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A B S T R A C T   

There is an increasing interest in the use of nutraceuticals and plant-derived bioactive compounds from foods for 
their potential health benefits. For example, as a major active ingredient found from cruciferous vegetables like 
broccoli, there has been growing interest in understanding the therapeutic effects of sulforaphane against diverse 
metabolic complications. The past decade has seen an extensive growth in literature reporting on the potential 
health benefits of sulforaphane to neutralize pathological consequences of oxidative stress and inflammation, 
which may be essential in protecting against diabetes-related complications. In fact, preclinical evidence sum
marized within this review supports an active role of sulforaphane in activating nuclear factor erythroid 2-related 
factor 2 or effectively modulating AMP-activated protein kinase to protect against diabetic complications, 
including diabetic cardiomyopathy, diabetic neuropathy, diabetic nephropathy, as well as other metabolic 
complications involving non-alcoholic fatty liver disease and skeletal muscle insulin resistance. With clinical 
evidence suggesting that foods rich in sulforaphane like broccoli can improve the metabolic status and lower 
cardiovascular disease risk by reducing biomarkers of oxidative stress and inflammation in patients with type 2 
diabetes. This information remains essential in determining the therapeutic value of sulforaphane or its potential 
use as a nutraceutical to manage diabetes and its related complications. Finally, this review discusses essential 
information on the bioavailability profile of sulforaphane, while also covering information on the pathological 
consequences of oxidative stress and inflammation that drive the development and progression of diabetes.   

1. Introduction 

Diabetes mellitus is considered one of the greatest catastrophes 
facing the world health structures today. This condition currently ranks 

among the top ten leading causes of deaths globally, according to the 
World Health Organization (WHO) [1]. Diabetes mellitus defines a state 
of impaired glucose tolerance that is characterized by hyperglycemia 
and insulin resistance, with the latter being considered by far the most 
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important characteristic feature of type 2 diabetes (T2D). Prolonged 
exposure to hyperglycemia within a diabetic state may give rise to many 
devastating outcomes that directly contribute to reduced life expec
tancy. In fact, within their lifetime, individuals with diabetes are likely 
to develop complications to the eye, kidneys, neurons, and cardiovas
cular system, leading to the pathogenesis of retinopathy, nephropathy, 
neuropathy, and cardiovascular disease (CVD). With most people with 
diabetes likely to die of CVD when compared to those without this 
condition. This explains accelerated efforts directed at uncovering new 
pharmacological agents that can effectively manage diabetes and its 
related complications (Fig. 1). 

Over the years, both insulin and metformin have been effectively 
used to manage diabetic complications, which has somehow prolonged 
the lives of people with this condition [2,3]. In addition, lifestyle 
modification that involve controlling one’s diet and regular physical 
activity have equally contributed to effective management of diabetes 
and its related complications [4,5]. However, the escalating numbers in 
people living with this condition, including associated deaths, warrant a 
need for alternative or complementary therapies to curb 
diabetes-related complications. Alternatively, medicinal plants have 
been a good and consistent source for the development of pharmaceu
tical drugs that are used to combat many diseases. For example, over 40 
% of pharmaceutical formulations are based on natural products, while 
groundbreaking drugs like metformin are known to have originated 
from traditional medicine [6]. Many medicinal plants have been 
consumed as part of food since ancient times. These medicinal plants 
and food sources are rich in active ingredients that are increasingly 
explored for their therapeutic potential against many diseases. 

Sulforaphane, is an active ingredient of cruciferous vegetables like 
broccoli, cabbage, and cauliflower. Growing literature has investigated 
a connection between the use of sulforaphane or plant extracts 

containing this bioactive compound with some health benefits, 
including the amelioration of complications of diabetes and CVDs 
[7–12]. In fact, the therapeutic properties of sulforaphane are widely 
attributed to its capacity to activate the antioxidant responses, which 
leads to leads enhanced expression of genes that code for cytoprotective 
and detoxifying proteins. As increasingly envisioned [7–11], enhancing 
the intracellular antioxidant responses to alleviate detrimental effects of 
oxidative stress and inflammation appears to be the predominant 
mechanism by which sulforaphane protect against pathological features 
of diabetes. However, to our knowledge, no review has provided a 
landscape analysis of scientific literature informing on how sulforaph
ane affects a broad spectrum of diabetes-related complications. This 
includes its benefits, possible side effects, bioavailability profile, and 
food sources. 

Here, prominent online databases like PubMed and Google Scholar 
were accessed to retrieve information reporting on sulforaphane and its 
effects on diabetes-related complications. Broad search terms were used 
to identify relevant studies, including “sulforaphane”, “diabetes melli
tus”, and “diabetic complications”. Extracted information was mainly 
included in vivo preclinical models of diabetes. For clinical relevance, 
reviewed information was extended to assessing how foods rich in this 
bioactive compound affects people living with diabetes. A general 
overview of diabetes, its classification, and prominent pathological 
features involving oxidative stress and inflammation is added to un
derscore the potential therapeutic effects of sulforaphane. 

2. An overview of diabetes mellitus, its prevalence, and its 
pathological consequences 

Diabetes mellitus is a chronic medical disorder that is characterized 
by elevated blood glucose levels “a hyperglycemic state” that is 

Fig. 1. A general overview of metabolic syndrome and its associated complications. An impaired metabolic state, likely characterized by obesity is associated with 
the development or pathological consequences that affect the pancreas, liver, skeletal muscle, kidneys, neurons, and the heart tissue, potentially leading to the 
development of diabetes, non-alcoholic fatty liver disease, diabetic nephropathy, diabetic neuropathy, and skeletal muscle insulin resistance. 
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consistent with impaired insulin action. Impairments in insulin secretion 
within the human body is considered one of the fundamental features of 
diabetes. Current estimates show that at least 8.5 % of adults aged 18 
years and older have diabetes [13]. In 2019, diabetes was directly 
responsible for about 1.5 million deaths, of which 48 % of all deaths due 
to diabetes occurred prior to the age of 70 years [14]. Even worse, this 
global number of adults with this condition are estimated to reach 783 
million by 2045 [13]. There are two main types of diabetes mellitus. 
First is type 1 diabetes (T1D), which cannot be prevented and represents 
the predominant form that occurs at childhood or in juveniles. The 
second is T2D, which accounts for over 90 % of diabetes cases world
wide, and this form of the disease can be prevented or delayed 
depending on a specific intervention applied [14]. 

The rising numbers of people with obesity and the metabolic syn
drome [15] are largely fueled by unwanted lifestyle modifications that 
are coupled by reduced physical activity and excess nutrient availability 
as a result of overnutrition [16]. This consequence can lead to the pro
gression of T2D, with excess nutrient availability implicated in many 
undesirable effects that favor the development of insulin resistance. 
Indeed, conditions of obesity and T2D are consistent with elevated levels 
of non-esterified fatty acids and adipogenic factors that interfere with 
insulin signaling by blocking the phosphatidylinositol 3-kinase 
(PI3K)/protein kinase B (Akt)/ mammalian target of rapamycin 
(mTOR) pathway. This is one of the predominant mechanisms that is 
increasingly targeted to reverse insulin resistance and improve glucose 
metabolism [17,18]. Well beyond the adverse effects of insulin resis
tance [19], exacerbated levels of lipid products such as ceramides and 
diacylglycerols are directly implicated in the progression of pathological 
effects of T2D [20,21]. These pathological effects can cause damage to 
different cellular systems by augmenting the lipogenic transcription 
factor sterol regulatory element binding protein 1c (SREBP1c), stimu
lating fatty acid synthase, mobilization of lipid droplet proteins to 
enhance retention of triacylglycerol, and stimulating transcription of 
lipogenic enzymes [22]. This may also be accompanied by impairments 
in energy regulation, through alterations of AMP-activated protein ki
nase (AMPK), an essential energy sensor that regulates cellular meta
bolism [23]. This has been prominently reported in experimental models 
of diabetes [18,24,25]. Interestingly, some antidiabetic drugs like met
formin are known to activate AMPK to improve intracellular glucose 
uptake to enhance insulin sensitivity and ameliorate diabetes-associated 
complications [26,27]. Anyway, the past few years have seen a great 
interest therapeutic agents such as glucagon like peptide-1 receptor 
agonists (GLP1-RA) in improving the metabolic status by alleviating the 
detrimental effects of inflammation and impaired immune response 
within pathological conditions of diabetes [28,29]. With reviewed evi
dence indicating that new antidiabetic drugs, particularly GLP1-RA and 
tirzepatide, are the most effective in promoting weight loss, beyond their 
role in ameliorating oxidative stress and inflammation in patients with 
T2D [30,31]. Indeed, beyond obesity or excess nutrient availability, 
there are many diverse pathological consequences by which hypergly
cemia can instigate toxic effects on cells, tissues, and organ systems. 
Evidence [32–34] has indicated that hyperglycemia can cause destruc
tion to vital metabolic processes and drive the progression of diabetes, 
though an upsurge in the polyol pathway, activation of protein kinase, 
and enhancement in hexosamine biosynthetic pathway, to promote the 
formation of advanced glycation end-products (AGEs) and ultimately 
alteration of essential gene expression [35–37]. In fact, the generation of 
oxidative stress and the destructive consequences of inflammation 
highlight the fundamental processes linked with the development and 
acceleration of diabetes and its complications. 

3. Oxidative stress and inflammation as major therapeutic 
targets in diabetes mellitus 

Oxidative stress describes an imbalance between the toxic effects of 
free radical species, mainly via overproduction of reactive oxygen 

species (ROS), and the suppressed ameliorative capability of intracel
lular antioxidants. This is a well-studied phenomenon, predominantly 
for its contribution to the development and progression of many disease 
conditions including diabetes mellitus [38,39]. The essential role of ROS 
in cellular signaling or essential physiological processes is acknowl
edged [40], however uncontrolled production of these molecules can 
cause damage to tissues by accelerating cellular apoptosis. Within a 
diabetic state, both hyperglycemia and lipid toxicity, can drive the 
destructive effects of oxidative stress, leading to cellular damage [34]. 
This process is implicated in many conditions of diabetes, including 
retinopathy, nephropathy, neuropathy, and CVDs [41,42]. Because of 
their significant contribution to the global number of deaths occurring 
each year [14,43], coronary artery disease (CAD) and diabetic cardio
myopathy (DCM) remain the leading forms of CVDs. While abnormal
ities within the endothelium driven by nitric oxide dysregulation that 
are mainly associated with atherosclerosis uniquely influence the 
development of CAD [44,45], toxic ROS can directly cause damage to 
the cardiac tissue, giving rise to DCM [46]. By now, many sources of ROS 
have been described in literature, including the obscured activity of 
nicotinamide adenine dinucleotide phosphate oxidase (NADPH) oxidase 
[34,47], as well as those associated with high oxygen consumption like 
peroxisomes, endoplasmic reticulum, and mitochondria [48]. In fact, 
ferroptosis, an intracellular iron-dependent form of cell death that is 
different from apoptosis, necrosis, and autophagy, is also facilitated by 
oxidative stress, and can have a profound effect during the development 
and progression of many destructive effects of diabetes [49]. 

Inflammation is another pathological feature that shares a close 
relationship with oxidative stress and may have devastating outcomes 
during the development and progression of diabetes-associated com
plications. Briefly, inflammation infers to the body’s response to a toxic 
stimulus and is necessary to initiate the healing process. However, 
pathological conditions like diabetes, mainly because of persistent hy
perglycemic state, are associated with impaired inflammatory process, 
as a result drive undesired cellular response. For example, inflamed 
pancreatic tissue, especially inadequacies in insulin secretion, have long 
been associated with impaired immunological processes, this includes 
the recruitment and dysregulations in T-cell biology [50,51]. Impor
tantly, abnormal T cell activation can drive chronic inflammatory, and 
even increase the risk of CVD in T2D [52,53]. Consistently, raised 
Th1/Th2 cytokines such as interferon-gamma (IFN-γ)/interleukin (IL)−
5 and IL-2/IL-5 ratios are considered strong contributors to the wors
ening of diabetic conditions like retinopathy and CVD, in both preclin
ical models and subjects with T2D [54]. Many studies agree that 
elevation of pro-inflammatory markers like tumor necrosis factor-alpha 
(TNF-α), highly sensitive-C reactive protein (CRP), IL-6, IL-1β can 

Fig. 2. A chemical structure of sulforaphane and natural sources rich in this 
bioactive compound, including broccoli, cabbages, boy choy, and cauliflower. 
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directly contribute to tissue damage, ageing, and worsening conditions 
such as obesity and T2D [55,56]. As a result, beyond oxidative stress, 
exacerbated pro-inflammatory response, has become an essential path
ological component to target to alleviate tissue damage improve meta
bolic function [57–60]. 

4. Available treatment for diabetes mellitus and antioxidants as 
alternative or complementary therapy 

Available and effective interventions for diabetes to lower blood 
glucose levels mainly involve diet and physical activity [5,14]. This 
includes common antidiabetic agents like insulin and metformin that 
have been used for many years to manage glucose control to reduce the 
risk factors that damage blood vessels. Indeed, for many years, insulin 
replacement has been the only therapy for most people living with T1D. 

Well beyond immunotherapies targeting T cells which mainly protect 
against pancreatic beta-cell damage [61], improved comprehension of 
insulin and glucose physiology has necessitated the development of 
better insulins that will enhance the quality of life for those already 
diagnosed with this irreversible condition [62]. Ultimately, 
sodium-glucose transport protein 2 inhibitors may be the most potent 
adjuvant therapy to insulin in T1D, if used prudently and with appro
priate guidance to reduce the risk of diabetic ketoacidosis [63,64]. 
Importantly, this class of drugs can indirectly target the IL-1β pathway 
and thus alleviate low-grade inflammation, a clinically relevant feature 
in diabetic patients with high CVD risk [64]. Moreover, people with T2D 
can be treated with oral medication but may also need insulin, beyond 
the use of metformin, which is the common medical prescribed to lower 
blood glucose and other relevant complications [14]. Besides its 
recognized pleiotropic effects [65], the use of metformin has been 

Table 1 
An overview of preclinical evidence reporting on the therapeutic effects of sulforaphane against diabetes-related cardiovascular complications.  

Author, year Experimental model Dose and intervention period Main findings 

[115] Miao 
et al., 
2012 

Streptozotocin (STZ)-induced type 1 
diabetic (T1D) FVB mice 

Received sulforaphane (injected subcutaneously) 
at 0.5 mg/kg 5 days a week for 3 months 

Protected against diabetes-induced aortic damage by 
suppressing markers of oxidative stress and inflammation in the 
aorta. This was followed by enhanced expression of nuclear 
factor erythroid 2–related factor 2 (Nrf2) and its downstream 
antioxidants 

[116] Bai 
et al., 
2013 

STZ-induced T1D FVB mice Received sulforaphane (injected subcutaneously) 
at 0.5 mg/kg 5 days a week for 3 and 6 months 

Protected against diabetic cardiomyopathy (DCM) by reducing 
high blood pressure and cardiac dysfunction. Also ameliorated 
hypertrophy and fibrosis and alleviated markers of oxidative 
stress (3-nitrotyrosine and 4-hydroxynonenal-4-HNE) and 
inflammation (tumor necrotic factor(TNF)-α and plasminogen 
activator inhibitor 1 expression), through activation of Nrf2 

[117] Wang 
et al., 
2014 

High fat diet (HFD) + STZ- induced type 2 
diabetic (T2D) C57BL/6 J mice 

Received sulforaphane (injected subcutaneously) 
at 0.5 mg/kg 5 days a week for 3 months 

Protected against diabetes-induced aortic damage by reducing 
wall thickness and structural derangement, along with 
decreasing markers of fibrosis (connective tissue growth factor 
and transforming growth factor), inflammation (tumor necrosis 
factor-α and vascular cell adhesion molecule 1), oxidative/ 
nitrative stress like 3-nitrotyrosine and 4-HNE (4- 
hydroxynonenal), and apoptosis. This was followed by 
enhanced Nrf2 expression 

[101] Xu 
et al., 
2016 

Transgenetic preclinical model of T2D 
(db/db) (mice) 

Received sulforaphane (orally) at 0.5 and 1 mg/kg 
for 3 months 

Protected against DCM by improving cardiac function and 
ameliorating pathological changes (hypertrophy, fibrosis, 
inflammation, and oxidative damage), through activation of 
Nrf2 and its downstream gene expression 

[118] Gu 
et al., 
2017 

HFD + STZ-induced T2D Nrf2 knockout 
(KO) mice, metallothionein-KO, and wild 
type (WT) mice 

Received sulforaphane (injected subcutaneously) 
at 0.5 mg/kg 5 days a week for 4 months 

Protected against DCM by alleviating cardiac dysfunction, 
including markers of oxidative damage, inflammation, fibrosis, 
and hypertrophy, with enhancement of Nrf2 and 
metallothionein expressions in the WT mice. Such effects were 
not seen in Nrf2-KO mice but protected against cardiac damage 
in metallothionein-KO mice 

[119] 
Pereira 
et al., 
2017 

Transgenetic (T2D) Goto-Kakizaki rats, an 
animal model T2D 

Received sulforaphane (intraperitoneal) at 1 mg/ 
Kg, or in combination with pyridoxamine (in 
drinking water) at 100 mg/Kg/day, for 8 weeks 

Ameliorated endothelial dysfunction in aorta and mesenteric 
arteries by reducing vascular oxidative damage, advanced 
glycation end products (AGEs) and glycated hemoglobin 
(HbA1c) levels. Its combination with pyridoxamine was more 
effective in decreasing systemic free fatty acids levels, 
normalizing endothelial function, nitric oxide bioavailability 
and glycation 

[120] Xin 
et al., 
2018 

Transgenic (FVB) mice, including Nrf2-KO 
and their WT C57BL/6 J control mice 

Received sulforaphane (injected subcutaneously) 
at 0.5 mg/kg 5 days a week for 3 months 

Protected against DCM by preventing angiotensin II-induced 
cardiac oxidative stress, inflammation, remodeling, and 
dysfunction. This was related to the activation of Nrf2 and 
protein kinase B (Akt) 

[121] Wang 
et al., 
2019 

Transgenic (T1D) OVE26 and FVB mice Received sulforaphane (orally) at 0.5 mg/kg, and/ 
or zinc sulphate (5 mg/kg) for 5 days a week for 18 
weeks 

Combination treatment was more effective in preventing DCM 
by improving cardiac dysfunction, ameliorating pathological 
alterations, and remodelling, while lessening cardiac 
hypertrophy, fibrosis, as well as markers of inflammation and 
oxidative damage 

[98] Sun 
et al., 
2020 

HFD + STZ- induced (T2D) C57BL/6 J 
mice with AMP-activated protein kinase 
(AMPK) isoform 2 and WT mice 

Received sulforaphane (injected subcutaneously) 
at 0.5 mg/kg 5 days a week for 3 months 

Protected against DCM by alleviating cardiac remodeling, 
including complications of inflammation and oxidative damage 
WT mice. In AMPKα2-KO mice, restoring cardiac function was 
associated with AMPK-mediated lipid lowering effects, as well 
as activation of Nrf2 through AMPK, protein kinase B (AKT), 
and glycogen synthase kinase-3 beta (GSK3β) pathways 

[100] Wang 
et al., 
2022 

HFD + STZ- induced (T2D) FVB mice Received sulforaphane (injected subcutaneously) 
at 0.5 mg/kg 5 days a week for 3 months 

Protected against DCM by ameliorating cardiac ferroptosis. 
This protective effect on ferroptosis was dependent on 
activation of Nrf2 and modulation of AMPK, resulting in 
alleviation of diastolic dysfunction  
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associated with weight loss, enhanced insulin sensitivity, alleviation of 
inflammation, and improvement in adipokine levels in diabetic condi
tions [66,67]. Unfortunately, the rising trends of diabetes [13] warrants 
further investigation into alternative or complementary therapies to 
reduce the disease burden. 

The use of nutraceuticals, as complementary medicine, to counteract 
diverse metabolic conditions has risen over the years [68,69]. Nutra
ceuticals can be described as substances that have physiological ad
vantages or offer protection against chronic diseases [70]. These 
substances are considered to have abundant antioxidant that are 
necessary to promote health and prevent life threatening diseases such 
as diabetes [70]. Many studies have reported on the potential thera
peutic effects of antioxidants against diabetic complications. For 
example, our group has increasingly explored the beneficial effects of 
dietary supplements rich in antioxidants like selenium, curcumin, co
enzyme Q10, omega-3 fatty acids, and vitamin C against metabolic dis
eases, including complication linked with diabetes [71–74]. No doubt 
that the focal point of current research has been to determine how foods 
rich in antioxidants can prolong the lives of people with diabetes by 
ameliorating pathological features of this condition like oxidative stress 
and inflammation. Besides the fact that these molecules can directly 
block and neutralize the damaging effects of ROS [75], their capacity to 
intracellular antioxidants to alleviate tissue damage by activating nu
clear factor erythroid 2-related factor 2 (Nrf2) signaling pathway has 
attract considerable interest [76,77]. Notably, increased expression of 
genes and enzymes that transcribe cytoprotective defense antioxidants 
like glutathione peroxidase, superoxide dismutase, heme oxigenase-1 
(HO-1), thioredoxin 1, and NADPH quinone oxidoreductase 1 (NQO-1) 
has been directly attributed to the activation or enhanced expression of 
Nrf2 [76,78,79]. Beyond the amelioration of oxidative stress [80], 

upregulation of Nrf2/Kelch-like ECH-associated protein 1 (Keap1) signal 
pathway and its downstream genes, may block inflammation by inter
fering with nuclear factor kappa-light-chain-enhancer of activated B 
cells (NF-κB) pathway and NLRP3 (NOD-, LRR- and pyrin 
domain-containing protein 3) inflammasome [81,82]. Both NF-κB 
pathway and NLRP3 inflammasome are well described mechanisms of 
inflammation that are activated in response to sustained hyperglycemia 
and may have a profound effect in causing tissue damage, leading to the 
progression of diabetes-associated complications [83,84]. While herbal 
medicine and some nutraceuticals have been increasingly evaluated for 
its capacity to protect against oxidative stress and inflammation by 
activating Nrf2 to preserve cellular function [78,82]. 

5. The discovery of sulforaphane as a bioactive isothiocyanate 

5.1. A general overview of sulforaphane 

Cruciferae or Brassicaceae are an outstanding source of bioactive 
compounds such as polyphenols, essential minerals, ascorbic acid, and 
isothiocyanates [85]. This family consist of edible green plants species 
such as Brassica oleracea var. italica (broccoli), Brassica oleracea var. 
capitata (cabbage), Brassica oleracea var. botrytis (cauliflower), and 
Brassica oleracea var. sabellica (kale) that contain important compounds 
like glucoraphanin. This compound is mainly found in the aerial por
tions of the plant such as flower buds and seeds [86]. Fig. 2 displays a 
chemical structure of sulforaphane and natural sources rich in this 
bioactive compound, including broccoli, cabbages, boy choy, and 
cauliflower. Naturally, glucoraphanin, 4-(methylsulfinyl)butyl glu
coslinolate, is chemically stable and biologically inert, however, upon 
consumption (biting or chewing), glucoraphanin reacts with the enzyme 

Table 2 
An overview of preclinical evidence reporting on the therapeutic effects of sulforaphane against diabetic neuropathy or associated complications.  

Author, year Experimental model Dose and intervention period Main findings 

[124] Negi 
et al., 2011 

Streptozotocin (STZ)-induced 
type 1 diabetic (T1D) Sprague- 
Dawley rats 

Received sulforaphane at 0.5 and 1 mg/kg 
intraperitoneally for 6 weeks 

Protected against diabetic neuropathy by improving motor nerve 
conduction velocity, nerve blood flow and pain behavior, while 
reducing malondialdehyde (MDA) levels. This was accompanied by 
activation of nuclear erythroid 2-related factor 2 (Nrf2) and 
downstream targets hemeoxygenase-1 (HO-1) and NAD(P)H: quinone 
oxidoreductase 1 (NQO-1) in neuro2a cells and sciatic nerves. Also, 
reduced the expression of nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-κB) and IκB kinase (IKK) phosphorylation as 
well as that of inducible nitric oxide synthase (iNOS) and 
cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) and 
interleukine-6 (IL-6) levels 

[125] Souza 
et al., 2013 

High fat diet (HFD)-induced 
type 2 diabetic (T2D) Wistar rats 

Received sulforaphane (orally) at 1 mg/kg for 4 
months 

Protected against diabetes associated changes on the cerebral cortex 
and hypothalamus by improving glucose tolerance and liver 
triacylglycerols. This was followed by reducing the expression of 
glucose transporter (GLUT)3 in the cortex and hypothalamus 

[126] Wang 
et al., 2016 

STZ-induced T1D Sprague- 
Dawley rats 

Received sulforaphane (orally) at 25 mg/kg for 14 
days 

Protected against neuronal apoptosis and memory impairment by 
correcting the abnormal expression of caspase-3 and myeloid cell 
leukemia 1 (MCL-1), while also improving neurotropic factors protein 
kinase B (Akt), glycogen synthase kinase-3 beta (GSK3β) 

[127] 
Moustafa 
et al., 2018 

Nicotinamide and STZ-induced 
T1D Wistar rats 

Received sulforaphane (orally) at 1 mg/kg for 15 
days 

Protected against diabetic peripheral neuropathy by ameliorating 
oxidative stress, inflammation, and extracellular matrix remodeling. 
This was specific to reducing sciatic nerve MDA, nitric oxide, 
interleukin-6, and matrix metalloproteinase-2 and − 9 contents. While 
also decreasing sciatic nerve DNA fragmentation and expression of 
cyclooxygenase-2 and nuclear factor kappa-B p65. Meanwhile, it 
increased sciatic nerve superoxide dismutase and interleukin-10 
contents 

[128] Pu et al., 
2018 

Transgenic T2D (db/db) mice Received sulforaphane (intraperitoneally) at 1 mg/ 
kg for 28 days 

Protected against cognitive impairments and Alzheimer’s disease-like 
lesions by reducing levels of amyloid-β oligomers as well as activation 
of Nrf2 and the downstream antioxidants like HO-1 and NQO-1, which 
was accompanied by reduced the levels of reactive oxygen/nitrogen 
species (ROS/RNS) in mouse brains 

[129] Sharma 
et al., 2021 

STZ-induced T1D Wistar rats Received sulforaphane (orally) at 25 mg/kg alone or 
in combination with, a glycoprotein ulinastatin at10 
000 U/kg for 26 days 

Protected against vascular dementia related complications by 
improving endothelial dysfunction and improving animal behavior. 
These were accompanied by amelioration of other abnormalities like 
brains’ oxidative stress, inflammation, acetylcholinesterase (AChE)- 
activity, and cerebral cortex histopathological changes  

S.X.H. Mthembu et al.                                                                                                                                                                                                                         



Pharmacological Research 196 (2023) 106918

6

myrosinase, a ß-thioglucosidase. Notably, this enzyme hydrolysis glu
coraphanin to liberate glucose and form an unstable aglucone that 
spontaneously rearranges to a range of reactive products, such as iso
thiocyanate sulforaphane [85,86]. Sulforaphane, 1-isothiocyanato-4-(
methylsulfinyl)butane), is a sulfur-rich compound, known of its role as 
an antioxidant and potent stimulator of endogenous detoxifying en
zymes [87]. Sulforaphane has become the most attractive product of 
glucoraphanin due to its remarkable health-promoting properties. Going 
back, sulforaphane, was firstly synthesized around 1940’s, during the 
period to which it also merged that this molecule was contained in hoary 
cress (Cardaria draba), broccoli, and cabbage [88]. Since then, various 
groups have synthesized this compound [89]. According to the litera
ture, sulforaphane has generated great interest in the past decade, with 
an exponentially growing number of scientific articles reaching a total of 
2799 on PubMed, since 1948 [90], which is in part due to its envisaged 
health promoting properties. Such accumulating evidence is related to 
the effects of sulforaphane ameliorating complications linked with 
cancer [91,92], hypertension [93], diabetes [7], and obesity [94,95]. 
The mechanism underlying the health-promoting effect of sulforaphane 
relates to its activation of Nrf2/Keap1 signaling pathway [7–11]. This 
action generally leads to enhanced intracellular antioxidant response 
and has been reported in human subjects consuming cruciferous vege
tables [96–101]. Thus, there has been a general interest in under
standing the therapeutic effects of sulforaphane against diseases, 
including diabetes mellitus. 

5.2. Metabolism and bioavailability of sulforaphane 

No doubt there has been a need to exploit the health-promoting ef
fects of sulforaphane in humans. Briefly, in humans, sulforaphane can be 
administered directly in its active form or as glucoraphanin which un
dergoes the hydrolysis during digestion by the action of vegetable and 
gut microflora myrosinase [8,85,102]. Humans or mammalian do not 
produce the enzyme, myrosinase; however, the conversion of glucor
aphanin to sulforaphane still occurs. Apparently, this crucial can be 
carried out by the bacterial microflora of the gastrointestinal tract [8,85, 
102]. The content of these bacterial microflora can be affected by several 
factors such mechanical cleansing or antibiotic treatment which can 
reduce the glucosinolate conversion in healthy human subjects [103]. 
This indicates that the gastrointestinal microflora represents a critical 
factor in determining the extent of glucosinolate hydrolysis. After 
intake, sulforaphane follows the mercapturic acid pathway until its 
conversion in dithiocarbamates before final excretion [85]. After ab
sorption, glucoraphanin and sulforaphane may be reduced to their 
methylthiobutyl analogue, commonly known as glucoerucin and erucin 
respectively, either through enzymic activity by the gut microbiota or 
non-enzymically through changes in the redox environment [8104]. 
Compared to glucoraphanin, sulforaphane is rapidly absorbed and 
eliminated with small inter-individual variations and typical urinary 
excretion of at least 70 % of the dose, whereas the conversion of glu
coraphanin is slow and with high inter-individual variations. However, 

Table 3 
An overview of preclinical evidence reporting on the therapeutic effects of sulforaphane against diabetic nephropathy and its associated complications.  

Author, year Experimental model Dose and intervention period Main findings 

[135] Zheng 
et al., 2011 

Streptozotocin (STZ)-induced type 1 
diabetic (T1D) C57BL/6 mice 

Received sulforaphane (intraperitoneally) 
at 12.5 mg/k 3 times a week for 16 weeks 

Protected against diabetic nephropathy by improving renal 
performance and limiting pathological alterations in the glomerulus. 
This was followed by the amelioration of oxidative damage and 
reduced expression of transforming growth factor beta 1, extracellular 
matrix proteins. This was in part through activation of nuclear factor 
erythroid 2–related factor 2 (Nrf2) in glomerulus 

[136] Cui 
et al., 2012 

STZ-induced T1D FVB mice Received sulforaphane (injected 
subcutaneously) at 0.5 mg/kg 5 days a 
week for 3 months 

Protected against diabetic nephropathy by reducing renal 
inflammation, oxidative disruption, and alleviating tissue fibrosis, in 
part by enhancing Nrf2 expression 

[137] Shang 
et al., 2015 

STZ-induced T1D Sprague Dawley rats Received sulforaphane at 5 mg/kg for 12 
weeks 

Protected against diabetic nephropathy by blocking urine albumin 
excretion, matrix expansion, transforming growth factor-β1 
expression, fibronectin, and type IV collagen deposition in the diabetic 
kidney. This was modulated in part though the glycogen synthase 
kinase-3 beta (GSK3β)/Nrf2 signaling pathway 

[134] Wu 
et al., 2015 

High fat diet (HFD)-induced T2D C57BL/ 
6 J mice, including Nrf2 knockout (KO) 
mice 

Received sulforaphane at 0.5 mg/kg for 4 
months 

Protected against diabetic nephropathy by reducing the levels of 
albuminuria, renal fibrosis, and inflammation. However, 
metallothionein expression was elevated, while renal protection was 
completely lost in Nrf2-KO diabetic mice 

[138] Li 
et al., 2019 

STZ-induced T1D Sprague Dawley rats Received sulforaphane at 0.5 and 1 mg/kg 
daily for 12 weeks 

Protected against diabetic retinopathy by suppressing inflammation 
markers like TNFα, IL-6, and IL-1β, as well as inhibiting oxidative 
stress via enhancing levels of glutathione (GSH), superoxide dismutase 
(SOD), and catalase (CAT) improvement. Also, Nrf2 expression along 
with hemeoxygenase-1 (HO-1) and NQO-1. Not only that, but there 
was also a reduction in the expression of NOD-like receptor (NLR) 
proteins (NLRP3) 

[139] Li 
et al., 2020 

High fat diet (HFD) + STZ- induced T2D 
AMP-activated protein kinase (AMPK)α2- 
KO and WT FVB mice 

Received sulforaphane (injected 
subcutaneously) at 0.5 mg/kg 5 days a 
week for 3 months 

Protected against renal dysfunction by alleviating hypertrophy, 
oxidative disruption, inflammation, as well as fibrosis in WT mice, but 
not but not in AMPKα2-KO T2D mice. This positive effect in WT mice 
was associated amendments in renal lipotoxicity and in association 
with AMPK-mediated activation, as well as antioxidant activity linked 
with Nrf2 activation 

[140] Lin 
et al., 2020 

STZ-induced T1D Wistar rats Received sulforaphane (orally) at 
12.5 mg/kg for 10 days 

Protected against bladder dysfunction by promoting Nrf2/HO-1 axis, 
as well as reducing bladder levels of reactive oxygen species, 
mitochondrial Bax translocation, cytochrome c release, and caspase 3/ 
PARP/apoptosis, leading to improved voiding function 

[141] Kong 
et al., 2021 

STZ-induced T1D FVB mice Received sulforaphane (injected 
subcutaneously) at 0.5 mg/kg 5 days a 
week for 4 months 

Protected against renal dysfunction by reducing renal fibrosis, and 
through epigenetic up-regulation of bone morphologic protein 7 
(BMP-7) 

[142] Khaleel 
et al., 2019 

STZ-induced T1D Wistar rats Received sulforaphane (intraperitoneally) 
at 3 mg/kg for 20 h 

Protected against diabetic nephropathy by restoring altered 
nephrotoxicity parameters, histological features, and oxidative stress. 
This followed by enhanced expression of Nrf2 and downstream target 
genes like HO-1, as well as inflammation and apoptotic markers IL-6 
and caspase3  
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the fact remain sulforaphane is still considered unstable compared to 
glucoraphanin [8]. For that reason, direct administration of sulforaph
ane on humans has been limited. Currently, there are studies that are 
looking at possible ways to stabilize sulforaphane, some researchers 
have prompted the development of stabilized preparations, such as an 
α-cyclodextrin-encapsulated form of sulforaphane [105,106] and a sta
bilized version of pure plant-derived sulforaphane, known as prosta
phane [105]. Alternatively, glucoraphanin-rich preparations containing 
active myrosinase have also been used [107]. Some researchers have 
shown that another way to administer sulforaphane to humans is 
through broccoli sprout extracts or minimally processed broccoli, given 
the instability of sulforaphane most clinical studies about the effect of 
sulforaphane have used broccoli extracts and focused on validating the 
efficacy of sulforaphane-rich food, not on sulforaphane as a drug [85]. 
Notably, (R)-sulforaphane is the naturally occurring isomer, found in 
broccoli, this is a sulforaphane in which the sulfinyl group has R 
configuration. This form is mainly known of its protective properties 
such as antioxidative, anti-inflammatory, anti-atherosclerotic, car
dioprotective, anticoagulant, antibiotic, and chemo preventive activities 
in diverse disease settings [7,92,108,109]. Researchers suggests that the 
R-isomer may be more bioactive than the S-isomer, hence the synthet
ically derived R,S-sulforaphane which is now commonly used, especially 
in animal studies and in vitro studies [110,111]. In other animal models, 
R,S-sulforaphane has been shown to inhibits TNF-α-induced adhesion of 
monocytes in epithelial cells [112], while some suggests that this com
pound may prolong the activation of Nrf2 and expression of catalase, 
thus protecting against ultraviolet (UV)-induced oxidative damage in ex 

vivo models [113]. Even though chemical synthesis of sulforaphane 
looks promising, it appears this process is likely costly and 
time-consuming and requires several highly toxic substances, while 
some products from these reactions require further purification [114]. 
Therefore, because of these limitations, sulforaphane consumed from 
vegetables is more favorable for humans, especially when consumed 
daily for potential health benefits [86]. 

6. Potential therapeutic effects of sulforaphane against diabetes- 
associated complications 

6.1. Characteristic features of included studies 

Briefly, a systematic search revealed 34 preclinical studies reporting 
on the potential therapeutic effects of sulforaphane against diabetes- 
associated complications. These studies are subsequently discussed 
based on the type of diabetic complication being targeted by sulfo
raphane, including ten studies on its potential efficacy against CVD- 
related complications, seven studies focusing on diabetic neuropathy, 
eight studies on diabetic nephropathy, and the last nine studies were on 
its effects against diverse pathologies of diabetes, including nonalco
holic fatty liver disease (NAFLD), skeletal muscle dysfunction, insulin 
resistance, and retinopathy. Diverse preclinical systems, mainly 
involving rats and mice with both T1D and T2D, were used as repre
sentative models for diabetes-related complications. Since clinical 
studies directly reporting on the therapeutic effects of sulforaphane are 
lacking, included literature was mainly from broccoli, which is rich in 

Table 4 
An overview of preclinical evidence reporting on the therapeutic effects of sulforaphane against retinopathy and diverse diabetes-related complications like nonal
coholic fatty liver disease (NAFLD) and insulin resistance.  

Author, year Experimental model Dose and intervention period Main findings 

[155] Souza 
et al., 2012 

Streptozotocin (STZ)-induced type 
diabetic (T1D) Wistar rats 

Received sulforaphane (orally) at 0.1, 0.25, 
or 0.5 mg/kg for 10 days 

Protected against metabolic complications by effectively controlling fasting 
glycemia, enhancing insulin sensitivity, and lowering hepatic glycogen 
concentrations. These were also related to reduction in serum 
triacylglycerols, urea, and creatinine 

[158] Jiang 
et al., 2014 

STZ-induced T1D FVB mice Received sulforaphane (injected 
subcutaneously) at 0.5 mg/kg 5 days a week 
for 3 months 

Protected against diabetes-induced testicular apoptosis by suppressing 
endoplasmic reticulum stress and mitochondrial cell death pathways. While 
also enhancing nuclear factor erythroid 2–related factor 2 (Nrf2) 
expression, as well as ameliorating testicular oxidative damage, 
inflammation and fibrosis, and germ cell proliferation 

[157] Wang 
et al., 2014 

High fat diet (HFD) + STZ- induced 
type 2 diabetic (T2D) C57BL/6 J 
male 

Received sulforaphane (injected 
subcutaneously) at 0.5 mg/kg 5 days a week 
for 4 months 

Protected against testicular apoptotic cell death by enhancing B-cell 
lymphoma 2 (Bcl2) expression and blunting cleavage of caspase-3 and 
caspase-8 without overtly affecting endoplasmic reticulum stress. This was 
concomitant to the amelioration of oxidative damage and inflammation, in 
part by activating Nrf2 

[159] Souza 
et al., 2016 

STZ-induced T1D Wistar rats Received sulforaphane at (intraperitoneally) 
at 0.5 mg/kg) for 21 days 

Ameliorated some features of clinical diabetic complications, especially 
lipid profiles and insulin responsiveness, but did not affect antioxidant 
response, including superoxide dismutase, and catalase in in the pancreas, 
liver, and kidney 

[148] Lv 
et al., 2020 

STZ-induced T1D BALB/c mice Received sulforaphane (intraperitoneally) at 
0.5, 1, and 2 mg/kg daily for 2 weeks 

Protected against diabetes-induced retinal photoreceptor cell degeneration 
by blocking inhibition of endoplasmic reticulum stress, inflammation, and 
thioredoxin-interacting protein (Txnip) expression and activation of the 
AMPK pathway 

[11] Tian 
et al., 2020 

HFD + STZ- induced T2D mice Received sulforaphane (orally) at2 and 
10 mg/kg for 12 weeks 

Protected against NAFLD and pancreatic damage by improving glucose/ 
insulin metabolism and lipid profiles, including reduction in triglycerides 
and low-density lipoprotein-cholesterol (LDL-c). Antioxidant capacities in 
the liver and pancreas were also increased 

[153] Wang 
et al., 2020 

Transgenic T2D (db/db) mice Received sulforaphane (intraperitoneally) at 
0.5 mg/kg for 1 month 

Protected against skeletal muscle dysfunction by enhancing the grip 
strength, including the lean and gastrocnemius mass, while restoring 
skeletal muscle fiber organization. This was followed by activation of Nrf2/ 
hemeoxygenase-1 (HO-1) signal pathway, and reducing the expression of 
inflammatory and apoptotic associated proteins 

[156] Ma 
et al., 2022 

HFD-induced T2D C57BL/6 mice Received sulforaphane at 10 mg/ kg for 12 
weeks 

Protected against NAFLD by limiting the accumulation of excess liver lipids 
and reducing inflammation and enhancing antioxidant levels 

[154] Zhang 
et al., 2022 

HFD-induced T2D ICR mice Received sulforaphane (injected 
subcutaneously) at 0.5 mg/kg 5 days a week 
for 8 months 

Ameliorated insulin resistance and improved metabolic parameters, 
including reducing body weight, and alleviating hyperglycemia and 
hyperlipidemia, as well as enhancing liver function. This was followed by 
increased expression of antioxidant genes downstream of Nrf2 and reduced 
accumulation of lipid peroxides malonaldehyde (MDA) and 4-hydroxyno
nenal (4-HNE)  
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this bioactive compound, against diabetes-related complications. 
Importantly, the below sections discuss both preclinical and clinical 
evidence on the impact of sulforaphane or broccoli against diverse 
diabetes-related complications. Critical points which are part of the 
discussion include effective doses of the bioactive compound, inter
vention period, and the type of experimental model of diabetes used. 

6.2. Potential therapeutic effects of sulforaphane against diabetes- 
associated cardiovascular complications 

Diabetes, through its major characteristic features like hyperglyce
mia, is known to contribute to the development and progression of 
cardiovascular-related complications. Indeed, an impaired oxidative 
and inflammatory status is central to the development of these diabetes- 
related cardiovascular complications [34]. As a result, various preclin
ical models depicting diabetes-related cardiovascular complications 
have been developed to assess the efficacy of various pharmaceutical 
drugs, including naturally derived bioactive compounds against such 
abnormalities. Table 1 shows various animal models of diabetes that are 
currently used to investigate the cardioprotective effects of sulforaph
ane. For example, subcutaneous injection of sulforaphane (at 0.5 mg/kg 
5 days a week for 3 months) could protect against diabetes-induced 
aortic damage by suppressing markers of oxidative stress and inflam
mation T1D FVB mice [115]. These results were consistent with 
enhanced expression of Nrf2, which is the major antioxidant response 
factor responsible for the therapeutic benefits of sulforaphane against 
diabetes induced cardiovascular damage. The inbred FVB/N mouse 
strain is distinguished by vigorous reproductive performance [122], 
while displaying severity to the development of diabetes and insulin 
resistance after injecting with low-dose streptozotocin [123]. In fact, 
more studies included within the study support the use of subcutaneous 
injection of sulforaphane (at 0.5 mg/kg 5 days a week for 3–4 months) to 
alleviate diabetes-associated cardiovascular complications in mice [98, 
100,115–117,120,121]. 

The intervention was shown to be even more effective in preventing 
DCM by improving cardiac dysfunction, through neutralizing oxidative 
stress and reducing markers of inflammation to reverse cardiac hyper
trophy/ fibrosis. These studies indicated that enhanced expression of 
Nrf2 or its activation within the diabetic heart was crucial for alleviation 
markers of oxidative stress and inflammation, including 3-nitrotyrosine 
and 4-hydroxynonenal, TNF-α, and vascular cell adhesion molecule 1 in 
T1D and T2D mice [98,100,101,115–118,120,121]. Potential 

therapeutic mechanisms of sulforaphane also implicates effective mod
ulation of energy metabolism through the activation of AMPK. For 
example, sulforaphane could restore cardiac function while effectively 
modulating lipid metabolism and alleviating cardiac remodeling 
through the regulation in mice with T2D [98]. 

Other studies showed that sulforaphane could also be effective at 
protecting against diabetes-associated cardiovascular complications 
when administered intraperitoneally or orally in rodents (Table 1). For 
example, 8-week intraperitoneal administration of sulforaphane (at 
1 mg/Kg) as a monotherapy, or in combination with pyridoxamine (in 
drinking water) could improve endothelial function by reducing 
vascular oxidative damage, and this was related to the reduction of AGEs 
and glycated hemoglobin (HbA1c) levels in transgenetic (T2D) Goto- 
Kakizaki rats [119]. Whereas 18-week oral administration of sulfo
raphane (at 0.5 mg/kg) in combination with zinc sulphate (5 mg/kg) 
was more effective in preventing DCM by improving cardiac dysfunc
tion, by reducing cardiac remodeling, including markers of inflamma
tion and oxidative damage in transgenic (T1D) OVE26 and FVB mice 
[121]. Further indicating that preclinical evidence strongly suggests 
enhanced its potential as a potential remedy to protect against 
diabetes-induced cardiovascular complications. 

6.3. Potential therapeutic effects of sulforaphane against diabetic 
neuropathy and associated complications 

Diabetic neuropathy describes damage to nerves, giving rise to pe
ripheral neuropathy, autonomic neuropathy, and proximal neuropathy 
[130]. This condition remains difficult to treat, and is linked with 
diminished quality of life, lack of sleep, depression, and anxiety. Both 
oxidative stress and inflammation, because of prolonged exposure to 
hyperglycemia and other complications of diabetes, are central the 
development of neuropathy. This explains increased interest in targeting 
the alleviation of oxidative stress and inflammation to protect against 
nerve damage in experimental of diabetes, and even in human subjects 
with this condition [131–133]. 

Table 2 gives an overview of preclinical evidence reporting on the 
therapeutic effects of sulforaphane against diabetic neuropathy or its 
associated complications. Here, it is evident that 6-week intraperitoneal 
administration of sulforaphane (at 0.5 and 1 mg/kg) could protect 
against diabetic neuropathy by improving motor nerve conduction ve
locity, nerve blood flow and pain behavior, while neutralizing oxidative 
stress by reducing malondialdehyde (MDA) levels in streptozotocin 

Table 5 
Clinical evidence reporting on the potential benefits of broccoli against diabetes-associated complications.  

Authors, year Study design Study population Intervention Main findings 

Taniguchi et al., 
2008 [160] 

Randomized cross- 
over design 

Healthy Japanese subjects 
(n = 11), with an average 
age between 23 and 33 years 

Received 200 g of white rice containing 
broccoli, with comparable amounts of 
carbohydrate, fat, protein, and fiber over 
180 min 

Effective at reducing acute glycemia and insulinemia 

Bahadoran et al., 
2011 [161, 
162] 

Randomized 
double-blind 
clinical trial 

Patients with type 2 diabetes 
(n = 56), with an average 
age between 18 and 60 years 

Received broccoli sprouts powder at 5 or 
10 g/day for 4 weeks 

Significantly reduced lipid peroxidation by decreasing 
malonaldehyde (MDA), increasing antioxidant capacity, 
and oxidized low density lipoprotein cholesterol. While 
also reducing serum insulin concentration and 
homeostatic model assessment for insulin resistance 
(HOMA-IR) 

Bahadoran et al., 
2012 [163] 

Randomized 
double-blind 
clinical trial 

Patients with type 2 diabetes 
(n = 56), with an average 
age between 18 and 60 years 

Received broccoli sprouts powder at 5 or 
10 g/day for 4 weeks 

Improved lipid profiles, especially reducing oxidized low- 
density lipoprotein ratio, to lower the risk factors for 
cardiovascular disease 

Saeidi et al., 
2021 [164] 

Randomized 
control trial 

Patients with T2D (n = 11), 
with an average age between 
40 and 60 years 

Received broccoli supplements at 10 g of 
broccoli supplement per day for 12 weeks 

Reversed insulin resistance and dectin-1 in participants 
with T2D 

Thorup et al., 
2021 [165] 

Randomized 
control trial 

Patients with T2D (n = 92), 
with an average age between 
30 and 70 years 

Received Brassica and root vegetables at 
500 g daily for 12 weeks 

Enhanced insulin sensitivity, reduced body fat mass and 
blood pressure, while also improving glycemic control 

Imai et al., 2023  
[166] 

Randomized 
controlled cross- 
over study 

Healthy subjects (n = 18), 
with an average age of 21 
years 

Received a meal containing tomato, 
broccoli, fried fish, and boiled white rice 
for up to 60 min 

Improved postprandial blood glucose and insulin 
concentrations  

S.X.H. Mthembu et al.                                                                                                                                                                                                                         



Pharmacological Research 196 (2023) 106918

9

(STZ) induced T1D Sprague-Dawley rats [124]. Such effects were related 
with activation of Nrf2, including its downstream target enzymes, 
including HO-1 and NQO-1. Also, the reduced expression of nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB) and IκB 
kinase (IKK) phosphorylation as well as that of inducible nitric oxide 
synthase (NOS) and cyclooxygenase-2, TNF-α, and IL-6 levels in these 
diabetic conditions [124]. These positive effects were confirmed in T2D 
db/db mice, receiving sulforaphane (intraperitoneally) at 1 mg/kg for 
28 day, showing enhanced cognitive function and alleviation of Alz
heimer’s disease-like lesions by reducing the levels of amyloid-β oligo
mers as well as activation of Nrf2 and the downstream antioxidants like 
HO-1 and NAD(P)H: quinone oxidoreductase 1 (NQO-1), which was 
accompanied by lower levels of reactive oxygen/nitrogen species 
(ROS/RNS) in mouse brains of these animals. The significant role of Nrf2 
activation in protecting against diabetic neuropathy-related complica
tions was confirmed in mice, showing reduced protective effects against 
levels of albuminuria, renal fibrosis, and inflammation in animals 
lacking Nrf2 [134]. 

Other studies showed that the therapeutic effects of sulforaphane 
extend beyond the activation of Nrf2 (Table 1). For example, 4-month 
oral administration of sulforaphane (at 1 mg/kg) in rodents could pro
tect against diabetes-associated changes on the cerebral cortex and hy
pothalamus by improving glucose tolerance and liver triacylglycerols in 
HFD-induced T2D rats [125]. And this was followed by reducing the 
expression of glucose transporter (GLUT)3 in the cortex and hypothal
amus [125]. Likewise, 2-week oral administration with sulforaphane (at 
25 mg/kg) could protect against neuronal apoptosis and memory 
impairment by correcting the abnormal expression of caspase-3 and 
myeloid cell leukemia 1 (MCL-1), while also improving neurotropic 
factors protein kinase B (Akt), glycogen synthase kinase-3 beta (GSK3β) 
in STZ-induced T1D Sprague-Dawley rats [126]. These effects were also 
confirmed when sulforaphane was administered at similar doses in other 
diabetic rats, showing enhanced protection against vascular dementia 
related complications by improving endothelial dysfunction and 

improving animal behavior in STZ-induced T1D rodents [126,127,129]. 

6.4. Potential therapeutic effects of sulforaphane against diabetic 
nephropathy and its associated complications 

Diabetic nephropathy also remains one of the devastating compli
cations of diabetes, and its diagnosis is traditionally based on micro
albuminuria [143]. Poor glycemic control, together with other 
complications of diabetes, including dyslipidemia, AGEs, as well as ge
netic factors are all implicated in the development of diabetic ne
phropathy [144]. Lately, it has become apparent that both oxidative 
stress and inflammation are the common denominators that are impli
cated in the development and progression of micro- and macrovascular 
complications of diabetes [145,146]. This is mainly through enhanced 
levels of ROS, AGEs, and defects in polyol pathway, uncoupled NOS, and 
alterations in mitochondrial respiratory chain, occurring consistently 
with raised pro-inflammatory factors within preclinical models of dia
betes [145,146]. A recent report even indicates that targeting the IL-8- 
C-X-C chemokine receptor (CXCR)1/2 axis may be a feasible therapeu
tic strategy to protect against inflammation to potentially reduce the 
burden of diabetic kidney disease [147]. 

Table 3 gives an overview of preclinical evidence reporting on the 
therapeutic effects of sulforaphane against diabetic nephropathy and its 
associated complications. Here, it was apparent that 16-week intraper
itoneal administration of sulforaphane (at 12.5 mg/kg) could protect 
against diabetic nephropathy by improving renal performance and 
limiting pathological alterations in the glomerulus in STZ-induced T1D 
Wistar rats [140]. This was followed by the amelioration of oxidative 
damage and reduced expression of transforming growth factor beta 1, 
extracellular matrix proteins in STZ-induced T1D mice [135]. This was 
in part through activation of nuclear factor erythroid 2–related factor 2 
(Nrf2) in glomerulus in diabetic mice [135]. In fact, it was clear that 
administration of sulforaphane (at doses between 0.5 and 12.5 mg/kg), 
as early as 20 h up to 3 months, could activate Nrf2, including its 

Fig. 3. A summary of preclinical evidence supporting 
an active role of sulforaphane (and food sources rich in 
this bioactive compound) in activating nuclear factor 
erythroid 2-related factor 2 (Nrf2) or AMP-activated 
protein kinase (AMPK) to protect against diabetic 
complications, including diabetic cardiomyopathy, 
diabetic neuropathy, diabetic nephropathy, and other 
metabolic complications involving non-alcoholic fatty 
liver disease and skeletal muscle insulin resistance. 
Alleviation of oxidative stress and inflammation is the 
predominant mechanism by which sulforaphane pro
tects against diabetes associated complications. With 
clinical evidence suggesting that foods rich in sulfo
raphane like broccoli can improve the metabolic status 
and lower cardiovascular disease risk by reducing bio
markers of oxidative stress and inflammation in pa
tients with type 2 diabetes.   
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downstream antioxidant genes to protect against diabetic nephropathy 
in mice with T1D [136,138,140,142]. These findings indicated that 
activation of Nrf2 in response to sulforaphane administration was also 
associated with the suppression of inflammation markers, including 
TNFα, IL-6, and IL-1β, the NOD-like receptor (NLR) proteins (NLRP3). 

Evidence covered in Table 3 indicate that, in addition to Nrf2, other 
molecular mechanisms may explain the potential therapeutic effects of 
sulforaphane against diabetic nephropathy in preclinical models. For 
example, 12-weeks administration of sulforaphane (at 5 mg/kg) could 
protect against diabetic nephropathy by blocking urine albumin excre
tion, matrix expansion, transforming growth factor-β1 expression, 
fibronectin, and type IV collagen deposition in the diabetic kidney in rats 
with T1D [137]. Sulforaphane can potentially interact with AMPK to 
alleviate renal dysfunction, which is associated with attenuation of 
oxidative disruption and inflammation transgenic diabetic mice. This 
positive effect in WT mice was associated amendments in renal lip
otoxicity and in association with AMPK-mediated activation, as well as 
antioxidant activity linked with Nrf2 activation [139]. With recent 
literature indicating that administration of sulforaphane (injected sub
cutaneously at 0.5 mg/kg 5 days a week for 4 months) could protect 
against renal dysfunction by reducing renal fibrosis, and through 
epigenetic up-regulation of bone morphologic protein 7 (BMP-7) [141]. 
From summarized literature it has become apparent that administration 
that sulforaphane remains effective in attenuating toxic effects of 
oxidative stress and inflammation to protect against the development of 
nephropathy in preclinical modes of T1D. 

6.5. Potential therapeutic effects of sulforaphane against retinopathy and 
other complications involved in the development of diabetes 

Diabetes is associated with other diverse metabolic complications, 
that go beyond the implications of pathological features of CVD, neu
ropathy, or nephropathy. Some of these diabetes-related complications 
include retinopathy, NAFLD, and insulin resistance. Impaired substrate 
metabolism through enhanced availability of free fatty acids, together 
with increased oxidative stress and inflammation are the predominant 
factors that drive diabetes-induced tissue damage. Available informa
tion already highlights the potential benefits of sulforaphane in pro
tecting against diabetes-induced retinopathy by blocking NLRP3 
inflammasome formation [138], reducing mitochondrial stress [148], 
and enhancements of intracellular antioxidants through Nrf2-dependent 
and independent mechanisms in preclinical models [149,150]. Existing 
data have also indicated the potential therapeutic effects of sulforaph
ane against diverse pathological consequences of NAFLD [151,152] and 
insulin resistance [153,154], within various preclinical models of 
diabetes. 

Table 4 gives an overview of preclinical evidence reporting on the 
therapeutic effects of sulforaphane against diverse diabetes-related 
complications, including retinopathy, NAFLD and insulin resistance. 
The administration of sulforaphane (at doses mounting to 0.5 mg/kg) 
could attenuate metabolic complications by improving glucose control, 
enhancing insulin sensitivity, and reducing hepatic glycogen concen
trations in rats with T1D [155]. Interestingly, more evidence did report 
on the therapeutic effects of sulforaphane against complications related 
ton NAFLD. With others showing that diabetic rodents receiving sulfo
raphane (at 2 and 10 mg/kg for 12 weeks) could protect against NAFLD 
and pancreatic damage by improving glucose/insulin metabolism and 
lipid profiles, including reduction in triglycerides and LDL-c in experi
mental models of T2D [11,156]. Interestingly, these studies further 
showed that activation of Nrf2 and its downstream antioxidant genes 
[157,158], the efficacy of sulforaphane was associated with the 
amelioration of skeletal muscle dysfunction, which was accompanied by 
restoration of skeletal muscle fiber organization in T2D (db/db) mice 
[153]. Like with other diabetes related complications, activation of 
AMPK seems to an mechanisms by which sulforaphane protects 
diabetes-related complications, including reducing body weight, and 

alleviating hyperglycemia and hyperlipidemia, blocking the accumula
tion of lipid peroxides malonaldehyde (MDA) and 4-HNE [148,154]. 

7. Clinical relevance of sulforaphane-enriched food assumption 
against diabetes-related complications 

There is an increasing need to understand the clinical relevance of 
plants or potential nutraceuticals in protecting against a variety of 
metabolic diseases. Unfortunately, not many studies have directly 
evaluated the clinical benefits, except for apparent preclinical evidence 
on the potential benefits of these bioactive compounds [167–169]. 
However, as one of the food products that contains about 10–100 times 
higher levels of sulforaphane than most mature plants [170,171], there 
has been ongoing efforts to evaluate the potential benefits of broccoli 
sprouts against some metabolic complications [172]. Interestingly, 
different cooking methods have also been tested for their capacity to 
enhance the bioavailability of bioactive compounds in broccoli, which 
may be necessary to promote the health benefits of broccoli in the diet 
[171,173]. Table 5 gives an overview of clinical evidence reporting on 
the potential benefits of broccoli against diabetes-associated complica
tions. For example, it was demonstrated that consumption of white rice 
containing broccoli, with comparable amounts of carbohydrate, fat, 
protein, and fiber was effective at reducing acute glycemia and insuli
nemia over 180-minute period in healthy Japanese subjects [160]. 
Similarly, healthy individuals receiving a meal containing tomato, 
broccoli, fried fish, and boiled white rice for up to 60 min displayed 
improved postprandial blood glucose and insulin concentrations [166]. 
In human participants with accomplished T2D, it was also shown that 
consumption of broccoli sprouts powder (at 5 or 10 g/day) for 4–12 
weeks could enhance antioxidant capacity, while significantly reducing 
lipid peroxidation by decreasing malonaldehyde (MDA), and oxidized 
low density lipoprotein cholesterol [161–165]. These effects were 
consistent with improvements in basic metabolic profiles and cardio
vascular status, including reducing body mass index, lowering blood 
pressure, and alleviating homeostatic model assessment for insulin 
resistance (HOMA-IR). 

8. Summary and future perspectives 

It is currently acknowledged that a greater understanding of the 
mechanisms through which herbal supplements neutralize the 
damaging effects of oxidative stress and inflammation may provide a 
rational approach to protect against diabetes and its related complica
tions [174,175]. Traditionally, herbal supplements, including their 
phenolic constituents like sulforaphane have attracted considerable in
terest because of their health-promoting properties [176,177]. Sulfo
raphane is an isothiocyanate that is mainly found in cruciferous 
vegetables. Reviewed evidence already indicates that activation of Nrf2, 
including its associated cytoprotective genes, is the predominant 
mechanism by which sulforaphane enhances cellular defense mecha
nisms including improving redox status in experimental models of dia
betes [9]. In fact, another prominent feature of Nrf2 activation by 
sulforaphane is inhibition of inflammation [178]. Preclinical evidence 
covered within the current study indicates that subcutaneous or intra
peritoneal (and even oral) administration of sulforaphane could protect 
against aortic damage or prevent the development of DCM in diabetic 
animals (Table 1). These therapeutic effects were consistent with the 
neutralization of oxidative stress and reduction of inflammation 
throughout a broad spectrum of experimental models of diabetes, 
including diabetic neuropathy, diabetic nephropathy, and NAFLD 
(Tables 2–4). The predominant therapeutic mechanism appeared to be 
activation of Nrf2, including its downstream antioxidant response genes, 
leading to reduced markers of oxidative stress and inflammation 
(Tables 1–4; Fig. 3). Notably, beyond activation on Nrf2, the modulation 
of AMPK, which plays a major role in energy regulation and insulin 
signaling [179], may be another essential mechanism by which 
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sulforaphane potentially combats diabetes-related complications. Even 
though clinical data directly reporting on the beneficial effects of sul
foraphane is very limited, broccoli, which is rich in this isothiocyanate 
shows enhanced potential to improve the metabolic status and lower 
CVD-risk by enhancing the antioxidant status of patients with T2D. 
Although very limited (also encompassing a small sample size), this 
information is of high quality since is mostly based on randomized 
controlled trials. Further indicating that more and well-designed clinical 
trials are required to investigate the therapeutic effects of sulforaphane 
against diabetic complications, which is necessary to potential use as a 
nutraceutical in people with diabetes. 
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