onto semantic spaces, such as WordNet or Wikipedia. Another strategy is

Explicit Semantic Analysis (ESA) [23], which mixes BOW and document references. In ESA, the

relatedness between documents is computed by extracting similarities between the concepts identified

within them, thanks to the cross-references expressed therein.

An important model in the BOW context is word2vec [46, 47]. This model is based on neural

networks. It constructs a vector space and associates each word of the text into examination with

a vector in this space in such a way that words sharing common contexts have close corresponding

vectors in the vector space. The word2vec model was extended to the doc2vec one [36], which ex-

ploits similarities and contextual information of each word to reduce the dimensionality of the vector

space. Other approaches reach the same objective (i.e., dimensionality reduction) by means of Latent

Semantic Analysis [30], which exploits matrix decomposition methods.

Word-based methods are currently flanked by concept-based ones. As an example, [64, 63] intro-

duce the idea of Bag of Concepts, in place of Bag of Words. In this approach, concepts are generated

by disregarding semantic similarities between words. Semantic similarities have been considered only

recently [31].

Another relevant set of approaches use ontologies or, in general, external sources of semantics,

to generate conceptual representations of documents by matching document terms with ontology

concepts (see, for instance, [11, 28, 69, 2]). The performance of these approaches is strongly related

to the quality of the adopted external sources. As a consequence, in these approaches, very specific

domains can strongly benefit from the availability of dedicated ontologies.

The approaches examined above generally consider only texts; they do not operate with other

forms of unstructured sources, such as videos. Furthermore, they terminate with the derivation of
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keywords or key concepts representing a source. In fact, none of them tries to go a step over, i.e., to

define a certain “structure” for an unstructured source, which is one of the objectives of this paper.

An attempt to define a “structure” for an unstructured source can be found in [42]. This approach

generates a rowset with n attributes, i.e., a tabular representation from unstructured data. A single

rowset is a set of tuples and is equivalent to a relation in relational databases; logical associations may

exist between rowsets, but these are not explicitly defined. The schema of a rowset may be defined on

read. Transformation functions, possibly based on fuzzy logic, are used to properly read the complex

unstructured data and map them on the rowset schema. These functions are also exploited to address

the data variety issue, by means of an interface for the dataset extraction, which is unified and valid

for all the sources. Different transformation functions can be used to map different unstructured data

onto the same schema. The content of a rowset depends on the membership function associated with

a fuzzy logic and on the possible constraints regarding it. However, data extraction is only one of the

steps defined in [42], which develops a general data processing system based on an Extract, Process,

and Store (EPS) paradigm.

From the above description, it appears evident that the approach of [42] shares several features

with ours; in particular, the purpose of structuring unstructured data is common to both of them.

However, the two approaches also present several differences. Indeed, for the structuring task, the

approach of [42] strongly depends on user defined transformation functions and on rowset schemas

(which are not automatically inferred from the sources). Now, the definition of both the functions

and the schema may be difficult for complex sources. Furthermore, mapping more sources on the

same schema requires a manual integration step, which, again, may be a difficult task when the

number of involved sources is high. On the other hand, querying obtained data sources is particularly

effective with the use of fuzzy techniques and the declarative U-SQL query language characterizing the

approach of [42]. On the contrary, in our proposal, to perform the structuring of unstructured sources,

we leverage network analysis, as well as lexical and string similarities, for automatically deriving a

general and uniform schema of different unstructured sources. In fact, as we will see in the following,

unstructured sources are “structured” by first representing them as a network, starting from a set of

keywords associated with them; then, this structure is enriched by adding arcs that link nodes having

lexical or string similarities even if they belong to different sources. As a consequence, it is possible to

state that the approach presented in [42] is more effective and flexible in querying data lake contents,

but it requires a more complex design phase, with a heavy human intervention, difficult to sustain in

presence of numerous data sources. On the contrary, our approach simplifies the structuring phase,

because it does not need a preliminary structure to be used as a model, and it does not require a

human intervention. On the other side, its querying capabilites are limited to the summarization of

unstructured sources provided by the keywords representing them. Therefore, in a certain sense, our

approach and the one of [42] can be considered orthogonal.
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3 A network-based model for uniformly representing structured,

semi-structured and unstructured sources

In this section, we present a network-based model for uniformly representing data sources of different

formats. This model will be extensively used in the rest of this paper. In order to understand

the peculiarities of our model, we assume to have a set DS of m data sources of interest possibly

characterized by different data formats.

DS = {D1, D2, · · · , Dm}

Each data source Dk has associated a rich setMk of metadata. We indicate withMDS the repository

of the metadata of all the data sources of DS:

MDS = {M1,M2, . . . ,Mm}

Given the source Dk, in order to represent the information content stored inMk, our model starts

from a notation typical of XML, JSON and many other semi-structured data models. According to

this notation, Objk denotes the set of all the objects stored inMk. Objk consists of the union of three

subsets:

Objk = Attk ∪ Smpk ∪ Cmpk

where:

• Attk denotes the set of the attributes of Mk;

• Smpk indicates the set of the simple elements of Mk;

• Cmpk represents the set of the complex elements of Mk.

Here, the meaning of the terms “attribute”, “simple element” and “complex element” is the one typical

of semi-structured data models.

Mk can be also represented as a graph:

Mk = 〈Nk, Ak〉

Nk is the set of the nodes of Mk . There is a node nkj in Nk for each object okj of Objk. According

to the structure of Objk, Nk consists of the union of three subsets:

Nk = NAtt
k ∪NSmp

k ∪NCmp
k

where NAtt
k (resp., NSmp

k , NCmp
k ) denotes the set of the nodes corresponding to Attk (resp., Smpk,

Cmpk). There is a biuniovocal correspondence between a node of Nk and an object of Objk. Therefore,

in the following, we will use these two terms interchangeably. Each node has associated a name that

identifies it in the schema which the corresponding element or attribute belongs to.
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Let x be a complex element of Mk. We denote by Objx the set of the objects directly contained

in x and by NObj
x the set of the corresponding nodes. Finally, let x be a simple element of Mk.

We indicate by Attx the set of the attributes directly contained in x and by NAtt
x the set of the

corresponding nodes.

Ak denotes the set of the arcs of Mk. It consists of three subsets:

Ak = A′k ∪A′′k ∪A′′′k

where:

• A′k = {(nx, ny, Lxy)|nx ∈ NCmp
k , ny ∈ NObj

nx }; in other words, there is an arc in A′k from a

complex element of Mk to each object directly contained in it. Lxy represents the label of A′k.

• A′′k = {(nx, ny, Lxy)|nx ∈ NSmp
k , ny ∈ NAtt

nx
}; in other words, there is an arc in A′′k from a simple

element of Mk to each attribute directly contained in it. Lxy represents the label of A′′k.

• A′′′k = {(nx, ny, Lxy)|nx ∈ Nk, ny ∈ Nk, Dk is unstructured, σ(nx, ny)=true}. Here, σ(nx, ny)

is a function that receives two nodes and returns true if there exists a similarity between nx
and ny. For instance, σ(nx, ny) could return true if the concepts represented by nx and ny are

semantically similar or if the names identifying nx and ny in the corresponding schema present

a high string similarity. Lxy represents the label of A′′′k .

As for the label Lxy associated with each arc, in the current version of this model, it is NULL for the

arcs of A′k and A′′k. However, we do not exclude that, in the future, enrichments of our model might

lead us to use this field for storing some knowledge. Instead, Lxy has an important meaning for the

arcs of A′′′k . In fact, as will be clear in Section 5, it is used to denote the strength of the correlation

between nx and ny.

From an abstract point of view, there is a “fil rouge” linking the three subsets of Ak, which leads

to the concept of homophily in Social Network Analysis. Indeed, A′k, A′′k and A′′′k are the three possible

ways to represent the links between a concept and its “direct homophiles”, i.e., the other concepts

that can contribute to define (at least partially) its meaning.

4 Structuring an unstructured source

Our network-based model for uniformly representing and handling data sources with disparate formats

is perfectly fitted for semi-structured sources. Indeed, it is sufficient:

• deriving the metadata of the source (if not yet provided) by applying one of the several techniques

and tools defined for this purpose w.r.t. the various kinds of format;

• defining a complex element to represent the source as a whole;

• introducing a complex element, a simple element and an attribute for each complex element,

simple element and attribute present in the metaschema of the source;
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• defining an arc of A′k from the source to the root of the document;

• introducing an arc of A′k or A′′k for each relationship existing between the objects composing the

source metadata.

Clearly, our model is sufficiently powerful to represent structured data. Indeed, it is sufficient:

• deriving the E/R schema of the source (if not yet provided) by performing a classical database

reverse engineering activity;

• defining a complex element to represent the source as a whole;

• introducing a complex element for each entity of the E/R schema and an attribute for each

attribute of the schema;

• defining an arc of A′k from the complex element corresponding to the source to each complex

element associated with an entity of the E/R schema;

• introducing an arc of A′′k from an entity to each of its attributes;

• defining an arc of A′k for each one-to-many relationship of the E/R schema; this arc is from

the entity participating to the relationship with a maximum cardinality equal to 1 to the entity

participating with a maximum cardinality equal to N ;

• representing a many-to-many relationship without attributes as a pair of one-to-many relation-

ships and, then, modeling them accordingly;

• representing a many-to-many relationship R with attributes that connects two entities E1 and

E2 as an entity having the same attributes as R and linked to E1 and E2 by means of two

one-to-many relationships; the new entity and the new relationships are then suitably modelled

by applying the rules defined in the previous cases.

The highest modeling difficulty regards unstructured data because it is worth avoiding a flat

representation consisting of a simple element for each keyword provided to denote the source content.

As a matter of fact, this flat representation would make the reconciliation, and the next integration,

of an unstructured source with the other semi-structured and structured sources of DS very difficult.

This is a very challenging issue to address. In the following, we propose our approach to “structure”

unstructured sources. As pointed out in the Introduction, this is one of the main contributions of

this paper. It is in itself a major issue in the current information systems scenario and, at the same

time, plays a key role to provide our interschema property derivation approach with the capability of

operating on sources with disparate formats.

Our approach assumes that each unstructured source into consideration (e.g., a video, an audio,

an image, a text) is provided with a list of keywords describing it1. They will play a key role, as

will be clarified in the following. We observe that this assumption is not particularly strong or out

1Here, we assume that the list is ordered and the order is the one in which the keywords appear in the list.
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of place. As a matter of fact, in the reality, most video, image or audio providers associate a list of

keywords (sometimes, in the form of tags) with the contents they deliver. As for text, representing

keywords can be also easily derived through suitable techniques, like TF-IDF [43].

Our approach consists of four phases, namely: (1) creation of nodes; (2) management of lexical

similarities; (3) management of string similarities; (4) management of (temporary) duplicated arcs.

We describe these phases below.

• Phase 1: Creation of nodes. During this phase, our approach creates a complex node

representing the source as a whole and a simple node for each keyword2. Furthermore, it adds

an arc of A′k from the node associated with the source to any node corresponding to a keyword.

Initially, there is no arc between two keywords. To determine the arcs to add, the next phases

are necessary.

• Phase 2: Management of lexical similarities. During this phase, our approach handles

lexical similarities. For this purpose, it leverages a suitable thesaurus. Taking the current trends

into account, this thesaurus should be a multimedia one; for this purpose, in our experiments, we

have adopted BabelNet [50]. In particular, our approach adds an arc of A′′′k from the node nk1 ,

corresponding to the keyword k1, to the node nk2 , corresponding to the keyword k2, and vice

versa, if k1 and k2 have at least one common lemma3 in the thesaurus. Furthermore, it transforms

the nodes nk1 and nk2 from simple to complex. The new arcs have a label corresponding to the

number of common lemmas for k1 and k2 in the thesaurus.

• Phase 3: Management of string similarities. During this phase, our approach derives

string similarities and states that there exists a similarity between two keywords k1 and k2 if the

string similarity degree kd(k1, k2), computed by applying a suitable string similarity metric on

k1 and k2, is “sufficiently high” (see below). In this case, it adds an arc of A′′′k from nk1 to nk2 ,

and vice versa. Both the two arcs have kd(k1, k2) as their label. We have chosen N-Grams [32]

as string similarity metric because we have experimentally seen that it provides the best results

in our context. In particular, we have selected bi-grams as the best trade-off between accuracy

and costs. In fact, mono-grams would require a lower cost but they would also return a lower

accuracy than bi-grams. By contrast, tri-grams would guarantee a very high accuracy but at the

expense of the computational cost, which would be excessive. Again, if nk1 and nk2 are simple

nodes, our approach transforms them into complex ones.

Now, we illustrate in detail what “sufficiently high” means and how our approach operates.

Let KeySim be the set of the string similarities for each pair of keywords of the source into

consideration. Each record in KeySim has the form 〈ki, kj , kd(ki, kj)〉. Our approach first

computes the maximum keyword similarity degree kdmax present in KeySim. Then, it examines

each keyword similarity registered therein. Let 〈k1, k2, kd(k1, k2)〉 be one of these similarities. If

2Here and in the following, to make the presentation smoother, we use the term “complex node” to indicate a node

belonging to NCmp
k and the term “simple node” to denote a node of NSmp

k . Furthermore, we use the term “source”

(resp., “keyword”) to denote both the source (resp., a keyword) and the corresponding node associated with it.
3In this paper, we use the term “lemma” according to the meaning it has in BabelNet [50]. Here, given a term, its

lemmas are other objects (terms, emoticons, etc.) that contribute to specify its meaning.
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((kd(k1, k2) ≥ thk ·kdmax) and (kd(k1, k2) ≥ thkmin)), which implies that the keyword similarity

degree between k1 and k2 is among the highest ones in KeySim and that, in any case, it is

higher than or equal to a minimum threshold, then it concludes that there exists a similarity

between nk1 and nk2 . We have experimentally set thk = 0.70 and thkmin = 0.50.

Observe that the choice to consider string similarities, in particular the one to adopt N-Grams

as the technique for detecting string similarities, makes our approach robust against mispelling

errors possibly present in the keywords. In fact, as shown in [25], N-Grams is well suited to

handle also this kind of error.

• Phase 4: Management of (temporary) duplicated arcs. This phase is devoted to handle

the possible simultaneous presence of both lexical and string similarities for the same pair of

keywords. Indeed, it may occur that, for a pair of nodes nk1 and nk2 , there are two arcs from

nk1 to nk2 belonging to A′′′k and generated by both lexical and string similarities, and two arcs

from nk2 to nk1 . In this case, the two arcs from nk1 to nk2 corresponding to these two forms

of similarities, must be merged in only one arc, which has associated a label denoting both the

number of common lemmas between k1 and k2 in BabelNet and the value of kd(k1, k2). The

same happens for the two arcs from nk2 to nk1 .

From this description, it emerges that, at the end of the four phases, given two nodes nk1 and nk2 ,

four cases may exist, namely:

1. There is no arc from nk1 to nk2 .

2. A pair of arcs derived from a lexical similarity links them. In this case, the two arcs actually

coincide (also in their labels); therefore, one of them can be removed. Note that the choice of the

arc to be removed has deep implications in the definition of the topology of the corresponding

network. Indeed, one of the two nodes involved (i.e., the source node of the maintained arc)

will be certainly a complex node, whereas the other one may be a simple node (if no other arc

starts from it) or a complex node (if at least another arc, different from the removed one, starts

from it). In turn, the topology of the network has implications in the nature and the quality

of the interschema properties that can be extracted, as will be clear in Section 5. Therefore,

it is appropriate that the choice of the arc to be removed is not random and that a clear rule

guiding it is defined. The rule that we chose for our approach is the following: given a pair of

arcs between two nodes nk1 , corresponding to the keyword k1, and nk2 , corresponding to the

keyword k2, with k1 preceding k2 in the list of keywords associated with the source Dk, the arc

from nk1 to nk2 is maintained and the one from nk2 to nk1 is removed.

3. A pair of arcs derived from a string similarity links them. As in the previous case, the two arcs

coincide and one of them is removed. The policy adopted to determine the arc to remove is the

same as the one followed in the previous case.

4. A pair of arcs derived from Phase 4 links them. As in the previous case, the two arcs coincide

and one of them is removed.
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Actually, arc labels introduced above are not necessary in our approach for the extraction of

semantic relationships described in Section 5. However, we have decided to maintain them in our model

because we aim at providing an approach to “structure” unstructured sources that is general and that

may be adopted in several future applications, some of which could benefit from this information.

Moreover, we point out that, in the prototype implementing our approach, in order to increase

its efficiency, we directly added only one arc, namely (nk1 , nk2), during Phases 2, 3 and 4, instead of

adding two arcs and of removing one of them at the end of the four phases.

4.1 Example

In this section, we propose an example of how our approach to construct a “structured” representation

of an unstructured source operates. In particular, the unstructured source into consideration is a

video, which talks about environment and pollution. As we said before, for each unstructured source,

our approach begins from a list of keywords representing its content. In order to keep our description

simple and clear, in this example, we assume that our video has a limited number of keywords, namely

the ones shown in Figure 1.

Our approach starts with Phase 1. As we can see in Figure 1(a), during this phase, it constructs

a graph having a node for each keyword. A further node is added to represent the video as a whole;

nodes representing keywords are colored in red, whereas the other one is colored in green. Following

our strategy, in Figure 1(b), we added an arc from the node representing the whole video to each node

associated with a keyword.

Now, Phase 2 starts. During this phase, our approach uses a thesaurus. In our example, we

leveraged BabelNet. In particular, let k1 and k2 be two keywords of Figure 1(a) having at least one

common lemma in BabelNet. An arc is added from the node nk1 , associated with k1, to the node

nk2 , associated with k2, and vice versa. In Figure 1(c), we show two keywords (“Save” and “Protect”)

and the corresponding lemmas in BabelNet. Common lemmas (i.e., “keep” and “preserve”) are in

bold. Since “Save” and “Protect” have at least one common lemma, an arc is added between the

corresponding nodes in Figure 1(d)4. This arc is highlighted in blue. Each arc has a label representing

the number of common lemmas between the corresponding keywords in BabelNet.

After having examined lexical similarities, Phase 2 terminates and our approach proceeds with

Phase 3, which leverages string similarities. In particular, let k1 and k2 be two keywords of Figure

1(a) having a string similarity degree higher than or equal to thk ·kdmax and, at the same time, higher

than or equal to thkmin. An arc is added from the node nk1 , corresponding to k1, to the node nk2 ,

corresponding to k2. In Figure 1(e), we report the pairs of keywords that satisfy this feature. In

Figure 1(f), we added an arc for each pair of keywords of Figure 1(e). Here, to better highlight them,

we have omitted the arcs constructed during Phase 2. Again, these arcs are highlighted in blue. Each

arc has a label representing the string similarity degree (computed by means of N-Grams) between

the corresponding keywords.

Finally, in Figure 1(g), Phase 4 of our approach combines the arcs derived in Phases 2 and 3. In

particular, it may happen that, for a pair of keywords (see, for instance, the keywords “garden” and

4Here, we have directly added only one arc between “Save” and “Protect”, instead of adding two arcs and removing

one of them later, after the four phases.
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Figure 1: Graphical representation of our approach to derive a “structure” for an unstructured source
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“gardens”), two arcs have been generated, one in Figure 1(d) and one in Figure 1(f). In this case, in

Figure 1(g), the two arcs are substituted by only one arc, representing both of them. The label of this

arc reports the label of both the original ones.

5 Extracting interschema properties from disparate sources

We are now ready to illustrate our strategy for uniformly extracting interschema properties from

structured, semi-structured and unstructured sources. Here, we assume that the content of the sources

of interest is represented by means of the model described in Section 3, and that our approach to

“structure” unstructured sources, described in Section 4, has been already applied on all unstructured

sources.

Before delving into a detailed description of our approach, a discussion about the role played by

source metadata, and about the consequences of this role, is in order. Indeed, as previously pointed

out, our approach assumes that some metadata are available for each structured, semi-structured

and unstructured source. This assumption is important because both our approach for structuring

unstructured sources and our approach for extracting interschema properties use these metadata. It

is, then, of outmost importance to analyze the possible issues (and the corresponding solutions) in

obtaining good quality metadata, when they are not directly provided with the sources, and the impact

that they have on the results returned by our approach.

Metadata generation received much attention in the literature. According to [1], metadata relative

to a data source are currently generated by crawlers, by professional metadata creators, or, finally,

by source creators. Generating metadata by means of automatic crawlers has great advantages, such

as low cost and high efficiency; however, in some cases, the quality of generated metadata could be

poor. In this context, it could be extremely useful the support of several mechanisms for controlling

the quality of metadata, as well as the aid of metadata professionals, such as cataloguers and indexers;

these are people who have had a formal training and are efficient in using metadata. Generally, they

produce high-quality metadata. However, it has been observed that, in some cases, even metadata

generated by professionals or by source authors may have poor quality and might hamper, rather than

aid, the usage of the corresponding sources. This happens because most authors have little previous

knowledge on metadata creation [1].

As pointed out in [57], the widespread adoption of several mechanisms for controlling the quality of

metadata witnesses a strong awareness of the importance of having high-quality metadata at disposal.

However, despite the relevance and the impact of metadata quality are universally recognized in the

literature, there is no agreement yet on what metadata quality actually means. This implies, among

the other things, the impossibility of defining systematic approaches to its automatic measurement

and enhancement [67]. Metadata quality assurance should be verified simultaneously to metadata

creation [56]. Indeed, a poor quality of metadata negatively affects the performance of systems using

them and the overall user satisfaction. Quality assurance procedures are generally complemented by

manual quality review and, if necessary, by the assistance of the technical staff during the process of

metadata creation. Other mechanisms, such as metadata creation guidelines (sometimes embedded

into the metadata creation system) and metadata generation tools, are on the rise.

The great relevance given to the metadata quality improvement is observed in the study presented
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in [29]. Here, the authors introduce a quality measure and analyze the metadata quality in the

Europeana context over the years. They observe that the metadata quality improves not only in new

collections but also in the same collection over the years.

As pointed out in [57], in the metadata generation process, accuracy and consistency are prioritized

over completeness, whereas the semantics of metadata elements is perceived to be less important. In

principle, this might be an issue for our approach, since it strongly relies on semantics. The authors

of [57] also point out that semantic overlaps and ambiguities are by far the two most critical factors.

Actually, as our approach exploits thesauruses, string, and semantic similarities to relate keywords,

these negative factors are significantly mitigated.

After this important discussion about the metadata of the involved sources, we can start our dis-

cussion about the derivation of interschema properties. We recall that, in the current big data scenario,

any interschema property extraction strategy must be lightweight. For this reason, in our effort to

define a new approach for this task, we avoided highly complex choices, such as the fixpoint computa-

tion characterizing DIKE [55, 54] and XIKE [19], or the clustering-based computation characterizing

MOMIS [8], or, again, the wide range of parameter computation characterizing Cupid [41]. These

choices, as well as most of the other ones present in the past approaches proposed for reconciling and

integrating structured and semi-structured data sources (e.g., the construction of a data warehouse)

[61, 10], would certainly return very accurate results. However, their speed is incompatible with the

one required in many current applications, which must allow the derivation of semantic relationships

“on-the-fly” from a very high number of data sources, most of which are unstructured, i.e., in a for-

mat not considered by classic approaches. As a consequence, our strategy must necessarily privilege

quickness over accuracy even if, clearly, accuracy must be high. In Section 6, we will see if, and how,

this issue has been addressed.

Our strategy consists of two phases; the former computes the semantic similarity degree of each

pair of objects stored in the metadata of the involved sources. The latter derives semantic relationships

between the same objects starting from the results returned by the former.

5.1 Semantic similarity degree computation

Our approach to semantic similarity degree computation consists of three steps, namely:

• basic similarity computation;

• standard similarity computation;

• refined similarity computation.

In the next subsections, we illustrate these three steps in detail.

5.1.1 Basic similarity computation

Basic similarities consider only lexicon (determined with the support of suitable thesauruses, such as

BabelNet [50] and WordNet [48], and string similarity metrics, such as N-Grams [32]), and object

types.
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Let D1 and D2 be two sources, let M1 and M2 be the corresponding metadata, let x1 ∈ Obj1
and x2 ∈ Obj2 be two objects belonging to M1 and M2, respectively. The basic similarity degree

bs(x1, x2) between x1 and x2 can be computed as:

bs(x1, x2) = ω · σL(x1, x2) + (1− ω) · σT (x1, x2)

In other words, the basic similarity degree between x1 and x2 can be computed as a weighted mean

of two components. The former, σL, returns their lexical similarity, whereas the latter, σT , specifies

the similarity of their types. ω is a weight belonging to the real interval [0, 1] and used to tune the

importance of σL w.r.t. σT . We have experimentally set ω to 0.90.

σL can be directly detected from a thesaurus. In our experiments, we used WordNet in the first

beat, because it provides the similarity degree between the two objects, and BabelNet, when WordNet

did not provide any result. Since this last thesaurus does not return the similarity degree of two objects

that it considers similar, we coupled BabelNet with a suitable string similarity metric (in particular,

N-Grams). This last is applied to the objects and the corresponding lemmas returned by BabelNet;

obtained results are, then, combined to compute the lacking similarity degree. Furthermore, in very

specific application contexts, specialized thesauruses could be used.

σT is defined as follows:

σT =



1 if (x1 ∈ Cmp1 and x2 ∈ Cmp2) or (x1 ∈ Smp1 and x2 ∈ Smp2) or

(x1 ∈ Att1 and x2 ∈ Att2)

0.5 if (x1 ∈ Cmp1 and x2 ∈ Smp2) or (x1 ∈ Smp1 and x2 ∈ Cmp2) or

(x1 ∈ Smp1 and x2 ∈ Att2) or (x1 ∈ Att1 and x2 ∈ Smp2)

0 otherwise

5.1.2 Standard similarity computation

Standard similarities take both basic similarities and the neighbors of the involved objects into account.

Let Dk be a source of the set DS of the sources of interest, letMk = 〈Nk, Ak〉 be the corresponding

set of metadata, let Objk be the set of the objects ofMk. The set nbh(x) of the neighbors of an object

x ∈ Objk is defined as:

nbh(x) = {y|y ∈ Objk, (nx, ny) ∈ Ak}

Let D1 and D2 be two sources, letM1 andM2 be the corresponding sets of metadata, let x1 ∈ Obj1
and x2 ∈ Obj2 be two objects belonging toM1 andM2, respectively. The standard similarity degree

ss(x1, x2) between x1 and x2 can be computed as follows:

• If both nbh(x1) = ∅ and nbh(x2) = ∅, then ss(x1, x2) = bs(x1, x2) 5.

• If either nbh(x1) = ∅ and nbh(x2) 6= ∅ or nbh(x2) = ∅ and nbh(x1) 6= ∅, then ss(x1, x2) =

fp · bs(x1, x2). Here, fp is a factor, whose possible values belong to the real interval [0, 1], which

5For instance, this happens when both x1 and x2 are attributes; indeed, the nodes corresponding to attributes do not

have outgoing arcs.
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“penalizes” the value obtained for basic similarities. Indeed, these are the only similarities that

we can compute and, therefore, we must base our standard similarity computation on them.

However, we must consider that the sets of neighbors of x1 and x2 have different features,

because one of them is empty and the other one is not empty, and this fact must be taken into

account. We have experimentally set fp = 0.85.

• In all the other cases, i.e., if x1 ∈ (Smp1 ∪Cmp1) and x2 ∈ (Smp2 ∪Cmp2), then ss(x1, x2) can

be computed as follows:

1. nbh(x1) and nbh(x2) are determined.

2. A bipartite graph, whose nodes are the ones of nbh(x1) and nbh(x2), is constructed.

3. For each pair (p, q), such that p ∈ nbh(x1) and q ∈ nbh(x2), an arc is added in the bipartite

graph; the weight of this arc is set to bs(p, q).

4. The maximum weight matching is computed on this bipartite graph. Let AM be the set of

the returned arcs. Then:

ss(x1, x2) =


2·
∑

(p,q)∈AM
bs(p,q)

|nbh(x1)|+|nbh(x2)| if neither D1 nor D2 are unstructured

2·
∑

(p,q)∈AM
bs(p,q)

2·min(|nbh(x1)|,|nbh(x2)|) otherwise

In this formula, if neither D1 nor D2 are unstructured, ss(x1, x2) returns the value of

an objective function that takes into account how many nodes of nbh(x1) and nbh(x2) are

linked by basic similarity relationships and how strong these relationships are. Furthermore,

the objective function penalizes the presence of dangling nodes, i.e., nodes of nbh(x1) or

nbh(x2) that do not participate to the maximum weight matching.

If D1 and/or D2 are unstructured, then it is necessary to consider that, even if our approach

performed a “structuring” task, its final structure is limited, if compared with the rich

structure characterizing the other kinds of source. As a consequence, the sets of neighbors

of the nodes belonging to unstructured sources are generally much smaller than the ones

characterizing the other kinds of source. Therefore, in this case, using the same objective

function adopted when neither D1 nor D2 are unstructured would not take this important

feature into account, and the overall result would be biased. To address this issue, if D1

and/or D2 are unstructured, in the denominator of ss(x1, x2) we consider the minimum size

between |nbh(x1)| and |nbh(x2)|, clearly multiplied by 2 to indicate the maximum number

of nodes that could be linked by a similarity relationship in this situation.

5.1.3 Refined similarity computation

Refined similarities are based on standard similarities (for simple and complex objects), basic similar-

ities (for attributes) and object neighbors.

Let D1 and D2 be two sources, letM1 andM2 be the corresponding sets of metadata, let x1 ∈ Obj1
and x2 ∈ Obj2 be two objects belonging to M1 and M2, respectively. The refined similarity degree

rs(x1, x2) between x1 and x2 can be computed as follows:
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• If nbh(x1) = ∅ and/or nbh(x2) = ∅, then rs(x1, x2) = ss(x1, x2).

• Otherwise, if x1 ∈ (Smp1 ∪ Cmp1) and x2 ∈ (Smp2 ∪ Cmp2), then rs(x1, x2) is obtained by

applying the same four steps described for ss(x1, x2) with the only difference that, in Step 3, the

weight of the arc (p, q), such that p ∈ nbh(x1) and q ∈ nbh(x2), is set to ss(p, q), and no more

to bs(p, q). In other words, while standard similarity computation leverages basic similarities,

refined similarity computation is based on standard similarities.

Clearly, from a theoretical point of view, it would be possible to perform other refinement steps.

In this case, at the ith refinement step, the similarities would be computed starting from the ones

obtained at the (i − 1)th step, by setting these last ones as the weights of the arcs of the bipartite

graph. However, the advantages in accuracy that these further refinement steps could produce do

not justify the computational costs introduced by them (see Section 6), especially in an agile and

lightweight context, such as the one characterizing the big data scenario.

5.2 Semantic relationship detection

The derivation of semantic relationships among the objects of the sources of DS represents the second

phase of our strategy. It takes the refined semantic similarities among the objects of DS as input.

The semantic relationships that it can return are the following:

• Synonymies: A synonymy between two objects x1 ∈ Obj1 and x2 ∈ Obj2 exists if they have a

high similarity degree, the same type (i.e., both of them are complex objects or simple objects

or attributes) and (possibly) different names.

• Type Conflicts: A type conflict between two objects x1 ∈ Obj1 and x2 ∈ Obj2 exists if they have

a high similarity degree but different types.

• Overlappings: An overlapping exists between two objects x1 ∈ Obj1 and x2 ∈ Obj2 if they have

(possibly) different names, the same type and an intermediate similarity degree, in such a way

that they can be considered neither synonymous nor distinct.

• Homonymies: A homonymy between two objects x1 ∈ Obj1 and x2 ∈ Obj2 exists if they have

the same name and the same type but a low similarity degree.

Let D1 and D2 be two sources, letM1 andM2 be the corresponding sets of metadata, let x1 ∈ Obj1
and x2 ∈ Obj2 be two objects belonging to M1 and M2, respectively. Finally, let RefSim12 be the

set of refined similarities involving the objects of Obj1 and Obj2.

First, our approach computes the maximum refined similarity degree rsmax present in RefSim12.

Then, it examines each similarity 〈x1, x2, rs(x1, x2)〉 registered in RefSim12 and verifies if a semantic

relationship exists between the corresponding objects as follows:

• If (rs(x1, x2) ≥ thSyn · rsmax) and (rs(x1, x2) ≥ thmin), which implies that the refined similarity

degree between x1 and x2 is among the highest ones in RefSim12 and, in any case, higher than

or equal to a minimum threshold, then:
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– if x1 and x2 have the same type, it is possible to conclude that a synonymy exists between

them;

– if x1 and x2 have different types, it is possible to conclude that a type conflict exists between

them.

• If (rs(x1, x2) < thSyn · rsmax) and (rs(x1, x2) ≥ thOv · rsmax) and (rs(x1, x2) ≥ thmin), which

implies that the refined similarity degree between x1 and x2 is higher than or equal to a minimum

threshold, it is not among the highest ones in RefSim12, but it is significant, then:

– if x1 and x2 have the same type, it is possible to conclude that an overlapping exists between

them.

• If (rs(x1, x2) < thHom · rsmax) and (rs(x1, x2) < thmax), which implies that the refined similarity

degree between x1 and x2 is among the lowest ones in RefSim12 and, in any case, lower than a

maximum threshold, then:

– if x1 and x2 have the same name and the same type, it is possible to conclude that a

homonymy exists between them.

Here, thSyn, thmin, thOv, thHom and thmax have been experimentally set to 0.85, 0.50, 0.65, 0.25

and 0.15, respectively.

As pointed out in the Introduction, the knowledge of interschema properties is very relevant for

several applications, for instance source integration, source querying, data warehouse and/or data lake

construction, data analytics, and so forth. As an example, as far as source integration is concerned:

• If a synonymy exists between x1 ∈ Obj1 and x2 ∈ Obj2, then x1 and x2 must be merged in a

unique object, when the integrated schema is constructed.

• If a homonymy exists between x1 and x2, then it is necessary to change the name of x1 and/or

x2, when the integrated schema is constructed.

• If an overlapping exists between x1 an x2, then it is necessary to restructure the corresponding

portion of network. Specifically, a node x12, representing the “common part” of x1 and x2, is

added to the network. Furthermore, each pair of arcs (x1, xT ) and (x2, xT ), starting from x1

and x2 and having the same target xT , is substituted by a unique arc (x12, xT ). Finally, an arc

from x1 to x12 and another arc from x2 to x12 are added to the network.

• If a type conflict exists between x1 and x2, then it is necessary to change the type of x1 and/or

x2 in such a way as to transform the type conflict into a synonymy. Then, it is necessary to

handle this last relationship by applying the corresponding integration rule seen above.

The way of proceeding described above can be extended to the detection of hyponymies. In

particular, the extension already proposed in [52] for structured and semi-structured data can be

probably adapted to this scenario. We plan to investigate this issue in the future. Finally, an analogous

way of proceeding can be performed when querying or other activities must be carried out on a set of

sources of interest.
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5.2.1 An example case

In this section, we provide an example of the behavior of our approach to the extraction of seman-

tic relationships. To fully illustrate its potentialities, we derive these relationships between objects

belonging to an unstructured source and a semi-structured one.

The unstructured source is a video. The corresponding keywords are reported in Table 1. Its

“structured” representation, in our network-based model, obtained after the application of the ap-

proach described in Section 4, is reported in Figure 2. The semi-structured source is a JSON file

whose structure is shown in Figure 3. Its representation in our network-based model is reported in

Figure 4.

Keywords

video, reuse, flower, easy, tips, plastic, simple, environment, pollution, garbage, wave, recycle, reduce, pollute, help,

natural environment, educational, green, environment awareness, bike, life, environmentalism, planet,

earth, climate, clime, save, nature, environmental, gardens, power, recycling, garden, protect, flowers,

eco, fine particle, o3, atmospheric condition, ocean,metropolis, weather, spot, waving, aurora

Table 1: Keywords of the unstructured source of our interest

Figure 2: Representation, in our network-based model, of the unstructured source of our interest

By applying the first phase of our approach we obtained the refined semantic similarity degrees

between all the possible pairs of nodes (nU , nS), such that nU belongs to the unstructured source and

nS belongs to the semi-structured one. To give an idea of these similarity degrees, in Figure 5, we

report their distribution in a semi-logarithmic scale. From the analysis of this figure, we can observe
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Figure 3: Structure of the JSON file associated with the semi-structured source of our interest

that a very few number of pairs have a significant similarity degree, which could make them eligible

to be selected for synonymies, type conflicts and overlappings. At a first glance, this trend appeared

correct and intuitive, even if this conclusion had to be confirmed or rejected by a much deeper analysis

(see below).

By applying the second phase of our approach, we obtained the synonymies, the type conflicts and

the overlappings reported in Tables 2 - 4. Instead, as for this pair of sources, we found no homonymies.

Semi-Structured Source Node Unstructured Source Node

climate climate

climate clime

Table 2: Derived synonymies between objects of the two sources of interest

We asked a human expert to validate these results. At the end of this task, he reported the

following considerations:
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Figure 4: Representation, in our network-based model, of the semi-structured source of our interest

Semi-Structured Source Node Unstructured Source Node

pm10 fine particle

ozone o3

Table 3: Derived type conflicts between objects of the two sources of interest

Semi-Structured Source Node Unstructured Source Node

sea ocean

city metropolis

sunrise aurora

place spot

wind tips

sulfur dioxide garbage

weather clime

Table 4: Derived overlappings between objects of the two sources of interest

• The synonymies provided by our approach are correct. No further synonymy can be manually

found in the two considered sources.

• The type conflicts provided by our approach are correct. No further type conflict can be manually

found in the two sources.

• The overlappings provided by our approach are correct, except for the one linking “wind” and

“tips”, which actually represents two different concepts. A very interesting overlapping found

by our approach is the one between “sulfur dioxide” and “garbage”, in that, even if they repre-

sent two seemingly different concepts, both of them denote harmful substances. Some further
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Figure 5: Distribution, in a semi-logarithmic scale, of the values of the the semantic similarity degrees

of the objects belonging to the two sources of interest

overlappings could be manually found in the two sources into consideration (for instance, the

one between “climate” and “environment”), even if they are semantically weak, and considering

them as overlappings or as distinct concepts is subjective.

6 Experiments

Our test campaign had four main purposes, namely: (i) evaluating the performance of our interschema

property derivation approach when applied to the scenario for which it was thought, (ii) evaluating the

pros and the cons of this approach w.r.t. analogous ones thought for structured and semi-structured

sources, (iii) evaluating its scalability, and (iv) evaluating the role of our approach for structuring

unstructured sources. We describe these four experiments in the next subsections.

6.1 Overall performances of our approach

To perform our experiments, we constructed a set DS of data sources consisting of 2 structured sources,

4 semi-structured ones (2 of which were XML sources and 2 were JSON ones), and 4 unstructured
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ones (2 of which were books and 2 were videos). All these sources stored data about environment and

pollution. To describe unstructured sources, we considered a list of keywords for each of them. These

keywords were derived from Google Books, for books, and from YouTube, for videos. The interested

reader can find the schemas, in case of structured and semi-structured sources, and the keywords, in

case of unstructured sources, at the address http://daisy.dii.univpm.it/dl/datasets/dl1. The

password to type is “za.12&;lq74:#”. A summary of the size of these sources is reported in Table 5.

Data Source Size (order)

Structured Sources Gigabytes

Semi-structured Sources Gigabytes (2 sources), Hundreds of Gigabytes (2 further sources)

Unstructured (books) Megabytes

Unstructured (videos) Gigabytes

Table 5: Size of the sources involved in the tests

It could appear that taking only 10 sources is excessively limited. However, we made this choice

because we wanted to fully analyze the behavior and the performance of our approach and, as it will

be clear below, this requires the human intervention for verifying obtained results. This intervention

would have become much more difficult with a higher number of sources to examine. At the same

time, our test set is fully scalable. As a consequence, an interested reader, starting from the data

sources provided at the address http://daisy.dii.univpm.it/dl/datasets/dl1, can construct a

data set with a much higher number of sources, if necessary.

For our experiments, we used a server equipped with an Intel I7 Dual Core 5500U processor and

16 GB of RAM with the Ubuntu 16.04.3 operating system. Clearly, the capabilities of this server were

limited. However, they were adequate for the (small) data set DS we have chosen to use in our tests.

As the first task of our experiment, we represented the metadata of all the sources by means of the

data model described in Section 3. Then, we applied the approach described in Section 4 to (at least

partially) “structure” the unstructured sources of our test data set. Finally, we extracted semantic

relationships existing between all the possible pairs of objects belonging to our test sources. After

this, we asked the human expert to examine all the possible pairs of our test sources and to indicate

us the semantic relationships that, in his opinion, existed among the corresponding objects.

At this point, we were able to evaluate the correctness and the completeness of our approach by

measuring the classical parameters adopted in the literature for this purpose, i.e., Precision, Recall,

F-Measure and Overall [68].

Precision is a measure of correctness. It is defined as:

Precision = |TP |
|TP |+|FP |

where TP are the true positives (i.e., semantic relationships detected by our approach and confirmed

by the human expert), whereas FP are the false positives (i.e., semantic relationships proposed by

our approach but not confirmed by our expert).

Recall is a measure of completeness. It is defined as:

Recall = |TP |
|TP |+|FN |
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Property Precision Recall F-Measure Overall

Synonymies 0.82 0.87 0.84 0.68

Overlappings 0.77 0.69 0.73 0.48

Type Conflicts 0.78 0.73 0.75 0.52

Homonymies 0.95 0.92 0.93 0.87

Table 6: Precision, Recall, F-Measure and Overall of our approach

where FN are the false negatives (i.e., semantic relationships detected by the human expert that our

system was unable to find).

F-Measure is the harmonic mean of Precision and Recall. It is defined as:

F -Measure = 2 · Pecision·Recall
Precision+Recall

Overall measures the post-match effort needed for adding false negatives and removing false posi-

tives from the set of matchings returned by the system to evaluate. It is defined as:

Overall = Recall · (2− 1
Precision)

Precision, Recall and F-Measure fall within the interval [0, 1], whereas Overall ranges between

−∞ and 1; the higher Precision, Recall, F-Measure and Overall, the better the performance of the

evaluated approach.

In Table 6, we report obtained results. From the analysis of this table, we can observe that,

although our approach has been designed with the intent of privileging quickness and lightweightness

over accuracy, for the reasons explained in the Introduction, its performance, in terms of correctness

and completeness, is extremely satisfying.

We also point out that the values reported in Table 6 are those obtained by applying the threshold

values reported in Section 5. These are the ones guaranteeing the best tradeoff between Precision and

Recall and, consequently, the best values of F-Measure and Overall.

Interestingly, if, in a given application context, a user must privilege correctness (resp., complete-

ness) over completeness (resp., correctness), it is sufficient to increase (resp., decrease) the values of

thmin and to decrease (resp., increase) the values of thOv and thmax.

6.2 Evaluation of the pros and the cons of our approach

In order to provide a quantitative evaluation of the pros and the cons of our interschema property

extraction approach w.r.t. the past ones thought for structured and semi-structured sources6 [61, 10],

we compared our approach with XIKE [19]. Indeed, in [19], XIKE was already compared with several

other systems having the same purposes (namely, Autoplex, COMA, Cupid, LSD, GLUE, SemInt,

Similarity Flooding) and it was shown that it obtained comparable or better results.

6Actually, to the best of our knowledge, no approach to uniformly extract interschema properties from structured,

semi-structured and unstructured sources have been proposed in the past.

25



Application context Number Max Average Number Average Number

of Schemas depth of nodes of complex elements

Biomedical Data 11 8 26 8

Project Management 3 4 40 7

Property Register 2 4 70 14

Industrial Companies 5 4 28 8

Universities 5 5 17 4

Airlines 2 4 13 4

Biological Data 5 8 327 60

Scientific Publications 2 6 18 9

Table 7: Characteristics of the sources adopted for evaluating our approach

First, we evaluated Precision, Recall, F-Measure and Overall of our approach and XIKE. Clearly,

since this last system (as well as all the other ones mentioned above) did not handle unstructured data

sources, we had to limit ourselves to consider only structured or semi-structured sources. Furthermore,

as performed in [19], we limited our attention to synonymies and homonymies.

In a first experiment, we considered the same sources adopted in [19] for evaluating the performance

of XIKE. In particular, we considered sources relative to Biomedical Data, Project Management, Prop-

erty Register, Industrial Companies, Universities, Airlines, Biological Data and Scientific Publications.

According to what reported in [19], Biomedical Schemas have been derived from several sites; among

them we cite http://www.biomediator.org7. Project Management, Property Register and Indus-

trial Companies Schemas have been derived from Italian Central Governmental Office (ICGO) sources

and are shown at the address http://www.mat.unical.it/terracina/tests.html. Universities

Schemas have been downloaded from the address http://anhai.cs.uiuc.edu/archive/domains/

courses.html8. Airlines Schemas have been found in [58]; Biological Schemas have been downloaded

from the addresses http://smi-web.stanford.edu/projects/helix/pubs/ismb02/schemas/9,

http://www.cs.toronto.edu/db/clio/data/GeneX RDB-s.xsd10 and http://www.genome.ad.jp/

kegg/soap/v3.0/KEGG.wsdl. Finally, Scientific Publications Schemas have been supplied by the au-

thors of [37].

We considered 35 sources whose characteristics are reported in Table 7. The minimum, the maxi-

mum and the average number of concepts of our sources were 12, 829 and 79, respectively.

A summary of the size of tested sources is shown in Table 8.

The number of synonymies (resp., homonymies) really present in these sources was 498 (resp, 66).

7Currently, this web address is no more available. However, the interested reader can find the corresponding source

at the address https://web.archive.org/web/20100412034606/http://www.biomediator.org/
8Currently, this web address is no more available. However, the interested reader can find the corresponding source at

the address https://web.archive.org/web/20061212142107/http://anhai.cs.uiuc.edu/archive/domains/courses.

html
9Currently, this web address is no more available. However, the interested reader can find the corresponding source at

the address https://web.archive.org/web/20050314041246/http://smi-web.stanford.edu/projects/helix/pubs/

ismb02/schemas/
10Currently, this web address is no more available. However, the interested reader can find the corresponding

source at the address https://web.archive.org/web/20060718122245/http://www.cs.toronto.edu/db/clio/data/

GeneX_RDB-s.xsd
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Data Source Size (order)

Biomedical Data Between Gigabytes and Hundreds of Gigabytes

ICGO Databases Between Hundreds of Gigabytes and Terabytes

Universities Data Megabytes

Airlines Data Gigabytes

Biological Data Terabytes and more

Scientific Publication Data Hundreds of Gigabytes

Table 8: Size of the sources involved in the tests

System Precision Recall F-Measure Overall

XIKE (Synonymies) 0.92 0.90 0.91 0.82

XIKE (Homonymies) 0.87 0.95 0.91 0.81

Our approach (Synonymies) 0.84 0.87 0.85 0.70

Our approach (Homonymies) 0.79 0.92 0.85 0.68

Table 9: Precision, Recall, F-Measure and Overall of XIKE and our approach

The number of synonymies (resp., homonymies) returned by XIKE was 541 (resp, 76). Finally, the

number of synonymies (resp., homonymies) returned by our system was 593 (resp., 84). By comparing

real synonymies and homonymies with the ones returned by XIKE and our approach we computed

Precision, Recall, F-Measure and Overall for these two systems. They are reported in Table 9.

From the analysis of this table we can observe that Precision, Recall, F-Measure and Overall are

better in XIKE, even if those obtained by our approach are satisfying. This was expected because

our approach has been designed to be lightweight and, therefore, it introduces some approximations.

For instance, while XIKE considers the neighbors of many levels in the computation of the similarity

degree of two objects, our approach considers only the neighbors of levels 1 and 2.

Until now, our experimental campaign highlighted the cons of our approach. To evidence and

quantify the pros, we measured its response time and the one of XIKE when the number of involved

concepts represented in the corresponding metadata to examine increases. Obtained results are re-

ported in Figure 6.

Figure 6: Computation time of XIKE and our approach against the number of concepts to process

From the analysis of this figure, it clearly emerges that, as for this aspect, our approach is much

better than XIKE. Indeed, the difference in the computation time between it and XIKE is of various
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orders of magnitude and is such to make XIKE, and the other systems mentioned above, unsuitable

to handle the number and the size of the data sources characterizing the current big data scenario.

With reference to this claim, we observe that, in this experiment, the response time is measured

against the number of concepts in the source metaschema. As such, already a set of sources with 1500

concepts can be considered “large”. Indeed, it would correspond, for instance, to a set of E/R schemas

consisting of about 1500 entities or a set of XML Schemas defining about 1500 different element types.

Furthermore, in this analysis, we must not forget that XIKE and the approaches mentioned above

are not capable of handling unstructured data, which represents the second (and, for many verses,

most important) peculiarity of our approach.

6.3 A deeper investigation on the scalability of our approach

The previous experiment represents a first confirmation of the quickness and the scalability of our

approach. In this section, we aim at finding a further confirmation of this trend by considering a much

more numerous and articulated set of sources and by comparing the accuracy and the response time

of our approach, of XIKE [19] and DIKE [53]. This last is one of the approaches of its generation

showing the highest accuracy, as witnessed by the comparison tests described in [61].

Clearly, if we want to compare these three approaches, the only way of proceeding is to consider

structured sources because they are the only ones handled by DIKE. In particular, we considered the

database schemas of Italian Central Government Offices (hereafter, ICGO). They include about 300

databases that are heterogeneous both in the data model and languages (e.g., hierarchical, network,

relational), as well as in their structure and complexity, ranging from simple databases, with schemas

including few objects, to very complex databases [55]. Information about the size of these data sources

is provided in Table 8.

Observe that our approach, XIKE and DIKE are all based on graphs and on the computation of

similarities of the neighbors of the involved objects. However, DIKE was thought for relatively small

structured databases. As a consequence, when it computes the similarity of two objects belonging

to different sources, it considers the similarity of their direct neighbors, the one of the neighbors of

their direct neighbors, and so forth, until it terminates a fixpoint computation. In the worst case,

the number of iterations of the fixpoint computation could be equal to the number of concepts of

one of the involved sources. Clearly, performing such a high number of iterations allows DIKE to

return very accurate results, but the required computation time is generally very high not only from

the worst case computational complexity viewpoint, but also from the real computation time point of

view. In XIKE, the possible number and dimension of data sources is higher than DIKE and they can

be both structured and semi-structured. As a consequence, there is the need to limit the number of

iterations of the fixpoint computation. For this reason, the concept of severity level is introduced. In

particular, a user can choose a severity level u between 1 and n and the fixpoint computation is not

completed but terminates after u iterations. The higher u the more accurate and slower XIKE. Our

approach privileges lightweightness over accuracy for the reasons explained above. As a consequence,

in this case, we limited the fixpoint computation to only 2 iterations. This could cause a reduction of

accuracy but it is the only way to extend the approach of DIKE and XIKE also to a big data scenario.

Analogously to what happened in the previous section, in order to verify the theoretical conjectures
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System Precision Recall F-Measure Overall

DIKE (Synonymies) 0.98 0.93 0.95 0.91

DIKE (Homonymies) 0.96 0.95 0.95 0.91

XIKE u = 5 (Synonymies) 0.96 0.91 0.93 0.87

XIKE u = 5 (Homonymies) 0.93 0.93 0.93 0.86

XIKE u = 2 (Synonymies) 0.84 0.86 0.85 0.70

XIKE u = 2 (Homonymies) 0.85 0.86 0.85 0.71

Our approach (Synonymies) 0.83 0.81 0.82 0.64

Our approach (Homonymies) 0.81 0.83 0.82 0.64

Table 10: Precision, Recall, F-Measure and Overall of DIKE, XIKE (u = 5, u = 2) and our approach

Figure 7: Computation time of DIKE, XIKE (u = 5 and u = 2) and our approach against the number

of concepts to process

explained above, we applied our approach, DIKE and XIKE (with u = 5 and, then, with u = 2) to

ICGO databases. The obtained results are reported in Table 10.

The results of this table confirm our conjectures. DIKE provides a higher Precision, Recall, F-

Measure and Overall than XIKE which, in turn, provides better results than our approach. Finally,

XIKE, with a severity level equal to 5, provides better results than XIKE with a severity level equal

to 2. The former tend to be comparable with the ones of DIKE; the latter tend to be comparable

with the ones of our approach. This is in line with the fact that, when u tends to 5 the fixpoint

computation tends to be complete; instead, when u = 2, it is substituted by only three iterations.

In any case, we would like to remark that, analogously to what happened in the previous experi-

ment, the results obtained by our approach are still acceptable.

After having verified our conjectures about accuracy, we analyzed the ones regarding computation

time. In particular, the average computation time of DIKE, XIKE (with u = 5 and u = 2) and our

approach is reported in Figure 7.

From the analysis of this figure, it is easy to observe that the lower performance in terms of

accuracy of our approach is largely balanced by an increased performance in terms of computation

time. In a big data context, this aspect is mandatory. As a matter of fact, Figure 7 shows that DIKE

and XIKE (especially when the severity level is high), even if very accurate, could not be applied in

a big data scenario.
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Property Precision Recall F-Measure Overall

Synonymies 0.76 0.82 0.79 0.56

Overlappings 0.69 0.65 0.67 0.36

Type Conflicts 0.72 0.64 0.68 0.39

Homonymies 0.91 0.88 0.89 0.79

Table 11: Precision, Recall, F-Measure and Overall of our approach when a clustering-based technique

for structuring unstructured sources is applied

6.4 Evaluation of the role of our approach for structuring unstructured sources

As previously pointed out, one of the main contributions of this paper is the approach for structuring

unstructured sources. In the Introduction, we have seen that an important theoretical property of our

approach (that distinguishes it from several possible alternative ones, like those based on ontologies)

is its applicability to all possible scenarios, because it does not require a support knowledge, except

for a (possibly generic) thesaurus, like BabelNet. In this section, we test its accuracy by comparing it

with an alternative approach. For this purpose, we extended to unstructured data the clustering-based

family of approaches defined for structured and semi-structured sources (see, for instance [4, 60]).

We performed this extension as follows: we considered the keywords associated with an unstruc-

tured source and used WordNet to derive a semantic distance coefficient for each pair of keywords.

Then, we applied a clustering algorithm (specifically, Expectation Maximization [24]) to group key-

words into homogeneous clusters. In this way, we obtained a possible structure for unstructured

sources. This structure is in line with what was done in the past for the clustering-based family of ap-

proaches, when they were applied on structured and semi-structured sources. This way of proceeding

gave us the possibility to still apply the interschema property extraction approach defined in Section

5. In this case, we assumed that, given a keyword, the corresponding neighborhood consisted of the

other keywords of its clusters.

We performed the same experiment described in Section 6.1 on the same sources. The only

difference was the substitution of our approach for structuring unstructured sources with the clustering-

based approach outlined above. The obtained results are shown in Table 11. Clearly, the differences

between the performance reported in Tables 6 and 11 were due exclusively to the merits or demerits of

our approach for structuring unstructured sources. From the analysis of this table we can observe that

our approach presents a better performance than the corresponding clustering-based one described

above. The differences are evident even if not extremely marked. For instance, we can observe a gain

in Precision (resp., Recall, F-Measure, Overall) ranging from 4% (resp., 4%, 4%, 9%) to 10% (resp.,

12%, 10%, 25%).

The results of this experiment, coupled with the theoretical analysis performed in the Introduction

and mentioned above, allow us to conclude that our approach for structuring unstructured data is

really capable of satisfying the requirements for which it was defined.
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6.5 Effectiveness vs Efficiency

In any context characterized by a huge amount of data, such as those of interest to most current

computer applications, efficiency plays a fundamental role. In fact, in these contexts, effectiveness

(defined in terms of accuracy, precision, recall, etc.) is certainly an aspect to be taken into account,

but it is not the only one and, in some cases, it may not be the main one. Indeed, if a high level

of effectiveness can be achieved only at the price of adopting methods computationally incapable of

handling huge data, then it is necessary to resort to approaches that, while preserving an acceptable

level of effectiveness, are able to guarantee a computation time compatible with the huge amount of

data to process. From what we have seen in the previous subsections, our approach falls exactly in

this case. In fact, it may be extremely useful in all those cases in which it is necessary to obtain

interschema properties, extracted from huge amounts of data, to be used in other applications, such

as querying, integration, data lake and data warehouse construction, knowledge extraction, etc. In all

these cases, although our approach is not paramount as far as effectiveness is concerned, it continues

to return acceptable results and is able to complete its tasks. By contrast, the approaches of the

previous generations examined above, which can give better results in terms of effectiveness, are not

able to complete their tasks in a reasonable amount of time.

In the scenario described above, our approach presents another interesting feature as it is able

to extract interschema properties from unstructured data. In this feature, it differs from the ones

presented in the past. Therefore, it is extremely interesting to investigate the effectiveness/efficiency

of our approach with regard to this kind of data source. In fact, all the experiments proposed above

have shown that our approach is the only one, among those analyzed, able to operate with the sizes

characterizing the current data sources. On the other side, a great number of these sources are

unstructured. Therefore, analyzing the efficiency and effectiveness of our approach when it works

with huge unstructured sources is compulsory.

In this analysis, there are two important points to consider. The first concerns the fact that our

approach assumes that the keywords representing each unstructured source are already known. If

these keywords were unknown, it would be necessary to extract them. In this case, if the extraction

task requires an excessive effort, for instance of some orders of magnitude higher than the subsequent

extraction of interschema properties, our approach would become inefficient, and therefore not usable,

in all those cases in which the keywords of the unstructured sources are not known a priori. The

second point concerns the performance of our approach in terms of effectiveness, compared to a naive

approach that considers only the basic similarities between keywords (see Section 5.1.1). Indeed, this

last approach would presumably be more efficient than ours.

To address both these points we conducted the following experiment. We selected four popular ap-

proaches to text/information extraction, namely RAKE (Rapid Automatic Keyword Extraction) [62],

LDA (Latent Dirichlet Allocation) [12], YAKE! (Yet Another Keyword Extractor) [15] and TopicRank

[13], and applied them to the unstructured data sources used in the experiments in Section 6.1. Each of

these approaches returned its own set of keywords for each source. Let KR (resp., KL, KY and KT ) be

the set of the sets of keywords returned by RAKE (resp., LDA, YAKE! and TopicRank) when applied

to the unstructured sources considered in our tests. We applied our interschema property extraction

approach, as well as the naive one based only on basic similarities, on the sets of the keywords of KR
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Figure 8: Computation time of RAKE, LDA, YAKE! and TopicRank coupled with our interschema

property extraction approach and a naive one considering only basic similarities

(resp., KL, KY and KT ). The computation times characterizing the eight overall approaches under

consideration are shown in Figure 8, while the approaches’ average Precision, Recall, F-Measure and

Overall are shown in Table 12.

In our opinion, the results reported in Figure 8 and Table 12 are very important and encouraging.

In fact, they tell us that, in case of unstructured sources without associated keywords, the keyword

computation requires a longer time, but of a comparable order of magnitude, than the interschema

property extraction task. Therefore, the possible preliminary detection of the keywords does not

change the conclusions emerged from the analysis of Figures 6 and 7, i.e., that our approach is the

only one that can be adopted in presence of huge data sources. At the same time, the adoption of our

approach, which, as far as the examination of neighborhoods is concerned, is a compromise between

DIKE and XIKE (which consider all possible neighborhoods) and the naive approach (which considers

only the immediate neighborhoods), guarantees an effectiveness certainly lesser than the one of DIKE

and XIKE, but much greater than the one of the naive approach.

Therefore, our approach appears to be the best compromise between the ones of the past generation,

having a very high effectiveness but an unacceptable efficiency, and a naive one, having a slightly higher

efficiency but a much lower effectiveness than our approach.

7 Conclusion

In this paper, we have presented an approach to uniformly derive interschema properties from struc-

tured, semi-structured and unstructured data sources. Initially, we have observed that, in the current

big data scenario, where more than 80% of available resources are unstructured, the past approaches

for the extraction of interschema properties (operating on structured and/or semi-structured sources)

are not adequate. Furthermore, they privilege accuracy at detriment of response time, which make

them unsuitable for scenarios, such as data lakes, where the number of sources to analyze is huge.

We have argued that a new approach to perform this task should be characterized by two pe-
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Property Precision Recall F-Measure Overall

Synonymies (RAKE + our approach) 0.80 0.83 0.82 0.62

Overlappings (RAKE + our approach) 0.74 0.65 0.69 0.42

Type Conflicts (RAKE + our approach) 0.75 0.71 0.73 0.47

Homonymies (RAKE + our approach) 0.92 0.89 0.91 0.81

Synonymies (RAKE + naive approach) 0.68 0.70 0.69 0.37

Overlappings (RAKE + naive approach) 0.63 0.62 0.63 0.26

Type Conflicts (RAKE + naive approach) 0.63 0.59 0.61 0.24

Homonymies (RAKE + naive approach) 0.81 0.77 0.79 0.59

Synonymies (LDA + our approach) 0.81 0.88 0.84 0.67

Overlappings (LDA + our approach) 0.78 0.68 0.73 0.49

Type Conflicts (LDA + our approach) 0.77 0.74 0.76 0.52

Homonymies (LDA + our approach) 0.96 0.90 0.93 0.86

Synonymies (LDA + naive approach) 0.68 0.75 0.71 0.40

Overlappings (LDA + naive approach) 0.65 0.57 0.61 0.26

Type Conflicts (LDA + naive approach) 0.66 0.63 0.65 0.31

Homonymies (LDA + naive approach) 0.84 0.77 0.80 0.62

Synonymies (YAKE! + our approach) 0.83 0.85 0.84 0.68

Overlappings (YAKE! + our approach) 0.76 0.70 0.73 0.48

Type Conflicts (YAKE! + our approach) 0.80 0.71 0.75 0.53

Homonymies (YAKE! + our approach) 0.92 0.90 0.91 0.82

Synonymies (YAKE! + naive approach) 0.70 0.74 0.72 0.42

Overlappings (YAKE! + naive approach) 0.64 0.57 0.60 0.25

Type Conflicts (YAKE! + naive approach) 0.67 0.58 0.62 0.29

Homonymies (YAKE! + naive approach) 0.78 0.80 0.79 0.57

Synonymies (TopicRank + our approach) 0.84 0.89 0.86 0.72

Overlappings (TopicRank + our approach) 0.79 0.70 0.74 0.51

Type Conflicts (TopicRank + our approach) 0.79 0.74 0.76 0.54

Homonymies (TopicRank + our approach) 0.95 0.94 0.95 0.89

Synonymies (TopicRank + naive approach) 0.71 0.76 0.73 0.45

Overlappings (TopicRank + naive approach) 0.67 0.59 0.63 0.30

Type Conflicts (TopicRank + naive approach) 0.68 0.60 0.64 0.32

Homonymies (TopicRank + naive approach) 0.85 0.81 0.83 0.67

Table 12: Precision, Recall, F-Measure and Overall of RAKE, LDA, YAKE! and TopicRank coupled

with our interschema property extraction approach and a naive one considering only basic similarities

culiarities, namely: (i) the capability of handling unstructured sources; (ii) the lightweightness. We

showed that our approach has both these features and, in spite of its lightweightness, the accuracy it

can reach is surely acceptable.

This paper is not to be intended as an ending point. Instead, it could be the starting point of

a new generation of approaches conceived to address the major issues, typical of information system

research, in the new big data scenario. For instance, we plan to define an approach to manage the

flexible and lightweight extraction of complex knowledge patterns involving concepts that belong to

structured, semi-structured and unstructured sources, as well as a flexible and lightweight approach

for the extraction of thematic views from data lake sources.
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