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A B S T R A C T

In recent years, the enormous development of Machine Learning, especially Deep Learning, has led to the
widespread adoption of Artificial Intelligence (AI) systems in a large variety of contexts. Many of these systems
provide excellent results but act as black-boxes. This can be accepted in various contexts, but there are others
(e.g., medical ones) where a result returned by a system cannot be accepted without an explanation on how it
was obtained. Explainable AI (XAI) is an area of AI well suited to explain the behavior of AI systems that act as
black-boxes. In this paper, we propose a model-agnostic XAI framework to explain the behavior of classifiers.
Our framework is based on network theory; thus, it is able to make use of the enormous amount of results
that researchers in this area have discovered over time. Being network-based, our framework is completely
different from the other model-agnostic XAI approaches. Furthermore, it is parameter-free and is able to handle
heterogeneous features that may not even be independent of each other. Finally, it introduces the notion of
dyscrasia that allows us to detect not only which features are important in a particular task but also how they
interact with each other.
1. Introduction

The past decade has witnessed a widespread diffusion of Artificial
Intelligence (AI, for short) and related research activities in various
fields (Di Vaio, Palladino, Hassan, & Escobar, 2020; Jan et al., 2023; Ku-
mar & Martin, 2023; Tunyasuvunakool et al., 2021; Ullah, Al-Turjman,
Mostarda, & Gagliardi, 2020; Yu, Beam, & Kohane, 2018). Among
the most driving areas of AI we have Machine Learning (ML, for
short) and Deep Learning (DL, for short). In these areas, many of the
proposed approaches are ‘‘black-box’’ ones (Dong, Wang, & Abbas,
2021; Pouyanfar et al., 2018), that is, they are able to solve, even egre-
giously, the problems for which they were designed but using internal
mechanisms that are not transparent or easily interpretable (Henelius,
Puolamäki, Boström, Asker, & Papapetrou, 2014; Moradi & Samwald,
2021). Classification is one of the most common problems involving
highly accurate and precise black-box solutions. While such classifiers
may be acceptable in many areas, there are just as many where the
result of a classification cannot be accepted without understanding how
it was obtained. Consider, just as an example, the classifiers used in
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the medical field to support physicians’ diagnoses. This issue led to
the emergence of the research field known as Explainable AI (XAI, for
short) (Adadi & Berrada, 2018; Barredo Arrieta et al., 2020; Gunning &
Aha, 2019; Yoo & Kang, 2021; Zini & Awad, 2022). Researchers in this
area aim to study and design AI systems that can provide transparent
and interpretable explanations for the decisions and actions of black-
box subsystems or separate systems (Kaur, Uslu, Rittichier, & Durresi,
2022; Li et al., 2022).

With the explosion of DL, the number of black-box models has
become impressive, and this has led to a corresponding increase in
the extent of research on XAI. One of the most interesting directions
of it deals with the study and development of ‘‘model-agnostic’’ XAI
approaches. This term is used to denote all those XAI approaches
that can be employed to interpret and explain the decisions of any
black-box system, without an a priori knowledge of the type of model
on which it is based. Model-agnostic systems are extremely general,
and investing in them yields considerable returns because they can be
applied to understand the behavior of very varied black-box systems.
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On the other hand, model-agnostic approaches are also very difficult to
design because they must have a high abstraction level with respect to
the black-box models they want to interpret.

In this paper, we aim to provide a contribution in this setting by
proposing a model-agnostic framework for classifier explainability. Our
framework is based on network theory. It assumes to work on a black-
box classifier model whose behavior is unknown. A set of instances,
all characterized by the same set of features, is given as input to this
classifier, which assigns a class to each instance. Our framework builds
and maintains a fully connected network. The nodes in the network
represent instances; the direction of the arc between two nodes is an
indicator of the confidence level with which the classifier classified
the corresponding instances. Starting from this network, our framework
first computes the ‘‘dyscrasia’’ of each feature for all the instances. This
measure is used to determine how ‘‘effective’’ a certain feature proves
to be in discriminating instances. From the values of dyscrasia, and
taking into account both the constructed network and the confidence
information it stores, our framework computes the relevance of each
feature during the classification task (Dabkowski & Gal, 2017; Fong
& Vedaldi, 2017; Lundberg & Lee, 2017; Razmjoo, Xanthopoulos, &
Zheng, 2017; Strumbelj & Kononenko, 2010). For this purpose, it uses
a version of PageRank (Brin & Page, 1998) that we have customized
to solve this problem. The knowledge of the features that contributed
most to the classification of a set of instances provides us with valuable
information about the black-box classifier. In fact, the extraction of
such knowledge is recognized as one of the most interesting problems to
be addressed in the field of XAI (Barredo Arrieta et al., 2020; Burkart &
Huber, 2021; Lundberg & Lee, 2017; Ribeiro, Singh, & Guestrin, 2016;
Štrumbelj, Kononenko, & Šikonja, 2009).

To complete the proposed framework, we introduce some param-
eters that allow a sensitivity analysis to be performed each time our
framework is used in a given application context. This analysis is im-
portant because it helps to verify that, on the one hand, our framework
is not sensitive to noise or outliers, and, on the other hand, it is able to
intercept important and real changes in the characteristics of features
and to adjust its evaluations accordingly.

As mentioned above, our approach is based on network theory
(Newman, 2018). This choice is motivated by the fact that the network-
based representation is extremely general and flexible. Moreover, net-
work theory has been extensively studied in the past, both at a general
level and in a variety of application contexts (Camacho, Panizo-LLedot,
Bello-Orgaz, Gonzalez-Pardo, & Cambria, 2020; Gosak et al., 2018;
Sporns, 2022). Consequently, it is possible to take advantage of all the
results obtained in this research field and to adapt them to the objective
and the scenario of this paper.

Our framework has several strengths. First, being network-based, it
adopts a completely different way of proceeding from all other existing
model-agnostic approaches in the literature (Nagahisarchoghaei et al.,
2023). Therefore, it can contribute to the emergence of a new category
of approaches in this area. Moreover, it is parameter-free in that it
does not require the user to enter any input parameters. In addition,
it is capable of operating not only on homogeneous features but also
on heterogeneous ones. Still, it introduces the notion of dyscrasia,
which allows the user to identify not only which features are important
but also how they interact with each other. Again, unlike many other
approaches, ours does not require features to be independent of each
other. There are also several other strengths, as well as some weak-
nesses, that characterize our framework. Both of them will be discussed
in detail in Section 3.7.

Summarizing, the main contributions of this paper are as follows:

• We propose a framework to support XAI on classifiers. Our frame-
work makes use of network theory. It is also model-agnostic and
thus can operate on multiple types of classifiers.

• We present a new measure, called dyscrasia, which indicates how
consistent and capable of supporting classification a feature is.
2

• We exploit the new notion of dyscrasia and network theory to
compute the relevance of each feature in the classifier that our
framework is intended to explain. This relevance is computed first
for each of the instances provided as input to the classifier and,
next, for the set of instances taken as a whole.

• We present quantitative parameters to measure the sensitivity of
the proposed approach, and thus its ability to withstand noise,
while being flexible to capture real changes in features that might
affect the behavior of the classifiers to be explained.

The outline of this paper is as follows: in Section 2, we provide
an overview of related work. In Section 3, we describe our framework
in detail and we highlight its computational complexity, strengths and
weaknesses. In Section 4, we present three case examples, with the aim
of helping to better understand how our framework works. In Section 5,
we illustrate the experiments we performed to evaluate the goodness
of our approach. Finally, in Section 6, we draw some conclusions and
delineate some possible future developments.

2. Related work

In recent years, the topic of XAI attracted great interest among com-
puter science researchers (Barredo Arrieta et al., 2020). As evidence
of this, according to Semantic Scholar, the number of papers on this
topic amounts to more than 4000 in the past five years (Semantic
Scholar, 2022). Furthermore, if we just look at three recent surveys on
XAI published in 2022 and 2023 (Banerjee & Barnwal, 2023; Chinu &
Bansal, 2022; Nagahisarchoghaei et al., 2023), we can see that they col-
lectively refer to nearly 500 papers. These surveys provide taxonomies
on XAI approaches and present opportunities and challenges in this
area. Among the challenges, they explicitly mention the improvement
on XAI models to address the problem of black-box models. Our paper
falls just in this track.

In its most general sense, XAI aims to define approaches capable of
making machine learning models more explainable while maintaining
high performances. Its ultimate goal is to enable users to understand,
deepen and trust the AI systems that permeate all current life sce-
narios (Barredo Arrieta et al., 2020; Gunning & Aha, 2019). Several
taxonomies to classify XAI approaches have been proposed in the
literature. One of the most general of them was presented in Barredo
Arrieta et al. (2020). It first divides AI approaches into two macro-
categories, namely transparent models and models needing post-hoc
explainability. A model is considered transparent if explanations of its
behavior and results can be obtained through its direct observation.
Examples of transparent models are decision trees and linear logistic
regression. If the behavior and results of a learning model cannot be
explained transparently, then it falls into the category of those needing
post-hoc explainability. This term collectively denotes a set of very
heterogeneous methods, each aiming to provide an explanation of how
an existing machine learning approach (viewed as a black-box) behaves
providing outputs from given inputs. Post-hoc explainability methods
are divided into model-specific and model-agnostic. The first category
comprises all those methods operating on specific machine learning
models, for example models based on neural networks or Support
Vector Machines. Instead, the second category includes those methods
that can be applied on any machine learning model, regardless of the
internal process or internal representation of data. This category can
be further divided into subcategories; for example, we can consider
explanation by simplification approaches (Ahern et al., 2019; Ribeiro
et al., 2016), feature relevance explanation approaches (Henelius et al.,
2014; Lundberg & Lee, 2017), and so on.

In the following, we focus on model-agnostic methods because
our approach belongs to that category. In particular, we examine
approaches that analyze the features of the underlying learning model
through an alternative representation of them. This is because our
approach adopts this way of proceeding. Furthermore, we use the
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terminology described in Burkart and Huber (2021) to distinguish
between local and global explainability techniques for supervised mod-
els. Specifically, global techniques take into account the model, the
feature and the set of all instances provided in input. In contrast, local
techniques consider the model, the features and a single instance and
provide information valid only for the behavior of the model on that
specific instance.

Among model-agnostic methods that analyze features, the approach
described in Razmjoo et al. (2017) exploits sensitivity analysis to
perform a ranking of feature importance. In particular, it introduces a
new definition of sensitivity specifically designed for this purpose. The
sensitivity of a feature is based on the concept of redundancy. A feature
is considered redundant if perturbing its value does not lead to a change
in the ranking result. The approach is lightweight; therefore, it is used
in the setting of online feature importance. Both the approach described
in Razmjoo et al. (2017) and ours use the concept of sensitivity,
although with very different meanings. Both of them provide feedback
that allows the sensitivity to be updated whenever a new instance must
be classified. However, the sensitivity update in Razmjoo et al. (2017)
only takes into account the new instance and the values of features.
Instead, our approach considers the changes made by the new instance
on the whole network of the previous instances. As a consequence,
it employs not only the values of features but also the relationships
between instances.

In Lundberg and Lee (2017), the authors propose SHAP (SHapley
Additive exPlanations), an approach that associates an importance
value with a feature for a given prediction. SHAP is based on a
cooperative game theory technique, in which features are represented
as players cooperating to achieve the same goal. The approach of Lund-
berg and Lee (2017) and ours share a common goal, i.e., evaluating the
importance of features. However, the ways in which they achieve that
goal are completely different. In Henelius, Puolamäki, and Ukkonen
(2017), the authors propose a model for interpreting black-box clas-
sifiers based on interactions among features. Specifically, the approach
of Henelius et al. (2017) exploits the various types of interactions to
define groups of attributes that are important for a given class. This
approach can be considered orthogonal to our own. In fact, the latter
is based on associations between instances and does not consider as-
sociations between features. Instead, the former considers associations
between features and does not consider associations between instances.

In Štrumbelj et al. (2009), the authors propose an approach to
analyze subsets of features. For each instance, this approach aims to
explain the decisions made by the underlying machine learning model.
For this purpose, it suitably aggregates the contributions of features.
The approach of Štrumbelj et al. (2009) and ours have the same general
goal, which is the explainability of the underlying learning model,
albeit their way of proceeding is completely different. In addition, the
approach of Štrumbelj et al. (2009) also aims to analyze the interactions
between subsets of features. Consequently, it has an exponential com-
putation time against the number of features. Our approach analyzes
only individual features and does not consider subsets of features
and their interactions. In the face of this limitation, it has a polyno-
mial computation time against the number of features. In Wei, Zhao,
Feng, He, and Yu (2020), the authors propose DFIFS (Dynamic Fea-
ture Importance-based Feature Selection) whose main goal is feature
selection. DFIFS uses a dynamic index, called DFI (Dynamic Feature
Importance), to evaluate the importance of a feature. This index has
two facets. The first concerns feature importance, which is evaluated
using the Gini index. The second focuses on feature redundancy, which
is evaluated through the Maximum Information Coefficient. The ap-
proach of Wei et al. (2020) and ours share the idea of constructing
a global index based on multiple facets. However, the overall goal and
the characteristics of facets and indexes are completely different in the
two approaches.

In Ribeiro et al. (2016), the authors propose LIME (Local Inter-
3

pretable Model-agnostic Explanations), a local explainability technique
that aims to provide interpretations for a classifier’s predictions. Its
strategy is to linearly approximate the classifier for a certain prediction.
To this end, it modifies the input of the model locally and evaluates
the effects this modification has on the output. The model is mainly
applied on input data whose representation is human-interpretable,
such as images or bag-of-word models. LIME aims to provide an ex-
planation by returning the so-called evidences, that is, relationships
between features (e.g., relationships between words in a text or be-
tween patches in an image) and the model’s prediction. LIME’s output
is a list of explanations, i.e., an enumeration of features and the
importance each of them had in the prediction. LIME and our ap-
proach share the same goal, which is to determine the most important
features. However, the methods they use to achieve their goal are
completely different. Furthermore, our approach is data-independent,
meaning that it can be applied on any input dataset, regardless its
internal data representation. Instead, to produce very good results,
LIME needs a human-interpretable representation of data. The authors
of Ahern et al. (2019) extend LIME by proposing NormLIME, which
aggregates local interpretations returned by LIME to obtain a global
importance parameter relative to all features used in the model. There
is an important similarity between our approach and NormLIME in that
both operate in two stages, first calculating local importance values and
then using the latter to obtain a global importance value. However, the
two approaches use very different methods to achieve the same goal.
These methods are orthogonal to each other and could be integrated
into a single approach in the future.

In Ucer, Ozyer, and Alhajj (2022), the authors propose a network-
based classifier called GSNAc (Generalized Social Network Analysis-
based Classifier). GSNAc uses network analysis techniques to perform
its task; in this respect, it is similar to our approach. It represents the
input dataset by means of a network whose nodes represent instances
and whose arcs denote the similarities among nodes. Classification is
done by analyzing network arcs. GSNAc does not deal precisely with
explainability. However, the visualization through different network
layouts allowed by it provides a first possibility to interpret the results
in a user-friendly way. GSNAc and our approach, while sharing the use
of network analysis as a mean to achieve their goals, have different
purposes; in fact, our approach is focused on explainability, while
GSNAc is essentially a classifier. It could be used as the learning method
on which to make our approach operate.

In Ienco, Meo, and Botta (2008), the authors propose a document
categorization approach based on PageRank. Specifically, in this ap-
proach, PageRank is used, along with a random walk, to determine
the ranking of features that best represent documents. PageRank is
employed to sort the features in the dataset. In particular, the PageRank
of a feature indicates the probability to find that feature along with
the other ones in the dataset. The approach of Ienco et al. (2008)
and ours share the use of network analysis and PageRank. However,
in Ienco et al. (2008) the latter is used for feature selection, while in
our case it is employed as an intermediate measure in the context of
feature relevance computation. Also, our approach is model-agnostic
while the approach of Ienco et al. (2008) is specific for documents.
In Akhiat, Asnaoui, Chahhou, and Zinedine (2021), the authors propose
a feature selection method using a network-based data representation.
In the network exploited by this approach, nodes represent features
while arcs denote relationships between features. The network is fully
connected. Each arc has a weight obtained by computing the AUC score
after applying a decision tree on the dataset. The ultimate goal of the
approach of Akhiat et al. (2021) is the identification of communities
formed by important nodes. For this reason, it can be considered more
of a data pre-processing approach than an explainability one. The
approach of Akhiat et al. (2021) and ours share the use of network
computations to achieve their goals. However, these computations are
very different in the two cases.

In Roffo, Melzi, Castellani, and Vinciarelli (2017), the authors pro-

pose a network-based algorithm for feature selection. This algorithm
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uses a network whose nodes represent features; the presence of an
arc indicates the probability that both features associated with the
corresponding nodes are relevant. The weights of the features are
computed through a Probabilistic Latent Semantic Analysis approach,
which models the probabilities of feature co-occurrences as a multi-
nomial distribution. Finally, the approach uses a methodology called
Infinite Feature Selection, which considers all paths between nodes
to identify and quantify redundancies between features. Both the ap-
proach of Roffo et al. (2017) and ours are network-based. However,
the way they operate is very different. In fact, the former uses the
network to analyze subsets of features based on the cost of the paths
connecting them; then, it selects features based on the importance of
each of them relative to all the others. Instead, our approach does not
compare features with each other, but computes the relevance of each
feature with the goal of performing the explainability of the underlying
learning model.

Differently from most of the model-agnostic and network-based
approaches illustrated above that aim at feature selection, our approach
is conceived for the computation of feature relevance. Although these
two activities show similarities, they have important differences. In
fact, feature selection is generally performed before classification for
determining the features to be exploited by the latter. It is rarely car-
ried out after this process, as support for classifier explainability. The
computation of feature relevance can be performed before classification
to support feature selection (albeit there are some feature selection
methods that do not calculate the relevance of the features involved).
Furthermore, it becomes extremely valuable after classification to sup-
port classifier explainability. It is precisely with the latter perspective
that it is employed within the framework proposed in this paper.

We conclude this literature review by taking a look at how our
framework relates to approaches belonging to technology areas related
to, but different from, AI. In particular, we want to consider the land-
scape of industrial applications. This is a rapidly evolving field that is
deeply intertwined with real world physical systems. In this area, multi-
ple dynamic models are emerging alongside traditional dynamic models
under the switched system paradigm. Here, our approach can make
a valuable contribution that is orthogonal to those provided by past
approaches. Indeed, while previous research approaches (e.g., Song,
Song, Stojanovic and Song, 2023; Song, Sun, Song and Stojanovic,
2023; Sun, Song, Song, & Stojanovic, 2022) where concerned with ad-
dressing the complexity of control systems, our framework can be used
to address a different goal, namely the interpretability and transparency
of these advanced systems. As these become increasingly complex, the
ability to understand, interpret and trust them becomes paramount.
Our framework, being specialized in just such capabilities (although
they are applied to AI systems in this paper), can become an excellent
support for managing the interpretability and transparency of advanced
industrial systems.

3. A network-based framework for classifier explainability

In this section, we illustrate our proposed model and framework for
the explainability of classifiers. Fig. 1 shows a visual representation of
the workflow of our framework.

Let  = {𝐼1, 𝐼2,… , 𝐼𝑙} be a set of instances to be classified and
et  = {𝐶1, 𝐶2,… , 𝐶𝑚} be the set of possible classes. Let  =
𝐹1, 𝐹2,… , 𝐹𝑛} be the set of features characterizing the instances of .
ccordingly, given an instance 𝐼𝑖 ∈ , it can be represented by the set
𝑖 = {𝐹1𝑖 , 𝐹2𝑖 ,… , 𝐹𝑛𝑖} of the values of its features. In particular, 𝐹𝑘𝑖 ∈ 𝑖

ndicates the value of the feature 𝐹𝑘 in the instance 𝐼𝑖. Our framework
4

ssumes that each feature 𝐹𝑘 can be numeric, categorical or textual. o
3.1. A network-based model for representing the classification of a set of
instances

Suppose we have a classification model  and that  has been
already trained. Let  be the set of instances to classify and let  be
the set of possible classes. For each instance 𝐼𝑖 ∈ ,  assigns a class
of  to it with a confidence level 𝑐𝑖.1 The latter is a value in the real
interval [0, 1]; the higher it is, the more confident  is in classifying
𝐼𝑖.

The behavior of  in classifying the instances of  can be rep-
resented by a network  , whose nodes denote the instances of 
and whose arcs are indicators of the confidence level with which 
classified the instances associated with the corresponding nodes. More
formally, we represent  as:

 = ⟨𝑁,𝐴⟩ (3.1)

Here, 𝑁 is the set of nodes of  . There is a node 𝑛𝑖 ∈ 𝑁 for each
instance 𝐼𝑖 ∈ . Since there is a biunivocal correspondence between
the nodes of  and the instances of , in the following we will use
the terms ‘‘node’’ and ‘‘instance’’, as well as the symbols 𝑛𝑖 and 𝐼𝑖,
nterchangeably. It is possible to define a function 𝛾(⋅), which receives
node 𝑛𝑖 and returns the confidence 𝑐𝑖 with which  classified 𝐼𝑖.
𝐴 is the set of arcs of  . There is an arc of 𝐴 for each pair of nodes

𝑛𝑖, 𝑛ℎ) of  . The arc is directed from 𝑛𝑖 to 𝑛ℎ if 𝑐𝑖 < 𝑐ℎ; conversely, if
ℎ < 𝑐𝑖, it is directed from 𝑛ℎ to 𝑛𝑖. Finally, if 𝑐𝑖 = 𝑐ℎ, its direction is set
andomly.

.2. Assessing the dyscrasia of the occurrences of a feature during classifi-
ation

In this section, we define an approach to quantitatively assess the
yscrasia (i.e., the ‘‘dysfunction’’, lack of coordination) 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ )
etween the values 𝐹𝑘𝑖 and 𝐹𝑘ℎ of the feature 𝐹𝑘 for the instances 𝐼𝑖
nd 𝐼ℎ. This assessment, which takes into account a single feature, is a
irst step in the overall reasoning that includes all features and that we
ill consider below. However, it is essential for understanding the next

teps and, therefore, we decided to describe it in detail in this section.
Preliminarily, it is necessary to clarify the reference context and the

henomenon we want to capture through the definition of 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ ).
s for the first aspect, suppose that the confidence 𝑐𝑖 with which 
lassified 𝐼𝑖 is smaller than the confidence 𝑐ℎ with which  classified
ℎ. This implies the existence of an arc from 𝑛𝑖 to 𝑛ℎ (see Section 3.1).
egarding the second aspect, we point out that the concept of dyscrasia
ims to capture any ‘‘disharmony’’ in the role that the two occurrences
𝑘𝑖 and 𝐹𝑘ℎ of the same feature 𝐹𝑘 played during the classification of
𝑖 and 𝐼ℎ carried out by .

The reasoning we make to capture such a disharmony is as follows:

• If  classified 𝐼𝑖 and 𝐼ℎ in the same class, 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ ) is the greater
the more 𝐹𝑘𝑖 and 𝐹𝑘ℎ have dissimilar values and, at the same
time, the confidences 𝑐𝑖 and 𝑐ℎ with which  classified 𝐼𝑖 and
𝐼ℎ are low (which indicates that the possibility that  made a
classification error is significant).

• If  classified 𝐼𝑖 and 𝐼ℎ into different classes, 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ ) is the
greater the more 𝐹𝑘𝑖 and 𝐹𝑘ℎ have similar values, the confidence
𝑐ℎ is high and the confidence 𝑐𝑖 is low (which implies that
the possibility that  classified 𝐼ℎ correctly while classifying 𝐼𝑖
incorrectly, is relevant).

1 Our classifier model assumes that each instance can be assigned to exactly
ne class.



Expert Systems With Applications 241 (2024) 122588G. Bonifazi et al.
Fig. 1. Workflow of our framework.
To better understand the concept of dyscrasia, let us consider a
real-life example from a dataset we used in the experiments (see
Section 5.4.3). Specifically, we consider the ratings of a restaurant in
Yelp posted by customers who have frequented it. The feature ‘‘age
of customer’’ is an example of a feature that may exhibit dyscrasia.
Indeed, there may be customers with very different ages who give
the same rate to the restaurant and, conversely, customers with the
same age who give very different rates to it. In contrast, the feature
‘‘gluten intolerance by customer’’ is an example of a feature that does
not exhibit dyscrasia. In fact, if the restaurant does not provide food
for this type of intolerance, it will presumably receive a negative rating
from all gluten-intolerant customers.

From a formal point of view, the dyscrasia 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ ) can be defined
as:

𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜀(𝑛𝑖) ⋅ 𝜀(𝑛ℎ) ⋅ 𝜆(𝐹𝑘𝑖 , 𝐹𝑘ℎ ) if  assigned 𝐼𝑖 and 𝐼ℎ

to the same class

𝜀(𝑛𝑖) ⋅ 𝛾(𝑛ℎ) ⋅ [1 − 𝜆(𝐹𝑘𝑖 , 𝐹𝑘ℎ )] otherwise

(3.2)

Here:

• 𝜆(⋅, ⋅) is a function that receives the values 𝐹𝑘𝑖 and 𝐹𝑘ℎ assumed
by the feature 𝐹𝑘 for 𝐼𝑖 and 𝐼ℎ and returns a value in the real
interval [0, 1] indicating the dissimilarity degree between 𝐹𝑘𝑖 and
𝐹𝑘ℎ . Clearly, 𝜆(⋅, ⋅) depends on the type of 𝐹𝑘. For example, in
the case 𝐹𝑘 is numerical, it could return the (suitably normalized)
difference between the two values. Instead, in the case 𝐹𝑘 is tex-
tual, it could return the (suitably normalized) string dissimilarity
value.

• 𝛾(⋅) returns the confidence of  in classifying the instance re-
ceived in input. It has been defined in Section 3.1.

• 𝜀(⋅) returns the possible error of  in classifying the instance
received in input. It is defined as: 𝜀(𝑛𝑖) = 1 − 𝛾(𝑛𝑖).

Note that, in the definition of 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ ), the factor 𝜀(𝑛𝑖) is present
both in the case where  has assigned 𝐼𝑖 and 𝐼ℎ to the same class
and in the opposite case. This is because we are considering directed
arcs, in this case from 𝑛𝑖 to 𝑛ℎ. As mentioned above, the presence of
an arc from 𝑛𝑖 to 𝑛ℎ implies that the confidence 𝛾(𝑛𝑖) with which 
classified 𝐼𝑖 is less than the confidence 𝛾(𝑛ℎ) with which  classified
𝐼ℎ. Consequently, we assume that, in the presence of high dyscrasia,
the greater responsibility is due to the classification of 𝐼ℎ, on which
 had shown greater confidence than 𝐼𝑖. This assumption brings us to
the formula of dyscrasia seen above, in which 𝜀(𝑛𝑖) is always present.
In fact: (i) if the dyscrasia 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ ) is high and the dissimilarity
𝜆(𝐹 , 𝐹 ) is high, then  has misclassified 𝐼 in the same class as
5

𝑘𝑖 𝑘ℎ ℎ
𝐼𝑖; consequently, 𝜀(𝑛𝑖) = 1−𝛾(𝑛𝑖) and 𝜀(𝑛ℎ) = 1−𝛾(𝑛ℎ) come into play in
the formula; (ii) if the dyscrasia 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ ) is high and the dissimilarity
𝜆(𝐹𝑘𝑖 , 𝐹𝑘ℎ ) is low, then  has misclassified 𝐼ℎ into a different class from
the one of 𝐼𝑖, and this depends on the high confidence 𝛾(𝑛ℎ) it had in
making that classification; consequently, 𝜀(𝑛𝑖) and 𝛾(𝑛ℎ) come into play
in the formula. The presence of 𝜀(𝑛𝑖) is meant to account for any error
that  made in the classification of 𝐼𝑖, which, albeit less decisive than
the classification of 𝐼ℎ, still takes on some weight.

3.3. Assessing the relevance of a feature during classification

As we mentioned in the previous section, the dyscrasia between the
occurrences of a feature is a preparatory step for the core task of our
approach. This regards the computation of the relevance of a feature
during a classification process carried out by a (possibly) black-box
classifier. In this section, we describe this task in detail.

Preliminarily, recall that, given two nodes 𝑛𝑖 and 𝑛ℎ, an arc from
𝑛𝑖 to 𝑛ℎ indicates that the confidence with which  classified 𝐼𝑖 is
less than or equal to the confidence with which  classified 𝐼ℎ. As
a consequence, given a node 𝑛𝑖 ∈ 𝑁 , its incoming arcs start from nodes
whose associated instances were classified with lower or equal confi-
dence. Conversely, its outgoing arcs end in nodes whose corresponding
instances were classified with higher or equal confidence. The two sets
of nodes introduced above can be defined as follows:

𝑁𝑜𝑢𝑡
𝑖 =

{

𝑛ℎ|𝑛ℎ ∈ 𝑁, 𝑛ℎ ≠ 𝑛𝑖, (𝑛𝑖, 𝑛ℎ) ∈ 𝐴
}

𝑁 𝑖𝑛
𝑖 =

{

𝑛ℎ|𝑛ℎ ∈ 𝑁, 𝑛ℎ ≠ 𝑛𝑖, (𝑛ℎ, 𝑛𝑖) ∈ 𝐴
} (3.3)

𝑁𝑜𝑢𝑡
𝑖 (resp., 𝑁 𝑖𝑛

𝑖 ) is thus the set of nodes connected to 𝑛𝑖 via an
outgoing (resp., incoming) arc. All these nodes have a confidence
higher (resp., lower) than or equal to the confidence 𝑐𝑖 with which 
classified 𝐼𝑖.

Let us now consider the feature 𝐹𝑘 whose relevance during the
classification process we want to assess. Clearly, 𝐹𝑘 takes on a specific
value 𝐹𝑘𝑖 for each instance 𝐼𝑖 ∈ . Therefore, in order to assess the
relevance of 𝐹𝑘 during the classification process, we must first assess
the relevance of 𝐹𝑘𝑖 .

From the above modeling, we can observe that the node 𝑛𝑖 cor-
responding to 𝐼𝑖 is connected through its outgoing arcs to the nodes
of 𝑁𝑜𝑢𝑡

𝑖 , each of which has a confidence higher than or equal to 𝑐𝑖.
On the other hand, it is connected through its incoming arcs to the
nodes of 𝑁 𝑖𝑛

𝑖 , each of which has a confidence lower than or equal to
𝑐𝑖. Therefore, in determining the role of 𝐹𝑘 in the classification task, 𝑛𝑖
can act as a ‘‘guide’’ for the nodes of 𝑁 𝑖𝑛

𝑖 , while it should be ‘‘guided’’
by the nodes of 𝑁𝑜𝑢𝑡

𝑖 . One way to formalize this reasoning consists of
adapting the PageRank centrality (Brin & Page, 1998) to this context.
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Recall that, given a network  = ⟨𝑁,𝐴⟩, and given a node 𝑛𝑖 ∈ 𝑁 ,
he PageRank centrality 𝜚(𝑛𝑖) of 𝑛𝑖 is defined as:

(𝑛𝑖) =
1 − 𝑑
|𝑁|

+ 𝑑 ⋅

⎛

⎜

⎜

⎜

⎝

∑

𝑛ℎ∈𝑁 𝑖𝑛
𝑖

𝜚(𝑛ℎ)

|𝑁𝑜𝑢𝑡
ℎ |

⎞

⎟

⎟

⎟

⎠

(3.4)

Observe that this formula is recursive. In it:

• |𝑁| is the cardinality of 𝑁 .
• 𝑁 𝑖𝑛

𝑖 is the set of nodes connected to the arcs incoming in 𝑛𝑖.

• 𝑁𝑜𝑢𝑡
ℎ is the set of nodes connected to the arcs outgoing from 𝑛ℎ.

• 𝑑 is called ‘‘damping factor’’ and is used to weigh the contribution
that the nodes associated with the arcs incoming to 𝑛𝑖, and
their PageRank centralities, provide in determining the PageRank
centrality of 𝑛𝑖. The other component of the formula of 𝜚(𝑛𝑖) is
fixed and is equal to 1−𝑑

|𝑁|

. In the original PageRank formula, 𝑑 is

fixed and is equal to 0.85.

By adapting the general formula of the PageRank centrality seen
bove to our reference context, we have that the relevance 𝜌(𝐹𝑘𝑖 ) of

the occurrence 𝐹𝑘𝑖 of 𝐹𝑘 corresponding to the instance 𝐼𝑖, is given by:

𝜌(𝐹𝑘𝑖 ) =
1 − 𝑑𝑘𝑖
|𝑁|

+ 𝑑𝑘𝑖 ⋅
⎛

⎜

⎜

⎝

∑

𝑛ℎ∈𝑁 𝑖𝑛
𝑖

𝜌(𝐹𝑘ℎ )

|𝑁𝑜𝑢𝑡
ℎ |

⎞

⎟

⎟

⎠

(3.5)

Here, the relevance of 𝐹𝑘𝑖 depends on two components. The first is
fixed and depends on the number of nodes in the network. The second
is variable and depends on the relevance of the feature occurrences
related to the starting nodes of the arcs incoming into 𝑛𝑖. The relevance
of the feature occurrence 𝐹𝑘ℎ of the node 𝑛ℎ is weighted with respect
o the number of arcs outgoing from 𝑛ℎ. In fact, the greater the number

of these arcs, the lower the weight of the relevance of 𝐹𝑘ℎ . This is
reasonable because the number of arcs outgoing from 𝑛ℎ indicates the
number of nodes having a higher confidence than 𝑛ℎ.

The damping factor 𝑑𝑘𝑖 in Eq. (3.5) does not have a constant
value, as was the case in the original definition of PageRank centrality.
Instead, its value varies for each node 𝑛𝑖 ∈ 𝑁 and depends on the
characteristics of 𝑛𝑖. In particular, it depends on the number of nodes
outgoing from it, as well as on the dyscrasia between the feature
occurrence of each of these nodes and the feature occurrence 𝐹𝑘𝑖 of
𝐹𝑘 for 𝑛𝑖. More specifically, 𝑑𝑘𝑖 can be defined as follows:

𝑑𝑘𝑖 = 𝜎

(
∑

𝑛ℎ∈𝑁𝑜𝑢𝑡
𝑖

𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ )

|𝑁𝑜𝑢𝑡
𝑖 |

)

(3.6)

The rationale for this formula is as follows: the value of 𝑑𝑘𝑖 depends
on the magnitude of the dyscrasia between the occurrence of 𝐹𝑘 for
𝑖 and the occurrence of 𝐹𝑘 for all the ending nodes of the arcs
utgoing from 𝑛𝑖, which therefore have a greater confidence than 𝑛𝑖.
he definition of damping factor was designed to create a positive
orrelation between the values of this parameter and those of dyscrasia.
herefore, 𝑑𝑘𝑖 assumes high values when the dyscrasia is high. Let us
ow consider Eq. (3.5): if 𝑑𝑘𝑖 is high, the weight of the first term of the
ormula tends to be very low. The second term depends strongly on the
umber of arcs incoming to 𝑛𝑖. If that number is low (which happens
f  has not expressed high confidence in the classification of 𝑛𝑖) then
he relevance of 𝐹𝑘𝑖 will be low. This is right because  did not express

a high confidence on the classification of 𝑛𝑖 and, at the same time, 𝐹𝑘𝑖
howed a high dyscrasia with feature occurrences of nodes having a
igher confidence than 𝑛𝑖.

The function 𝜎(⋅) present in the formula is the sigmoid one. Recall
hat this function ranges from 0 to 1 when the value of its argument
aries from −∞ to +∞. In particular, if the argument can only be non-
egative (as in our case), 𝜎(⋅) ranges from 0.5 to 1. The use of the
6

igmoid function is motivated by the fact that the fraction within it 
n Eq. (3.6) can tend quickly to 0. In this way, any differences in the
umber of outgoing arcs and in the dyscrasia would have little impact
n determining the value of 𝑑𝑘𝑖 . Instead, the sigmoid function tends to
mplify the differences in the output when the ones in the input are
lose to 0, and thus avoids the problem highlighted above. The fact
hat the value returned by the sigmoid function in our case is between
.5 and 1 has another positive consequence. Indeed, this prevents the
amping factor from being close to 0 for most of the |𝑁| nodes. If this
ere to happen, the weight of the second term in Eq. (3.5) would tend

o 0 and, therefore, all feature occurrences would tend to assume the
ame value, which would be close to 1

|𝑁|

. This would be a negative
aspect since it would nullify the differences between the relevances of
the various feature occurrences.

Having defined the relevance of a single feature occurrence 𝐹𝑘𝑖 ,
we are now able to define the relevance of a feature 𝐹𝑘. In fact, it
can be obtained by computing the average of the relevances of all its
occurrences. Formally speaking:

𝜌(𝐹𝑘) =

∑

𝑛𝑖∈𝑁 𝜌(𝐹𝑘𝑖 )

|𝑁|

(3.7)

Finally, we can define a function 𝛼(⋅) that receives a classifier 
nd returns a value in the real interval [0, 100] indicating the ability of

to differentiate the feature relevance. 𝛼(⋅) is defined as follows:

() =
𝑚𝑎𝑥 − 𝑚𝑖𝑛
𝑀𝑎𝑥𝐶𝑃𝐼

⋅ 100 (3.8)

Here, 𝑚𝑎𝑥 (resp., 𝑚𝑖𝑛) is the maximum (resp., minimum) value
aken by the median relevance of a feature when  is adopted.
𝑎𝑥𝐶𝑃𝐼 (Maximum Central Percentile Interval) is obtained in the

ollowing way: Given the classifier , first the width of the interval
between the values of the relevances located between the 25th and 75th
percentiles is computed for each feature. Then, the maximum value
of the widths thus constructed is determined. We decided to consider
these percentiles because, if we had taken the full interval of relevance
values, 𝛼(⋅) would have been sensitive to outliers.

3.4. Measuring the sensitivity of the proposed approach

In the previous section, we presented our approach for determining
feature relevance. It is the core of this paper. In this section, we propose
a method to measure its sensitivity when new instances are included in
the analysis.

The study of sensitivity is crucial in order to be able to monitor
whether, how, and to what extent our approach is able to adapt to
changes. Ideally, an approach should be stable enough to be unaffected
by small changes or outliers that represent only ‘‘noise’’, while it should
be flexible enough to adapt to significant changes. In this section, we
want to define a quantitative method to measure the sensitivity of
our approach. In our case, changes are defined by the number of new
instances to be classified and the values of their features. Thus, the
presence of a small number of new instances should not substantially
affect the behavior of our approach. Significant changes occur when
the number of new instances starts to be high and the values of one or
more of their features always differ from past values along the same
direction. Having made this premise, which allowed us to define the
issue to address, let us see how our sensitivity analysis approach works.

Suppose we have a set  of instances to be classified by the classifier
under consideration and a set  of possible classes. Assume also that,
at the end of the classification process, we obtained a network 
associated with that process (see Section 3.1). Also, assume that we
computed both the relevance 𝜌(𝐹𝑘𝑖 ) of each occurrence 𝐹𝑘𝑖 that 𝐹𝑘 has
n correspondence with a given instance 𝐼𝑖 and the relevance 𝜌(𝐹𝑘) of
ach feature 𝐹𝑘 of the set  of features associated with .

Suppose now that we have a new instance 𝐼𝑗 to be classified and
dded to the set . At the end of this classification process and the
pplication of our approach, we have a new network:
̂ = ⟨𝑁̂, 𝐴̂⟩ (3.9)
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In this case, 𝑁̂ = 𝑁 ∪ {𝑛𝑗} and 𝐴̂ = 𝐴 ∪ 𝐴̂𝑖𝑛
𝑗 ∪ 𝐴̂𝑜𝑢𝑡

𝑗 . In other words,
the set of nodes of ̂ is obtained from the set of nodes of  by adding
he node 𝑛𝑗 associated with the instance 𝐼𝑗 to it. The set of arcs 𝐴̂ of
̂ is obtained through the union of the set 𝐴 of the arcs of  , the set
̂𝑖𝑛
𝑗 of the arcs incoming into 𝑛𝑗 , and the set 𝐴̂𝑜𝑢𝑡

𝑗 of the arcs outgoing
rom 𝑛𝑗 .

At this point, given the feature occurrence 𝐹𝑘𝑗 , associated with 𝐹𝑘
nd 𝑛𝑗 , we define its estimated relevance 𝜌(𝐹𝑘𝑗 ) as:

𝜌(𝐹𝑘𝑗 ) =
1 − 𝑑𝑘𝑗
|𝑁̂|

+ 𝑑𝑘𝑗 ⋅

⎛

⎜

⎜

⎜

⎝

∑

𝑛ℎ∈𝑁̂ 𝑖𝑛
𝑗

𝜌̃(𝐹𝑘ℎ )

|𝑁̂𝑜𝑢𝑡
ℎ |

⎞

⎟

⎟

⎟

⎠

(3.10)

We call 𝜌(𝐹𝑘𝑗 ) ‘‘estimated relevance’’ because, in the second com-

onent of the above formula, we used 𝜌̃(𝐹𝑘ℎ ), which is the value of
he relevance that the feature occurrence 𝐹𝑘ℎ , 𝑛ℎ ∈ 𝑁 𝑖𝑛

𝑗 , had before
he new instance 𝐼𝑗 was added. In other words, in computing the
stimated relevance 𝜌(𝐹𝑘𝑗 ), we do not recompute the relevance of all

feature occurrences 𝐹𝑘ℎ (as in principle we should do), but rely on their
preexisting values.

Instead, the exact value 𝜌(𝐹𝑘𝑗 ) of the relevance of 𝐹𝑘𝑗 is obtained
by applying the formula represented in Eq. (3.5) to the network ̂ . In
this case, we have:

𝜌(𝐹𝑘𝑗 ) =
1 − 𝑑𝑘𝑗
|𝑁̂|

+ 𝑑𝑘𝑗 ⋅

⎛

⎜

⎜

⎜

⎝

∑

𝑛ℎ∈𝑁̂ 𝑖𝑛
𝑗

𝜌(𝐹𝑘ℎ )

|𝑁̂𝑜𝑢𝑡
ℎ |

⎞

⎟

⎟

⎟

⎠

(3.11)

At this point, we can define the function 𝛥(𝐹𝑘𝑗 ) that calculates the
difference between the actual and estimated values of the relevance of
𝐹𝑘𝑗 . Specifically:

𝛥(𝐹𝑘𝑗 ) = |𝜌(𝐹𝑘𝑗 ) − 𝜌(𝐹𝑘𝑗 )|

=

|

|

|

|

|

|

|

|

1 − 𝑑𝑘𝑗
|𝑁̂|

+ 𝑑𝑘𝑗 ⋅

⎛

⎜

⎜

⎜

⎝

∑

𝑛ℎ∈𝑁̂ 𝑖𝑛
𝑗

𝜌(𝐹𝑘ℎ )

|𝑁̂𝑜𝑢𝑡
ℎ |

⎞

⎟

⎟

⎟

⎠

−
1 − 𝑑𝑘𝑗
|𝑁̂|

+𝑑𝑘𝑗 ⋅

⎛

⎜

⎜

⎜

⎝

∑

𝑛ℎ∈𝑁̂ 𝑖𝑛
𝑗

𝜌̃(𝐹𝑘ℎ )

|𝑁̂𝑜𝑢𝑡
ℎ |

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

= 𝑑𝑘𝑗 ⋅

|

|

|

|

|

|

|

∑

𝑛ℎ∈𝑁̂ 𝑖𝑛
𝑗

𝜌(𝐹𝑘ℎ )

|𝑁̂𝑜𝑢𝑡
ℎ |

−
∑

𝑛ℎ∈𝑁̂ 𝑖𝑛
𝑗

𝜌̃(𝐹𝑘ℎ )

|𝑁̂𝑜𝑢𝑡
ℎ |

|

|

|

|

|

|

|

= 𝑑𝑘𝑗 ⋅
∑

𝑛ℎ∈𝑁̂ 𝑖𝑛
𝑗

|

|

|

𝜌(𝐹𝑘ℎ ) − 𝜌̃(𝐹𝑘ℎ )
|

|

|

|𝑁̂𝑜𝑢𝑡
ℎ |

(3.12)

The function 𝛥(𝐹𝑘𝑗 ) returns a numerical indicator of the variation
of the relevance of a feature occurrence 𝐹𝑘𝑗 caused by a new instance

𝐼𝑗 , when it is added to  and classified by the classifier underlying our
framework.

In a similar way, it is possible to proceed with the other occurrences
of 𝐹𝑘; in fact, these will also have changed due to the inclusion of 𝐼𝑗 in
 and the consequent transition from  to ̂ . In this way, we obtain
a value of 𝛥(𝐹𝑘𝑖 ) for each node 𝑛𝑖 ∈ 𝑁̂ .

Starting from these values, it is possible to define the function
𝛥(𝐹𝑘, 𝐼𝑗 ), which returns the overall variation in the relevance of 𝐹𝑘
aused by the new instance 𝐼𝑗 :

𝛥(𝐹𝑘, 𝐼𝑗 ) =

∑

𝑛𝑖∈𝑁̂
𝛥(𝐹𝑘𝑖 )

|𝑁̂|

(3.13)

In other words, the variation is given by the average of the varia-
ions of all feature occurrences that resulted from the insertion of 𝐼𝑗 into
. It quantitatively expresses how the relevance of a feature has varied
7

due to the perturbation caused by the insertion of 𝐼𝑗 into  and its next
classification performed by the classifier underlying our framework.

Finally, we can define the function 𝛥(𝐹𝑘, 𝐼𝑗 ) that returns the relative
variation in the relevance of 𝐹𝑘 caused by the new instance 𝐼𝑗 :

𝛥(𝐹𝑘, 𝐼𝑗 ) =

∑

𝑛𝑖∈𝑁̂
𝛥(𝐹𝑘𝑖 )

∑

𝑛𝑖∈𝑁̂
𝜌(𝐹𝑘𝑖 )

=

∑

𝑛𝑖∈𝑁̂
|𝜌(𝐹𝑘𝑖 ) − 𝜌(𝐹𝑘𝑖 )|

∑

𝑛𝑖∈𝑁̂
𝜌(𝐹𝑘𝑖 )

(3.14)

Similarly, we can define the function 𝛥(𝐹𝑘, 𝐼𝑆𝑗 ), which computes
he relative variation in the relevance of 𝐹𝑘 caused by a new set of
nstances 𝐼𝑆𝑗 instead of a single instance 𝐼𝑗 .

.5. Analysis of the computational complexity of the proposed framework

Having introduced our framework, in this section we want to evalu-
te its computational complexity. In performing this task, we consider
oth time and space complexity. To this end, we define the complexity
f applying our framework on a general dataset considering all the tasks
t involves. Specifically, we first describe the complexity of creating
he network-based model defined in Section 3.1. Then, we evaluate the
omplexity of assessing the discordance of feature occurrences during
lassification, as discussed in Section 3.2. After that, we analyze the
omplexity of assessing the relevance of a feature during classification,
s defined in Section 3.3. Finally, we focus on the complexity of
easuring the sensitivity of the approach, as illustrated in Section 3.4.
e make these assessments first for what concerns time complexity and

hen for what regards space complexity.

.5.1. Analysis of the time complexity
We start by analyzing time complexity. Assume we have || = 𝑙

nstances with | | = 𝑛 features characterizing them. In most practical
ases, we can assume that 𝑛 ≪ 𝑙. Furthermore, we assume that the
esult of the classification task carried out by the model  is avail-
ble and preprocessed. Without loss of generality, we assume that we
mploy two lookup tables (Cormen, Leiserson, Rivest, & Stein, 2001)
ssociating each instance 𝐼𝑖 ∈ 𝐼 with the confidence level 𝑐𝑖 and the
et of features 𝑖, respectively.

Given an instance 𝐼𝑖 ∈ , accessing its confidence value 𝑐𝑖 (resp.,
he value of its 𝑘th feature 𝐹𝑘𝑖 ∈ 𝑖, 1 ≤ 𝑘 ≤ 𝑛) has time complexity
(1).

Let us consider now the building of the network  . This network
as (𝑙) nodes and (𝑙 ⋅ (𝑙 − 1)) = (𝑙2) edges. By representing the
etwork through a classical adjacency matrix, the time complexity of
ts construction is (𝑙2). Note that, thanks to the lookup tables, deciding
he direction of an arc in  has (1) time complexity.

Let us now focus on the analysis of the time complexity of assessing
he dyscrasia 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ ). Since the time complexity of 𝜖(⋅) and 𝛾(⋅)
s (1), the time complexity of 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ ) coincides with that of the
unction 𝜆(𝐹𝑘𝑖 , 𝐹𝑘ℎ ), which returns the dissimilarity degree between 𝐹𝑘𝑖
nd 𝐹𝑘ℎ . This function may vary depending on the type of 𝐹𝑘𝑖 and 𝐹𝑘ℎ .
or example, if the type of 𝐹𝑘𝑖 and 𝐹𝑘ℎ is numerical and 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ ) is
he difference between the two values, then its time complexity is (1).
nstead, if the type is textual, 𝛿(𝐹𝑘𝑖 , 𝐹𝑘ℎ ) could be the common Ham-
ing distance, whose time complexity is (𝑚), where 𝑚 is the size of

he two strings. Without loss of generality, we assume that the features
ave size 𝑟 and consider the maximum time complexity (𝑟𝑜) (for some
onstant 𝑜) among all the dissimilarity degree functions considered for
ach type of features in our dataset. However, considering that our
raph is static, we can precompute all the possible dissimilarity degrees
nd access them with a (1) time complexity.

Let us now analyze the time complexity of assessing the relevance
f a feature during classification. Given a node 𝑛𝑖 of  , our approach
cans its incoming and outgoing arcs to retrieve the sets of nodes
𝑖𝑛
𝑖 and 𝑁𝑜𝑢𝑡

𝑖 . The time complexity of computing these sets is (𝑙).
evertheless, considering that we focus on static graphs, we can store

he values of |𝑁 𝑖𝑛
𝑖 | and |𝑁𝑜𝑢𝑡

𝑖 | in such a way as to access them in (1).
et us now consider 𝜌(𝐹 ), i.e., the relevance of the occurrence 𝐹 of
𝑘𝑖 𝑘𝑖
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𝐹𝑘 corresponding to the instance 𝐼𝑖. The formula for its computation
(see Eq. (3.5)) is an adaptation of the PageRank centrality; therefore,
they share a common complexity. Several approximation algorithms
exist in the literature to compute PageRank. The typical PageRank
algorithms have computational complexity (𝑙𝑜𝑔(𝑙)) (Chung, 2014),
given the value of the damping factor (in our case 𝑑𝑘𝑖 in Eq. (3.5)).
The computation of the value of one instance 𝑑𝑘𝑖 of 𝑑𝑘 costs (𝑙) if we
assume that the time complexity of the sigmoid function 𝜎(⋅) is (1)
and that the result of the dissimilarity degree function is available. We
can assume that we compute all values 𝑑𝑘𝑖 once and store them for
the application of Eq. (3.5). This step, overall, costs (𝑙2) and must be
carried out only once. As a consequence, since 𝑑𝑘𝑖 is already available,
the time complexity of the relevance 𝜌(𝐹𝑘𝑖 ) is (𝑙𝑜𝑔(𝑙)). It follows from
this result that the time complexity of the relevance 𝜌(𝐹𝑘) of a feature
𝐹𝑘 (see Eq. (3.7)) is (𝑙 ⋅ 𝑙𝑜𝑔(𝑙)). By storing the results of this last
computation, the time complexity of Eq. (3.8) is (𝑙 ⋅ 𝑛 ⋅ 𝑙𝑜𝑔(𝑛)). The
last complexity encompasses the time complexity of computing the
median, which essentially reduces to a sorting procedure; however,
recall that, in most cases, 𝑛 ≪ 𝑙 and, consequently, in these cases the
time complexity of Eq. (3.8) reduces to (𝑙).

Integrating all these partial results, the highest cost of the various
steps described above is (𝑙2).

The last task we analyze is measuring the sensitivity of our ap-
proach. In this case, we have as input a new instance 𝐼𝑗 to be added to
the set . We assume that the result of its classification by  can be
obtained in constant time. Therefore, the first step is the construction
of the network ̂ that includes 𝐼𝑗 . In our setting, the time complexity
of such operation is (𝑙2). At this point, we examine Eq. (3.10), which
returns the estimated relevance 𝜌̄(𝐹𝑘𝑗 ). In this case, the time complexity
is (𝑙). This is because we resort to the values of 𝜌̃(𝐹𝑘ℎ ) computed before
the addition of the new instance 𝐼𝑗 . We also assume the availability
of the results of the dissimilarity degree function. Instead, the time
complexity of computing the exact value 𝜌(𝐹𝑘𝑗 ) is the same as seen
above, i.e., (𝑙2) to compute the values of all instances 𝑑𝑘𝑗 of 𝑑𝑘, and
(𝑙𝑜𝑔(𝑙)) to compute 𝜌(𝐹𝑘𝑗 ). The last step is computing the difference
between the actual and estimated values of the relevance of 𝐹𝑘𝑗 ,
i.e., 𝛥(𝐹𝑘𝑗 ). By storing the results of the exact and estimated value

of the relevance, the time complexity of 𝛥(𝐹𝑘𝑗 ) is (𝑙). Based on this
result, we obtain that the time complexity of the overall variation in
the relevance of 𝐹𝑘 caused by the new instance 𝐼𝑗 , denoted by 𝛥(𝐹𝑘, 𝐼𝑗 )
(see Eq. (3.13)), is (𝑙2). Finally, the time complexity of computing
the relative variation, defined in Eq. (3.14), relatively to the case in
which we store the values of 𝛥(𝐹𝑘𝑖 ) and 𝜌(𝐹𝑘𝑖 ), is (𝑙). Again, overall,
the highest cost of the various steps described above is (𝑙2).

3.5.2. Analysis on the space complexity
Before analyzing the space complexity of our approach, we want to

point out that a trade-off between the spatial and temporal aspects is
necessary. In fact, as we saw in Section 3.5.1, the approach used by our
framework is based on a set of values that, since the underlying network
is static, can be computed once and stored for later computations. We
used this procedure several times in the previous section.

That said, let us begin by analyzing the space complexity of the
lookup tables used to store the confidence levels and feature set. It is
(𝑙) and (𝑙 ⋅ 𝑛), respectively.

Let us now consider the space complexity of building the net-
work  . In our framework, we represent it by an adjacency matrix;
therefore, its complexity is (𝑙2). Additionally, for each node 𝑛𝑖 of
 we store the values of |𝑁 𝑖𝑛

𝑖 | and |𝑁𝑜𝑢𝑡
𝑖 |; the space complexity of

this operation is (𝑙). We also compute and store the values of the
dissimilarity degree function for the features of each pair of instances,
and the space complexity of this operation is (𝑙2𝑛). As mentioned
above, in most cases, 𝑛 ≪ 𝑙; thus, the space complexity of this operation
is (𝑙2).

Let us now analyze the space complexity of assessing the relevance
8

of a feature during classification. During this assessment, we compute b
and store the values of 𝑑𝑘𝑖 and the results of the relevance 𝜌(𝐹𝑘𝑖 ), and
we do it for each instance 𝐼𝑖 ∈ ; the space complexity of this operation
is (𝑙 ⋅ 𝑛). In addition, in calculating the ability of  to differentiate
feature relevance (see Eq. (3.8)), we compute the median relevance of
features; the space complexity of this task is (𝑛).

The last step to consider concerns sensitivity measurement. To
this end, our framework builds the new network ̂ , with a space
complexity of (𝑙2). Then, it computes and stores the results of the exact
and estimated values of the relevance 𝐹𝑘𝑖 , with a space complexity of
(𝑙 ⋅ 2𝑛). Finally, it calculates and stores the values of 𝛥(𝐹𝑘𝑖 ), whose
space complexity is (𝑙 ⋅ 𝑛).

3.5.3. Final considerations
Note that although the complexity outlined above is polynomial in

the number of instances (i.e., (𝑙2)), it may happen that 𝑙 becomes
eally large, even in the order of millions of instances. Clearly, even a
uadratic algorithm becomes too expensive in this case. However, given
he application scenario of the proposed approach, it is reasonable to
pply it on a properly composed subset of representative instances. If
ne proceeds in this direction, the size of this subset can be determined
n such a way as to ensure reasonable performances.

.6. Positioning of our framework within XAI approaches and its support
n practical decision making scenarios

As mentioned in Section 2, many XAI approaches have been pro-
osed in the literature. The main ones fall in the following cate-
ories (Banerjee & Barnwal, 2023): (i) Feature Relevance, which in-
ludes those approaches that identify the features that most explain
he output of the model; (ii) Local explanations, which includes those
pproaches that want to explain the operation of a part of the overall
ystem; (iii) Visualization, which includes those techniques that want
o visualize the behavior of a model, often minimizing the complexity
f the problem; they are aimed at users who are not familiar with AI;
iv) Explanation by example, which includes those techniques that elicit
istinctive data to provide an explanation of the overall behavior of
he model; (v) Text explanation, which includes those techniques that
roduce a natural language text to represent the behavior of an AI
odel and, specifically, the algorithm rationale; (vi) Model simplifica-
ion, which includes those techniques that build a new model that is
ess complex and more interpretable than the original model.

Along these techniques, several models and methods have been
eveloped (Chinu & Bansal, 2022), such as: (i) Prototype and criti-
ism, which provides a representation of all the data for a particular
ata instance and singles out data that are not represented by the
rototypes through criticism; (ii) Model distillation, which exploits a
tudent–teacher model that trains a student model (the explanation)
ehaving similarly to the teacher model (the original model); (iii) Surro-
ate model, which is an interpretable model that mimics the predictions
f a black-box model; (iv) Partial dependence plot, which displays the
arginal effect of one or more features on the expected output; (v)
ecision tree, which describes the behavior of a machine learning model

n the form of trees; (vi) Rule extraction, which learns (linear) decision
ules representing automatically recognized interaction effects.

In this scenario, our framework falls into the Feature Relevance
ategory and yet it adopts a completely new model and method com-
ared to existing ones. Regarding the usefulness of our framework
n practical decision making scenarios, we emphasize that it enables
he identification of feature relevance at both the model and instance
evels. The identification of feature relevance at the instance level
eans that when a new instance is processed by the classifier, our

ramework allows us to identify which features contributed most to its
lassification. On the other hand, identifying feature relevance at the
odel level makes it possible to identify on which features to act so

hat future instances have values for those features that allow them to

elong to one class rather than another.
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3.7. Strengths and weaknesses of our framework

As pointed out in the Introduction, our approach belongs to the
category of model-agnostic tools for XAI. However, as can be seen
from the detailed taxonomy of XAI approaches presented in a re-
cent survey (Nagahisarchoghaei et al., 2023), our approach, being
network-based, adopts a way of proceeding completely different from
the one of other existing approaches belonging to the same category,
and thus may open new research scenarios in this area. Due to the
network-based philosophy it adopts, our framework helps to address
several aspects considered as limitations of common model-agnostic
approaches (Barredo Arrieta et al., 2020). In the following, we will
explain these aspects in detail.

First, our approach is parameter-free, that is, it has no parameters
for the user to set. It also does not have to discern between shal-
low Machine Learning models and Deep Learning models, as others
do (Barredo Arrieta et al., 2020). In addition, it is not restricted to
classifiers operating on homogeneous features. In particular, since it
computes instance-based pairwise feature dissimilarities, and it uses
feature-specific functions to do this, it is able to handle feature het-
erogeneity straightforwardly. Interestingly, this way of computing dis-
similarities allows our framework to seamlessly couple with data fusion
systems (Barredo Arrieta et al., 2020).

Another advantage of our approach is that the notion of dyscrasia
introduced in this paper allows us to detect insights not only into
which features are important but also into how these features interact
with each other (Barredo Arrieta et al., 2020; Nagahisarchoghaei et al.,
2023). Again, while many feature relevance approaches operate by
assuming that features are independent of each other (Barredo Arrieta
et al., 2020), our framework does not need this assumption to operate.

There are two further strengths that differentiate our framework
from existing literature. First, the very same technique allows us to
characterize features at both the model and the instance levels; in
particular, our framework can determine the relevance of features
to the entire model, as well as which features of a single instance
contribute most to the classification. In addition, our framework’s sen-
sitivity computation procedure can support in determining the possible
obsolescence of the underlying classification model. In particular, as
will become clear in the experiments, the sensitivity computation that
can be performed with our framework allows for the interception of
radical changes in the inputs in a certain direction. The presence of
such variation, in turn, can be an indicator of model obsolescence and
the profitability of updating the model classifier based on the new input
characteristics.

Finally, the introduction of the concept of dyscrasia, and thus the
possibility of quantifying the disharmony between the values of a given
feature during classification, is also a strength of our approach in that it
allows us to understand how certain values of a feature can contribute
to misclassification or, conversely, to correct classification.

Our framework also has weaknesses that we now examine. First, the
model-agnostic nature of our framework, while a strength in terms of
applicability, is also a weakness in terms of the depth of explanations
obtained. In fact, model-specific XAI approaches could provide deeper
insight tailored to the model itself. Furthermore, our framework as-
sumes the assignment of a single label by the classifier; this assumption
limits the applicability of our framework in multi-label scenarios.

Another limitation comes from the use of the network-based model.
While it provides an intuitive form of explanation and allows a macro-
scopic view of the context, it could also make the approach computa-
tionally expensive when working with huge amounts of data, as seen
in Section 3.5. Finally, in its current definition, our framework is not
well suited to provide explanations in dynamic contexts, where the
underlying data distribution, or even the classifier, continually evolve.
Adapting our framework to this more complex scenario is certainly very
9

challenging and is the subject of possible future developments. t
Fig. 2. The network  after classification.

Table 1
Instances, their features, confidence values and assigned classes.
𝐼𝑖 𝐹1 𝐹2 𝑐𝑖 𝐶𝑖

𝐴 0.48 0.52 0.37 1
𝐵 0.66 0.73 0.34 0
𝐶 0.18 0.21 0.21 0
𝐷 0.47 0.53 0.88 1
𝐸 0.45 0.58 0.95 1

4. Case examples

In this section, we want to present some simple case examples to
better clarify the formulas underlying our framework. In particular,
we consider three cases: In the first one, we examine the behavior
of our approach in the presence of a classifier whose features are not
coherent in the classification process. In the second one, we assume that
all the features contribute to classification in a coherent way. Finally,
in the third case, we assume that only one feature contributes to the
classification in a coherent way. In all these cases, we suppose that 
consists of five instances:  = {𝐴,𝐵, 𝐶,𝐷,𝐸},  consists of two classes:
 = {0, 1} and  consists of two features:  = {𝐹1, 𝐹2}. We further
suppose that 𝐹1 and 𝐹2 are numerical with values between 0 and 1.
Accordingly, the function 𝜆(⋅, ⋅) consists of the absolute value of the
difference of the values of the parameters received as input. Formally
speaking, 𝜆(𝐹𝑘𝑖 , 𝐹𝑘ℎ ) = |𝐹𝑘𝑖 − 𝐹𝑘ℎ |. In all cases, the best classification
and, thus, the one with the highest confidence) is for the instance 𝐸,
hile the worst one (to which the lowest confidence corresponds) is for

he instance 𝐶.

.1. Worst case example

In this case example, we assume that the features 𝐹1 and 𝐹2 discrim-
nate very poorly, being both very similar with each other for almost
ll instances and having no specific correlation with the corresponding
lassification; the average confidence of the classifier is 0.53. Table 1
hows the instances involved, their features, their classification con-
idences and the classes assigned to them. Instead, Fig. 2 shows the
orresponding network  obtained at the end of the classification of
ll the instances.

.1.1. Relevance computation
We begin the computation on the relevance of feature occurrences

tarting with node 𝐶. Since this is the worst instance, i.e., the one with
he lowest confidence, there is no arc incoming into 𝐶. Consequently,
𝑖𝑛
𝐶 = ∅ and 𝑁𝑜𝑢𝑡

𝐶 = {𝐴,𝐵,𝐷,𝐸}. Applying Eq. (3.6), we can compute
he values 𝑑 and 𝑑 of the damping factors associated with the
1𝐶 2𝐶
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Table 2
Value of relevance of the feature occurrences for the worst case example.

Node 𝜌(𝐹1) 𝜌(𝐹2) Absolute difference

A 0.1083 0.1084 0.0001
B 0.0309 0.0306 0.0003
C 0.0267 0.0290 0.0023
D 0.1355 0.1358 0.0002
E 0.2033 0.2037 0.0004

feature occurrences 𝐹1𝐶 and 𝐹2𝐶 , respectively:

𝑑1𝐶 = 𝜎

(
∑

𝑛ℎ∈𝑁𝑜𝑢𝑡
𝐶

𝛿(𝐹1𝐶 , 𝐹1ℎ )

|𝑁𝑜𝑢𝑡
𝐶 |

)

= 𝜎

(

𝛿(𝐹1𝐶 , 𝐹1𝐴 ) + 𝛿(𝐹1𝐶 , 𝐹1𝐵 ) + 𝛿(𝐹1𝐶 , 𝐹1𝐷 ) + 𝛿(𝐹1𝐶 , 𝐹1𝐸 )
4

)

= 𝜎

(

0.2046 + 0.2503 + 0.4936 + 0.5479
4

)

= 0.8665

𝑑2𝐶 = 0.8548

We are now able to compute the relevance of 𝐹1𝐶 and 𝐹2𝐶 by
applying Eq. (3.5). In this case, since 𝑁 𝑖𝑛

𝐶 = ∅, the computations are
straightforward. Indeed:

𝜌(𝐹1𝐶 ) =
1 − 𝑑1𝐶
|𝑁|

+ 𝑑1𝐶 ⋅
∑

𝑛ℎ∈𝑁 𝑖𝑛
𝐶

𝜌(𝐹1ℎ )

|𝑁𝑜𝑢𝑡
ℎ |

= 1 − 0.8665
5

+ 0.8665 ⋅ 0 = 0.0267

𝜌(𝐹2𝐶 ) =
1 − 0.8548

5
+ 0.8548 ⋅ 0 = 0.0290

Let us now consider node 𝐵. It has only one incoming arc, namely
he one starting from 𝐶. Therefore, 𝑁 𝑖𝑛

𝐵 = {𝐶} and 𝑁𝑜𝑢𝑡
𝐵 = {𝐴,𝐷,𝐸}.

Applying Eq. (3.6), we can compute the values 𝑑1𝐵 and 𝑑2𝐵 associated
with the feature occurrences 𝐹1𝐵 and 𝐹2𝐵 , respectively:

𝑑1𝐵 = 𝜎

(
∑

𝑛ℎ∈𝑁𝑜𝑢𝑡
𝐵

𝛿(𝐹1𝐵 , 𝐹1ℎ )

|𝑁𝑜𝑢𝑡
𝐵 |

)

= 𝜎

(

𝛿(𝐹1𝐵 , 𝐹1𝐴 ) + 𝛿(𝐹1𝐵 , 𝐹1𝐷 ) + 𝛿(𝐹1𝐵 , 𝐹1𝐸 )
3

)

= 𝜎

(

0.2002 + 0.4704 + 0.4953
3

)

= 0.8747

𝑑2𝐵 = 0.8791

After this, we compute the relevance of the two feature occurrences:

𝜌(𝐹1𝐵 ) =
1 − 𝑑1𝐵
|𝑁|

+ 𝑑1𝐵 ⋅
∑

𝑛ℎ∈𝑁 𝑖𝑛
𝐵

𝜌(𝐹1ℎ )

|𝑁𝑜𝑢𝑡
ℎ |

= 1 − 0.8747
5

+ 0.8747 ⋅
( 0.0267

4

)

= 0.0309

(𝐹2𝐵 ) =
1 − 0.8791

5
+ 0.8791 ⋅

( 0.0290
4

)

= 0.0306

Proceeding in the same way with the remaining nodes, we obtain
he values of the relevance of all feature occurrences. They are shown
n Table 2. Observe that all relevance values are very low; however,
ecall that, given the structure of the formulas for the computation
f the relevance of the feature occurrences, the corresponding values
end to be flattened downward. Actually, the most important thing to
bserve is that the absolute difference (i.e., the absolute value of the
ifference of the relevances of the two feature occurrences) is extremely
ow; this, coupled with the very low values, reflects the hypothesis of
he case example, i.e., that no feature is actually discriminating for the
lassification of any instance.

Finally, by applying the formula in Eq. (3.7), we can compute the
alue of the relevance of 𝐹1 and 𝐹2. These values are reported in
able 3.
10
Table 3
Value of relevance of the features in the worst case example.

Feature Relevance

𝐹1 0.1010
𝐹2 0.1015

4.1.2. Sensitivity computation
Once we have computed the relevance of both the feature occur-

rences and the features, we proceed to perform a sensitivity analysis by
applying the technique described in Section 3.4. To this end, suppose
that we need to include in , and next classify, a new instance 𝐺
whose features are: 𝐹1𝐺 = 0.51 and 𝐹2𝐺 = 0.49. Suppose, also, that the
classifier underlying our approach assigned 𝐺 to the class 0 and that
he corresponding confidence 𝑐𝐺 is 0.40.

In the new network ̂ , obtained after the classification of 𝐺, we
ave that: 𝑁̂𝑜𝑢𝑡

𝐺 = {𝐷,𝐸} and 𝑁̂ 𝑖𝑛
𝐺 = {𝐴,𝐵, 𝐶}.

As for the computation of the damping factors, we have that:

1𝐺 = 𝜎

(

𝛿(𝐹1𝐺 , 𝐹1𝐷 ) + 𝛿(𝐹1𝐺 , 𝐹1𝐸 )
2

)

= 𝜎

(

0.5069 + 0.5358
2

)

= 𝜎(0.5213) = 0.9580

𝑑2𝐺 = 𝜎

(

𝛿(𝐹2𝐺 , 𝐹2𝐷 ) + 𝛿(𝐹2𝐺 , 𝐹2𝐸 )
2

)

= 𝜎

(

0.5069 + 0.5187
2

)

= 𝜎(0.5128) = 0.9559

Applying the formula given in Eq. (3.12), we can compute the values
𝛥(𝐹1𝐺 ) and 𝛥(𝐹2𝐺 ), which represent the difference between the actual
and estimated values of the relevance of 𝐹1𝐺 and 𝐹2𝐺 , respectively.

𝛥(𝐹1𝐺 ) = 𝑑1𝐺 ⋅
∑

𝑛ℎ∈𝑁̂ 𝑖𝑛
𝐺

|

|

|

𝜌(𝐹1ℎ ) − 𝜌̃(𝐹1ℎ )
|

|

|

|

|

|

𝑁̂𝑜𝑢𝑡
ℎ

|

|

|

= 𝑑1𝐺 ⋅

(

|𝜌(𝐹1𝐴 ) − 𝜌̃(𝐹1𝐴 )|

|𝑁̂𝑜𝑢𝑡
𝐴 |

+
|𝜌(𝐹1𝐵 ) − 𝜌̃(𝐹1𝐵 )|

|𝑁̂𝑜𝑢𝑡
𝐵 |

+
|𝜌(𝐹1𝐶 ) − 𝜌̃(𝐹1𝐶 )|

|𝑁̂𝑜𝑢𝑡
𝐶 |

)

The values 𝜌̃(𝐹1𝐴 ), 𝜌̃(𝐹1𝐵 ) and 𝜌̃(𝐹1𝐶 ) are as shown in Table 2. The
alues 𝜌(𝐹1𝐴 ), 𝜌(𝐹1𝐵 ) and 𝜌(𝐹1𝐶 ) are obtained by applying the formula
f Eq. (3.10) on the new network ̂ . Here, we do not report all the
teps of this computation because the procedure is the same as the one
or the relevance computation carried out in the previous section. The
ew values obtained are the following:

(𝐹1𝐴 ) = 0.0698 𝜌(𝐹1𝐵 ) = 0.0264 𝜌(𝐹1𝐶 ) = 0.0202

At this point, we have that:

𝛥(𝐹1𝐺 ) = 0.9580 ⋅
(

|0.0698 − 0.1083|
3

+
|0.0264 − 0.0309|

4

+
|0.0202 − 0.0267|

5

)

= 0.0146

Proceeding similarly for the feature 𝐹2, we first compute 𝜌(𝐹2𝐴 ),
(𝐹2𝐵 ) and 𝜌(𝐹2𝐶 ) and obtain:

(𝐹2𝐴 ) = 0.0698 𝜌(𝐹2𝐵 ) = 0.0251 𝜌(𝐹2𝐶 ) = 0.0224

Afterwards, we compute 𝛥(𝐹2𝐺 ) as:

(𝐹2𝐺 ) = 0.9559 ⋅
(

|0.0698 − 0.1084|
3

+
|0.0251 − 0.0306|

4

+
|0.0224 − 0.0290|

5

)

= 0.0149
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Table 4
Instances, their features, confidence values and assigned classes.
𝐼1 𝐹1 𝐹2 𝑐𝑖 𝐶𝑖

A 0.15 0.75 0.82 1
B 0.80 0.31 0.78 0
C 0.64 0.45 0.65 0
D 0.11 0.82 0.88 1
E 0.02 0.95 0.95 1

Table 5
Value of relevance of the feature occurrences for the best case example.

Node 𝜌(𝐹1) 𝜌(𝐹2) Absolute difference

A 0.1251 0.1225 0.0026
B 0.0965 0.0878 0.0087
C 0.0738 0.0657 0.0081
D 0.1565 0.1534 0.0031
E 0.2348 0.2302 0.0047

Avg 0.1374 0.1319 0.0054

Knowing the real values of 𝜌(𝐹1𝐺 ) = 0.0395 and 𝜌(𝐹2𝐺 ) = 0.0399 in
𝑁̂ , we can compute the percentage of variation between the estimated
and actual values. This is equal to 0.0146

0.0395 ⋅ 100 = 36.96% for 𝐹1𝐺 and to
0.0149
0.0399 ⋅100 = 37.34% for 𝐹2𝐺 . These values are quite high. However, this
was somewhat expected, considering that: (i) the classifier was poorly
confident, on average, about its classifications, and (ii) the features of
𝐺 had quite different values from those assumed by the same features
for the instances 𝐷 and 𝐸 that belong to the same class of 𝐺 (i.e., class
0).

4.2. Best case example

In this case example, we assume that both features are strongly
discriminating. In particular, in this case, a low value of 𝐹1 and a
high value of 𝐹2 imply class 1, whereas a high value of 𝐹1 and a low
value of 𝐹2 imply class 0; the average confidence of the classifier is
0.82. In Table 4, we report the instances involved, their features, their
classification confidences and the classes assigned to them. Due to space
constraints we do not report here again all details about relevance
computation; instead, we show the overall results directly in Table 5.

Some interesting observations can be drawn from the analysis of
this table. In particular, we can see that the more discriminating the
values of 𝐹1 and 𝐹2 are, the greater their relevances. As evidence
of this, consider the instance 𝐸, which is the one with the highest
confidence and the most extreme values of 𝐹1 and 𝐹2. The relevance
values associated with 𝐸 for the two features are the highest of all
the relevance values associated with the various instances. Instead,
consider the instance 𝐶, which has the least discriminating values for 𝐹1
and 𝐹2. The relevance values associated with 𝐶 for the two features are
the lowest among all the relevance values associated with the various
instances. This confirms that our relevance definition is really able to
tell us when a feature contributed to determining the class assigned by
the classifier to each instance. Finally, note that the absolute values of
the differences between the feature relevances for the instances are all
very low. This was expected and desirable since both features in this
example are strongly discriminating.

After computing the relevances of features and the corresponding
feature occurrences, we proceed with sensitivity analysis. As in the
worst case example, suppose we need to include in , and next classify,
a new instance 𝐺 whose features are: 𝐹1𝐺 = 0.91 and 𝐹2𝐺 = 0.15.
Finally, suppose that the classifier assigned 𝐺 to the class 0 and the
corresponding confidence 𝑐𝐺 is 0.84.

Operating similarly to what we have done in Section 4.1.1, we can
compute the values 𝛥(𝐹1𝐺 ) and 𝛥(𝐹2𝐺 ), which represent the difference
11

between the actual and estimated values of the relevance of 𝐹1𝐺 and
Table 6
Instances, their features, confidence values and assigned classes.
𝐼1 𝐹1 𝐹2 𝑐𝑖 𝐶𝑖

A 0.15 0.75 0.55 1
B 0.80 0.25 0.53 0
C 0.64 0.50 0.21 0
D 0.11 0.25 0.69 1
E 0.02 0.50 0.87 1

Table 7
Value of relevance of the feature occurrences for the intermediate case example.

Node 𝜌(𝐹1) 𝜌(𝐹2) Absolute difference

A 0.1196 0.1021 0.0175
B 0.0853 0.0491 0.0362
C 0.0539 0.0262 0.0277
D 0.1504 0.1354 0.0150
E 0.2261 0.2047 0.0214

Avg 0.1271 0.1035 0.0236

𝐹2𝐺 , respectively. Specifically, we have that 𝛥(𝐹1𝐺 ) = 0.0086 and
𝛥(𝐹2𝐺 ) = 0.0086.

Knowing the corresponding real values 𝜌(𝐹1𝐺 ) and 𝜌(𝐹2𝐺 ) in ̂ , we
can compute the percentage of variation between the estimated and
real values. This is equal to 6.30% for 𝐹1𝐺 and 6.61% for 𝐹2𝐺 . These
values are much smaller than those obtained in Section 4.1.1 for the
worst case. This result can be easily explained by considering that the
underlying classifier was really confident, on average, about its classifi-
cations. This ensured that the network  , the value configuration and
the relationships between instances are all very stable. Consequently,
compared to the worst case example, the entry of a new instance, even
with values of features quite different from those of the other instances
of the same class, was not able to produce significant alterations in the
configuration of the network  and the corresponding relationships
and associated parameters.

4.3. Intermediate case example

In this final case example, we assume that only feature 𝐹1 is strongly
discriminating. In particular, in this case, a low (resp., high) value of
𝐹1 implies that the corresponding instance belongs to class 1 (resp., 0).
The average confidence of the classifier is 0.57. In Table 6, we report
the instances involved, their features, their classification confidences
and the classes assigned to them. Again, due to space constraints, we
report the values of the relevance of the feature occurrences directly in
Table 7.

From the analysis of this table we can observe that the relevance of
𝐹2 is always lower, and in some cases significantly lower, than the one
of 𝐹1. We can also observe that 𝐹1 is more capable of discriminating
lass 1 than class 0. In fact, the values of 𝜌(𝐹1) are much higher for the
nstances 𝐴, 𝐷 and 𝐸 (that belong to class 1) than for the instances 𝐵
nd 𝐶 (that belong to class 0). This result could not have been obtained
rom examining confidence alone, since, for example, the confidence of

is still high (comparable with the one of 𝐴, albeit much lower than
he one of 𝐷 and 𝐸).

Again, after computing the relevance values of features and the cor-
esponding feature occurrences, we proceed with a sensitivity analysis.
s in the other case examples, suppose we need to include in , and
ext classify, a new instance 𝐺 whose features are: 𝐹1𝐺 = 0.91 and
2𝐺 = 0.75. Finally, suppose that the classifier assigned 𝐺 to the class 0
nd the corresponding confidence 𝑐𝐺 is 0.57.

In this case, the percentages of variation between the estimated
nd real values are equal to 7.09% for 𝐹1𝐺 and 14.69% for 𝐹2𝐺 . These
alues confirm that the classifier confidence is mostly affected by the
iscrimination capability of 𝐹1. Instead, the stability of the framework
ith respect to the feature 𝐹2 is partially compromised by the very
ifferent and not characterizing values of 𝐹2 in the instances of the
ame class.
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Table 8
Main characteristics of the datasets used in our experiments.

Dataset Instances Features Classes

Iris 150 4 3
Mammographic Mass 961 4 2

5. Experimental campaign

In this section, we illustrate the tests we conducted on real data
to verify the behavior of our approach. In particular, we present our
testbed in Section 5.1. In Section 5.2, we describe the experiments
on the feature relevance computation we performed and the results
we obtained. Finally, in Section 5.3, we illustrate our tests concerning
sensitivity computation and the results they returned.

5.1. Testbed

To carry out our tests we used a 2019 MacBook Pro equipped with
16 GB of RAM and 2.6 GHz Intel Core i7 6 core. We also developed a
desktop app implementing our approach, called NAFER (Nafer Another
FEature Relevance). It is freely available on GitHub at the following
address: www.github.com/ecorradini/NAFER.

Furthermore, we selected several classifiers to include as underlying
engine of our approach. The classifiers we chose are among those most
widely adopted in the past literature (Datta, Sen, & Zick, 2016; Henelius
et al., 2017; Strumbelj & Kononenko, 2010). They are:

• Naive Bayes (hereafter, NB) Zhang (2004);
• SVM with polynomial kernel (hereafter, Polynomial SVM) (Chang

& Lin, 2011);
• SVM with radial basis function kernel (hereafter, Radial SVM)

(Chang & Lin, 2011);
• Multi-Layer Perceptron (hereafter, MLP) He, Zhang, Ren, and Sun

(2015);
• Random Forest (hereafter, RF) Breiman (2001).

In particular, we chose these classifiers because our framework is
odel-agnostic and we want to test and exploit this property of it. In

act, our classifiers are of different types and exhibit different behaviors.
aive Bayes is a probabilistic classifier, unlike SVM, which is non-
robabilistic. For the latter, we chose two different kernels, namely: (i)

the polynomial one, which considers features and their combinations,
and (ii) the radial one, which separates data using a nonlinear decision-
boundary. Multi-Layer Perceptron is a neural network; therefore, it
represents a totally black-box model. Finally, Random Forest is an
example of an ensemble learning model.

During the test campaign, we used two datasets published on
the UCI Machine Learning Repository (Asuncion & Newman, 2007).
They are Iris (Fisher, 1936) and Mammographic Mass (Elter, Schulz-
Wendtland, & Wittenberg, 2007). The number of instances, features
and classes of the two datasets are shown in Table 8. As can be seen
from this table, the two datasets are very different in the number of
instances, while they are similar in the number of features and classes.

More specifically, the Iris features are the following:

• sepal_length: It represents the sepal length of the flower in
centimeters; its values range in the real interval [4.3, 7.9];

• sepal_width: It denotes the sepal width of the flower in cen-
timeters; its values range in the real interval [2.0, 4.4];

• petal_length: It indicates the petal length of the flower in
centimeters; its values range in the real interval [1.0, 6.9];

• petal_width: It represents the petal width of the flower in
centimeters; its values range in the real interval [0.1, 2.5].
12

Instead, the features of Mammographic Mass are the following: t
Table 9
Classifier accuracy with the Iris dataset.

Model Accuracy

Naive Bayes (Zhang, 2004) 0.93
SVM with polynomial kernel (Chang & Lin, 2011) 0.98
SVM with radial basis function kernel (Chang & Lin, 2011) 0.96
Multi-Layer Perceptron (He et al., 2015) 0.93
Random Forest (Breiman, 2001) 0.96

• age: It denotes the patient’s age in years; its values range in the
integer interval [0, 96];

• shape: It indicates the mass shape; its possible values are: round
= 1, oval = 2, lobular = 3, and irregular = 4;

• margin: It represents the mass margin; its possible values are:
circumscribed = 1, microlobulated = 2, obscured = 3, ill-defined
= 4, and spiculated = 5;

• density: It denotes the mass density; its possible values are:
high = 1, iso = 2, low = 3, fat-containing = 4.

All features are numerical; however, the values they can take are
ery heterogeneous. To homogenize them, we performed a normaliza-
ion task. For this purpose, we used a min–max scaler (Ahsan, Mahmud,
aha, Gupta, & Siddique, 2021). Given the value 𝐹 ′

𝑘𝑖
of a feature, whose

aximum (resp., minimum) value is 𝐹 ′
𝑘𝑚𝑎𝑥

(resp., 𝐹 ′
𝑘𝑚𝑖𝑛 ), this scaler

btained a normalized value 𝐹𝑘𝑖 , belonging to the real interval [0, 1],
y means of the following formula:

𝑘𝑖 =
𝐹 ′
𝑘𝑖
− 𝐹 ′

𝑘𝑚𝑖𝑛

𝐹 ′
𝑘𝑚𝑎𝑥

− 𝐹 ′
𝑘𝑚𝑖𝑛

(5.1)

At this point, having all feature occurrences normalized between
and 1, we decided to choose as dissimilarity function 𝜆(𝐹𝑘𝑖 , 𝐹𝑘ℎ )

etween two feature occurrences 𝐹𝑘𝑖 and 𝐹𝑘ℎ , the absolute value of
heir difference, that is:

(𝐹𝑘𝑖 , 𝐹𝑘ℎ ) = |𝐹𝑘𝑖 − 𝐹𝑘ℎ | (5.2)

.2. Relevance computation

In this section, we illustrate the tests on relevance computation that
e performed first on the Iris dataset (Section 5.2.1) and then on the
ammographic Mass dataset (Section 5.2.2).

.2.1. Iris dataset
The first task we performed was the computation of the accuracy of

lassifiers. In fact, this parameter is the most widely used in the liter-
ture for an initial assessment of the performance of classifiers (Han,
amber, & Pei, 2011). The results we obtained are shown in Table 9.
s we can see, these values are very high. Therefore, we can assume

hat all the classifiers considered are able to guarantee appropriate
onfidence values and, thus, are eligible for the next steps of our
nalysis.

Recall that the main objective of our analysis is to check whether
here are features having a higher relevance than others and, if so, to
etect them. Therefore, feature relevance is the second performance
ndicator we considered in our tests. It also represents one of the main
oals of our paper since it allows us to understand which features
re most important during the classification process and, ultimately,
heds light on some aspects of classifier behavior. Starting from this
onsideration, if all classifiers show no significant differences between
he relevance values of the various features, we can reasonably assume
hat all of them have the same relevance. Conversely, suppose some or

http://www.github.com/ecorradini/NAFER
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all classifiers show different relevance values for the various features,
and there is a substantial agreement among them in indicating which
features are the most relevant. In that case, we can reasonably conclude
that the relevance values of the features are different, and we can
determine the most relevant ones. In this case, the best classifiers are
those that can best highlight the differences in feature relevances.

Having made this premise, we can continue with the description of
our experiment. Its next task involved the computation of the damping
factor for the various features and classifiers. We chose to analyze
damping factor as a preliminary performance indicator because our for-
mula of relevance is derived from PageRank centrality, where damping
factor plays a crucial role (see Eqs. (3.4) and (3.5)). Moreover, in our
formula of relevance, the damping factor is not fixed but variable, as
shown in Eq. (3.6). The boxplots with the corresponding distributions
are reported in Fig. 3.

From the analysis of this figure, we can observe that the various
classifiers show completely different behaviors regarding the values of
the damping factor. In particular:

• Naive Bayes tends to assign extremely low and similar values to
the damping factor for all features.

• Polynomial SVM assigns very different values to the damping
factor of the various features. From this point of view, it shows a
very good ability to discriminate among features. However, this
ability will have to be verified, and hopefully confirmed, by the
next computations concerning feature relevances.

• Radial SVM shows some differences in the values of the damping
factor. However, these are smaller than the ones associated with
Polynomial SVM, since the values of the damping factor tend to
settle in a central range between 0.60 and 0.70.

• Multi-Layer Perceptron allows for very varied values of the damp-
ing factor between occurrences of the same feature. Instead,
median values are all very high. This classifier is less able to
differentiate the values of the damping factor among the various
features than the two SVM classifiers, albeit it seems better than
Naive Bayes.

• Random Forest has a very similar, although less extreme, behavior
than Naive Bayes. In any case, it does not show a great ability to
differentiate among features.

All these conclusions drawn by analyzing the damping factor are
reliminary, although indicative of potential trends. Actually, the final
onclusions of interest to us are those that can be drawn by examining
he distributions of relevance values associated with the various occur-
ences of the four features for the five classifiers. They are shown in
ig. 4. By examining this figure, we can draw the following insights:

• There are some classifiers (in particular, Naive Bayes and Random
Forest) that fail to capture the differences in relevance existing
among features.

• The two SVM classifiers and Multi-Layer Perceptron are able to
capture differences in relevance among features, although this
ability is held to different degrees by the three classifiers.

• The differences identified by the various classifiers are concor-
dant. In particular, both Polynomial SVM and Radial SVM and, to
some extent, Multi-Layer Perceptron show that petal_length
and petal_width are more relevant than sepal_length and
sepal_width.

• The two classifiers that prove most capable of discerning dif-
ferences in feature relevances are Polynomial SVM and Radial
SVM.

The conclusions we drew by examining Fig. 4 are only partially
uantitative; in fact, they are in many ways more qualitative than
uantitative. So, the next step is to quantify the different classifier
13

bilities to discern differences in feature relevances. In Table 10, we o
Table 10
Median relevance of each feature returned by the five classifiers for the Iris dataset.

Model Feature Relevance

Naive Bayes (Zhang, 2004) sepal_length 0.014598
sepal_width 0.014572
petal_length 0.014696
petal_width 0.014714

SVM with polynomial kernel (Chang & Lin, 2011) sepal_length 0.005608
sepal_width 0.002904
petal_length 0.007408
petal_width 0.007660

SVM with radial basis function (Chang & Lin, 2011) sepal_length 0.009293
sepal_width 0.009238
petal_length 0.011012
petal_width 0.011139

Multi-Layer Perceptron (He et al., 2015) sepal_length 0.000108
sepal_width 0.000082
petal_length 0.001598
petal_width 0.001454

Random Forest (Breiman, 2001) sepal_length 0.014313
sepal_width 0.014280
petal_length 0.014504
petal_width 0.014534

Table 11
Values of the function 𝛼(⋅) for the classifiers into consideration and for the Iris dataset

Model Value of 𝛼(⋅)

Naive Bayes (Zhang, 2004) 1.29%
SVM with polynomial kernel (Chang & Lin, 2011) 37.47%
SVM with radial basis function (Chang & Lin, 2011) 17.62%
Multi-Layer Perceptron (He et al., 2015) 11.43%
Random Forest (Breiman, 2001) 2.50%

Table 12
Classifier accuracy with the Mammographic Mass dataset.

Model Accuracy

Naive Bayes (Zhang, 2004) 0.77
SVM with polynomial kernel (Chang & Lin, 2011) 0.78
SVM with radial basis function (Chang & Lin, 2011) 0.81
Multi-Layer Perceptron (He et al., 2015) 0.77
Random Forest (Breiman, 2001) 0.76

report the median values of the occurrence relevances for each fea-
ture and for each classifier. In this case, we used the median as a
performance indicator because it is less sensitive to outliers than the
mean. The analysis of this table shows that, even at the quantitative
level, petal_length and petal_width are more relevant than
sepal_length and sepal_width.

We computed the values returned by the function 𝛼(⋅) (see Eq. (3.8))
or the five classifiers into examination. We used this function as a
erformance indicator because it is an excellent indicator of the ability
f  to differentiate the relevance of features. They are shown in
able 11. The analysis of this table gives us an accurate quantitative
esult of what we had already glimpsed qualitatively in Fig. 4. In
articular, it highlights that the best classifier is Polynomial SVM, with
value of 𝛼(⋅) equal to 37.47%, while the second best classifier is Radial
VM, with a value of 𝛼(⋅) equal to 17.62%.

.2.2. Mammographic mass dataset
Also for this dataset, we initially performed the computation of the

lassifier accuracy. The results obtained are shown in Table 12. As
an be seen from this table, the accuracy values are lower than in the
revious case. We are thus in presence of a completely different (albeit
qually interesting to investigate) scenario than the one we have seen
or the Iris dataset.

Then we computed the distributions of the values of the damping
actor for the various classifiers and features involved. The results
btained are shown in Fig. 5. In this case, we can observe that:
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Fig. 3. Distribution of the values of the damping factor for the Iris dataset.
• We have very high values of the damping factor for all the
classifiers. In fact, almost always the median is very close to 1.

• Naive Bayes, Random Forest and Radial SVM allow for very
varied values of the damping factor among occurrences of the
same feature. Such variety is much smaller for Polynomial SVM
and Multi-Layer Perceptron.

The examination of the damping factor would seem to suggest that,
n this case, there are no major differences either between classifiers or
eatures. However, as in the previous case, the damping factor analysis
s only preliminary. In fact, in order to give a definitive answer, it is
14

ecessary to consider the relevance of features. In Fig. 6, we report
the distributions of the values of feature relevances for the various
classifiers and features. From the examination of this figure we can see
that:

• There is no substantial difference between the relevance of the
various features in any of the classifiers considered.

• Only Naive Bayes is able to identify a slightly greater relevance
for the features shape and margin than for the features age
and density.

In this case, only one classifier (namely, Naive Bayes) indicates a

difference between the various features with regard to relevance values,
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while all the others denote a substantial equality. Also in this case,
we do not have contradictions because there is no classifier indicating
a higher relevance of one or more features, which are less relevant
than features for another classifier. However, a quantitative analysis
is still needed to see whether the differences captured qualitatively by
Naive Bayes are significant or negligible. In Table 13, we report the
mean values of the occurrence relevances for each feature and for each
classifier. Instead, in Table 14, we report the values of the function 𝛼(⋅)
for the five classifiers into consideration.

From the analysis of these two tables we can deduce that the
difference between the relevance values of shape and margin on the
one hand, and age and density on the other hand, as identified by
15

d

Naive Bayes, is not negligible. As evidence of this, the value of 𝛼(⋅)
elative to Naive Bayes is high, not far from the maximum value of
(⋅) we had found for the Iris dataset. However, for the Mammographic
ass dataset, all classifiers except Naive Bayes lead 𝛼(⋅) to return very

ow values. In contrast, for the Iris dataset, there were at least two other
lassifiers, besides the one associated with the maximum value of 𝛼(⋅),
hat lead this function to return significant values. As a consequence,
e can say that, also at the quantitative level, there is a difference
etween the relevances of the features in the Mammographic Mass
ataset, but this is more attenuated than for Iris.

Actually, we had already realized from the values of accuracy and

amping factor that Mammographic Mass represented a very different
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Fig. 5. Distribution of the values of the damping factor for the Mammographic Mass dataset.
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Fig. 6. Distribution of the relevance values for the Mammographic Mass dataset.
cenario than Iris. In this regard, a further interesting observation
oncerns the fact that the classifiers that perform better are different
n different scenarios. This tells us that none of the classifiers we have
hosen in our test campaign is useless; on the contrary, they, as a
hole, provide a range of classifiers serving as underlying engines to
ur approach. It is exactly because of the variety of this range that our
pproach is able to return satisfactory results even in heterogeneous
cenarios.

.3. Sensitivity computation

.3.1. Iris dataset
The purpose of this experiment is to evaluate the sensitivity of our
17

pproach on the Iris dataset. The reasons for adopting this performance
indicator lie precisely in the role that sensitivity plays as a measure of
the effects of changes in input data on our approach. This issue was
discussed in detail in Section 3.4, where we introduced this parameter.
Initially, we randomly selected 50% of the instances for building the
starting network and coefficients (we call this task ‘‘first phase’’ in
the following) and left the remaining 50% of them for the sensitivity
computation (we call this task ‘‘second phase’’ in the following). At
the end of the first phase, we computed the relevance of each feature.
Next, we gave as input to our framework (and, therefore, also to the
classifier within it) 10% (resp., 20%, 30%, 40%, 50%) of new instances
from the remaining ones. These instances were randomly selected. We
call 𝛥10

𝑟 (resp., 𝛥20
𝑟 , 𝛥30

𝑟 , 𝛥40
𝑟 , 𝛥50

𝑟 ) the corresponding values of 𝛥(𝐹𝑘, 𝐼𝑆𝑗 )
thus obtained (in this case, 𝐼𝑆𝑗 represents the set of instances added

in the various cases). In Fig. 7, we report the results obtained for the
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Table 13
Median relevance of each feature returned by the five classifiers for the Mammographic
Mass dataset.

Model Feature Relevance

Naive Bayes (Zhang, 2004) age 0.000085
shape 0.000613
margin 0.000521
density 0.000042

SVM with polynomial kernel (Chang & Lin, 2011) age 2.402922 ⋅ 10−9

shape 6.369760 ⋅ 10−6

margin 4.756909 ⋅ 10−6

density 0

SVM with radial basis function (Chang & Lin, 2011) age 4.805844 ⋅ 10−9

shape 7.030652 ⋅ 10−6

margin 2.917475 ⋅ 10−6

density 4.805844 ⋅ 10−9

Multi-Layer Perceptron (He et al., 2015) age 0
shape 9.2807971 ⋅ 10−6

margin 5.727522 ⋅ 10−6

density 5.848218 ⋅ 10−8

Random Forest (Breiman, 2001) age 2.402922 ⋅ 10−9

shape 1.542896 ⋅ 10−5

margin 2.776558 ⋅ 10−6

density 2.402922 ⋅ 10−9

Table 14
Values of the function 𝛼(⋅) for the classifiers into consideration and for the

ammographic Mass dataset.
Model Value of 𝛼(⋅)

Naive Bayes (Zhang, 2004) 29.53%
SVM with polynomial kernel (Chang & Lin, 2011) 1.39%
SVM with radial basis function (Chang & Lin, 2011) 0.37%
Multi-Layer Perceptron (He et al., 2015) 2.55%
Random Forest (Breiman, 2001) 0.86%

various classifiers. From the analysis of this figure, we can see that our
framework is very resilient regardless of the classifier used. In fact, for
any feature, the relative variation in relevance is very low, even when
the number of features introduced during the second phase is high.

In the previous test, the gradually inserted instances were randomly
selected. In order to evaluate our framework even in presence of radical
variations in a given direction, we decided to repeat the previous
experiment again by giving 10% (resp., 20%, 30%, 40%, 50%) of
new instances in input to the classifier. These instances were taken
from the ones left for the second phase. However, instead of selecting
them randomly, we chose them all belonging to the same class. When
the testing instances were not sufficient to do this, we derived the
necessary instances using the bootstrap technique (Bruce, Bruce, &
Gedeck, 2020). We call 𝛥10

0 (resp., 𝛥20
0 , 𝛥30

0 , 𝛥40
0 , 𝛥50

0 ) the values of
𝛥(𝐹𝑘, 𝐼𝑆𝑗 ) obtained when the added instances all belong to the class
0. Similarly, we can proceed with classes 1 and 2. These values are
shown in Figs. 8, 9, and 10, respectively.

The analysis of these figures is extremely interesting. In fact, in each
of these cases, the inserted instances simulate a change in the reference
scenario in a specific direction. In this case, it was desirable for our
framework not to be resilient but to be flexible enough to capture the
change and adapt its behavior accordingly. And, indeed, the values of
the relevance variation obtained in all these figures, for all features
and for all classifiers, confirm that our framework exhibits the desired
behavior.

5.3.2. Mammographic mass dataset
In this section, we repeat the previous experiment on Mammo-

graphic Mass. The way we conducted it is exactly the same as the
one adopted for Iris. The only difference is that Mammographic Mass
involves two classes and not three. In Fig. 11, we report the values of
̃10 ̃20 ̃30 ̃40 ̃50
18

𝛥𝑟 𝛥𝑟 , 𝛥𝑟 , 𝛥𝑟 and 𝛥𝑟 obtained in this experiment.
Instead, in Figs. 12 and 13 we show the values we obtained for 𝛥10
𝑖

𝛥20
𝑖 , 𝛥30

𝑖 , 𝛥40
𝑖 and 𝛥50

𝑖 , 0 ≤ 𝑖 ≤ 1.
The analysis of Figs. 11, 12, and 13 confirms what we have already

seen for Iris, namely that, again, our framework is extremely resilient
to the presence of noise and outliers. However, at the same time,
it is flexible and capable of adjusting its behavior in presence of
significant and structural changes of the reference scenario towards a
given direction.

5.4. Additional experiments on real-world case studies

We extended our experiments to real-world case studies, aiming
to further validate the practical applicability of our framework. We
leveraged publicly available datasets to simulate real-world scenarios
and apply our framework to derive insights. In addition, for each
case study, we compared the results obtained by our framework with
those returned by SHAP (Lundberg & Lee, 2017), which, as we saw in
Section 2, is a XAI approach widely used in the literature. We adopted
the implementation of SHAP provided by the shap Python library.2
For each case study, we applied SHAP on the corresponding dataset
and, for each feature, we computed the average of the absolute values
returned by SHAP for it when applied to all the instances of the dataset
and we refer to them as SHAP values. Each average returned by SHAP
can range from the minimum value of 0, indicating that the feature
has no effect on the model’s output (on average), to a maximum value
depending on the data and the model itself, indicating a strong impact
of the feature on the model’s output.

5.4.1. Healthcare diagnosis
In this case study, we applied our framework to a dataset, derived

from Chicco and Jurman (2020), which includes clinical records related
to 12 key features pivotal in predicting heart failure. They are: (i) age:
it indicates the age of the patient, given in years; (ii) anaemia: it is a
binary feature indicating a decrease in red blood cells or hemoglobin;
(iii) creatinine_ phosphokinase: it represents the level of the
CPK enzyme in the blood, measured in mcg/L; (iv) diabetes: it
is a binary feature indicating whether the patient has diabetes; (v)
ejection_fraction: it denotes the percentage of blood leaving
the heart during each contraction; (vi) high_blood_pressure: it
is a binary feature indicating the presence of hypertension in the
patient; (vii) platelets: it quantifies the platelets in the blood, given
in kiloplatelets/mL; (viii) sex: it is a binary feature distinguishing
between female and male patients; (ix) serum_creatinine: it indi-
cates the level of serum creatinine in the blood, measured in mg/dL; (x)
serum_sodium: it represents the level of serum sodium in the blood,
given in mEq/L; (xi) smoking: it is a binary feature indicating whether
the patient smokes; (xii) time: it specifies the follow-up period, mea-
sured in days. The target feature is
death_event: it is a binary feature indicating whether the patient
died during the follow-up period.

We applied our framework on this dataset using XGBoost as clas-
sifier. The framework computed both the relevance and sensitivity of
features. Due to space limitations, in the following we consider only
the relevance. Table 15 shows the median relevance calculated by our
approach for each feature. Then, we applied SHAP using XGBoost as
classifier and calculated the average of the absolute SHAP values for
each feature. They are reported in Table 16.

From the analysis of Tables 15 and 16, we can see that our
framework and SHAP agree that the most important features in de-
termining the death of a patient with hearth diseases are anaemia,
high_blood_pressure, smoking and diabetes. This is rea-
sonable since indeed cardiac deaths are mostly caused by these four
factors.

2 https://github.com/shap/shap.

https://github.com/shap/shap
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Fig. 7. Values of 𝛥10
𝑟 , 𝛥20

𝑟 , 𝛥30, 𝛥40 and 𝛥50 for the various features and classifiers — Iris dataset.
𝑟 𝑟 𝑟
5.4.2. Bank fraud detection
In this case study, we applied our framework to the Paysim Syn-

thetic Financial Dataset (Lopez-Rojas, Elmir, & Axelsson, 2016), which
simulates mobile money transactions based on real transaction samples.
The dataset encompasses records related to 10 key features instrumen-
tal in predicting fraudulent activities. They are: (i) step: it represents
a unit of real-world time, where 1 step equates to 1 h; (ii) type: it
indicates the transaction type, such as CASH-IN, CASH-OUT, DEBIT,
PAYMENT, and TRANSFER; (iii) amount: it quantifies the transaction
amount in local currency; (iv) name_orig: it denotes the initiator of
the transaction; (v) old_balance_orig: it specifies the initiator’s
19

balance before the transaction; (vi) new_balance_orig: it specifies
the initiator’s balance after the transaction; (vii) name_dest: it de-
notes the recipient of the transaction; (vii) old_balance_dest: it
specifies the recipient’s balance before the transaction; (ix)
new_balance_dest: it specifies the recipient’s balance after the
transaction; (x) is_flagged_fraud: it flags massive inter-account
transfers that exceed a specified threshold. The target feature is
is_fraud: it is a binary feature marking transactions executed by
fraudulent agents.

We applied both our framework and SHAP on this dataset using
GBM as classifier. The results obtained are reported in Tables 17 and
18, respectively.

From the analysis of Tables 17 and 18, we can see that our frame-

work and SHAP agree that the most important features in determining a
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Fig. 8. Values of 𝛥10
𝑖 , 𝛥20

𝑖 , 𝛥30
𝑖 , 𝛥40

𝑖 and 𝛥50
𝑖 , 0 ≤ 𝑖 ≤ 2, for the various features and classifiers — Iris dataset, class 0.
(

raudulent activity are amount, name_dest and
s_flagged_fraud, which is reasonable for a human expert.

.4.3. Classifying restaurants based on recommendations on yelp
In this case study we applied our framework to a dataset of reviews

n Yelp.3 After some ETL operations on the dataset, we obtained 9 key
eatures instrumental in predicting the star rating of the restaurant.
hey are: (i) review_id: it is a unique identifier for each review;
ii) user_id: it is an identifier for the user providing the review; (iii)
usiness_id: it is an identifier for the restaurant being reviewed;

3 https://www.yelp.com/dataset.
20
(iv) business_city: it is the city where the restaurant is located;
(v) business_category: it denotes the types of cuisines or themes
of the restaurant; (vi) text: it is the textual content of the review;
(vii) useful: it is the number of users who found the review useful;
viii) funny: it is the number of users who found the review funny;
(ix) cool: it is the number of users who found the review cool. The
target feature is stars: it represents the star rating given by the user
to the restaurant.

We applied our framework and SHAP on this dataset using KNN
as classifier. The results obtained are reported in Tables 19 and 20,
respectively.

From the analysis of Tables 19 and 20, we can see that our frame-
work and SHAP agree that the most important features in determining

https://www.yelp.com/dataset
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he star rating of the restaurant are useful, cool and user_id. This
esult seems reasonable since the success of a review depends primarily
n the user who made it and how it was judged by other users.

. Conclusion

In this paper, we have proposed a model-agnostic, network-based
AI framework to explain the behavior of any classifier. Our framework

s based on network theory; therefore, it can benefit from the large
mount of results that researchers in this area have found in the past.
e have seen that our framework reaches its goal by evaluating the

elevance of features in the behavior of a classifier. We have also
ompleted our framework with a set of quantitative indicators aiming
21
o support its sensitivity analysis when it is applied in a given scenario.
e have also highlighted the similarities and differences between our

pproach and related ones already proposed in the literature. Finally,
e have illustrated an experimental campaign to assess the adequacy
f our framework.

The main contributions of this paper are as follows: (i) we propose a
ew model-agnostic, network-based XAI framework for classifiers; (ii)

we present a new measure, called dyscrasia, which evaluates the consis-
tency of the occurrences of a feature in supporting the classification of
the corresponding instances; (iii) we define a new approach to compute
the relevance of a feature in classifying the corresponding instances;
(iv) we introduce some quantitative indicators to support the sensitivity

analysis of our approach.
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Fig. 10. Values of 𝛥10
𝑖 , 𝛥20

𝑖 , 𝛥30
𝑖 , 𝛥40

𝑖 and 𝛥50
𝑖 , 0 ≤ 𝑖 ≤ 2, for the various features and classifiers — Iris dataset, class 2.
This paper should not be considered an ending point but rather a
tarting point for further research. In fact, it is possible to think of
everal developments of the research described here. First, we might
onsider latent structural properties. Indeed, the current framework
perates as a solid foundation by considering instances as nodes in a
etwork with the direction of the arcs capturing the confidence level
f the classifier decisions. This modeling represents a macroscopic view
f the classifier behavior. Analysis of latent structural properties would
llow us to gain deeper insights. For instance, one might consider
tudying subnetworks, node centrality, and node influence. In this
egard, some subnetworks might co-occur frequently or exhibit unique
ehaviors; in either case, the study of subnetworks might lead to the
iscovery of insights concerning classifier behavior. For example, the
22
presence of certain sets of instances that consistently cluster together
in subnetworks might lead to think about inherent biases or strong
correlations of those instances. In addition, by examining the values
of centrality measures in nodes we could identify which instances play
a pivotal role in the overall behavior of the classifier. For example,
instances with anomalous values of one or more features or instances
carrying critical information for classification could be analyzed as
potential hubs in the network.

Furthermore, it would be interesting to consider a totally dif-
ferent network-based model, such as one employing multilayer net-
works (Bonifazi, Breve, Cirillo, Corradini, & Virgili, 2022; Newman,
2018), to provide a new point of view and capture different properties
than we did with the framework proposed in this paper. For example,
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Fig. 11. Values of 𝛥10
𝑟 , 𝛥20

𝑟 , 𝛥30
𝑟 , 𝛥40

𝑟 and 𝛥50 for the various features and classifiers — Mammographic Mass dataset.
𝑟
each layer in the multilayer network could represent a subset of data
features. This could allow our framework to analyze how different
feature sets influence the classifier’s decision together or alone. In
addition, we would like to test the contribution of our framework in
a responsible AI context by considering aspects like fairness, ethics,
privacy and accountability. For instance, an extension to identify
features that potentially lead to biased or unfair decisions could be
designed. Recognizing these features can help in developing methods
to either balance their influence or mitigate their impact. Last but not
least, we would like to extend our approach so that it can work in
Federated Learning scenarios (Barredo Arrieta et al., 2020) using local
model knowledge. In particular, we might consider our framework to
23

generate explanations locally, that is, on each decentralized device or
server in the Federated Learning setup. These local explanations can
be then aggregated in a privacy-preserving way to generate a global
explanation that reflects the collective insights, which maintains a
holistic view of the classifier while resorting to local data privacy.

Another particularly interesting research problem to be studied in
the future involves the investigation of the interactions between our
model-agnostic framework and neurosymbolic models (Garcez & Lamb,
2023). In this scenario, our framework can be adopted not only to
interpret the ‘‘black-box’’ aspects of classifiers but also to decode the
symbolic and logical rules employed in a neurosymbolic system. The
measure of dyscrasia could be extended to assess the consistency of
these symbolic rules across instances. At the same time, the network-

based representation could be enriched by explicitly capturing symbolic
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Fig. 12. Values of 𝛥10
𝑖 , 𝛥20

𝑖 , 𝛥30
𝑖 , 𝛥40

𝑖 and 𝛥50
𝑖 , 0 ≤ 𝑖 ≤ 1, for the various features and classifiers — Mammographic Mass dataset, class 0.
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Fig. 13. Values of 𝛥10
𝑖 , 𝛥20

𝑖 , 𝛥30
𝑖 , 𝛥40

𝑖 and 𝛥50
𝑖 , 0 ≤ 𝑖 ≤ 1, for the various features and classifiers — Mammographic Mass dataset, class 1.
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Table 15
Median relevance of each feature returned by our framework for healthcare diagnosis.

Feature Relevance

age 0.006332
anaemia 0.006757
creatine_phosphokinase 0.006110
diabetes 0.006677
ejection_fraction 0.006294
high_blood_pressure 0.006708
platelets 0.006147
serum_creatine 0.006147
serum_sodium 0.006245
sex 0.006549
smoking 0.006694
time 0.006594

Table 16
Average of the absolute SHAP values for each feature returned by SHAP for healthcare
diagnosis.

Feature Mean of absolute SHAP values

age 0.2387
anaemia 1.7350
creatine_phosphokinase 0.0607
diabetes 0.6396
ejection_fraction 0
high_blood_pressure 0.6905
platelets 0.4374
serum_creatine 0.3960
serum_sodium 0
sex 0
smoking 0.6128
time 0

Table 17
Median relevance of each feature returned by our framework for bank fraud detection

Feature Relevance

step 0.00005492
type 0.00005648
amount 0.00005732
name_orig 0.00005489
old_balance_orig 0.00005478
new_balance_orig 0.00005479
name_dest 0.00005745
old_balance_dest 0.00005687
new_balance_dest 0.00005645
is_flagged_fraud 0.00005685

Table 18
Average of the absolute SHAP values for each feature returned by SHAP for bank fraud
detection.

Feature Mean of absolute SHAP values

step 0.2542
type 0.8254
amount 0.8563
name_orig 0.0974
old_balance_orig 0
new_balance_orig 0
name_dest 1.8902
old_balance_dest 0.7465
new_balance_dest 0.5685
is_flagged_fraud 0.7842

relationships. This would result in networks whose nodes could rep-
resent not only instances, but also symbolic rules, and whose arcs
could model logical dependencies. Finally, an additional challenging
context that we believe is worthy of future investigation concerns the
exploration of the temporal dynamics of black-box classifiers. In this
context, time-series analysis could be incorporated into our frame-
work to allow us to study how feature relevance and dyscrasia evolve
over time, especially for classifiers dealing with dynamic data sources.
26

Understanding the temporal dynamics can provide insights into how
Table 19
Median relevance of each feature returned by our framework when applied on our Yelp
dataset.

Feature Relevance

review_id 0.0007523
user_id 0.0007690
business_id 0.0007301
business_city 0.0007538
text 0.0007612
useful 0.0007877
funny 0.0007634
cool 0.0007756

Table 20
Average of the absolute SHAP values for each feature returned by SHAP when applied
on our Yelp dataset.

Feature Mean of absolute SHAP values

review_id 0.0251
user_id 0.7453
business_id 0
business_city 0.4893
text 0.6842
useful 1.7523
funny 0.7358
cool 0.8569

classifiers adapt and change their decisions over time, thus allowing
for a deeper understanding of their behavior.
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