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Abstract 

This paper proposes a new approach for processing measured data from active IR (Infra Red) 

thermography, where a soft sensing algorithm is exploited for in depth defect reconstruction. 

This is achieved by propagating the information gathered at the wall surface to the inner 

layers. Correlating the experimental 2D measurements to a Finite Element (FE) model of the 

tested specimen it is possible to update the model with the measured data and change the 

geometry of the simulated inner defect, until the surface temperature distribution calculated 

corresponds to the measured one. Following that strategy, the unknown defect geometry can 

be determined. The method developed and presented in this paper consists of an optimization 

problem based on the minimization of the difference between the surface temperature 

distribution measured on the sample subjected to an active thermography test and the one 

resulting from the FE model. The optimization variables are the geometrical parameters 

(depth, width, thickness and position) characterizing the defect which will be fully 

determined at the complete convergence, within a given tolerance, of the optimization 

problem. The method includes also a preprocessing algorithm, based on the same 

experimental data and FE model, which allows to determine thermal and mechanical 

properties of the object under test, like surface emissivity, heat capacity and material 

conductivity and density, which are often unknown especially in the case of works of art.  

This soft-sensing procedure has been applied to a virtual experiment to estimate the accuracy 

of the reconstructed geometry and to a simulacrum of ancient fresco including defects 

realized on purpose. 

Keywords: Active Thermography; Defect shape reconstruction; Soft-sensing; Non-Destructive Testing; Defect Diagnostics 

 

1. Introduction 

Active Infra-Red (IR) thermography ([1], [2]) is a well-established Non-Destructive Testing technique for the detection of 

thermal discontinuities, which are in general associated to damage or defects hidden under the surface (for example delamination 

and layer detachment). Thanks to its ability to monitor the structural integrity of complex structures, it has been applied to 

different classes of materials exploited in various sectors, from aerospace ([3], [4]), and specifically for composite material 

integrity investigation ([5], [6] in the latter the joint application of thermography and 3D laser scanner allowed 3D inspections), 

to the cultural heritage ([7], [8]). Peculiar implementations of active thermography are the Lock-In Thermography (LIT, [9], 

[10], [11]) the Pulsed-Thermography (PT, [12], [13]) which are based on the observation of the surface temperature response 

of the item under test produced by the heat conduction across the stratigraphy of the component itself which a periodic 
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modulated, for LIT, or a transient, specifically a pulse for PT, thermal load is imposed to. PT exhibits the advantages of being 

non-contact due to the optical nature of IR imaging systems and a very fast measurement technique due to the short duration of 

the pulse and of the following thermal transient. In practice the acquisition duration depends on the thermal pulse propagation 

across the component which can ranges from few milliseconds for metals (high conductive materials) to some seconds for 

composites and building elements (made of concrete, bricks or wood). Commonly used pulse thermal radiators are in the visible 

range (e.g. halogen lamps) but also infrared emitters or lasers.  

The analysis of the surface temperature of the loaded element by means of IR thermography allows detecting inhomogeneities 

in the stratigraphy because the surface temperature decays as long as the heat can flow off into the interior, depending on local 

thermal diffusivity. If an air inclusion is present due to a delamination the heat is trapped into the air cushion and the temperature 

cannot further decrease. PT allows therefore to evaluate the extension of the inclusion by only observing the thermograms 

giving a qualitative estimation of the defect geometry. By applying advanced signal processing to the thermal images sequence 

acquired during the thermal load propagation across the element under test, geometrical characteristics of the potential defect 

can also be quantified. Among the many examples, it is worth mentioning [14] where the authors succeed in improving the 

probing depth of the thermographic detection. Recently, Liu et al., in [15] and [16], have proposed the application of Principal 

Component Analysis (PCA) and Generative PCA for quality assessment of polymeric composites. A Spatial-Neighborhood 

Manifold Learning algorithm has been applied in [17] for defect localization in carbon fiber-reinforced polymer (CFRP). In 

[18] Theodorakeas et al. presented a defect depth retrieval method based on two possible approaches: either the analysis of the 

temperature-contrast time first-derivative variation or the evaluation of the phase-contrast variation in the frequency domain. 

Such procedure is part of the empirical methods category which evaluate the contrast between sound and damaged areas. If 

defects are spread all over the area under test and framed by the Infra-Red camera and therefore any region of the thermogram 

can be assumed as a sound area, it is possible to resort to the second derivative of the temperature contrast which is unfortunately 

a very noisy function due to the derivative operation and makes the method less accurate. 

To overcome the limits of empirical procedures, analytical (1D thermal diffusion equation) and numerical models (Finite 

Element Methods, FEM and Finite Difference Methods, FDM) have been applied to make the quantification of discontinuities 

in the geometry from the thermal maps more accurate. Simplified mono-dimensional models have been used for the detachment 

modelling and for grounding their recognition and localization on a correlation between experimental thermograms and 

modelled ones ([19]). In [20] Lugin et al.a proposed a model to estimate the thickness of samples that have rear faces partially 

or completely inaccessible: the model is exploited in conjunction with experimental data obtained via PT in order to estimate 

the depth of the defect. In practice a guess of the defect depth is retrieved from the IR thermogram sequence by applying the 

so-called echo defect shape (EDS) algorithm. This method takes into account that the reflection of the thermal wave in the 

defect interface, when returning towards the wall top surface, produces an increase of the temperature in the surface itself and 

that the time evolution of this temperature can be fitted by an exponential curve. The depth estimated by the model is therefore 

corrected with the guess value in a certain number of iterations until the guess value and the calculated one are equal with a 

defined tolerance. The method has been improved in [21] and [22] by taking into account the effect of the opening angle in the 

reconstruction of the defect, considering the case of a triangular geometry. Further examples of defect morphology (extension 

and depths) estimation methods based on the coupling of PT experiments and FEM/FDM models and applied to architectonic 

structures’ health assessment have been presented in the works [23], [24]. 

To avoid the iteration process and speed up the defect depth retrieval procedure, it has been proposed to use the 1D analytical 

model as interpolant curve of the IR thermogram sequence adopting a Nonlinear System Identification (NSI) strategy [25]. This 

method allows to estimate the defect depth in a more automatic and flexible manner but presents the limitation of being a data-

driven method considering an ideal heat diffusion model and not the specific one realized in the inspection process. 

To automate the iteration process, some researchers have proposed to use Finite Element models in an optimization loop to 

solve the inverse heat transfer problem. Marcuzzi, in [26], has implemented an adaptive FEM into a predictor-corrector 

algorithm to reconstruct corrosion profiles starting from IR thermograms. Richter, in [27], has applied an optimization method 

based on FEM and IR data for the reconstruction of back-wall geometry, i.e. the defects are represented as open inclusions 

producing discontinuities on the inaccessible surface of the element under test.  

In this paper we present a further step of FEM based iterative procedures consisting of an optimization algorithm for the 

reconstruction of the real stratigraphy of elements under test including internal defects of arbitrary shapes. The use of models 

as part of the measurement process is indeed a form of soft-sensing [28], [29]. The model has been exploited for both generating 

synthetized data emulating an IR thermal map (thermogram) produced by the heat flow within an unknown geometry and 

reconstructing the correct stratigraphy of the element under test by using the synthetized data. Those synthetized data allowed 

to reproduce a virtual experiment described in Section 2.2 and used to validate the algorithm proposed (Section 4.1).  
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The defect reconstruction method described in this work presents the following advances with respect to the state-of-the-art 

of soft sensors based on FE methods: 

- the optimization algorithm is suitable for inner defects of arbitrary shape, not only triangular defects and back-wall 

open inclusions  

- the FE model exploited in the optimization considers realistic heat flow distribution by taking into account the 

emissivity of the surface facing to the heat source and the mechanical and thermal characteristics of the material recovered 

from the measured thermograms 

- the optimization algorithm uses an arbitrary initial guess of the defect depth based on the measured temperature time 

history and not the EDS. 

The application of the method to a real structure (illustrated in Section 2.3) is reported in Section 4.3. The structure is a 

simulacrum of an ancient fresco hosting in-depth defects realized on purpose. The non-invasive and non-destructive detection 

of hidden damage in frescoes paintings has attracted the interest of researchers since the 90s. Several measurement methods 

have been developed for the diagnosis of hidden defects such as detachments between plaster and supporting wall, or between 

plaster layers and paint layer, as well as cracks; these damages generally originate below the surface and should be detected 

before they grow and reach the pictorial surface or compromise local stability of the fresco. Non-contact methods operated 

from a distance should be preferred, due to the delicate nature of ancient frescoes paintings and to the fact that they are often 

located on walls not easy to be accessed in proximity. Vibration based diagnosis gathered large interest and proved very 

effective to detect detachments and delaminations in works of art; in particular, laser scanning vibrometry under acoustic 

excitation was successfully demonstrated both in laboratory conditions and on real frescoes [30], [31], [32], [33]. Despite this 

successful series of demonstrations, laser vibrometry still requires specific skill in vibration testing, which is not common in 

professionals working in restoration of artworks, and requires long acquisition time, being a technique, which implies the 

sequential scanning of hundreds of points on the surface of the artwork. Full field optical techniques for deformation 

measurement have been developed as an alternative and demonstrated on various types of works of art, which exhibit internal 

defects in the form of delaminations. In particular interferometric techniques [34], among which holographic interferometry 

[35][34], electronic speckle interferometry ([36] and [37]), shearography  and tera-hertz imaging [38] have been successfully 

demonstrated for structural damage assessment on several types of artworks; however, their application to large surfaces is still 

challenging and, again, they require skilled operators with expertise on the specific measurement technique. Acoustic based 

diagnostics is a further contactless method which has been applied to structural damage identification in paintings, the acoustic 

energy absorption coefficient of the panel tested being correlated to its stratigraphy [39]. Among the optical techniques which 

can be applied to large surfaces, Active IR thermography is attracting a growing interest, because its operating principle is 

intrinsically simpler than interferometric techniques, and its application to large surfaces such as frescoes paintings is relatively 

simpler, [40]. 

2. Material and methods 

2.1 Active IR thermography 

Active IR thermography is based on the measurement of the 2D thermal emission of an object surface when the object is 

exposed to a thermal flux. The thermal flux propagation inside the object affects its surface temperature; therefore, depending 

also on local emissivity, the infrared emission from the surface varies, which can be measured by an IR thermal camera as an 

image. The presence of defects inside the object, as detachment between different layers, modifies the propagation of the heat 

flow and consequently the surface temperature distribution, which can be used for the damage identification. This concept is 

illustrated in Figure 1: the pulsed thermal load W(t) (black signal on the top left side of the scheme) generated by the flash 

lamps impinges to the surface of the object under test and is framed by the IR camera (IR Cam) which register time histories 

of the surface infrared emission at any pixel of its field of view. Indeed, for given surface emissivity, the increase in infrared 

emission correlates to an increase in surface temperature; if local emissivity is known, this correlation allows to measure surface 

temperature distribution. As an example, the time history T(t) registered on a pixel located in a healthy region will have the 

trend of the green signal on the top right side of the scheme while the one registered on region presenting a defect will have the 

trend of the red signal T(t) on the bottom right side. Due to the reflection of the thermal wave by the defect surface, the 

temperature on the object surface and the following infrared emission will undergo an evident increment. 
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Figure 1 Active IR thermography concept 

Performance of this technique strongly depends on the thermal characteristics of the structure under test (stratigraphy, hence 

thermal diffusivity, and surface emissivity) which are obviously independent parameters out of control of the experimentalist. 

In order to improve the accuracy of the measurement the experimental parameters that can be optimized are the ones related to 

the heating source, like power W and heating duration. Such optimization must take into account the fact that the thermal 

distribution on the surface framed by the IR camera will be affected by internal voids (or layer discontinuities) with a limitation: 

increasing the defect depth its effect on the surface thermal distribution fades away up to be buried into the measurement noise. 

This fading effect is enhanced by the stratigraphy thermal conductivity, which is not necessarily isotropic, but certainly not 1D, 

e.g. the propagation direction cannot realistically be considered purely orthogonal to the framed surface. The awareness of this 

effect drives the choice of the experimental parameters but is usually not taken into account in the post-processing of 

thermography map sequences, which are commonly visually observed or parametrized to extract defect features by correlating 

them with 1D propagation models. 

In this paper a 2D propagation model is set to consider the fading effect in a realistic way. The model will be used in 

conjunction with experimental thermograms acquired during an active thermography test to reconstruct the defect shape and 

depth by exploiting an optimization procedure. Since such procedure makes use of both numerical (software based) and 

experimental (sensor based) data it is so-called soft-sensing. Being aware that the most critical aspect of soft-sensing 

optimization methods is the knowledge of model parameters (material conductivity and density, infrared illumination intensity 

and distribution and surface emissivity, which altogether determine thermal load) specific procedures for experimentally assess 

those parameters is also defined and tested.  

The soft-sensing reconstruction method has been first tested and validated on synthetized data obtained by running the 2D 

model used for the soft-sensing reconstruction itself and finally verified on a real structure described in the following sub-

sections. 

2.2 2D FE model 

A 2D FE model has been set to replicate a sort of virtual experiment, that allowed to synthetize thermal distribution time 

sequences on the modeled object surface as they could be measured by an IR camera framing the surface of the real object 

subjected to a thermal load. The FE model has been realised in Matlab using the Partial Differential Equation Toolbox. 

The modeled geometry is a rectangle representing a cross section of a building element of width 1 m and thickness of 0.1 m 

made of concrete. The element presents an elliptical defect of 200x15 mm size placed at 2.5 mm from the surface facing the 

heating source and that would be framed by an IR camera in a real experiment. Figure 2 (a) shows a close-up of the modeled 

geometry around the damaged region and Figure 2 (b) the mapped structured mesh on the same region.  

For each iteration the geometry of the defect is not unknown: it is given as a hypothesis which will converge to the optimal 

value at the end of iteration. The defect shape needs to be defined a priori from a predefined set of shapes, i.e. rectangular, 

elliptical and/or polynomial geometry, depending on available a-priori information and operator choices. The current position 

and shape of the defect is modified at each iteration, by changing the polynomial coefficients, in the case of polynomial 

geometry. At each iteration a mapped structured mesh of triangular elements is regenerated automatically. 
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The model physics is the heat transmission and the initial condition is uniform temperature of 293.15 K for air and solid. 

The boundary load condition on the right side of the sample as in Figure 2 (a) is the heating of the wall surface from an external 

source of 5000 Wm-2 with a step load of 10 s duration. The additional boundary conditions are: 

- ambient temperature (T = 293.15 K), on the left side of the sample as in Figure 2 (a) 

- perfect insulation of the top and bottom edges (no heat is transferred across these edges). 

The simulated data have been added with uniform noise estimated from the IR thermal camera specification. 

 

 

 

(a) (b) 

Figure 2 2D FE model geometry (a) and mesh (b). IR illumination impinges from the right orthogonal to the surface 

2.3 Active thermography experiment 

The applicability of the soft-sensing reconstruction method has been tested to a simulacrum of a fresco painting realized in 

the laboratory in order to reproduce realistic defects at known positions and depths. The simulacrum has been supplied by the 

Laboratoire de Recherche des Monuments Historiques – LRMH (Paris, France) in the context of a collaborative EU project, 

LaserArt (Grant agreement ID: SMT4962062me(s), 1994-1998). It is a modern replica of a traditional fresco, realized with 

both material and techniques similar to that of mediaeval age, artificially aged over last 20 years. The sample is painted with 

colors and the surface is finished in a similar way of that of an original fresco, in such a way to present the typical emissivity 

of a real work of art. 

Figure 3 (a) reports a scheme of the defect topology:  

- bold lines represent sub-superficial defects, located between intonaco and arriccio. 

- dashed lines represent in-depth defects, located between the deepest layer and the supporting concrete panel. 

In this paper we focus only on disk-like defects. Results of the reconstruction will be presented as a cross section along one 

diameter of the disk. The reference geometry was determined after the tests by breaking the sample and measuring the fragments 

with a caliper; this provided a reference geometry known with less than 1 mm uncertainty. The red rectangle, in Figure 3 (a), 

evidences the region monitored during an active thermography test. For the sake of simplicity and without losing of generality 

it has been preferred focusing to only one defect in order to evidence the correct functionality of the methodology proposed. 

The thermogram acquired is shown in Figure 3 (b). 

The active thermography test has been realised by providing the thermal load with a set of four halogen lamps and acquiring 

the thermograms time sequence by an Infratec–Variocam HD IR thermal camera, whose metrological specifications are 

reported in Table 1. 

 

 

 
 

 

(a) (b) 

Figure 3 Simulacrum defect topology with the region framed by the IR thermal camera evidenced in a red rectangle (a) and IR thermogram 

(b) 

https://cordis.europa.eu/programme/id/FP4-SMT/en
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Table 1 IR thermal camera specifications 

Sensor Uncoated microbolometer 

Spatial resolution 1024x768 pixel 

Spectral range 7.5 to 14 m 

Temperature range -40 to 1200 °C 

Sensitivity <0.05 °C 

Accuracy ±1.5 °C 

Frame rate 30 Hz 

3. Soft-sensing reconstruction method: data pre-processing and optimization procedure 

The soft-sensing method is based on an optimization process aiming to reconstruct the complete defect geometry and, as the 

name soft-sensing recalls, it makes use of experimental and numerical data whose difference is minimized. The experimental 

data are the thermograms acquired during an active thermography test and represent the infrared emission distribution on the 

surface of the tested sample; once emissivity is known, this can be mapped into an experimental surface temperature 

distribution. The numerical data are the surface temperature distribution calculated on the tested sample modelled with a FEM 

model able to simulate a thermography experiment. The soft-sensing algorithm, developed in Matlab, is constituted of two 

units: a pre-processing unit and a reconstruction one. Both the units need experimental and numerical data. The pre-processing 

unit has the following structure, as outlined in Figure 4: 

1. first the time sequence of the thermograms measured on the tested sample during the active thermography test are loaded 

2. a pre-processing of the thermograms time sequence is performed to obtain the real heat flux distribution and surface 

emissivity map of the tested sample, that will be used as inputs for the FE model 

3. the temperature distribution of the modeled test sample is simulated by imposing a guess value for the thermal properties 

of the material constituting the sample itself. In this phase a region of the sample located in a sound area is considered 

4. the optimization is run using as objective function the difference between the measured surface temperature of the sample 

and the one calculated numerically. The optimization variables are the material properties. The iteration method used for the 

optimization process is the steepest descent algorithm. 

5. by minimizing the objective function, the material properties of the tested samples are then derived. 

 

 
 

Figure 4 Pre-processing unit structure 

The reconstruction unit has a structure similar to the pre-processing one, as illustrated in Figure 5: 

1. at first the thermograms are loaded 



 

 7  
 

2. the temperature evolution of the modeled test sample is simulated by imposing a guess for the defect geometry (shape and 

depth) 

3. the heat flux distribution to be simulated in the FE model, the sample surface emissivity and the material properties, 

determined during the preprocessing, are given as inputs to the FE model 

4. the optimization is then run with the same objective function and the iteration method as in the preprocessing unit. The 

optimization variable is the defect geometry 

5. the defect geometry is iteratively reconstructed by minimizing the objective function. 

  
Figure 5 Reconstruction unit structure 

3.1 Pre-processing procedure - Emissivity distribution and impinging heat flux profile determination 

The first objective of the preprocessing is to determine the emissivity distribution of the sample surface facing the IR thermal 

camera and the impinging heat flux on the sample surface itself. Those data are recovered by analyzing the experimental 

thermogram time sequences acquired during the experiments. If a thermogram pixel is considered the time history recorded 

during an active thermography test will have the trend depicted by the red curve in Figure 6. When the thermal load is activated 

(e.g. the halogen lamps are switched on), at the time instant t0, the temperature of the sample surface increases until the load is 

switched off, at the time instant tS. From this moment on the surface temperature decreases until the thermal equilibrium is not 

restored.  

According to the transient thermal diffusion physics, it can be assessed that when the thermal load is activated and radiates 

the sample surface, a small portion of the thermal flow is reflected depending on the emissivity of the surface itself while the 

remaining portion is absorbed by the first layer of the sample and diffused across the sample depth. Indeed, the pigmented 

surface materials of fresco paintings have a rather large emissivity, thus a relatively large absorption coefficient. Diffusion is 

commonly a much slower phenomenon than reflection. Complying with this assumption, the first thermograms in the time 

series acquired immediately after activating the thermal load can be considered unaffected by the sample in-depth morphology, 

because diffusion has not evolved yet. Those thermograms are only influenced by the very first layers (the pigments) of the 

sample and by the intensity and the spatial distribution of the radiated heat. The presence of an in-depth defect does not affect 

the spatial distribution of those thermograms. In Figure 6 the time instants considered for the emissivity and heat flux 

distribution assessment are evidenced by the light blue rectangle. The intial time instant is indentified with the raise time of the 

time history, by means of a derivative algorithm. The number of thermograms used for the emissivity and heat flow assessment 

is selected as a compromise between the need  of averaging images affected by noise due to low emissivity and the need of 

catching only the superficial behaviour not affectd by the in-depth structure diffusion. In this case one thermogram was 

sufficient. 
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Figure 6 Sample surface temperature trend and time chunk used in the different phases of the pre-processing and reconstruction 

procedures 

The yellow and green rectangles evidence the time instants at which thermograms will be considered for the geometry initial 

guess process and for the definitive reconstruction. They will be illustrated in detail in Section 3.3 and 3.4 respectively. 

To demonstrate how the initial thermograms analysis can conduct to the heat flux profile and surface emissivity assessment, 

it can be observed the scheme in Figure 7. Picture (a) sketches a typical active thermography test on a sample whose surface is 

black and white striped. If the first thermogram after the thermal load activation is considered and a section along the axis x is 

visualised, it would have the shape of plot (b) in Figure 7. From that profile the heat flux trend and the emissivity can be 

recovered with the following procedure: 

1.  the heat flux profile is obtained by fitting the profile (b) with a symmetrical polynomial, e.g. a polynomial of degree ½ for 

a single radiating point source. The fitting function will be more complex if multiple radiating point sources will be used, see  

Figure 7 (c) 

2. the emissivity surface profile is then derived as the residual or the difference between the acquired profile (b) and the 

fitted heat flux profile (c), which is the profile (d) in Figure 7. 

In principle, emissivity could have been determined also by imaging the surface in isothermal conditions; in fact, if 

temperature is uniform across the surface, the infrared emission should be uniform as well. Instead, if a contrasted image is 

observed, this image corresponds to an uneven spatial distribution of emissivity. However, when such a method is applied at 

ambient temperature, the infrared signal is very low and therefore the signal to noise ratio is poor, thus producing an uncertain 

estimate of emissivity. The approach described in this paper instead provides an estimate of emissivity with a better signal to 

noise, being the surface thermally excited by the flash lamp. 

 

Figure 7 Heat distribution and emissivity profiles derived from the acquired one 

3.2 Pre-processing procedure - Material properties determination 

The FE numerical model needs as inputs the thermal and physical properties of the material composing the samples. In 

general, those properties are assumed to be known from the composition of the sample under test or from available technical 

specifications. However, when dealing with ancient artworks the composition of the samples is unknown unless tests can be 

performed to measure the properties of the constituent material. Unfortunately, to carry out these tests it is necessary to extract 

part of the material by means of coring, for example, which is a destructive intervention often impossible to carry out on 

artworks. Technical specifications are typically absent. Therefore, the combination of the experimental with the numerical data 

can be used to determine those unknown properties. The thermogram time series provided by the active thermography test are 

useful to evidence sound areas, for instance the portion thermogram evidenced by the blue square in Figure 8. This Region of 

Interest (RoI) can be selected and modeled with the FE model described in Section 2.2 considering an undamaged geometry 

and using as inputs the surface emissivity and the heat flux distribution profile determined in the first phase of the preprocessing 

(as detailed in Section 3.1. The model will be run by varying the material properties, e.g. the thermal conductivity k (in Wm-

1K-1), the specific heat capacity Cp (in Jkg-1K-1) and the density ρ (in kgm-3), and the temperature calculated in the region of 

interest in the time period corresponding to the measurement time will be exploited as input to the optimization algorithm. The 

latter will be based on the following problem:  

𝑚𝑖𝑛∑∑|𝑇𝑚𝑒𝑎𝑠(𝑡, 𝑥) − 𝑇𝐹𝐸𝑀(𝑡, 𝑥)|𝑘,𝐶𝑝 ,𝜌|

𝑥𝑡

 (1) 

where equation (1) is the objective function depending on the optimization variables k, Cp and ρ, TFEM and Tmeas are the 

surface temperatures calculated by the FE numerical model and measured during the active thermography test on the real 
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sample. The minimization will be performed on the average difference of the two temperature in space and time, e.g. for each 

pixel a RoI section whose position is given by the x coordinate and for all the time samples (t) acquired during the transient 

test. 

 
Figure 8 RoI centred on a sound area 

3.3 Reconstruction procedure - Defect geometry initial guess 

The reconstruction procedure starts with the assumption of an initial geometry of the defect which is estimated from the 

thermograms time series measured during the active thermography test. Only the time series corresponding to the heating up 

phase (yellow rectangle in Figure 6) will be considered because in this phase the heating flux impinging on the surface is 

known, in fact it has been determined during the preprocessing.  

To obtain an initial estimation of the defect depth a 0D thermal wave model will be considered. The 0D model extrapolation 

from the physical model of sample tested is illustrated in Figure 9. The top plot of the figure represents the physical model of 

the sample which can be approximated by a 2D model when taking into account one sample section. The red dots in the picture 

represent the pixels of the thermograms acquired during the active thermography test. The 2D model can be simplified into a 

1D model, conventionally adopted in PT/model correlation ([27]).  

 

 
Figure 9 Relation between the physical model of the damaged samples and the corresponding 1D and 0D models 

 

 

A 1D model can be seen as a series of ducts, one for each thermogram pixel, in which the thermal flow propagates, as 

represented in the central plot of Figure 9. Such 1D model can be further reduced to a 0D model by concentrating a given 

amount of mass in each pixel, as illustrated in the bottom plot of Figure 9. The mass of each pixel (m1, m2, …, mi, …, mn, if n 

is the number of pixels) depends on the density of the material constituting the sample and the volume of pixel, which in turn 

depends on the area of the pixel and the depth of the material associated to that pixel (d1, …, di, …, dn). The mass of each pixel 

and consequently its depth will be adjusted to fit the thermal flow measured at each pixel. 

In fact, during the heating up phase at each pixel the dynamic thermal balance can be written as following: 

𝑄(𝑡) = 𝑚𝐶𝑝
𝑑𝑇(𝑡)

𝑑𝑡
 (2) 

where 

𝑄(𝑡) is the impinging heat flux consisting on the radiant and the convective heat transfer: 

𝑄(𝑡) = 𝑄𝑟𝑎𝑑 − ℎ ∙ 𝐴𝑝𝑖𝑥𝑒𝑙 ∙ (𝑇(𝑡) − 𝑇𝑎𝑖𝑟) 

h = convective heat transfer coefficient, 
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𝑚 = 𝜌 ∙ 𝑉𝑝𝑖𝑥𝑒𝑙 = 𝜌 ∙ 𝑑𝑝𝑖𝑥𝑒𝑙 ∙ 𝐴𝑝𝑖𝑥𝑒𝑙  is the mass of the material associated to each pixel, 

𝜌 is the material density, 

𝑉𝑝𝑖𝑥𝑒𝑙  is the volume associated to each pixel, 

𝑑𝑝𝑖𝑥𝑒𝑙  is the depth associated to each pixel, 

𝐴𝑝𝑖𝑥𝑒𝑙  is the area associated to each pixel as projected to the sample surface, 

𝐶𝑝 is the specific heat capacity, 

𝑇(𝑡) is the measured temperature time history. 

Equation (2) becomes: 

𝑚 ∙ 𝐶𝑝 ∙
𝜕𝑇(𝑡)

𝜕𝑡
+ ℎ ∙ 𝐴𝑝𝑖𝑥𝑒𝑙 ∙ (𝑇(𝑡) − 𝑇𝑎𝑖𝑟) = 𝑄𝑟𝑎𝑑 (3) 

where Qrad can be considered constant, because of the large temperature difference between the radiating lamp and the target 

surface. 

Equation (3) is a first order differential equation whose solution is: 

𝑇(𝑡) = 𝛼 ∙ (1 − 𝑒−
𝑡
𝜏) (3) 

where α and τ respectively the asymptotic value of the temperature and the time-constant of a first order system.   

The time constant of the first order system is defined as the ratio between the first order term coefficient and the zero order 

term coefficient: 

𝜏 =
𝑚 ∙ 𝐶𝑝

ℎ ∙ 𝐴𝑝𝑖𝑥𝑒𝑙
 (4) 

The asymptotic value can be retrieved by imposing the initial conditions at t = 0:  

{
𝑇(0) = 𝑇𝑎𝑖𝑟
𝑑𝑇

𝑑𝑡
(0) =

𝛼

𝜏

 (5) 

Substituting those terms in equation (3) and considering 𝑚 = 𝜌 ∙ 𝑑𝑝𝑖𝑥𝑒𝑙 ∙ 𝐴𝑝𝑖𝑥𝑒𝑙 , the following equation is obtained: 

𝜌 ∙ 𝑑𝑝𝑖𝑥𝑒𝑙 ∙ 𝐴𝑝𝑖𝑥𝑒𝑙 ∙ 𝐶𝑝 ∙
𝛼

𝜏
+ ℎ ∙ 𝐴𝑝𝑖𝑥𝑒𝑙 ∙ (𝑇𝑎𝑖𝑟

− 𝑇𝑎𝑖𝑟) = 𝑄𝑟𝑎𝑑  
(6) 

from which  can be determined: 

𝛼 =
𝜏 ∙ 𝑄𝑟𝑎𝑑

𝜌 ∙ 𝑑𝑝𝑖𝑥𝑒𝑙 ∙ 𝐴𝑝𝑖𝑥𝑒𝑙 ∙ 𝐶𝑝
 (7) 

Figure 10 reports data acquired during a transient test as blue dots. Those data can be used to determine α and τ after a least 

square interpolation by an exponential function. The exponential fitting is reported in Figure 10 with the red line. 

 
Figure 10 Measured (blue dots) and fitted (red line) time history 

Once the parameters of the exponential function, α and τ are extrapolated from the measured data, the depth associated to 

each pixel can be determined from equation (7) as: 

𝑑𝑝𝑖𝑥𝑒𝑙 =
𝜏 ∙ 𝑄𝑟𝑎𝑑

𝜌 ∙ 𝐶𝑝 ∙ 𝛼 ∙ 𝐴𝑝𝑖𝑥𝑒𝑙
 (8) 
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The depth calculated at each pixel will provide a rough estimation of the defect position and depth to be used as initial guess 

for modelling the sample with the defect. Referring to the physical model depicted in Figure 9, the depth profile recovered by 

applying equation (4) is shown in Figure 11 (a). The thickness of the defect cannot be determined at this stage because the 1D 

model assumed an open defect, as in the methods used for the determination of the back wall geometry ([27]). For modelling 

the complete defect geometry, it can be used a thresholding process, like it has been done in the bottom plots of Figure 11, 

where the threshold was set to 1 2⁄ (𝑑1 + �̅�), with 𝑑1 and �̅� as represented in  Figure 11 (b) and (c). The complete geometry of 

the defect must be assumed then as a simple rectangle, as in  Figure 11 (b), or a polygonal shape, as in Figure 11 (c). 

3.4 Reconstruction procedure - Defect geometry reconstruction 

The reconstruction procedure consists on an optimization process based on the experimental and numerical data, the latter 

obtained by running the FE model realized considering as defect geometry the one estimated by the initial guess, like the one 

illustrated in Figure 12. The optimization problem will be the following: 

𝑚𝑖𝑛∑∑|𝑇𝑚𝑒𝑎𝑠(𝑡, 𝑥) − 𝑇𝐹𝐸𝑀(𝑡, 𝑥)|𝑥1,…,𝑥𝑛+4|

𝑥𝑡

 (5) 

where TFEM and Tmeas are the surface temperatures calculated by the FE numerical model and measured during the active 

thermography test on the real sample. In this case the optimization variables are the depth (x1), position (x2), width (x3) and 

thickness profile, sampled at n positions, (x4, …, xn+4) of the defect which has to be determined, see Table 2 for the different 

defect morphologies. As evidenced in Figure 6, the experimental thermal data used in the reconstruction process are taken from 

the cooling down phase of the active thermography test, the green box.  

 

 

 
(a) 

 
(b) 
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(c) 

Figure 11 Defect geometry initial guess recovery from the depth profile 

In order to make the calculation faster the optimization problem has been run in four steps, where the result of each step is 

an input for the following one. At each step a simple modification of the defect geometry is brought as sketched in Table 3: 

Step 1: rigid displacement of the initial guess shape in x and y-direction 

Step 2: rigid displacement of the defect shape obtained in Step 1 in x-direction and defect resizing 

Step 3: rigid displacement of the defect shape obtained in Step 2 in y-direction 

Step 4: reshaping of the defect obtained in Step 3, by varying its thickness thi. 

The benefit obtained by dividing the optimization process into the aforementioned four steps is evidenced by the convergence 

plot of the objective function reported in equation (5), that is shown in Figure 13. 

Table 2 Defect morphology 

Shape function x1 x2 x3 xi 

i=4:n+4 

Plot 

Rectangle Depth Position Width Thickness 

 

Ellipse Depth Position Width 

(major axis) 
Thickness 

(minor axis) 

 

Polynomial Depth Position Width 
thj 

j=1:n 

                       

Table 3 Optimisation steps 

Steps Defect shape update 

Step 1  

 

 

 

 

 

Step 2 

 

Depth

Position

Thickness

Span

Depth

Position

Thickness

Span

Shape = thiDepth Position

PositionSize
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Step 3 

 

Step 4 

 

 

 

Figure 12 FE model geometry (grey) with the defect initial guess 

(red) 

 
Figure 13 Objective function convergency plot 

4. Discussion of results 

The soft-sensing reconstruction procedure has been tested 

first on data provided by a virtual experiment based on the 

same FE model used to produce the numerical data provided 

as input to the optimization problem and then on experimental 

data measured on the fresco simulacrum described in Section 

2.3. The results of the reconstruction are illustrated in Section 

4.1 and 4.3 for the virtual and real test respectively. 

4.1 Soft-sensing reconstruction method applied to the 

virtual experiment 

The virtual experiment consists in the running of the FE 

model described in Section 2.2 to provide the temperature 

profile occurring on the modelled sample surface when the 

active thermography test is simulated. The geometry of the 

sample includes a defect with dimensions and depth reported 

in Section 2.2. This process, also called forward calculation, 

is the simulation of the experiment and provides the surface 

temperature profile evolution during the testing time as shown 

in Figure 14. For this simulation the maximum over-heating is 

20 K. Those temperature data will be exploited (as if they were 

experimental data) first to estimate the initial guess defect 

geometry and then as reference data to be given in input to the 

optimization problem. 

 
Figure 14 Simulated temperature profile evolution in time 

The results of the reconstruction process are shown in  

Figure 15. The sample geometry with the simulated defect is 

drawn in grey. The initial guess geometry estimated with the 

procedure described in Section 3.3 starting from the surface 

temperature profile shown in Figure 14 is the green line. At 

this point the FE model will be updated using as defect 

geometry the initial guess and the optimisation process will 

start by minimising the real temperature profile (Figure 14) 

with the one simulated at the different optimisation steps, as 

described in Table 3. Figure 15 reports the defect geometry 

reconstructed at Step 4 and at the end of the complete 

optimisation process. Those geometries are in blue and red, 

respectively.  

 

Figure 15 Reconstructed defect geometry (grey: real geometry, 

green: initial guess defect geometry, blue: reconstructed defect 

geometry at Step 4, red: reconstructed defect geometry at the end of 

the optimisation process) 

Observing the optimization result it can be concluded that 

the defect depth, width and thickness have been determined 

Depth

Shape = thi
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with good accuracy, nevertheless there is a slight deviation in 

the profile curvature which can be related to the lateral thermal 

diffusion at the edge of the defect. The diffusion flow 

(represented by the red arrows) is depicted in Figure 16 for the 

real configuration (on the left) and for the reconstructed one 

(on the right). The dashed line in the left part of the figure 

represents the real shape of the defect, to evidence the 

curvature mismatch. The discrepancy between the real and 

reconstructed defect profile is ascribed to the following 

reasons: 

- the initial guess defect shape has been forced 

arbitrarily to have the shape of the green curve in Figure 

15, as described in Section 3.3 

- the optimization algorithm uses as reference in the 

objective function the temperature on the sample surface. 

From the surface point of view, what is behind the defect 

is hidden by the defect itself in terms of thermal diffusion. 

This is not true anymore only at the edge of the defect and 

the algorithm “compensates” this effect with a change in 

defect curvature. 

 
Figure 16 Lateral thermal flow in the real (left) and reconstructed 

(right) configuration 

4.2 Soft-sensing reconstruction method uncertainty 

assessment 

The quantity to be measured by the procedure proposed is 

the position of the defect profile inside the sample tested, 

which is obtained indirectly by the soft-sensor from a 

temperature distribution measurement. Therefore, the 

uncertainty of the method can be given in terms of geometric 

inaccuracy, i.e. in the reconstruction of the defect profile and 

in terms of recomputed temperature distribution on the sample 

surface.  

The discrepancy between the reconstructed profiles and the 

original one (grey line in Figure 15) is plotted in Figure 17. It 

has been computed as the absolute error between the actual 

and the reconstructed defect abscissa. The calculation has 

been limited to the convex portion of the geometry. The 

maximum error occurs when considering the profile 

reconstructed with the initial guess (green line); the maximum 

error is 180% of the defect thickness. If the optimisation is 

stopped at step 1 (blue line) the maximum error drops to 20%, 

while if the optimisation is run until total convergence the 

maximum error goes below the 5% of the defect thickness.  

 
Figure 17 Geometric discrepancy between the reconstructed profiles 

and the original one (green line: initial guess, blue line: step 1 

optimisation, red line: final optimisation) 

The accuracy of the reconstruction can be measured also by 

recomputing the surface thermal profile with the FE model 

using as defect geometry the one obtained with the 

optimisation process. The difference between the calculated 

thermal profile and the real one (e.g. the one plotted in Figure 

14) is shown in Figure 18. The maximum temperature 

difference is of 1.6 K. If 1.6 K error is produced by a 5% 

geometric discrepancy, one can calculate the geometric error 

caused by the typical inaccuracy of the sensor used to measure 

the thermogram series, which is 1.5 K, as reported in Table 1. 

Considering a linear correspondence between defect position 

and surface temperature, the geometric uncertainty associated 

to the sensor accuracy is 4.7%. The total uncertainty is the 

combination of the uncertainty related to the temperature 

measurement (4.7%) and the one related to the indirect 

procedure (5%) thus resulting in a combined uncertainty up to 

about 7 % of the defect thickness. 

If the same thermal difference is calculated by using in the 

FE model the initial guess defect geometry, as would happen 

if only the experimental data would be used to fit the 0D model 

and the optimisation process would not been run, the 

maximum temperature difference is 8 K, see Figure 19.  

If instead it is considered an open defect, the blue line in 

Figure 20, like occurs in literature ([20], [27]), the maximum 

difference is 1.2 K but spread over a biggest area and a longer 

duration in time, see Figure 21. 

Finally, it has been assessed the error on the reconstruction 

results depending on an error in the heat flux distribution 

estimated during the preprocessing.  By running the 

reconstruction algorithm with a heat flux underestimated of 

the 10%, the reconstructed geometry presents an 

overestimation of the 9.3% in the width of the defect.  
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Figure 18 Difference between the real surface thermal distribution 

and the calculated one using the reconstructed defect geometry 

 
Figure 19 Difference between the real surface thermal distribution 

and the calculated one using the initial guess defect geometry 

 
Figure 20 Reconstructed defect geometry (red: reconstructed defect 

geometry at the end of the optimisation process, blue: reconstructed 

defect geometry considering an open defect) 

 
Figure 21 Difference between the real surface thermal distribution 

and the calculated one using an open defect geometry 

4.3 Soft-sensing reconstruction method applied to the 

active thermography experiment 

This section presents the reconstruction results obtained 

from the real active thermography test described in Section 

2.3. The RoI chosen for the defect reconstruction process is 

shown in Figure 22; the section considered for the calculation 

is the x axis. 

 
Figure 22 Thermogram (red rectangle) centred on a defected area: 

the blue square represents the RoI analysed and the x-axis the 

diameter along which the reconstructed defect profile will be 

plotted 

The measured temperature distribution along the x-axis and 

its evolution in time is shown in Figure 23. With respect to the 

simulated data the measured ones are more affected by the 

noise. This is due to the fact that the thermal load imposed to 

the real structure was much less powerful with respect to the 

simulated one to avoid structure distortions or additional 

damages. In fact, in the experimental validation the maximum 

over-heating is 2 K, in order to reduce thermal stresses on the 

structure. 

The results of the reconstruction process are shown first in 

terms of convergency plot which is similar to the one obtained 

in the virtual experiment; compare Figure 13 and Figure 24. 
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Both plots evidence the 4 steps of the optimisation process; 

they are very similar except for the presence of some 

instabilities in the convergence related to experimental data. 

This effect is due to the presence of noise on the experimental 

data used as a reference in the optimization problem.  

 
Figure 23 Measured temperature profile evolution in time 

 
Figure 24 Objective function convergency plot for the experimental 

test 

The reconstructed defect geometry is plotted in Figure 25 in 

red, together with the initial guess (green line).  

 

 
Figure 25 Reconstructed defect geometry (green: initial guess 

defect geometry, red: reconstructed defect geometry, the grey 

squares are the reference geometry) 

With respect to the real expected defect geometry (grey 

squares) the reconstructed one underestimates the thickness of 

the defect and presents the curvature mismatch due to the 

border effect as explained in Section 4.1. The depth and the 

width of the defect are accurately reconstructed. The 

underestimation of the thickness can still be ascribed to the 

noise affecting the experimental data. 

5. Conclusion 

In this paper, the authors presented a soft-sensing procedure 

for artworks inner defect reconstruction based on the 

correlation between experimental and numerical data. The 

first are the temperature distribution on the surface of the 

object under test and its evolution on time obtained by 

performing an active thermography test. The numerical data 

are provided by a FE model of the tested sample considering 

an initial guess of the unknown defect geometry and 

iteratively varied until the difference between the surface 

temperature calculated and the measured one is minimized. In 

fact, it is possible to update the model with the measured data 

(infrared images) and change the geometry of the simulated 

inner defect, until the surface temperature distribution 

calculated matches the measured one. 

The procedure has been firstly applied to thermograms 

simulated numerically with the same FE model used in the 

optimization problem in order to test the reconstruction 

accuracy. It has been evidenced that the defect geometry was 

precisely recovered in terms of depth, width and thickness. 

Uncertainty in reconstructed defect geometry accounts for 

about 7 % of defect thickness, obtained by combining the 

uncertainty of the numerical reconstruction method to the 

uncertainty of the infrared camera. A slight mismatch occurs 

only on the defect shape curvature influenced by the thermal 

lateral diffusion arising at the edge of the defect.  

For the purpose of validating the soft sensing method, 

measurements have been performed on a real fresco with 

defects artificially created, having known geometry and 

position. In particular, a modern replica of a traditional fresco, 

realized with both material and techniques similar to that of 

mediaeval age, artificially aged over last 20 years, has been 

used. The application of the soft-sensing reconstruction 

procedure to real data provided by an active thermography test 

on the simulated ancient fresco confirmed the effectiveness of 

the method also when coping with noisy data.  The inner 

known delamination has been reconstructed with the same 

level of uncertainty achieved in the numerical simulation. 
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