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Science cannot solve the ultimate mystery of Nature. And that is because, in

the last analysis, we ourselves are part of the mystery we are trying to solve.

Max Plank (1858 - 1947)

No problem can be solved from the same level of consciousness that created

it.

Albert Einstein (1879 - 1955)

Let us try to teach generosity and altruism, because we are born selĄsh. Let

us understand what our own selĄsh genes are up to, because we may then at

least have the chance to upset their designs, something that no other species

has ever aspired to do.

Richard Dawkins (1941 - )
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Abstract

This thesis aims to address the inferential and interpretational issues in high

and multi-dimensional models in the context of Economics and Finance. The

growing economic and Ąnancial integration has made imperative the need to

conceive Countries and Financial Markets as a single, large, interconnected

entity. The main challenges induced by this framework concern the estima-

tion and interpretation of large panels, where units can be represented by

countries or assets, observed via several indicators across time.

This thesis proposes Bayesian estimation techniques for novel matrix and

tensor-valued models and employs new methodological tools from Graph

Theory to facilitate interpretation of high-dimensional networks. The con-

tributions are presented in three chapters.

In Chapter 2, Graph Theory approaches are proposed to study the struc-

tures and interactions of weighted directed networks of multivariate time

series observations/relationships. In Chapter 3, a Bayesian variable selec-

tion approach is proposed to handle the over-parametrization problem in

large Matrix Autoregressive models. In Chapter 4, the dynamic relationship

among returns, volatility, and sentiment in the cryptocurrency class is ex-

plored through a Bayesian Matrix Autoregressive model, which is the Ąrst

attempt to consider Ąnancial asset data as multi-dimensional structures.
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1 General introduction

Globalization and Ąnancial integration have substantially increased the in-

terconnected nature of economies entities the global economy. Additionally,

global catastrophes like the Great Recession and the more recent Covid-19

epidemic have highlighted how crucial it is to look at the worldŠs systems

as a web of interdependent entities. As part of the same, large, increas-

ingly interconnected dynamic system, economies are always more susceptible

to shock arising elsewhere in the world. As a consequence, statistical and

econometric frameworks to estimate and thereby interpret complex high and

multi-dimensional systems are always more required.

As modern data collection potential has led to accumulation of vast

amount of data over time, high and multi dimensional time series are be-

coming more available. Among applied sciences, Economics is undoubtedly

not exempted from this process. As a matter of fact, intra-country, regional-

level panels (Fosten and Greenaway-McGrevy, 2022), global macroeconomic

panels (Pesaran et al., 2004), as well as multilayer networks (Aldasoro and

Alves, 2018) are regularly generated over time. The common thread link-

ing these data structures is that they lie at the intersection of two or more

dimensions. In the case of the Ąrst two ones, we have different indicators col-

lected for a number of units: regions for the former, countries for the latter.

Network data instead, generalize the structure just mentioned, encompassing

at least a third dimension. In this framework, bilateral economic and Ąnan-

cial Ćows are observed for multiple units, usually institutions or countries.

Albeit to a lesser extent, also the Financial realm has been affected by this

revolution. For instance, it is now common to observe various Ąnancial char-

acteristics of many companies for different temporal horizons (Wang et al.,

2019). By relaxing the assumption that units can be just institutions, we can

conceive them as assets, each described by multiple characteristics. For in-

stance, these can be represented by its price return, a proxy of the volatility,

and a sentiment indicator (Celani and Pagnottoni, 2023).
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Despite the above mentioned information sets may offer non negligible

advantages for the understanding of the Economy, they donŠt come without

a pitfall. In fact, their unobserved interaction can be uncovered only by

employing multivariate statistics and econometric methods. In the time series

framework, the workhorse is the Vector Autoregression (VAR) model (Sims,

1980).

As the number of variables to be modeled grow, the number of param-

eters to estimate increases exponentially. Moreover, given the intrinsic low

frequency of macroeconomic data, the number of observations is usually rel-

atively low. These two factors combined render standard frequentist estima-

tion techniques unfeasible. In Finance the situation is just slightly better.

The availability of high-frequency time series might have the potential to

cope with the overparametrization issue. Nevertheless,the non-linearities in-

duced by the highly stochastic framework usually force researchers to focus

on lower dimensional sub-samples.

It is well known that modeling high dimensional time series is a delicate

task, which has called for the emergence of speciĄc literatures. In a nutshell,

hierarchical regularization and factor methods are the leading approaches.

Nonetheless, even when the curse of dimensionality is mitigated and a given

model is (presumably) consistently estimated, the output interpretation is

cumbersome. As a remedy, directed network measures based on the decom-

position of the forecast error variance of a VAR have been proposed (Diebold

and Yilmaz, 2014). Despite being suitable to draw a superĄcial picture of

the network charateristics, those measures are fruitless to investigate deeper

substructures. In syntheses, both inferential and interpretational threats

emerges in this context.

For both of these, the additional challenges imposed by the multi dimen-

sional setting magnify even more the already thorny framework. As such,

new modeling paradigms are required to cope with these two problems si-

multaneously.
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This thesis aims to contribute to the existing literature by addressing

inferential and interpretational issues in high and multi dimensional models

by:

• proposing Bayesian estimation techniques for novel matrix and tensor

valued models, designed for multi dimensional data. The Bayesian ap-

proach has proven to work well as a dimensionality reduction technique.

By casting it into the matrix valued framework, it has the potential to

contemporaneously manage issues arising from the high and multidi-

mensional setting, while preserving interpretative power.

• employing new methodological tools stemming from Graph Theory to

facilitate interpretation of high-dimensional networks. Networks anal-

ysis represents an useful tool to describe relationships among entities

and it has been extensively used in recent years to study Ąnancial and

economic connectedness.

The contributions are presented in three self-contained chapters.

In Chapter 2 we propose novel Graph Theory approaches to study the

structures and interactions of weighted directed networks of multivariate time

series observations/relationships. Those methods are well suited to analyze

connectedness matrices derived from variance decompositions of high dimen-

sional multi-country econometric models. We apply the methodology to a

number of monthly indicators of a set of European countries and determine

which are the leader and the follower in the shock transmission mechanisms.

In Chapter 3 we propose a Bayesian variable selection approach to han-

dle the over-parametrization problem in large Matrix Autoregressive (MAR)

models. Two computational methods are derived: a classical Markov Chain

Monte Carlo (MCMC) and a scalable Expectation Maximization (EM), the

latter conceived for high dimensional settings where the computational cost

of the former makes it unfeasible to estimate. Theoretical properties, com-
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parative performances and computational efficiency of our proposed models

are investigated through simulated and real examples.

In Chapter 4 we explore the dynamic relationship among returns, volatilty,

and sentiment of the cryptocurrency class by means of a Bayesian MAR. This

is the Ąrst attempt to conceive Ąnancial asset data as potential multidimen-

sional structures. After having outlined the Ąnancial theoretical framework,

we derive the frequentist and Bayesian estimator for the MAR. Eventually,

we apply the proposed method to study the multidimensional relationship

among returns, volalatility and sentiment of four cryptocurrencies.

Chapter 2 has been accepted for publication as: Celani, A., Cerchiello

P., and Pagnottoni, P. (2022), "The Topological Structure of Panel Vari-

ance Decomposition Networks". Journal of Financial Stability, forthcoming.

Available at SSRN.

Chapter 3 is currently under review process as: Celani, A., Jones, G., and

Pagnottoni, P. (2022), "Bayesian Variable Selection for Matrix Autoregressive

Models". Available at SSRN.

Chapter 4 is currently under review process as: Celani, A., and Pag-

nottoni, P. (2023), "The Multidimensional Relationship between Sentiment,

Returns and Volatility". Available at SSRN.
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2 Graph Theory Measures for Panel Vari-

ance Decomposition Networks

Based on the paper: Celani, A., Cerchiello P., and Pagnottoni, P. (2022),

"The Topological Structure of Panel Variance Decomposition Networks". Jour-

nal of Financial Stability, forthcoming. Available at SSRN.

2.1 Introduction

Globalisation has considerably increased the interconnected nature of enti-

ties within the global economy and, thereby, their sensitivity to large shocks

over the last few decades. Some of the beneĄts of globalisation in terms

of liberalisation and development were contrasted by the emergence of the

Global Financial Crisis, as a source of systemic risks posed by the Ąnan-

cial globalisation (Mishkin, 2011). Macroeconomic linkages feature differ-

ent aspects of connectedness: trade linkages, Ąnancial linkages, and price

changes (Dees et al., 2007). Hence, macroeconomic connectedness is a multi-

dimensional concept, whose fragile equilibrium can be compromised by sev-

eral risk sources. Extant literature has investigated the co-movements and

support the notion of global business cycles, as drivers of co-movement in

national business cycles - see Kose et al. (2003, 2008). While research on sys-

temic risk linkages and Ąnancial connectedness has considerably advanced

since then, a deep understanding of international macroeconomic linkages is

still a basic open question, and the network structure of shock propagation

across global economies is a ground to explore.

Large, unexpected exogenous shocks, such as the COVID-19 pandemic

exert dramatic impacts on the Ąnancial and economic structure of countries

(Delis et al., 2021; Pagnottoni et al., 2021; Iwanicz-Drozdowska et al., 2021;

Spelta and Pagnottoni, 2021; Liu et al., 2021; Ahelegbey et al., 2022; Bitetto

et al., 2021; Bartolucci et al., 2021). Recent groundwork in the Ąnancial con-
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text shows that the reaction of Ąnancial markets to exogenous shocks, such

as climate related ones among the others, is increasingly harsher over recent

years. Dafermos et al. (2018) shows how climate change has a signiĄcant

effect on Ąnancial stability, as it causes a sudden drop in the level of liquidity

injected to Ąrms, as well as it reduces corporate bond prices, together with

credit supply. Battiston et al. (2017) proposed a network-based climate value

at risk to study risk transmission both system-wide and at institutional level,

giving birth to a Ćourishing literature investigating the nexus between climate

change and Ąnance (Stolbova et al., 2018; Monasterolo et al., 2017; Battiston

et al., 2019; Roncoroni et al., 2021; Battiston et al., 2021; Pagnottoni et al.,

2022).

The modelling paradigm of current research in business cycle stems from

methodologies which are not grounded on network theory - see Diebold

and Yilmaz (2015) - although they present many complementary aspects

to the systemic risk and to the complex network literature. Financial net-

work econometric models include those developed by Billio et al. (2012) and

Diebold and Yilmaz (2009, 2012, 2014), in which individual entities can be

represented as nodes in a Ąnancial network. While Billio et al. (2012) develop

causal networks based on the concept of Granger causality, Diebold and Yil-

maz (2014) build generalized forecast error variance decomposition (GFEVD)

on approximating Vector Autoregressive (VAR) models. Since then, the lit-

erature has started integrating time series econometrics approaches with net-

work tools to assess systemic risk, particularly in Ąnancial market contexts -

see e.g. Ahelegbey et al. (2016); Ahelegbey and Giudici (2022). More recently,

Greenwood-Nimmo et al. (2021) developed a method to employ forecast er-

ror variance decomposition to evaluate the macroeconomic connectedness in

any multi-country macroeconomic model with an approximate multi-country

VAR representation. Therefore, such framework: a) it is convenient in terms

of interpretability; b) it is able to take into account for contemporaneous im-

pacts; c) it can predictively measure system-wide and pairwise connectedness

of time series networks.
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Despite having the merit of being robust from a methodological perspec-

tive, state-of-the-art econometric models - based on forecast error variance

decomposition - lack of a comprehensive framework in terms of their inter-

pretation from a network analysis viewpoint. Diebold and Yilmaz (2014) and

Greenwood-Nimmo et al. (2021) are key studies in this stream of research, as

they relate network systemic risk measures based on forecast error variance

decomposition, although without a strong link to network theory or topologi-

cal analysis. The use of robust statistical methods to measure macroeconomic

interconnectedness and systemic risk, combined with complex system meth-

ods - see, e.g. Battiston et al. (2016); Bardoscia et al. (2017); Roukny et al.

(2018) - is therefore a promising avenue for future research.

Against this background, we propose a network-based framework to inves-

tigate systemic risk, macroeconomic connectedness and lead-lag relationships

from a set of multi-country and global macroeconometric models, i.e. Global

Vector Autoregressive (GVAR) models. Our approach takes root from the

forecast error variance decomposition spillover measures (Diebold and Yil-

maz, 2014; Greenwood-Nimmo et al., 2021). We analyze the estimates of

the econometric model by means of graph theory, studying clustering and

hub-authority dynamics of the GVAR spillover network and its implications

in terms of risk propagation mechanisms. This is done by means of the

Minimum Spanning Tree (MST), the Louvain community detection and the

Kleinber algorithms, so to derive the backbone structure, communities and

hub-authority dynamics of macroeconomic relationships. To this end, indices

based on the decomposition of the variance-covariance matrix of the forecast

error derived from the dynamic GVAR estimates are used, so to statisti-

cally and multidimensionally capture systemic risk in a predictive framework.

We apply our methodology to study the spillover network of real economy

and sentiment indicators of 12 European countries over the period 01/2000-

11/2021 at the global, country and variable levels.

Similarly to our approach, Elhorst et al. (2021) bring together the spa-

tial and GVAR classes of econometric models. Motivated by the study of

7



spillovers, they deĄne a measurable concept of spillover in this context based

on impulse responses. Gross and Kok (2013) deĄne a mixed-cross-section

GVAR for forecasting and conducting systematic shock simulation. This

eases the deĄnition of spillover potential measures for within and across

groups of sovereign and banks, also employing network centrality measures.

In contrast, we examine the topological structure of GVAR spillover networks

and its implications from a risk management perspective. In particular we

study: a) the shortest paths of contagion; b) the clusters of shock transmis-

sion; and c) the role of nodes in the risk transmission channels. Additionally,

we estimate a Bayesian GVAR, which encompasses also the maximum likeli-

hood estimator as a special case, in order to cope with the possible presence

of dominant units.

The contribution of this chapter is twofold. From a methodology perspec-

tive, we extend the econometric GFEVD method illustrated by Greenwood-

Nimmo et al. (2021) to a spillover network topology framework, which enables

to study the complex dynamic network structure of the time series of forecast

error variance shares, i.e. of spillovers. The combination of a robust global

econometric model and the concepts of network theory results in a practical

method for the development of a sound set of statistical network systemic

risk indicators, which are based upon predictive directional measurement of

spillovers. From an empirical viewpoint, our strategy allows to simultane-

ously examine: a) the dynamic relationships of real economy and sentiment

at a country level, identifying lead-lag relationships across EU member states

over time; b) the dynamic connectedness existing between real economy and

sentiment variables.

The remainder of this chapter is organized as follows. Section 2.2 in-

troduces the proposed methodology. Section 2.3 describes the data used

in our empirical study and conducts preliminary data analysis. Section 2.4

illustrates our empirical outcomes. Section 2.5 offers a Ąnal discussion.
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2.2 Methodology

The Global VAR model

Global VAR models are built on the premise that simple VAR models do

well describe the linear dynamics of a system, although they suffer from the

overparameterization problem, which makes their use impractical in high-

dimensional contexts. Among the different approaches proposed in the liter-

ature to solve the curse of dimensionality, the GVAR proposed by Pesaran

et al. (2004) and surveyed in Chudik and Pesaran (2016) provides a good

framework to model a relative small set of variables shared by a Ąxed num-

ber of spatial units - which, in our case, represent countries.

The GVAR solves the dimensionality problem by decomposing the under-

lying large dimensional VAR into a smaller number of conditional models,

which are linked together via cross sectional averages.

The Ąrst step consists of estimating small-scale country models enlarged

by weakly exogenous and possibly global variables (VARX* model). Let xit

be a ki dimensional vector of endogenous variables of country i = 1, ..., N .

We model each xit as a VARX*(p1, p2):

xit = αi0 +
p1
∑

s=1

Φisxi,t−s +
p2
∑

r=0

Λirx
∗
it−r + εit, (2.1)

where αi0 is a vector of intercepts, Φis (s = 1, ..., p) and Λir (r = 0, ..., q) are,

respectively, ki×ki and ki×ki∗ coefficient matrices of the lagged endogenous

and the lagged weakly exogenous variables, and εit is an error term with

covariance matrix Σi.

The country i weakly exogenous (or foreign) variables are calculated as a

weighted average of the endogenous variables in all the other economies:

x∗it =
N
∑

j=1

ωijxjt (2.2)
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with ωij representing a non-negative weight connecting country i and j. We

assume that ωii = 0 and
∑N

j=1 ωij = 1. They reĆect the relative magnitude of

the interaction among economies and are usually approximated using data

on bilateral trade Ćows. The underlying assumption of weak exogeneity of

the foreign variables implies that most countries are small relative to the

world economy.

By stacking the N country-speciĄc models, we obtain the global one as

an approximation of the large dimensional VAR :

G0xt = α0 +
Q
∑

q=1

Gqxt−q + εt, (2.3)

where α0 is a k × 1 vector of intercepts and Gq for q = 0, ..., Q are k ×

k coefficient matrices embodying contemporaneous and lagged dependence

among countries, with k =
∑

i ki and Q = max(p1, p2). Finally, εt is the

global error term with block diagonal covariance matrix Σ.

If the matrix G0 is invertible then, pre-multiplying equation (2.3) by G−1
0 ,

we obtain the GVAR representation

xt = F0 +
Q
∑

q=1

Fqxt−q + G−1
0 εt, (2.4)

with F0 = G−1
0 α0 and Fq = G−1

0 Gq for q = 1, ..., Q.

Bayesian estimation

The standard GVAR literature assumes that x∗it are weakly exogenous, and

therefore OLS is the most widely used estimation technique. However, such

assumption can be violated when large economies are included in the ana-

lyzed sample. For this reason, it is preferable to perform maximum likelihood

estimation of the GVAR (Elhorst et al., 2021).
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In order to cope with the possible presence of dominant units, we refer

to the maximum likelihood estimator as a special case of a Bayesian GVAR.

Indeed, at the same time such an approach: a) allows the researcher to

specify her/his prior beliefs on the parameters of interest; b) induces country-

speciĄc degrees of shrinkage on the parameters, which improves forecast in

a signiĄcant way.

The prior implementation is facilitated by rewriting each country model

compactly as:

xit = Π
′

izit−1 + εit, (2.5)

where zit−1 = [1, x
′

it−1, ..., x
′

it−p1
, x∗

′

it , ..., x∗
′

it−p2
]
′

is the Ki dimensional vector

of regressors, with Ki = 1+kip1 +k∗i (p2 +1), and Π
′

i = [αi0, Φi1, ..., Φip1 , Λi0,

..., Λip2 ]
′

is the associated matrix of stacked coefficients. The model speciĄ-

cation is completed by assuming that εit are normally distributed:

εit ∼ N (0, Σi). (2.6)

In order to derive a compact form, equation (2.5) can be rewritten as a

multivariate linear regression:

Xi = ZiΠi + εi, (2.7)

where Xi is a T × ki matrix of endogenous variables, Zi is a T ×Ki matrix

of stacked explanatory variables and εi is a matrix of errors.

Following Cuaresma et al. (2016), we employ the Normal-Inverse Wishart

prior, which belongs to the class of natural conjugate priors. Let Ψi =

vec(Πi) denote the vi = Kiki dimensional coefficient vector. The prior setting

reads as:

Ψi♣Σi ∼ N (Ψi, Σi ⊗ V i), (2.8)

Σi ∼ IW(Si, vi). (2.9)

Following the literature on Bayesian VARs (Litterman, 1986; Sims and Zha,

1998), we assume that the variables in the system follow simple random
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walks. This results in imposing Ψi = 1 for the entries concerning the Ąrst own

lag of each endogenous variable, Ψi = 0 otherwise. Regarding the elicitation

of Vi0, we specify a Minnesota prior. In particular, for the parameters in Ψi

corresponding to lag r of variable g, it is given by:

V i,gr =























α1

rkΣig
for the r − th lag of variable g

α2

(1+r)kΣ
∗
ig

for the r − th lag of variable g if weakly exogenous

α3 for the constant term

(2.10)

where α1 and α2 are hyperparameters controlling the tightness of the prior

on the endogenous and weakly exogenous parts respectively, Σig and Σ∗ig are

standard deviations obtained by estimating univariate regressions on the g-

th endogenous variable and g-th exogenous one, α3 controls the tightness of

the prior on the constant term. For a detailed explanation of the prior setup

see Cuaresma et al. (2016).

Given the high cross-sectional dimension handled by the GVAR, it is not

necessary to employ a long lag length as in a standard VAR (Burriel and

Galesi, 2018). Hence we set p1 = p2 = 1 for the country models. Regarding

the hyperparameters, we remain uninformative through relatively Ćat priors

both for the mean and variance parameters. Even though the total cross-

sectional dimension in the GVAR is large, this econometric technique natu-

rally acts as a dimensionality method. In our study, we employ a relatively

small number of countries and variables, thereby there is no real necessity to

regularize mean and variance parameters through tight priors. As a direct

consequence, we opt for uninformative priors by setting α1 = α2 = α3 = 100

for Ψi, and Si = IKiki
, vi = ki + 2. This prior degree of freedom is the

minimum level such that the expected value of Si is deĄned.
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Forecast error variance decomposition in Global VARs

Our approach stems from the econometric connectedness measures developed

by Diebold and Yilmaz (2009, 2012, 2014), which generally assume a station-

ary approximating time series VAR model, and that we apply to the GVAR

modeling framework. Diebold and Yilmaz (2014) build generalized forecast

error variance decomposition (GFEVD) on approximating Vector Autore-

gressive (VAR) models. The idea behind this approach is that the more a

variable is important in forecasting the future dynamics of another, the more

a shock in the former impacts the time series trajectory of the latter.

More recently, in line with our methodology, Greenwood-Nimmo et al.

(2021) develop a method to employ forecast error variance decompositions

to evaluate the macroeconomic connectedness in any multi-country macroe-

conomic model with an approximate VAR representation. They build their

research on Diebold and Yilmaz (2014) and, particularly, on the shortcoming

of not correctly dealing with high-dimensional cross-section data series and

with an increasing number of variables m. This framework presents several

advantages. In particular, it is convenient in terms of interpretability, it is

able to take into account for contemporaneous impacts and it can predic-

tively measure system-wide and pairwise connectedness in terms of direction

and magnitude of network links.

The methodology by Greenwood-Nimmo et al. (2021) overcomes both the

curse of dimensionality, which generally calls for a low number of variables m

in empirical applications, and for the need of accommodating intermediate

levels of aggregation in the modelling strategies, in a multilevel perspec-

tive. They propose a simple approach to overcome both issues based on

re-normalisation and block aggregation of the connectedness matrix. The

exposition of the block aggregation routine exploits the fact that GFEVDs

are invariant to the ordering of variables in the VAR model.

Given the nature of the variables underlying the Global VAR dynamical
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system, we follow Greenwood-Nimmo et al. (2021) who propose an aggrega-

tion scheme for the GFEVD in order to reduce its dimensionality with a direct

interpretation on the countries (variables) FEVD. The GFEVD assumes the

form:

C
(h)
R

(m×m)

=

















ϕ
(h)
1←1 ϕ

(h)
1←2 · · · ϕ

(h)
1←k

ϕ
(h)
2←1 ϕ

(h)
2←2 · · · ϕ

(h)
2←k

...
...

. . .
...

ϕ
(h)
k←1 ϕ

(h)
k←2 · · · ϕ

(h)
k←k

















, (2.11)

where ϕ
(h)
i←j represents the contribution of variable j to the h -steps-ahead

forecast error variance of variable i. Similarly, ϕ
(h)
i←i denotes the contribution

of variable i to its own h-steps-ahead forecast error variance (see Appendix

(A.1) for further details on the connectedness matrix).

The (i, j) -th element of C
(h)
R represents the proportion of the total h

-steps-ahead FEV of the system accounted for by the spillover effect from

variable i to variable i. With this modiĄcation we are ensured that we may

achieve a percentage interpretation even after aggregating groups of variables

in the system.

Suppose we are interested in analyzing the spillover measures developed

by Diebold and Yilmaz (2014) but focusing on the countries. It makes sense

to aggregate the FEVD according to country blocks, where each ith element

is obtained as an aggregation (sum) of the ith country block with its own

variables. If, instead, the aim is to carry a variable analysis, the aggregation

can be done considering the variable blocks.

Once we have collected xt into b groups C
(h)
R can be equivalently expressed

as:
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C
(h)
R

(m×m)

=

















B
(h)
1←1 B

(h)
1←2 · · · B

(h)
1←b

B
(h)
2←1 B

(h)
2←2 · · · B

(h)
2←b

...
...

. . .
...

B
(h)
b←1 B

(h)
b←2 · · · B

(h)
b←b

















. (2.12)

Consider now all the blocks lying on the main diagonal of that matrix

(i.e. B
(h)
k←k ); they contain all of the within-group FEV contributions. We

can therefore deĄne the within-group FEV contribution for the k th group

as follows

W(h)
k←k = e′mk

B
(h)
k←kemk

, (2.13)

where emk
is the usual selection vector. Roughly speaking, the within-

group FEV contribution for the k th group is equal to the sum of the elements

of the block B
(h)
k←k′ . Analogously, Bk←ℓ for k ̸= ℓ relates to the transmission

of information across groups. Hence we deĄne the spillover from group ℓ to

group k as F (h)
k←ℓ = e′mk

B
(h)
k←ℓemℓ

and the spillover to group k from group ℓ

as T (h)
ℓ←k = e′mℓ

B
(h)
ℓ←kemk

. By collecting all these measures, we can deĄne the

h-step ahead block connectedness matrix of dimension b× b as

B
(b×b)

(h) =

















W(h)
1←−1 F

(h)
1←−2 · · · F

(h)
1←b

F (h)
2←1 W(h)

2←2 · · · F (h)(h)

2←b
...

...
. . .

...

F (h)
b←1 F (h)

b←2 · · · W(h)
b←b

















. (2.14)

Note that the dimension of this grouped matrix is b2 < K2, which implies

a signiĄcant improvement on the FEVD interpretation in large models ease

the processing constraints encountered in large models. It is now straight-

forward to develop aggregate connectedness measures at the group level.

Within this framework, the total from, to and net connectedness of the

kth group are respectively deĄned as follows:
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F (n)
k←• =

b
∑

ℓ=1,ℓ ̸=k

F (n)
k←ℓ, (2.15)

T (n)
•←k =

b
∑

ℓ=1,ℓ ̸=k

T (n)
ℓ←k, (2.16)

N (n)
•←k = T (n)

•←k −F
(h)
k←•, (2.17)

where F (h)
k←• measures the total spillover from all other groups to group

k, the total from contribution affecting group k. T•←k measures the total

spillover to all other groups from group k, the total to contribution arising

from group k. N (n)
•←k is the net connectedness of group k. The subscript i← •

indicates that the directional effect is from all other variables to variable i.

It is possible to derive in a similar way the aggregate heatwave and spillover

indices, expressed in terms of the b groups, as:

H(n) =
D
∑

k=1

W(h)
k↔k, (2.18)

S(n) =
b
∑

k=1

F (n)
k←• ≡

b
∑

k=1

T (n)
•←k, (2.19)

whereH(n)+S(h) = 1 and
∑D

k=1N
(h)
•←k = 0, ∀h by construction. Differently

from the variable-level heatwave and spillover measures, in H(h) and S(h)

measure the heatwave and spillover effects in a consistent way with respect

to an aggregation routine.

From above, one can derive also two indices which are key to evaluate

interconnectedness among entities and small group of entities, such as geopo-

litical units and Ąnancial market sectors. They express either how dependent

is the k− th group on external conditions or to which degree does the k− th
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group inĆuences the k−th group or it is inĆuenced by the system as a whole.

The Ąrst measure is the dependence index:

O(h)
k =

F (h)
k←•

W(h)
k←k + F (h)

k←•

. (2.20)

The index measures the relative importance of external shocks for the

k− th group. In particular, as O(h)
k → 1, the network structure of group k is

dominated by external shocks, while group k is unaffected by external shocks

if O(h)
k → 0. Similarly, the inĆuence index can be derived as:

I(h)
k =

N (h)
•←k

T (h)
•←k + F (h)

k←•

, (2.21)

where −1 ≤ I(h)
k ≤ 1. For any horizon h, the k − th group is a net shock

recipient if −1 ≤ I(h)
k < 0, a net shock transmitter if 0 < I(h)

k ≤ 1, and

neither of the two if I(h)
k = 0. Hence, the inĆuence index expresses the extent

to which the k − th group inĆuences or is inĆuenced by conditions in the

system. When studying connectedness among countries, the coordinate pair
(

O(h)
k , I(h)

k

)

in dependence-inĆuence space can give a good representation of

country (or variable) k and its role in the global network system. While small

open economies would tend to be located close to the coordinates (1,−1), a

dominant economy would lay in the proximity of (0, 1).

We remark that the GFEVD has the inherent characteristic of not reĆect-

ing the impact of structural shocks, but only composite ones, an approach

which suffers from the contemporaneous correlation across equation innova-

tions. The GFEVD, as opposed to the orthogonal FEVD, comes without

the necessity of devising an identiĄcation schemes which could result into

questionable choices.
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Network theory and forecast error variance decomposi-

tions

In general, a variety of network analysis approaches, which study the struc-

ture and interactions of weighted directed network, can be applied to any

econometric connectedness matrix derived from GFEVD. Another important

issue is the dimensionality of the Global GFEVD directional spillover net-

work matrix. Indeed, given the ability of the GVAR to handle large number

of variables, it allows to derive high-dimensional GFEVD matrices. However,

these matrices are fully connected. This calls for the implementation of tools

borrowed from network theory and topological analysis to study backbone

structures, centrality measures, hub-authority relationships and many more

network analysis approaches on econometric connectedness measures.

In this context, we propose to merge two very consolidated approaches -

i.e. Ąnancial econometrics and network theory - to investigate dominant links

existing in the matrix of time series GFEVD from two different perspectives,

and, at the same time, in a complementary way. In particular, we investi-

gate the network topology of the risk spillover matrix coming from the Global

VAR generalized forecast error variance decomposition. In other words, we

employ the MST, the Louvain community detection and the Kleinber cen-

trality measure so to study the backbone structure and the hub-authority

dynamics of macroeconomic relationships, on indices based on the decom-

position of the variance-covariance matrix of the forecast error derived from

the dynamic GVAR estimates.

The combination of the two methodologies presents two main practical

advantages. First, we are able to statistically capture systemic risk in a

multi-country and multi-variate way, either at the aggregate or individual

level, and within a predictive framework. Second, we beneĄt from enhanced

explainability of results and insights derived from the network analysis of

econometric measures of systemic risk in the two speciĄc dimensions of the
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longitudinal time series.

Minimum Spanning Tree

In order to simplify the relationships given by the GFEVD matrix, we ap-

ply the Minimum Spanning Tree (MST) representation. This is a widely

employed technique in Ąnance - see, for instance, Miccichè et al. (2003);

Musciotto et al. (2018). The KruskalŠs algorithm (Kleinberg, 1998), which

delivers the minimum spanning tree from a given adjacency matrix, is able to

reduce the number of links among the nodes by drawing a link for each node

to its closest neighbour. In this way, we achieve dimensionality reduction of

the GFEVD spillover matrices obtained from the Global VAR estimation,

and we are able to determine the backbone structure of both countries and

variables.

The methodological premise of the Minimum Spanning Tree (MST) is

the existence of a given weighted graph G = [V, E], with v ∈ V vertices and

e ∈ E weighted edges. Without loss of generality, the weights can be thought

as the cost to reach vj from vi. We are interested in Ąnding a subgraph G̃

of G such that V (G) = V (G̃) (i.e. they span the same nodes) but with

the minimum possible aggregate cost, thought as the sum of all the graph

weights.

Let us deĄne ST (G) as the spanning tree set generated by the graph G,

i.e. the set of all trees that spans all the nodes of G. Ĝ ∈ ST (G) is called

a minimum weight spanning tree if the sum of the weights of the edges of Ĝ

does not exceed the sum for any other spanning tree of G (i.e. the one that

minimizes the sum of weights of the set ST (G)), see Harris et al. (2008).

There are a variety of algorithms for exploiting minimum weight spanning

trees. The most widespread and employed is the KruskalŠs algorithm, which

can be summarized as follows. Given a connected, weighted graph G:
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1. Find an edge of minimum weight and mark it.

2. Among all of the unmarked edges that do not form a cycle with any of

the marked edges, choose an edge of minimum weight and mark it.

3. If the set of marked edges forms a spanning tree of G, then stop. If

not, repeat step 2.

Louvain clustering for Community detection

An important feature of complex networks is its community structure, which

refers to the presence of groups of nodes. Each group contains a set of nodes;

within each group the density of edges is higher than that among the groups.

Community detection algorithms might reveal the hidden relations among

the nodes in a network. The core of the Louvain method (Blondel et al.,

2008) is to Ąnd a partition of the vertex set that maximizes the modularity

of the considered graph. This function provides a way to value the existence

of an edge between two vertices of an undirected network by comparing it

with the probability of having such an edge in a random model.

Modularity is a measure of the topology of networks, representing the

degree to which a network is fragmented into communities. A high modular-

ity corresponds to a network with dense links within community nodes, but

sparse links between the nodes belonging to different communities. This is

of relevance when analyzing Ąnancial and economic spillover networks, since

it reveals information on the communities involved in the risk propagation

mechanism, as well as on shock-resilient entities. Formally, the modularity

Q of a partition C of an undirected graph G = (V, E) is deĄned as follows :

Q =
1

2m

∑

i,j



Aij −
didj

2m

]

δ (ci, cj) (2.22)

where m stands for the number of edges of G, Aij represents the weight

of the edge between i and j, di is the degree of vertex i (i.e. the number of
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neighbors of i), ci is the community the vertex i belongs to and δ is the so

called Kronecker delta function, deĄned as δ(u, v) = 1 if u = v, 0 otherwise.

LouvainŠs algorithm relies on a greedy procedure. First, each node is

assigned to its own community. Then the algorithm tries to increase the

value of modularity by moving nodes into the community of each neighbor.

In other words, the algorithm computes the gain of modularity obtained by

adding vertex i to community C as follows:

∆Q =





∑

in +dC
i

2m
−

(

∑

tot +di

2m

2


−





∑

in

2m
−
(

∑

tot

2m

)2

−

(

di

2m

2


 (2.23)

where dC
i denotes the degree of node i in community C,

∑

in the number of

edges contained in community C and
∑

tot the total number of edges incident

to community C.

Once this value is derived for all communities i is connected to, i is placed

where the value of the modularity is maximized. If no increase is possible,

i remains in its original community. This process is applied repeatedly and

sequentially to all nodes until there are no moves that improve the value of

modularity. We remark that the main difference between the Louvain and

K-means methodologies is that the former is nonparametric, and requires

no a priori assumptions on the graph. Moreover, K-means and most of the

clustering techniques act on data points embedded in a space, while Louvain

on data points linked by an underlying graph.

Hubs and authorities

In this Chapter we employ a well-known centrality measure in order to ex-

plore the centrality and, thereby, hubs, authorities and systemically impor-

tant nodes in the Global VAR macroeconomic system GFEVD framework.

Network theory includes several centrality measures such as the degree cen-

trality, counting how many neighbours a node has, as well centrality measures

21



based on properties of graphs. Among centrality measures we remark KatzŠs

centrality - see (Katz, 1953) - PageRank - (Brin and Page, 1998), hub and

authority centralities - (Kleinberg, 1999) - and the eigenvector centrality -

(Bonacich, 2007).

In our context, we aim at investigating hub-authority network centralities

of country and variable systems, which can be derived through the Kleinber

centrality measure. According to such centrality measure, a node is impor-

tant if it has many incoming links from other important nodes. In general,

nodes with no incoming links cumulate, in the best case, only to a mini-

mum amount of centrality. However, it can also be argued that a node is

important, even if not pointed by many others, if it links to a set of impor-

tant vertices. Hence, there are two kinds of central nodes: authorities, that

contain reliable information, and hubs, that suggest (point) where to Ąnd

reliable information. The Ąrst ones are pointed by many good hubs nodes,

and, conversely, the second ones point to many good authorities vertices.

For each node of a graph, we use au(x) to denote its authority score and

hu(x) its hub score. We start by setting au(x) = hu(x) = 1 for all nodes. The

core of the algorithm is an iterated update of the hub and authority scores of

all nodes given by equation (2.24), which capture the intuitive notions that

good hubs point to good authorities and that good authorities are pointed

to by good hubs:

hu(x) =
∑

k∈P a(x)

au(k),

au(x) =
∑

k∈Ch(x)

hu(k),
(2.24)

where Pa(x) is the set of parents of node x and Ch(x) is the set of children

of x. The Ąrst line of equation (2.24) sets the hub score of a node v to the

sum of the authority scores of the nodes it links to. In other words, if v links

to nodes with high authority scores, its hub score increases. The second line

plays the reverse role; if node v is linked to by good hubs, its authority score
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increases. Let us shift equation (2.24) into matrix form. Let Au and Hu

denote the vectors of all hub and all authority scores respectively. Let D

denote the adjacency matrix of this graph: it is a square matrix with entry

Dij = 1 if there a edge from node i to j, and 0 otherwise. Then, we have:

Hu = D′Au,

Au = DHu.
(2.25)

Substituting Au (Hu) in the second (Ąrst) equation with the right hand

of the Ąrst (second) one we can rewrite equation (2.25) as:

Hu = DD′Hu

Au = D′DAu.
(2.26)

If we introduce the (unknown) eigenvalue, the Ąrst line of equation (2.26)

becomes the equation for the eigenvectors of DD′, and the second becomes

the equation for the eigenvectors of D′D :

Hu =
1

λa

DD′Hu

Au =
1

λh

D′DAu
(2.27)

where λa and λh are, respectively, the eigenvalues of DD′ and D′D. The

iterative process introduced in equation 2.24 is equivalent to the problem

of solving the characteristic equation of matrices by Ąnding the principal

eigenvectors (and eigenvalue) of DD′ and D′D. The resulting computation

thus takes the following form, once the weighted graph is available:

1. Compute D′D and D′D

2. Compute the principal eigenvectors of D′D and DD′ to form the vector

of hub scores Hu and authority scores Au.
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3. Rank the vectors found to check which subset of nodes in the graph

have the highest hub and authority values.

2.3 Data

Our approach combines real economy and economic sentiment indicators, as

measured by the Economic Sentiment indices survey data provided by EU-

ROSTAT. We analyze a selected set of real economy and survey sentiment

data variables for 12 countries in Europe, namely: Austria, Belgium, Den-

mark, France, Germany, Ireland, Italy, Netherlands, Poland, Spain, Sweden

and United Kingdom. Such choice is due to data availability and quality

constraints thus, the analyzed 12 countries, assure full and complete time

series. Nevertheless, these 12 countries cover more than 90% of the Euro-

pean UnionŠs GDP 1. As Great Britain left the EU in January 2020, we rely

on previous years statistics. In particular, we analyze the time series of In-

dustrial Production, Retail Trade and Economic Sentiment over the period

01/2000-11/2021. We select four crucial periods for the analysis of critical

transitions in the real economy and economic sentiment:

• Phase 1: The pre-crisis period (01/2006-08/2008);

• Phase 2: The Global Financial and European Sovereign Debt crises

period (09/2008-12/2012);

• Phase 3: the post-crisis period (01/2013-02/2020);

• Phase 4: The COVID-19 pandemic period (03/2020-11/2021).

Before the modelling exercise, we test the assumption that the country-

speciĄc foreign variables are weakly exogenous, i.e. we test for the presence

of dominant units.

1Source: EUROSTAT Database.
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This ensures the consistent estimation of the number of cointegrating re-

lationships and the cointegrating vector for each country model in a separate

way. We refer the reader to Chudik and Pesaran (2013); Konstantakis et al.

(2015); Pesaran and Yang (2020) for thorough discussions on dominant units.

Details and results on the weak exogeneity test are contained in A.1.

In summary, the weak exogeneity assumptions are violated in 3 cases out

of 21. The Ąrst one pertains Industrial Production of UK, which is con-

sistent with Dees et al. (2007), who found a rejection in the UK country

model. The second and third ones are related to Retail Trade of Austria and

Sweden. Given these premises, we have opted for a more consistent estima-

tion procedure through the Bayesian GVAR outlined in the methodological

section.

2.4 Empirical results

Global analysis

Our global analysis examines the interaction between real economy and senti-

ment both at the country and variable levels. In particular, we Ąrst show the

degree of cointegrating relationships existing among our data variables. Af-

ter that, we show the network structure of the GFEVD of the three variables

of interest - i.e. Industrial Production, Retail Trade and Sentiment indices -

across the 12 European countries under consideration.

Figure 1 shows a graphical representation of the Minimum Spanning Tree

calculated on the generalized forecast error variance decomposition (GFEVD)

relative to the whole sample period. Network nodes represent system vari-

ables, whereas edges represent the directional contribution of each variable to

the forecast error variance decomposition of the others. The retained MST

paths are represented by edges with larger weights of GFEVD transmitted to

the other nodes, highlighting the backbone structure of the GFEVD spillover
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Figure 1: Global forecast error variance MST
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MST calculated on the whole sample GFEVD. Nodes represent system vari-

ables, whereas edges represent the directional contribution of each variable

to the forecast error variance decomposition of the others. Colours stand for

Industrial Production (red), Retail Trade (green) and Economic Sentiment

(blue). Self-loops are omitted.

network.

We notice a central role of the French Retail Trade index, which acts as a

bridge and shock transmitter towards two consistent sub-graphs, particularly

by means of its link with the Industrial Production index of Estonia and

with the Economic Sentiment of Italy. The two sub-graphs, divided in this

way, differ signiĄcantly in composition. The Ąrst one is mainly composed by

Industrial Production variables, with Austria, Spain, United Kingdom and

Belgium being - directly or indirectly - linked.

The second sub-graph is mainly composed by Economic Sentiment and
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Figure 2: Global forecast error variance clustering
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Retail Trade indices. In this case, sentiment variables of Netherlands, Spain,

Denmark, Austria and Ireland inĆuence each other in the context of the

network backbone structure.

Figure 2 shows the clustered GFEVD network structure of real economy

and economic sentiment variables over the full sample period, where clusters

are obtained through the Louvain community detection algorithm. Results

highlight the emergence of four clusters: two of them are clearly denser than

the other two. The largest cluster (pink) mainly consists of Retail Trade

variables, whereas the second largest (blue) shows a prevalence of Economic

Sentiment and Industrial Production variables, with many country-speciĄc
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connections. Interestingly, the GFEVD network clusters show the emergence

of two relatively isolated, but still communicating vessels. The Ąrst one (pur-

ple) is composed by the Industrial Production of Poland, the Retail Trade

of Italy and Sweden, along with the Economic Sentiment of Sweden and

Belgium. In the second group (green), we Ąnd the Industrial Production

indices of Italy and Belgium and the Economic Sentiment of Italy and Spain.

The strongest link is that between the Economic Sentiment and the Indus-

trial Production of the Italy, which has strongly co-moved over the last two

decades, and acts as a main information bridge across clusters.

Variable analysis

The aim of the variable analysis is to investigate the informationally dom-

inant variables, in terms of GFEVD transmitted to others, in the network

of variables (Industrial Production, Retail and Sentiment indices) over time.

The analysis at a variable level aggregates country GFEVD and derives over-

all predictive spillovers from one variable to another. Based on this, we derive

the aggregate dependence and inĆuence indices of the sentiment and real eco-

nomic variables, so to measure the role played in the system at an aggregate

level.

In this regard, Figure 3 shows the scatter plot obtained by generating

a cartesian plane with the inĆuence index on the x axis and the depen-

dence index on the y axis, as deĄned in Section 2.2. Both the indices are

calculated starting from the aggregation of the three variables of interest

(Industrial Production, Retail and Sentiment indices) at the country level of

the GFEVDs.

From the temporal dynamics along the four considered periods, we ob-

serve that the three Ąrst phases are quite similar, the main difference lies in

the position of the Retail Trade index which swings between negative and

positive values with regards to the inĆuence index. That said, the most inter-
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Figure 3: Dependence-inĆuence variable relationships
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Scatter plot obtained by generating a cartesian plane with the inĆuence in-

dex on the x axis and the dependence index on the y axis. "IP" stands for

Industrial Production, "RT" for Retail Trade and "ES" for Economic Senti-

ment.
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Figure 4: Country Aggregate Heatwave and Spillover index
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Aggregate Heatwave and Spillover index based on the country dynamic

GFEVDs. The beginning of the Global Financial Crisis (September 2008)

and the COVID-19 outbreak (February 2020) are marked in red.

esting pattern appears, once again, when considering the last period of crisis:

the ranking of the indices is inverted and in particular the sentiment index

presents a negative value for the inĆuence, meaning that it is more inĆuenced

than before. This might be linked to the fact that, being COVID-19 a large

and, most of all, unexpected exogenous shock to the network of real economic

and sentiment interrelationships, it does cause a reversal of trend between

sentiment and the real economy. While macroeconomic expectations have

mostly tended to anticipate real macroeconomic dynamics in view of current

situations, such a strong unexpected shock has swapped the relationship and

led the real economic conditions to dominate the dynamics of sentiment.
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Country analysis

In the country analysis, we investigate country-level connectedness in terms

of time series dynamics of real economic and sentiment variables. In partic-

ular, we Ąrst show the dynamic Aggregate Heatwave and Spillover index, so

to give an idea of the magnitude of the interaction within- and cross-country

GFEVD. Then, we examine the dependence and inĆuence of each of the Eu-

ropean countries in terms of transmitted/received economic and sentiment

GFEVD spillovers. Finally, we study the hub-authority relationships across

countries in terms of their contribution to the others with regards to the

forecast error variance.

Figure 4 shows the Aggregate Heatwave and the Overall Spillover index

based on the dynamic GFEVDs. The beginning of the Global Financial

Crisis (September 2008) and the COVID-19 outbreak (February 2020) are

marked in red. The two crisis periods emerge clearly from the curves dy-

namics with huge drops (hypes) followed by recovery periods. In particular,

evidence shows that during both the Global Financial Crisis and the COVID-

19 pandemic, the interconnectedness (Aggregate Heatwave) within country

variables decreases sharply, likely due to large misalignment in the real econ-

omy and sentiment time series dynamics. Similarly, the between-country

interconnectedness (Spillover index) starkly rises because of increased con-

nection between countriesŠ real economies and sentiment. Interestingly, the

COVID-19 impact seems to be more persistent in time than that exerted by

the Global Financial Crisis in terms of spillover magnitude.

Figure 5 shows the directed weighted GFEVD spillover network obtained

from the country aggregation of the whole sample GFEVD. Nodes represent

countries, whereas links represent the magnitude of pairwise directed forecast

error variance transmitted to others. The central role is played by Germany

which shows strong directed links with eight countries. Some other countries

such as Poland, Ireland and Denmark seem to be overall more pheripheral in

the spillover network, as well as mostly GFEVD receivers than transmitters.
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Figure 5: Directed GFEVD country spillover network
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Directed GFEVD country spillover network. Nodes represent countries,

whereas links represent the magnitude of pairwise directed forecast error

variance transmitted to others. Self-loops are omitted.

Such results need to be, however, analyzed from a dynamic perspective in

order to capture the evolution of country interrelationships over time. For

this purpose, Figure 28 shows the same directed weighted GFEVD spillover

network obtained from the country aggregation of the GFEVD phase by

phase.

In Tables 1 and 2, we report our results regarding the hubs and authorities

algorithm performed on the GFEVD network. In particular, Table 1 shows

countries ranked in decreasing order along with their "Hubs" value (in brack-

ets) calculated on the directed network of country block GFEVDs divided

into the four sub-samples under consideration. On the other hand, Table 2

reports countries ranked in decreasing order along with their "Authorities"
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Table 1: Country-level network hubs

1st 2nd 3rd 4th 5th

Phase 1 Net Bel UK Pol Ire

(12.860) (11.333) (10.173) (10.033) (8.385)

Phase 2 Net UK Pol Ger Pol

(24.101) (12.968) (8.958) (8.024) (7.862)

Phase 3 Ger Spa Pol Net Ita

(12.957) (10.826) (10.594) (10.579) (9.697)

Phase 4 Ger UK Pol Fra Net

(17.768) (14.555) (11.065) (9.427) (9.426)

The table reports countries ranked in decreasing order along with their nor-

malized "Hubs" values (in brackets) calculated on the directed network of

country block GFEVDs divided into the four sub-samples under considera-

tion.

values.

The premise of the hubs and authorities analysis is that there are two

types of central nodes: authorities, that contain reliable information on the

forecast error variance of the others, and hubs, that point to authoritative in-

formation on such forecast error variance. Results show that there is a notice-

able variability in the hub-authority relationships across European countries

as regards to dominance in terms of sentiment and real economy spillovers.

Interestingly, we Ąnd that Netherlands exhibits both an authoritative and

hub behaviour during the Ąrst two phases, while it then loses its relevance

in the network in the aftermath of the Global Financial Crisis. At the same

time, GermanyŠs hub score increases, meaning it starts pointing to reliable

sources of shock transmission, both during the tranquil period before COVID-

19 and in the midst of the pandemic itself. In accord with the results on

the dependence index, we additionally Ąnd that there is no predominant
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Table 2: Country-level network authorities

1st 2nd 3rd 4th 5th

Phase 1 Net Bel Pol UK Den

(10.380) (9.300) (9.064) (8.993) (8.245)

Phase 2 Net Spa Ger UK Swe

(9.793) (8.954) (8.685) (8.578) (8.278)

Phase 3 Ger Spa Net Pol Ita

(9.504) (9.023) (8.930) (8.893) (8.531)

Phase 4 Spa Ire Fra Net UK

(8.341) (8.340) (8.340) (8.338) (8.337)

The table reports countries ranked in decreasing order along with their nor-

malized "Authorities" values (in brackets) calculated on the directed network

of country block GFEVDs divided into the four sub-samples under consider-

ation.

authority during the COVID-19 period, meaning that such large exogenous

shock has affected the lead-lag relationships across countries, levelling out

the authoritative behaviour of dominant countries in the network.

2.5 Conclusion

We propose a methodology which takes root from the statistical and econo-

metric literature concerning generalized forecast error variance decomposi-

tion of multivariate time series models. We build on a dynamic spillover

network framework derived from a Global VAR model, a suitable macroe-

conometric model to consider for simultaneous multi-level interdependen-

cies. We then propose to exploit concepts from network theory to analyze

the backbone structure, to perform community detection and to examine

the hub-authority dynamics of longitudinal time series networks, both across
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countries and variables. We exemplify our method with an empirical ap-

plication to study the network topology of spillover indices across a set of

European countries, macroeconomic variables and sentiment data over the

period 01/2000-11/2021.

We demonstrate the usefulness of our method to analyze the network

structure of shock propagation in longitudinal time series and, in particular:

a) the shortest paths of contagion; b) the clusters of shock transmission; c)

the role of nodes in the risk transmission channels. Our main results show

how different crises exert starkly diverse impacts on real economy, economic

sentiment and on the entire countriesŠ macroeconomic network structure. In

particular, while the impact of the Global Financial Crisis shows different

consequences on the network interrelationships of macroeconomic variables

if compared to those of the COVID-19 outbreak, the latter seems to be more

persistent over time.

Despite the merit of our method in linking econometrics and network the-

ory to produce advances in a cutting-edge research ground, there is room for

methodological developments and empirical applications at the intersection

of two Ąelds. While econometric models are often robust, yet not exploited

from a network perspective, network models can constitute a precious contri-

bution to the understanding of time series model outputs and, more generally,

to the establishment of new cross-cutting disciplines. This is a promising av-

enue for future research not only in the context of real economy networks,

but also on Ąnancial, social and any kind of networks.
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3 Bayesian Stochastic Search for Matrix Au-

toregressive Models

Based on the paper: Celani, A., Jones, G., and Pagnottoni, P. (2022),

"Bayesian Variable Selection for Matrix Autoregressive Models". Available

at SSRN.

3.1 Introduction

The emergence of a massive amount of high-dimensional time series observed

in matrix form gives birth to new modeling challenges in economics, Ąnance,

and related Ąelds. The existing approaches to dimension reduction in high-

dimensional multivariate time series analysis can be organized in two ma-

jor classes: a) factor models (Bai and Ng, 2002; Forni et al., 2005; Lam

et al., 2011); b) modeling with frequentist regularization or Bayesian meth-

ods (Rothman et al., 2010; Song and Bickel, 2011; Kock and Callot, 2015;

Park and Casella, 2008; Bańbura et al., 2010; Gefang, 2014; Ahelegbey et al.,

2016; Korobilis, 2021).

While most of the extant modelling paradigms are designed to encourage

parsimony by treating observations as time series vectors, the collection of

data at the intersection of two or more classiĄcations naturally constitutes

matrix or tensor-valued time series. For instance, the collection of panel data

forms matrix-valued observations, whose rows might represent indicators and

columns countries. In this context, univariate time series analysis focuses on

one element of the matrix at a time. Vector and panel time series analysis

deal with the co-movement of one row in the matrix. Modeling each dimen-

sion separately annihilates the multidimensional structure of data, and can

therefore lead to a signiĄcant loss of information or efficiency.

A strand of literature has therefore developed estimation procedures and

investigated theoretical and probabilistic properties of multidimensional time
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series models, including matrix-valued ones (Hoff, 2015, 2011; Chen et al.,

2021; Wang et al., 2019; Billio et al., 2022). However, when the matrix

observation has large dimensions, the matrix autoregressive (MAR) model

involves a large number of parameters, which requires further dimension re-

duction techniques in order to produce accurate estimation. So far, this

has been primarily tackled through the introduction of factor autoregressive

models for multidimensional time series (Wang et al., 2019; Chen and Fan,

2021; Gao and Tsay, 2021; Chen et al., 2022).

In parallel, the literature on high-dimensional statistics has widely studied

sparse recovery in the context of normal linear regression models, particularly

stemming from the seminal papers of George and McCulloch (1993, 1997) on

variable selection via Gibbs sampling, hereafter identiĄed as stochastic search

variable selection (SSVS). More recently, Ročková and George (2014) propose

a deterministic alternative to stochastic search based on an EM variable

selection (EMVS) algorithm to quickly Ąnd maximum a posteriori probability

(MAP) estimates. As in SSVS, the EMVS method combines a spike-and-

slab regularization procedure for the discovery of active predictor sets with

subsequent evaluation of posterior model probabilities, with the difference

rendering an appealing alternative in terms of computational efficiency.

Fully Bayesian variable selection has recently attracted attention in the

multivariate time series context, starting from George et al. (2008) who pro-

pose a stochastic search approach to selecting restrictions for vector autore-

gressive (VAR) models. Despite that, the EMVS framework and its conve-

nient features have yet to be exploited in multivariate time series. Moreover,

variable selection has only been considered in vector-valued time series mod-

els to date, highlighting the need of identifying restrictions in multidimen-

sional autoregressive models. The absence of restrictions on the regression

coefficients results in a potentially large number of parameters relative to the

available data. With a limited number of observations over-parameterization

might affect the precision of inference.
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We propose a novel matrix autoregressive model where sparsity is induced

both in a fully Bayesian and a scalable EM framework, which enables fast

posterior mode identiĄcation. By deriving a compact form for MAR models

borrowed from the tensor linear regression framework, we design a traditional

estimation strategy using MCMC and a Bayesian EMVS procedure for fast

posterior mode identiĄcation. The latter allows to signiĄcantly shrink the

computational time required for the MCMC procedure, in line with the need

of current estimation algorithms to deal with large-scale multidimensional

time series.

We demonstrate the properties of our proposed model through simula-

tions and examples in the application to macroeconomic data. Our simula-

tion experiments show: a) the gain in small sample efficiency of the proposed

estimators relative to maximum likelihood (ML) in high-dimensional sparse

settings; and b) that the proposed estimators perform generally better than

standard VARs and several competing alternatives suited for longitudinal

data, while limiting computational intensity in the EMVS formulation. The

empirical application to macroeconomic data conĄrms that the model is able

to: a) handle high-dimensional longitudinal data; b) outperform competing

alternatives in high-dimensional settings; and c) yield enhanced interpretabil-

ity given by the autoregressive model in matrix form.

Our model can be readily extended to the tensor autoregressive (TAR)

framework. In contrast to other work (Billio et al., 2022), our formula-

tion encompasses a Tucker structure in the matrix coefficient rather than

a PARAFAC decomposition. The latter can be viewed as a special (con-

strained) case of Tucker decomposition, with a super-diagonal core tensor

and the same number of factor components for each dimension. While the

PARAFAC decomposition has the advantages of being highly parsimonious

and unique, it requires the autoregressive coefficient matrices to be of rank

one, which might be extremely restrictive in many economic and Ąnancial ap-

plications. Conversely, the Tucker structure admits an arbitrary number of

factor components in each mode, hence allowing to model dimension asym-

38



metric tensors and beneĄt from enhanced interpretability of mode-speciĄc

interrelationships.

The remainder proceeds as follows. In Section 3.2 we outline the proposed

sparse MAR model; then we illustrate the MCMC and EMVS estimation

procedures. Section 3.4 evaluates the model performance and computational

times, compared to some key competitors, through a simulation study. In

Section 3.5 we conduct an empirical application to macroeconomic data.

Section 3.6 contains some concluding remarks.

3.2 Model and Prior Structure

The Matrix Autoregressive Model

The MAR model takes advantage of the original structure of the data by mod-

eling matrix autoregressive dynamics in a bilinear form. This is of paramount

importance, for instance, in panel data applications, where each observation

at time t can be conceived as a matrix, whose rows represent indicators and

columns represent countries.

For n = 1, ..., N , let yn,t ∈ R
G×1 and set Yt = [y1,t, ..., yN,t] ∈ R

G×N .

The conditional mean of the matrix observation at time t is expressed as

the product of P lagged observations by two (left and right) autoregressive

coefficient matrices, Ai ∈ R
G×G and Bi ∈ R

N×N for i = 1, ..., P , controlling

the row and column effects respectively. The model takes the form

Yt =
P
∑

i=1

AiYt−iB
′

i + Et,

Et ∼MN (0, Σ1, Σ2),

(3.1)

where Et ∈ R
G×N is a matrix white noise of the same dimension of Yt with

two symmetric positive deĄnite covariance matrices Σ1 and Σ2. We useMN
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to denote the multilinear normal distribution (Gupta and D.K., 1999; Ohlson

et al., 2013). For a more detailed explanation of the model interpretation see

Chen et al. (2021).

Let vec(·) be the usual vectorization of a matrix by stacking its columns

and ⊗ the usual Kronecker product. Let yt−i = vec(Yt−i) for i = 0, ..., P

and et = vec(Et). The vectorized form of the MAR model in equation (3.1)

is

yt =
P
∑

i=1

(Bi ⊗Ai)yt−i + et,

et ∼ N (0, Σ2 ⊗Σ1).

(3.2)

The representation in equation (3.2) shows that the MAR(P ) model can

be regarded as a special case of a VAR(P ) model, with an autoregressive

coefficient matrix given by a Kronecker product of the two mode-speciĄc

matrices.

The model can be made more parsimonious, if more restrictive, by assum-

ing that the row and column effects matrices are time invariant (Ai = A,

Bi = B), while embedding the effects of lagged observations in a row vector

c ∈ R
1×P . The conditional mean of Yt is a linear combination of its P lagged

values, pre and post multiplied by A and B as in a MAR(1). If ci ∈ c, the

model is then

Yt = A

(

P
∑

i=1

ciYt−i



B
′

+ Et (3.3)

Although it can be expressed as a MAR, the model arises naturally as a

special case of tensor autoregression (TAR), as will be shown in the sequel.

We therefore denote the model in equation (3.3), MAR∗(P ).

An unrestricted VAR(P ) estimates (GN)2P ∈ O(n5) parameters, but due

to the Kronecker structure imposed on its coefficient matrices, the MAR(P )
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model estimates only (G2 + N2)P ∈ O(n3) parameters, where O(·) denotes

the order of parameter complexity. The further restriction imposed that

yields the MAR∗(P ) results in G2 +N2 +P ∈ O(n2) parameters to estimate.

As a result, the number of parameters grows as a linear function of the lag

order.

Compact form

Vector and matrix operations can be readily generalized to the tensor case,

but notions of tensor algebra are necessary to proceed. See Appendix A.2 for

some basics of tensor notation and calculus. For a comprehensive explanation

see (Cichocki, 2018; Kolda and Bader, 2009).

Although an estimation procedure for the MAR(1) is readily available

(Chen et al., 2021), a compact form of the model is instrumental for devel-

oping a more general and coherent estimation procedure of the MAR(P ). We

therefore derive a comprehensive compact form for any general K-dimensional

TAR(P ), which admits the MAR(P ) and MAR∗(P ) as special cases, by es-

tablishing a connection with the general Tensor Linear Regression (TLR)

model. Indeed, as in its compact form the VAR emerges as a multivariate

linear regression (MLR) model, the analogue of the MAR is a TLR model.

The compact form of the VAR can be easily derived by creating the matrix

of dependent variables Y by horizontally stacking each yt for t = 1, ..., T .

However, for each time point, the variables in a MAR are already matrix

shaped, so that its related compact form turns out to be the a third order

tensor, the closest generalization of a matrix.

Let us consider a K way (order) tensor Y ∈ R
J1,...,JK which is a K-

dimensional array with entries Yj1,...,jK
with jk = 1, ..., Jk for k = 1, ..., K.

We deĄne the response and explanatory tensor for the MAR in equation

(3.1). Let Y be a K = 3 way response tensor of dimension [G×N × T − P ]

with Y:,:,t = Yt. Then, deĄne the explanatory tensor X to be of dimension
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[GP×NP×T−P ]. When Ąxing the third dimension j3 = t = 1, ..., T−P , we

obtain tensor slices of dimensions [GP ×NP ], which we Ąll with the lagged

values of Yt and zeros otherwise:

X:,:,t =

















Yt−1 0 · · · 0

0 Yt−2 · · · 0
...

...
. . .

...

0 0 · · · Yt−P

















.

In the case of the the MAR∗(P ) in equation (3.3), the response and

explanatory objects of interest need to be slightly modiĄed. We deĄne X

to be a K = 4 order tensor of dimensions [G × N × P × T − P ] such that

X:,:,i,t = Yt−i and, for the sake of coherency, we modify Y to be a four-

dimensional tensor Y ∈ R
G×N×1×T−P as well.

We may now write a unique compact form which encompasses both

MAR(P ) and MAR∗(P ). Let B = ¶[A1, ..., AP ], [B1, ..., BP ], IT−P♢ and

Σ = ¶Σ1, Σ2, IT−P♢ in case of MAR(P ), B = ¶A, B, c, IT−P♢ and Σ =

¶Σ1, Σ2, Σ3, IT−P♢
2 in case of MAR∗(P ). If ×̄ is the Tucker product and U

is a tensor white noise, then we have

Y = X×̄B + E

E = U×̄Σ1/2

U ∼MN (0, IJ1 , ..., IJK
)

(3.4)

Notice that equation (3.4) can be seen as the multilinear generalization of

the compact form of VAR modelsŰsee Lütkepohl (2005).

It will be convenient to derive the MLR representation of the models. To

simplify the notation a little, let Φ1 = [A1, ..., AP ] and Φ2 = [B1, ..., BP ]

for the MAR(P ), Φ1 = A, Φ2 = B and Φ3 = c for the MAR∗(P ). Then,

let Ỹk = matk(Y)Σ−k, X̃k = matk(X )Σ−k and Ẽk = matk(E)Σ−k, where

2Notice that, being the third dimension of Y of order 1, Σ3 = σ
2

3
collapses to a scalar.
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Σ−k = ΣK ⊗ ... ⊗ Σk+1 ⊗ Σk−1, ..., Σ1, where matk(·) denotes the k-mode

matricization operator as deĄned in Appendix A.2. By matricizing both the

sides of equation (3.4) for each k, one can easily derive a MLR model which

highlights the kth way conditional mean and variance matrices ¶Φk, Σk♢:

Ỹk = ΦkX̃k + Ẽk

Ẽk ∼MN (0, Σk, IJ−k
)

(3.5)

The latter formulation allows the estimation to be carried out for each of

the K modes separately. Notice that in the case of vector-valued time series,

the compact form in equation (3.4) reduces to the formulation in equation

(3.5).

Shrinkage Priors

Consider the compact form in (3.4). Let J−k =
∏

l ̸=k Jl so that the likelihood

can be written as

L(Y♣B, Σ) ∝
K
∏

k=1

♣Σk♣
−

J−k
2 exp

(

−
1

2
♣♣(Y − X×̄B)×̄Σ−

1
2 ♣♣22

)

. (3.6)

Also, notice that the likelihood for the MAR model in terms of ¶Φk, Σk♢,

given the other parameters, is proportional to the likelihood in (3.6):

L(Y♣Φk, Σk) ∝ L(Y♣Φ, Σ). (3.7)

This implies that not only ML but also Bayesian estimation can be carried for

each dimension separately (see, e.g., Hoff, 2015). As a consequence, sparsity

can be induced in the two modes independently, which eases the introduction

of regularization methods for MAR models.

We will consider a spike-and-slab framework for the prior to iteratively

induce sparsity in the two mode-speciĄc coefficients of the MAR. A related

approach has been developed for VAR models (George et al., 2008). For
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each coefficient ϕi,k ∈ ϕk = vec(Φk), we have a binary indicator γi,k ∈ ¶0, 1♢,

which encodes the state of ϕi,k (the "spike" inactive state for γi,k = 0 and the

"slab" active state for γi,k = 1). Given γi,k, the conditional mixture prior for

each ϕi,k can be expressed as

ϕi,k♣γi,k ∼ (1− γi,k)N (0, τ0) + γi,kN (0, τ1), (3.8)

which is controlled by the two hyperparameters τ0 and τ1 By selecting the

two such that former approaches 0 whereas the latter is arbitrarly large, γi,k

is able to identify restrictions on ϕi,k. The prior for the kth mode conditional

mean parameters can be rewritten compactly as:

ϕk♣γk ∼ N (0,Vk) (3.9)

where Vk = diag(v1,k, ..., vnk,k) and vi,k = (1 − γi,k)τ0 + γi,kτ1, being nk the

cardinality of ϕk. We assume each γi,k is independent Bernoulli, i.e. :

γi,k♣θk ∼ Ber(θk). (3.10)

With a priori information on the level of sparsity in the coefficients, one

can set θk accordingly. Therefore, we endow each indicator with a Beta-

Bernoulli hierarchical prior scheme:

π(γk♣θk) = θ
♣γk♣
k (1− θk)nk−♣γk♣

θk ∼ Beta(αk, βk)
(3.11)

where ♣γk♣ =
∑

i γi,k.

Notice that the two covariance matrices of the MAR enter the likelihood

in a multiplicative way, meaning their scales are not separately identiĄable.

Without imposing restrictions, such quantities would be determined com-

pletely by the prior covariance matrices. Further restrictions on the scales

are therefore required without any additional a priori information.
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As in Hoff (2011, 2015), we introduce dependence between the Inverse

Wishart prior distribution of each Σk by adding a level of hierarchy through

a hyperparameter ξ

ξ ∼ Ga(η1, η2),

Σk♣ξ ∼ W
−1(ξΩk, νk),

(3.12)

such that by setting Ωk = IJk
/Jk and νk = Jk + 2 the total variance is

controlled only by a K-th power of ξ:

E
[

∏

k

tr(Σk)
]

= ξK . (3.13)

Thus, if we let ∆k be the collection of all the k-th mode parameters

except for γk, the joint prior distribution takes the form

π(∆1, ..., ∆K , γ1, ..., γK) =
∏

k

π(ϕk♣γk)π(γk♣θk)π(θk)π(Σk♣ξ)π(ξ). (3.14)

3.3 Bayesian Estimation

We develop two computational methods for Ątting the proposed Bayesian

model (i) a Gibbs sampler and (ii) a maximum a posteriori (MAP) esti-

mation procedure via EMVS. The Gibbs sampling algorithm will produce

more accurate estimates and allow estimation of the full posterior, however,

it is expected to be slower than the EMVS procedure, which aims only at

identiĄcation of posterior modes by iteratively maximizing the conditional

expectation of the log posterior.

An outline of the proposed Gibbs sampling procedure is given in Algo-

rithm 10. We report details on the full conditional posterior distributions

in Appendix A.2. Note that while we defer description of how we obtain

the MAP estimates, this is what we propose to use as starting values for

the Gibbs sampler. Posterior modes are often good starting values to use

in MCMC simulation experiments (Geyer, 2010; Jones and Qin, 2022; Vats

et al., 2021).
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Algorithm 1: MCMC
Starting values: MAP estimate Φ̂k, Σ̂k.

Hyperparameters: τ0, τ1, αk, βk, Ωk, νk.

Initialize : Φ
[0]
k

= Φ̂k, Σ
[0]
k

= Σ̂k, θ
[it]
k

= αk/βk,

n. of iterations MC, size of Burn in BU .

1 for j = 1 to MC + BU do

2 for k = 1 to K do

3 for i = 1 to nk do

4 Draw γ
[j]
i,k

from the Bernoulli distribution (A.11).

5 Compute Ỹk and X̃k with Φ
[j−1]
k

and Σ
[j−1] as in subsection A.2.

6 Draw ϕ
[j]
k

from the multivariate Normal distribution (A.13).

7 Draw Σ
[j]
k

from the Inverse Wishart distribution (A.15).

8 Draw θ
[j]
k

from the Beta distribution (A.16).

9 Draw ξ[j] from the Gamma distribution (A.17).

10 Compute B[j] and Σ
[j] with Φ

[j]
1 , ..., Φ

[j]
K

and Σ
[j]
1 , ..., Σ

[j]
k

and renormalize via (3.18)).

MAP Estimation

A global optimization procedure to Ąnd the posterior mode can be separately

set for each order K. However, given the mixture of prior for each ϕk, direct

optimization of the log conditional posterior log π(∆k♣Y) has no analytical

solution. The presence of the sum prevents the logarithm from acting directly

on the joint conditional posterior, which results in complicated expressions

for the MAP solution.

We employ an Expectation Conditional Maximization (ECM) algorithm

(Meng and Rubin, 1993), which indirectly maximizes log π(∆k, γk♣Y) by iter-

atively maximizing its expected value under the posterior distribution of the

latent variable. At iteration j, this expectation, denoted by Q(∆
[j]
k ♣∆

[j−1]
k ),

is given by

Q(∆k♣∆
[j−1]
k ) = E

γk♣∆
[j−1]
k

[

log π(∆k, γk♣Y)♣∆[j−1]
k

]

, (3.15)

which constitutes the E-step of the algorithm. In the M-step, we derive the
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revised estimate of all the other parameters by maximizing the function:

∆
[j]
k = argmax

∆k

Q(∆k♣∆
[j−1]
k ) (3.16)

where Q(∆k♣∆
[j−1]
k ) can be decomposed as:

Q1,k(ϕ
[j]
k ♣−) =−

1

2

[

(ϕk − ϕ̂k)
′

(X̃k′

X̃k ⊗Σ−1
k )(ϕk − ϕ̂k) + ϕ

′

kV
−1
k ϕ

′

k

]

Q2,k(Σ
[j]
k ♣−) =− (Jk + J−k + νk + 1) log ♣Σk♣

− tr


Σ−1
k

[

ξΩk + (Ỹk −ΦkX̃k)(Ỹk −ΦkX̃k)
′
]}

Q3,k(θ
[j]
k ♣−) =(♣γk♣+ αk − 1) log(θk) + (nk − ♣γk♣+ βk − 1) log(1− θk)

Q4(ξ
[j]♣−) =

1

2

∑

k

Jkνk log(ξ)−
1

2

∑

k

tr(ΩkΣ−1
k )ξ + (η1 − 1) log(ξ)− η2ξ

(3.17)

Notice that there is an identiĄability issue arising from the structure of

the MAR. Given the properties of the Kronecker product, if Φ1, ..., ΦK are a

solution of the problem, so are f1Φ1, ..., fKΦK , with the condition
∏

k fk = 1.

To keep iterations of both the Gibbs and the EMVS stable, we choose fk such

that the magnitude between the various parameter matrices remains as stable

as possible in the following way:

fk =

∏

l ̸=k ♣♣Φl♣♣
1
K

♣♣Φk♣♣
K−1

K

(3.18)

The same applies for the covariance matrices. We illustrate the complete

EMVS estimation procedure in Algorithm 13.

3.4 Simulations

We design two simulation experiments. The Ąrst one is aimed at studying the

small sample efficiency of our proposed method. The second one evaluates

the estimation error, forecasting performance, and computational time of
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Algorithm 2: EMVS
Starting values: ML estimate Φ̂k, Σ̂k.

Hyperparameters: τ0, τ1, αk, βk, Ωk, νk.

Initialize : Φ
[0]
k

= Φ̂k, Σ
[0]
k

= Σ̂k, θ
[it]
k

= αk/βk,

j = 0, tolerance ϵ.

1 while T ol > ϵ do

2 j = j + 1.

3 for k = 1 to K do

4 for i = 1 to nk do

5 Compute Eγk♣·(γi,k) from eq. (A.18).

6 Compute Eγk♣·(v
−1
i,k

) from eq. (A.19).

7 Compute Ỹk and X̃k as in subsection 3.2.

8 Update ϕ
[j]
k

from eq. (A.20).

9 Update Σ
[j]
k

from eq. (A.21).

10 Update θ
[j]
k

from eq. (A.22).

11 Update ξ[j] from eq. (A.23).

12 Compute B[j] and Σ
[j] with Φ

[j]
1 , ..., Φ

[j]
K

and Σ
[j]
1 , ..., Σ

[j]
k

and renormalize via (3.18).

13 Compute T ol = max♣♣Φ
[j]
k
−Φ

[j−1]
k

♣♣22.

our proposed approach, relative to multiple existing estimation methods for

longitudinal data. We further perform a comparative convergence analysis

of the MCMC in Appendix A.2.

We set our hyperparameters to be τ0 = 0.01, τ1 = 4, Ωk = IJk
/Jk,

νk = Jk + 2, αk = 1, βk = Jk − 1, ν1 = 1, and ν2 = 1 for both experiments.

In the second experiment, we run all the Gibbs samplers for 1000 iterations.

Given a conĄdence level of 0.05, this number of simulations ensures stable

estimation results, being above the minimum effective sample size (mESS) at

a tolerance of 0.05 in the largest scenario (Vats et al., 2019). Details on the

convergence of the sampler of our proposed model can be found in Appendix

A.2.
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Small Sample Efficiency

We compare the small sample efficiencies of ML and MAP estimators by

letting the length of the time series T and the level of sparsity in the au-

toregressive coefficients vary. The main purpose of this experiment is to

obtain qualitative understanding of the small sample covariances of the two

estimators under different sparsity settings. We use the MAP estimator for

comparison purposes given its computational convenience.

To this aim, we simulate our synthetic data as follows. We generate

matrix-valued time series observations from a MAR(1) with dimensions G, N =

8, with different lengths of the time series T = 50, ..., 1000. We place true

nonzero loadings in the left and right model coefficient matrices according

to four different settings. In settings i = 1, ..., 4 we will place SPi = 1, 2, 4, 8

non-zero coefficients for each equation both in A and B, respectively. Covari-

ance matrices are set to Σ1 = IG and Σ2 = IN . Our data generating process

(DGP) is such that the main diagonal blocks of A and B are [SPi×SPi] ma-

trices whose elements are drawn from a N (0, 1), and zero otherwise. Notice

that with i = 1 and i = 4 the two coefficient matrices are diagonal and full,

respectively. In setting our MAP estimator priors, we Ąx αk = 1, and choose

βk = Jk − 1 so to reĆect a prior belief of a sparse DGP as the one in setting

1. Estimation errors are measured by the mean squared error (MSE):

MSE(Φ̂) =
tr
[

(Φ− Φ̂)
′
(Φ− Φ̂)

]

G×N
(3.19)

where for the MAR model Φ = B⊗A and Φ̂ = B̂⊗ Â.

Figure 6 illustrates a comparison of the small sample efficiencies of the ML

and MAP estimators, as measured by the average estimation errors over 50

repetitions of MSE(Φ̂). The Ągure shows a decreasing trend of the average

error of both estimators as T grows. As expected, given the imposed prior

beliefs the more sparse the DGP, the more the MAP estimator results in a

higher efficiency in small sample. This is magniĄed in setting 1 (DGP with
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diagonal coefficient matrices), while the difference in efficiency between the

two estimators gradually vanishes as the number of non-zero coefficients grow.

Notice however that, even in setting 4 (DGP with full coefficient matrices)

the efficiency of the two estimators is still comparable.

Comparative Estimation, Forecasting and Computational Perfor-

mances

We aim to compare the estimation error, forecasting performance, and com-

putation time of the illustrated estimators with other relevant competing

alternatives for panel data. This is done for different choices of the matrix

dimensions (G, N) = (2, 3), (4, 6), (8, 10), so setup a "small", a "medium" and

a "large" setting, relative to a reference sample size T = 100. We consider

the three MAR estimators: ML, MCMC (Bayes), and MAP. The alternatives

considered are the stacked VAR estimator (VAR), the country-block panel

VAR (CB), the Cross-sectional Shrinkage (CC) approach of Canova and Ci-

ccarelli (2009, 2013), the Stochastic Search SpeciĄcation Selection (SSSS) of

Koop and Korobilis (2016). We brieĆy describe the competing alternative

models along with their hyperparameter speciĄcation in Appendix A.2.

We simulate a sparse VAR(1) able to reĆect recurrent patterns in multi-

country and multi-variable applications. Let Ξ be the [GN × GN ] matrix

of autoregressive coefficients and Ξi,j ∈ Ξ be the [G×G] country j block of

parameters in the country i equations, and consider its entries related to the

indicators k, l:

Ξ
k,l
i,j =











λλ♣i−j♣
n λ♣k−l♣

g if ♣i− j♣ ≤ r, ♣k − l♣ ≤ r

0 otherwise
(3.20)

where λ = 0.95 is an overall constant term, λn and λg are a country and

an indicator penalty term, respectively, such that λn = 0.5 + U[−0.1,0.1] and

λg = 0.5 + U[−0.1,0.1], and r = 2. The DGP is able to reĆect heterogeneities

in both dimensions such that coefficients are affected by a country penalty
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Figure 6: Efficiency comparison between ML and MAP
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Comparison of the efficiencies of ML (red) and MAP (blue) estimators over

50 repetitions for T = 50, ..., 1000 under four sparsity settings. The Ągure

shows the logarithm of the MSFE(Φ̂) (y axis) over different T (x axis).

Gray shaded areas represent the 1 standard deviation conĄdence bounds.
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λn, an indicator penalty λg and both of them combined. Such penalties act

when the row and column distances ♣i− j♣ and ♣k − l♣ of the elements of the

matrix Ξ
k,l
i,j do not exceed the threshold level r.

Estimation errors of the models are measured by the MSE as in equation

(3.19), whereas the forecasting performance for Ąxed forecast horizon H is

assessed by means of the Mean Squared Forecast Error (MSFE):

MSFE(H) =
1

G×N ×H

H
∑

h=1

(ŷT +h♣T − yT +h)
′

(ŷT +h♣T − yT +h), (3.21)

where ŷT +h♣T is the H-step forecast obtained with information up to the last

sample size T .

We illustrate in Figure 7 numerical results on the model MSE and MSFE

related to H = 1. When the estimation of some competitor model was

infeasible, corresponding results are omitted. We report results related to

repeated experiments with T = 500 and a sparsity setting generated by

r = 3 in Appendix A.2.

One common Ąnding is that the proposed estimators, along with ML,

tend to overperform all competing alternatives, both in terms of estimation

and forecasting performances. The difference in performances becomes more

substantial when considering the "large" dimensional setting. Results with

T = 500 and r = 3 are consistent with the expectations that as T grows

and true coefficient matrices are less sparse, performance gains compared to

a standard VAR diminish in the "small" dimensional setting.

We now report the average computational time over 50 repetitions for

the three different combination of G and N and T = 100 in Table 3. Being

the estimators of VAR and CB closed form, their related execution times are

naturally the lowest.

As expected, the computational times of MAP are much more favorable

than those of the MCMC. The difference between the two lies in the fact

that while the MCMC requires thousands of iterations to approximate the
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Figure 7: Simulation performances
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Average estimation error (MSE) (a,b,c) and 1 step ahead forecasting per-

formance (MSFE) (d,e,f) over 50 repetitions of each model for (G, N) =

(2, 3), (4, 6), (8, 10) with T = 100.
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Table 3: Computational time

G=2, N=3 G=4, N=6 G=8, N=10

VAR 8.7× 10−5 (1.2× 10−4) 1.1× 10−4 (3.8× 10−4) 4.7× 10−4 (2.1× 10−4)

CB 8.2× 10−5 (1.5× 10−4) 1.6× 10−4 (7.3× 10−4) 3.1× 10−4 (2.1× 10−4)

ML 4.6× 10−4 (8.7× 10−3) 0.01 (4.5× 10−3) 0.01 (0.01)

Bayes 9.98 (0.51) 30.9 (10.1) 85.72 (23.24)

MAP 0.01 (7.2× 10−3) 0.03 (0.02) 0.07 (0.02)

CC 0.26 (0.02) 1.82 (0.55) 25.67 (3.78)

SSSS 5.18 (0.24) 368.52 (76.58) -

Average computational times over 50 repetitions for (G, N) = (2, 3), (4, 6)

and (8, 10), with T = 100. Standard deviations are shown in parentheses.

joint posterior distribution, the EMVS algorithm reaches convergence with a

lower number of iterations, usually less than 100. Despite this difference, the

two have exhibited comparable performances in estimating the autoregressive

coefficient and forecasting performances.

In our settings, the MCMC is also generally slower than CC, which ex-

ploits factors to reduce dimensionality, but is much faster than SSSS in

"medium" and "large" settings. Further, given the dimensionality reduction

achieved by the MAR, computation times of the MCMC grow slower with

increasing model parameters than those related to the CC and SSSS estima-

tors.

Notice that the computational times of MAP are distinctly lower, not only

than those of its full Bayesian counterpart, but also than those related to the

CC and SSSS estimators. Notwithstanding this, estimation and forecasting

performances of MAP (and, in general, of the two proposed computational

methods) are generally superior in high-dimensional settings.
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MCMC convergence analysis

Here we assess and compare the convergence of the competing modelsŠ MCMC

algorithms by performing a diagnostic based on the criteria of Gong and Fle-

gal (2016) and Vats et al. (2019). In other words, we want to determine when

should sampling stop in order to get adequate parameter estimates. Given

a level of conĄdence α and tolerance ϵ, one simple strategy is to run the

Markov Chain at least for a number of iterations larger than the minimum

Effective Sample Size (mESS). In this context, Vats et al. (2019) propose a

multivariate framework for terminating simulation in MCMC and deĄne the

multivariate mESS as:

mESS ≥
22/pπ

[pΓ(p/2)]2/p

χ2
1−α,p

ϵ2
(3.22)

where p is the number of parameters to be estimated. It should be noticed

that mESS is a function of p, α and ϵ and is therefore independent of the

Markov chain or the underneath process. This paves the way to model com-

parison in terms of MCMC convergence analysis.

Notice that the three Gibbs samplers employed in this study are char-

acterized by a different number of parameters p. In particular, for each

combination of [G, N ] of the simulation study, the Gibbs sampler for the

MAR produces two chains of dimensions [G2×MC] and [N2×MC], respec-

tively. The samplers for the CC and the SSSS procedures produce two chains

of dimensions [GNf ×MC] (with f < GN) and [G2N2 ×MC]. Moreover,

the CC is a factor model, for which the number of factors can differ among

datasets, and is sensitive to the statistical method employed to extract the

relevant factors. As a consequence, it is not possible to choose a common

number of simulations such that the tolerance ϵ is kept constant among all

settings and models.

However, a possible strategy to overcome this issue is to use equation

(3.22) in another way. Instead of choosing a different value of MC for each

model and setting, one can set an arbitrarily large level so that it is guaran-
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Figure 8: Tolerance
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Tolerance ϵ over 50 repetitions of each model for (G, N) = (2, 3), (4, 6), (8, 10)

with T = 100.

teed that in all settings at least a minimum pre-determined ϵ is reached, and

then compare the samplers in terms of tolerance levels. We can determine

a model speciĄc estimated ESS, calculated after running the MCMC, and

then get the corresponding tolerance level ϵ via equation (3.22). Given MC

iterations in a Markov chain, the ESS measures the size of an i.i.d. sample

with the same standard error. In a multivariate setting, the ESS is given by:

ESS = MC





♣Λ♣

♣Σ♣





1/p

(3.23)

where Λ is the sample covariance matrix and Σ is an estimate of the

variance of the asymptotic normal distribution. Replacing mESS in eq.

(3.22) with ESS, we can express it in terms of the tolerance ϵ, which can be

viewed as a comparison in terms of convergence of the Gibbs sampler. The

smaller the minimum effective samples, the larger the tolerance, and hence

the smaller the number of simulations required.

A visual comparison of the tolerance level ϵ for the three models un-

der the different setting is depicted in Figure 8. The Ągure shows that our
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Figure 9: Posterior median of autoregressive coefficients
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Median of the posterior entries of the Ąrst order left coefficient matrix Â (a),

of the right one B̂ (b), and of B̂⊗ Â (c).

sampler achieves generally greater tolerance than the analyzed competing

alternatives, particularly in high-dimensional settings.

3.5 Application: Panel of Country Economic Indica-

tors

We now conduct an empirical application of the proposed model to a panel of

G = 9 world countries, which currently represent approximately the 64% of

the world total Gross Domestic Product (GDP): Canada (CA), China (CH),

France (FR), Germany (GE), India (IN), Italy (IT), Japan (JP), United

Kingdom (UK) and United States (US). We consider quarterly observations

of N = 3 economic indicators: GDP, Consumer Price Index (CPI) and Short-

term Interest Rates (S-IR), all expressed in log differences. The sample ranges

from 1980Q1 to 2019Q4 (T = 162). The data is inherently multidimensional,

as observations are generated in matrix form, where rows represent indicators

and columns countries.

We estimate a fully Bayesian MAR*(3), which yields the full conditional
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Figure 10: Posterior of the temporal coefficient vector
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posterior distribution of the parameters of interest. We illustrate in Figure 9

the posterior median of the left (Â) and right (B̂) coefficient matrices, along

with the reconstructed coefficient matrix B̂⊗ Â. Note that, given that only

the Kronecker product B̂⊗ Â is uniquely identiĄed, only magnitudes related

to the left and right coefficient matrices can be meaningfully interpreted,

rather than signs.

The Ągure shows that, as intuition suggests, the diagonal elements of the

parameter matrices concur to a large portion of the systemŠs autoregressive

dynamics. This is more evident from the left coefficient matrix, indicating a

strong autocorrelation in the variable dimension. From the Ąrst order right

coefficient matrix estimate notice that the two largest impacts are those of

China on itself and US on Canada. While the former can be explained

through the relatively low impact of other countries on the Chinese economy

as a whole, the latter seems reasonable given the geographical proximity and

large trade activities between them.

Figure 10 shows the posterior distribution of the lag order coefficients ĉ.
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Table 4: Average MSFE and computational time

Av. Log MSFE Av. Computational Time

VAR 4.41× 10−5 (2.77× 10−5) 1.91× 10−4 (9.97× 10−5)

CB 3.84× 10−5 (1.96× 10−5) 1.72× 10−4 (7.44× 10−5)

ML 3.21× 10−5 (1.85× 10−5) 1.83× 10−2 (7.00× 10−3)

Bayes 3.09× 10−5 (1.79× 10−5) 25.88 (5.10)

MAP 3.11× 10−5 (1.79× 10−5) 0.17 (0.07)

CC 4.40× 10−5 (2.85× 10−5) 1.9 (0.59)

SSSS 3.83× 10−5 (1.75× 10−5) 776.06 (51.82)

Average Logarithm of the MSFE and average computational time over 50

repeated estimations of three different MAR estimators (ML, Bayes, MAP)

against competing alternatives. Standard deviations are shown in parenthe-

ses.

It is clear how values of the posterior distribution of ĉ decrease with the lag

order itself, as one could expect.

We evaluate out-of-sample rolling forecasting performances and compu-

tational times of the proposed methods with the same competing models

analyzed in Section 3.4 for comparison. In particular, starting from 1995Q1

(T = 60) to 2019Q2 (T = 120), we Ąt the corresponding models by means

of all available data at time t − 1 and compute the one step ahead MSFE.

Results are summarized in Table 4.

Notice that, on average, the MCMC outperforms all competing alterna-

tives in the forecasting exercise, closely followed by the MAP and ML estima-

tors. We then Ąnd the SSSS, CB and CC estimators which perform better

than the stacked VAR. Despite its superior forecast accuracy, the MCMC

method is more than 140 times slower than the EMVS. This might render

the latter preferable in high-dimensional empirical applications, given the

relatively little differences between the two in terms of performance.
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A key advantage of the EMVS procedure relative to standard MCMC

is that its lower computational intensiveness allows for dynamic posterior

exploration (Ročková and George, 2018). This consists of holding Ąxed at a

high value the slab hyperparameter, while letting the spike hyperparameter

gradually increase along a ladder of increasing values. In our case, dynamic

posterior exploration can also be conducted on the "sparsity" parameters θk.

We therefore perform cross validation on a grid of ten values between

0.005 and 0.05 with a step of 0.005 for the spike parameter τ0. Additionally,

we let βk = Jζ
k vary on a grid of ten values of ζ from 0.1 to 1 with step

0.1. By performing dynamic posterior exploration, the average MSFE of the

MAP estimator drops to 2.89 ×10−5 (std: 1.69×10−5), while preserving a

reasonable amount of computation time of 16.81 seconds (std: 5.86).

Kronecker GFEVD

The lack of a tensor moving average representation requires the vectorized

form of the model for dynamic analysis, which in the case of a MAR*(P)

reads as

yt =
P
∑

i=1

ci(B⊗A)yt−i + et,

et ∼ N (0, σ2
3 ⊗Σ2 ⊗Σ1).

(3.24)

If all the roots of ♣IGN−
∑P

i=1 ci(B⊗A)zi♣ = 0 fall outside the unit circle, the

vectorized form of the MAR*(P) admits the following VMA representation

yt =
+∞
∑

i=0

Ψiet−i, (3.25)

where Ψi = c1(B ⊗ A)Ψi−1 + ... + cP (B ⊗ A)Ψi−P , with Ψ0 = IGN and

Ψi = 0 for i < 0.

Dynamic analysis via GIRF and GFEVD can be thereby carried out easily

on a variable by variable basis. In this context, the modiĄcation of the
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GFEVD by Lanne and Nyberg (2016) obtained from the Generalized Impulse

Response Function (GIRF) of Koop et al. (1996) is appealing, as it enjoys

the desired property of unit row sum. Let Λ = diag(Σ−1), where Σ =

Σ3 ⊗Σ2 ⊗Σ1. The GFEVD for the vectorized MAR*(P) has the standard

form

θij
H =

∑H
h=0 e

′

iΨhΣΛ
1/2
jj ej

∑H
h=0 e

′

jΨhΣΛΣΨ
′

hej

, (3.26)

where ei is a selection vector. The collection of θij
H ∈ ΘH is referred to as

GFEVD matrix.

Although the MAR model estimates interpretable lower dimensional coef-

Ącients via Tucker product, its vectorized representation leads to a signiĄcant

loss of information on mode speciĄc interactions, which are inherent of the

model. Rather than uniquely studying variable by variable impacts, it is con-

venient to exploit the enhanced interpretability given by the bi-dimensional

structure of the model and decompose the GFEVD into two lower dimen-

sional matrices representing the K-mode speciĄc GFEVD. Among all possible

decompositions of a GFEVD matrix into its mode-speciĄc counterparts, the

most reasonable approach given the form of the model is via a Kronecker

decomposition:

ΘC
H ⊗ΘI

H ≈ ΘH , (3.27)

where ΘI
H ∈ R

G×G and ΘC
H ∈ R

N×N will be, respectively, the country and

indicator GFEVD.

We now describe the Kronecker decomposition problem for the GFEVD

derived from the MAR model. Recall that, for each forecast horizon, ΘH is

a stochastic matrix, having ΘH ≥ 0 and ΘH1GN = 1GN , where 1J is a J-

dimensional vector of ones. A simple approach to decompose ΘH into ΘC
H ⊗

ΘI
H , so as to reĆect the indicator and country GFEVD structure is to project

ΘH onto the space of Kronecker products under the squared Frobenius norm:

min
Θ

V
H

,ΘC
H

♣♣ΘH −ΘC
H ⊗ΘI

H ♣♣
2
F , (3.28)
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which represents a Nearest Kronecker Product (NKP) problem in matrix

computation (Van Loan and Pitsianis, 1993; Loan, 2000). This approach is

also at the basis of the projection method for MAR estimation outlined by

Chen et al. (2021), which can be used to Ąnd the starting values of the ML

procedure given a VAR estimate.

However, the two resulting matrices minimizing this problem are not guar-

anteed to be stochastic as well, a necessary condition to constitute GFEVD.

Thus, in order to get the best stochastic Kronecker Product (SKP) approxi-

mation ΘC
H and ΘI

H , the following constrained nonlinear least squares must

be solved:
min

Θ
I
H

,ΘC
H

♣♣ΘH −ΘC
H ⊗ΘI

H ♣♣
2
F ,

s.t. ΘI
H ≥ 0, ΘI

H1G = 1G,

ΘC
H ≥ 0, ΘC

H1N = 1N .

(3.29)

Notice that all the entries in ΘC
H ⊗ ΘI

H are the same as all the entries in

θI
HθC′

H , where θI
H = vec(ΘI

H) and θC
H = vec(ΘC

H), i.e. the matrices have the

same set of elements, which only differ in their placement. By employing a

rearrangement operator G(·) such that G(X ⊗Y) = vec(Y)vec(X)
′
, we can

rewrite (3.29) as:

min
θI

H ,θC
H

♣♣G(ΘH)− θI
HθC′

H ♣♣
2
F

s.t. θI
H ≥ 0, RIθI

H = 1G

θC
H ≥ 0, RCθC

H = 1N

(3.30)

where RI = [IG, ..., IG] and RC = [IN , ..., IN ] are linear equality constraint

matrices of dimension [G×G2] and [N×N2]. As it is expressed, the problem

in eq. (3.30) can be solved for θI
H and θC

H iteratively via standard constrained

minimization routines.

We illustrate the resulting Kronecker decomposition of the estimated

GFEVD in Figure 11. For what concerns Θ̂
I

H , a contribution of CPI and

GDP to the GFEVD of S-IR is detected. Moreover, the Ągure shows that a

portion of GFEVD in GDP is due to shocks in CPI and S-IR. Notice however
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Figure 11: Kronecker decomposition of the GFEVD
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that overall magnitudes of such cross-variance shares are small if compared to

the country and full GFEVD matrices, meaning a weak dependence structure

within the indicator dimension.

In the country dimension we Ąnd stronger cross-variance shares as re-

Ćected by Θ̂
C

H . The largest pairwise contributions are those to Canada arising

from shocks in the US economy, and vice versa, though with lower magni-

tude in the latter case. While both China and US are prone to transmit

large portions of GFEVD to the rest of the countries, the former is generally

more resilient to shocks in other countries. This with the exception of India,

which is one of the largest exporters of China. Results also highlight notice-

able cross variance shares across the EU countries, i.e. France, Germany and

Italy. The full GFEVD matrix Θ̂H reĆects instead variable by variable inter-

actions, which seem consistent with the ones obtained through the Kronecker

decomposition problem.
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3.6 Conclusion

We developed a Bayesian method for variable selection in high-dimensional

matrix autoregressive models which reĆects and exploits the original matrix

structure of data to: a) reduce dimensionality; b) foster interpretability of

multidimensional dependency structures. We Ąrstly derive a compact form

of the model stemming from the tensor linear regression framework, which

facilitates the model estimation. We then outlined two computational meth-

ods: a fully Bayesian MCMC algorithm and an EMVS estimation procedure,

which foresees the forthcoming need of modeling matrix-valued time series

at large scales, while allowing for fast dynamic posterior exploration.

We have numerically investigated the small sample efficiency of the pro-

posed estimators, showing the gain with respect to ML in sparse, high-

dimensional settings. We have also numerically explored the comparative

estimation, forecasting and computational performances of the proposed es-

timators relative to key competing alternative models for longitudinal data.

The experiment has shown that the estimation and forecasting performances

of the Bayesian and MAP estimators are generally superior in sparse high-

dimensional settings, with the latter drastically reducing computational in-

tensiveness. The proposed methodology has been applied to a panel of nine

world countriesŠ economic indicators, for which we derive a method to de-

compose the GFEVD into its row and column dimensions, leading to country

and indicator GFEVDs.

Our proposed method can be extended in several directions. Simultane-

ous sparsity both in the autoregressive coefficients and innovation covariance

matrices can be introduced. Otherwise, the model can be equipped with

different types of priors, e.g. those belonging to the class of global-local pri-

ors; see Polson et al. (2012). Furthermore, time variation can be embedded

into the model. This also paves the way to the introduction of time varying

parameter matrix autoregression with stochastic volatility (Nakajima, 2011)

or dynamic sparse factor matrix autoregressions along the lines of Rockova
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and McAlinn (2021).
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4 A Multidimensional approach to Finance:

on the Relationship between Sentiment, Re-

turns and Volatility in the Crypto Market

Based on: Celani, A., and Pagnottoni, P. (2023), "The Multidimensional

Relationship between Sentiment, Returns and Volatility". Available at SSRN.

4.1 Introduction

The collection of data at the intersection of two or more classiĄcations nat-

urally constitutes matrix or tensor-valued time series. For instance, the col-

lection of panel data forms matrix-valued observations, whose rows might

represent indicators and columns countries. In this context, univariate time

series analysis focuses on one element of the matrix at a time. Vector and

panel time series analysis deal with the co-movement of one row in the ma-

trix. Modeling each dimension separately annihilates the multidimensional

structure of data, and can therefore lead to a signiĄcant loss of information

or efficiency.

We illustrate the time series of the three indicators for each cryptocur-

rency in matrix fashion in Figure 12. Some noticeable co-movements are

present, especially when considering the time series of the same indicator

across the four cryptocurrencies. Indeed, the multivariate time series in ma-

trix form might reĆect different types of structures of the time series obser-

vations, which would be lost if modeled in a vectorized form.

Against this, we propose an autoregressive model for matrix-valued time

series in a frequentist and Bayesian formulation whose most appealing charac-

teristics is to preserve the multidimensional structure of Ąnancial time series

and admit corresponding interpretations. Its Bayesian formulation produces

credible intervals for the estimates might depend upon the prior expectation
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Figure 12: Matrix time series of the indicators
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Time series of three indicators: Returns, Volatility and Sentiment for the four

cryptocurrencies under analysis. Daily data from 01/01/2018 to 09/30/2022.

of the researcher. We then build on Greenwood-Nimmo et al. (2021) and

derive a framework for multidimensional connectedness measures, i.e. the

connectedness within each dimension of the time series classiĄcation. This

approach is relatively Ćexible and opens up the possibility for such models

to investigate Ąnancial connectedness in depth and breadth. Our method

enhances interpretability of multidimensional relationship structures, while

reducing dimensionality, at relatively no cost in terms of predictive accuracy.

We apply our model to study the interrelated dynamics of a set of cryp-

tocurrency (i.e. Bitcoin, Ethereum, Litecoin and Ripple) returns, volatility

and sentiment, as proxied by Google search volumes. Our empirical applica-
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tion shows that spillovers in the cryptocurrency dimension are considerably

higher than those in the indicator dimension; thereby interconnectedness

across return, volatility and sentiment indicators for the same cryptocurrency

is generally weak compared to that measured among the same indicators for

different cryptocurrencies. As far as the indicator dimension is concerned,

sentiment seems to be the most inĆuent variable in the spillover transmission

mechanism, though with a relatively low magnitude, whereas volatility the

least inĆuent and most dependent. This is in accord with the extant litera-

ture on the explanatory and predictive power of investor sentiment, being it

news or social media sentiment, or search volumes, on returns and volatility.

The cryptocurrency dimension shows instead no clear ranking in terms of in-

Ćuence across cryptocurrencies, apart from the evidence that Ripple emerges

as a net shock receiver. More interestingly, we observe that during a high-

volatile market phase dependence drastically drops, meaning the degree of

synchronicity of indicators belonging to the same cryptocurrency drastically

falls. Finally, we conduct a comparative forecasting performance experiment

which conĄrms the satisfactory forecast accuracy of the proposed model and

its superior performances in high-dimensional settings.

Our study is related to the literature on forecasting cryptocurrency mar-

ket movements - see Catania et al. (2019); Atsalakis et al. (2019); Chen et al.

(2021); Gradojevic et al. (2021), but takes a further step towards the explana-

tion of multidimensional relationships across cryptocurrency price, volatility

and investor attention.

The remainder of this chapter is structured as follows. Section 4.2 presents

the theoretical Ąnancial framework, its literature review and the empiri-

cal motivation of the study. Section 4.3 introduces autoregressive models

for matrix-valued time series and illustrates the proposed methodology. In

Section 4.4 we conduct the empirical application to cryptocurrency returns,

volatility and sentiment. Section 4.6 concludes.
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4.2 Financial theory, literature and motivation

The Ąnancial literature has generally agreed on the fact that asset prices are

driven by the actions of two types of investors: arbitrageurs and noise traders

- see Shleifer and Summers (1990); Harris and Raviv (1993); Stambaugh et al.

(2012); Asness et al. (2013). While arbitrageurs rely on fundamentals to

trade, and thereby make efforts to bring prices in harmony with the "true"

fundamental value, noise traders tend to trade on noise, i.e. pseudo-signals,

or other kind of trading models which alter demand and, as a consequence,

prices. This is corroborated by a number of empirical studies which demon-

strate the effects of attention and news on the buying behavior of individual

and institutional investors - see, for instance, Grullon et al. (2004); Barber

and Odean (2008); Fang and Peress (2009). De Long et al. (1990) develop

a model explaining how noise trader risk is priced in the Ąnancial markets.

Indeed, while in the long term prices will tend to revert to the fundamental

values, this might come with Ćuctuations and after a considerable amount

of time, to the detriment of arbitrageurs in such cases. At the individual

asset level, their model generates predictions regarding the relationship be-

tween sentiment and price volatility, concluding that greater noise trading is

related to higher price volatility. Additionally, sentiment will exert effects on

returns through its impact on volatility. As a consequence, it is expected to

Ąnd an association between sentiment indicators and returns and volatility

when sentiment is the signal driving noise trading.

Although noise traders might use different models whose trade outcomes

counterbalance, the phenomenon of aggregate demand shift due to corre-

lated strategies is a documented empirical fact in Ąnance. Using survey

data, Schmeling (2007) discovers that stock market returns are predicted by

the sentiment of individual investors. In a similar way, Barber et al. (2009)

employ brokerage data and Ąnd that individual investors frequently buy the

same stocks concurrently, which results in shifting prices in an upward direc-

tion. These studies essentially show that attempts by arbitrageurs to bring
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prices back in accord with fundamentals are not always successful, and that

changes in the demand for securities that are unrelated to fundamentals may

be evident and last over time. Since the supply curve for stocks is, at least

in the short run, inelastic, the purchasing pressure on stocks put forward

by increased search behavior should exert a buying shock which translates

into a signiĄcant and rapid increase in stock prices. In other words, before

arbitrageurs might correct any mispricing, an abnormal return should follow

any consistent buying shock due to an increased search activity, which makes

Ąnancial markets a particularly attractive environment in which to evaluate

the impact of search activity.

The relationships across returns and sentiment, volatility and sentiment,

and the joint relations among the three has been explored in a large number

of studies; notwithstanding this, mixed results have been found.

The extant literature has investigated the role of sentiment and attention

indicators to predict Ąnancial market returns. Many of them conclude that

public sentiment, as measured by indicators built upon social media attention

and internet search volumes, can predict stock market returns - see, among

others, Neal and Wheatley (1998); Da et al. (2011); Joseph et al. (2011);

Da et al. (2015); Sun et al. (2016); Renault (2017); Gu and Kurov (2020).

Nevertheless, not all studies which examined at the relationship between

sentiment and returns came to the same results, and some even suggest that

the causality direction is from returns to sentiment, rather than vice-versa.

Brown and Cliff (2004) study the link between sentiment and equity returns

using a wide variety of sentiment indicators and discover signiĄcantly stronger

evidence that sentiment is inĆuenced by returns, a conclusion which is in line

also with Solt and Statman (1988). According to Wang et al. (2006), returns

(and volatility), not the other way around, are the indicators inĆuencing

the majority of their investigated sentiment measurements. Among others,

Fisher and Statman (2000) instead Ąnd that there might be a signiĄcant

causal relationship in both directions between equity returns and sentiment.
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Similarly, many papers have studied the relationship between sentiment

and volatility. A vast majority conclude that investor sentiment, being it

social media, news sentiment or search volumes, are useful predictors of the

stock market volatility - see Antweiler and Frank (2004); Ho et al. (2013);

Aouadi et al. (2013); Hamid and Heiden (2015); DimpĆ and Jank (2016);

Siganos et al. (2017); Behrendt and Schmidt (2018); Liang et al. (2020); Chen

et al. (2021); Caporin and Poli (2022). In contrast, a few exceptions Ąnd the

opposite. Wang et al. (2006) Ąnd that the analyzed sentiment indicators are

caused by volatility (and returns) rather than the other way around. They

provide evidence on the fact that lagged returns cause volatility, and that

sentiment variables have extremely limited forecasting power when returns

are included as a forecasting variable.

When it comes to cryptocurrencies, the actual drivers of their prices and

sources of their extreme volatility are still unclear and widely discussed by

scholars. While part of the research has tested whether these might be asso-

ciated with the dimension of the user base (Van Vliet, 2018), investor expec-

tations of future price movements (Koutmos and Payne, 2021) and cost of

mining (Hayes, 2019; Kristoufek, 2020), it turns out that a component due

to irrational bubbles and investor behaviour is reasonably part of the price

formation process - see, e.g., Cheah and Fry (2015); Anyfantaki et al. (2021);

DimpĆ and Peter (2021); El Montasser et al. (2022); Koch and DimpĆ (2023).

Investor behaviour is still mostly irrational, given the lack of fundamentals

and the technical skills needed for a complete understanding of the underly-

ing blockchain technology of each of the securities, which makes it extremely

difficult to value them from a rational viewpoint.

The importance of investor attention in explaining cryptocurrency returns

and volatility has been documented by several studies so far, although not

all of the literature agrees on the dominant directions of mutual inĆuences.

On the one hand, Kapar and Olmo (2021) conclude that the efficient price of

cryptocurrencies behaves idiosyncratically, speciĄcally during turmoils, and

can be only rationalised by individualsŠ Google search volumes. Bleher and
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DimpĆ (2019), in evaluating whether Google search volume is a good pre-

dictor of cryptocurrency returns and volatility, Ąnd that returns are not

predictable via internet queries, whereas volatilities are. On the other hand,

the results of Neto (2021) shed light on a unidirectional causality effect from

cryptocurrency returns to Google search volumes in the Ąrst place, which

turns to be bidirectional as the time delay increases. A similar conclusion

is reached by Lin (2021), who reports that cryptocurrency returns exert a

signiĄcant impact on future google search volumes, and not viceversa. Using

Twitter-based attention measures, Kraaijeveld and De Smedt (2020) show a

signiĄcant predictive power of investor attention for different cryptocurrency

returns, as also corroborated by Shen et al. (2019), who Ąnd that such atten-

tion measures can predict both Bitcoin volume and volatility. A few studies

employ both Google search volumes and Twitter-based attention measures,

such as Philippas et al. (2019) and Koch and DimpĆ (2023). The Ąrst one

suggests that prices are partially driven by attention measures, and that the

relationship becomes stronger in periods of high uncertainty, whereas the

second one concludes that rising attention Granger-causes increasing price

synchronicity of cryptocurrencies.

To sum up, the literature generally agrees that sentiment might be a good

predictor for Ąnancial market volatility, though the relationship between the

two could be inĆuenced by returns (Wang et al., 2006). Moreover, when look-

ing at the cryptocurrency market, the lack of fundamental values paves the

way for potentially stronger relations across sentiment, returns and volatility,

which, at the moment, remain highly debated in terms of their magnitude

and, more importantly, direction of inĆuence. This is why, in our empir-

ical application, we jointly model the dynamics of sentiment, returns and

volatility, so to unveil the direction of the relationships existing among the

three.
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4.3 The Matrix Autoregressive Model

The key feature of the Matrix Autoregressive (MAR) model is to treat time

series observations lying at the intersection of two dimensions as a matrix,

and then model them as an autoregressive process. In our case, the Ąrst

dimension refers to a number g = 1, ..., G of indicators useful to describe the

behavior of different assets n = 1, ..., N , the second dimension of interest. In

particular, let rn,t, vn,t, and sn,t be, respectively, the time t = 1, ..., T n-th

asset return, volatility and sentiment, and deĄne yn,t = [rn,t, vn,t, sn,t]
′

as the

G-dimensional vector of indicators belonging to the generic asset n observed

at time t. By horizontally stacking all the yn,t, we obtain the G×N matrix

of dependent variables Yt = [y1,t, ..., yN,t]. A MAR model of order P is then

deĄned as:

Yt = M + A1Yt−1B
′

1 + ... + AP Yt−P B
′

P + Et (4.1)

Et ∼MN (0, Σ1, Σ2) (4.2)

where M is a G×N matrix of constants, Ap and Bp for p = 1, ..., P are left

autoregressive matrices of dimension G×G and N ×N , respectively. Et is a

matrix error term that follows a matrix-variate Normal distribution (Gupta

and D.K., 1999) with positive deĄnite left and right covariance matrices Σ1

and Σ2 of the same dimension of Ap and Bp.

By applying the vectorization operator to equation (4.1), it cleary emerges

that every MAR has an equivalent VAR representation. Let yt−p = vec(Yt−p)

for p = 0, ..., P and et = vec(Et), then we obtain:

yt = m + (B1 ⊗A1)yt−1 + ... + (BP ⊗AP )yt−P + et (4.3)

et ∼ N (0, Σ2 ⊗Σ1) (4.4)

n where m = vec(M) and ⊗ is the Kronecker product.

As a direct consequence of the VAR representation of the MAR, the

MAR(P) in equation (4.1) is stationary if all the roots of ♣IGN−(B1⊗A1)z+
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... + (BP ⊗AP )zP ♣ = 0 fall outside the unit circle. Under this assumption,

the model in equation (4.1) can be rewritten as the inĄnite moving average

representation,

yt = et + Ψ1et−1 + ... + Ψ∞et−∞ (4.5)

where the GN×GN coefficient matrices Ψk can be obtained via the following

recursive relations

Ψk = (B1 ⊗A1)Ψk−1 + ... + (BP ⊗AP )Ψk−P (4.6)

where Ψ1 = IGN and Ψk = 0 for k < 1.

Intepretation

Given the one-to-one relationship between equations (4.1) and (4.3), it is ev-

ident that a MAR is equivalent to a VAR with speciĄc restrictions on the co-

efficient matrices, generated by the Kronecker product. As such, dimension-

speciĄc interactions arise from this decomposition, and the MAR approach

emerges as an effective dimensionality reduction technique. The nature of

the restriction, induced just by treating temporal observations as matrices,

has the non-negligible beneĄt of being a hyperparameter-free dimensionality

reduction technique. In fact, despite the great Ćexibility of the multiple di-

mensionality reduction techniques proposed in the literature so far, none of

them prevents the researcher from the need to rely on usually hard apriori as-

sumptions (Bai and Ng, 2002; Forni et al., 2005; George et al., 2008; Bańbura

et al., 2010; Koop and Korobilis, 2013; Kock and Callot, 2015; Ahelegbey

et al., 2022). As anticipated, this generally done by tuning a number of

hyperparameters, a cumbersome task in high-dimensional setting.

To ease interpretation, assume M = 0 and P = 1. Then the conditional

mean for the j-th asset return can be rewritten as:

E(rj,t♣Yt−1) = a11

N
∑

n=1

bjnrn,t−1 + a12

N
∑

n=1

bjnvn,t−1 + a13

N
∑

n=1

bjnsn,t−1, (4.7)
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aij ∈ A1 and bij ∈ B1. Equation (4.7) implies that the MAR framework the

conditional mean for the j-th asset return is a function of two nested linear

combinations. The Ąrst one expresses each indicator as a linear combination

of, respectively, the past returns, volatilities and volumes, with constant

coefficients given by the j-th row of B. These elements can be viewed as

market adjusted indicators, representing an average market movement for

each indicator. The diagonal elements embed the effect of the indicator

dimension on its past values, whereas the off diagonal ones reĆect the impact

of the other indicators. The second one is a linear combination of the market

adjusted indicators with constant coefficients given by the i-th row of A.

Such elements can be viewed as variable adjusted indicators, which reĆect

the average asset co-movement in their market adjusted indicators. The

diagonal elements embed the effect of the asset dimension on its past values,

whereas the off diagonal ones reĆect the impact of the other assets.

Estimation

In this section we present the inference procedure for the model in equation

(4.1). For this purpose, it is convenient to rewrite the MAR model more

compactly for each t. In particular, let

Xt−1 =

















Yt−1 0 · · · 0

0 Yt−2 · · · 0
...

...
. . .

...

0 0 · · · Yt−P

















(4.8)

be the GP × NP matrix of endogenous regressors. Then equation (4.1)

rewrites as:

Yt = M + AXt−1B
′

+ Et (4.9)

where A = [A1, ..., AP ] and B = [B1, ..., BP ] are the stacked lagged left and

right coefficient matrices, respectively. The log-likelihood of the model up to
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a constant is then given by:

L =−N(T − P ) log ♣Σ1♣ −G(T − P ) log ♣Σ2♣

−
∑

t

tr
[

Σ−1
1 (Yt −M−AXt−1B

′

)Σ−1
2 (Yt −M−AXt−1B

′

)
] (4.10)

The estimation of M, A, B, Σ1 and Σ2 can be obtained by employing an

alternating ML algorithm. At each step, we iteratively update one matrix

while holding the other Ąxed, and vice-versa. The steps for the estimation of

a MAR(P) can be carried out by generalizing the procedure for a MAR(1)

outlined in Chen et al. (2021). The steps are given by:

M =
1

T − P

∑

t

(Yt −AXt−1B
′

)

A =





∑

t

(Yt −M)Σ−1
2 BX

′

t−1









∑

t

Xt−1B
′

Σ−1
2 BX

′

t−1





−1

B =





∑

t

(Yt −M)
′

Σ−1
1 AXt−1









∑

t

X
′

t−1A
′

Σ−1
1 AXt−1





−1

Σ1 =

∑

t(Yt −M−AXt−1B
′
)′Σ−1

1 (Yt −M−AXt−1B
′
)

N(T − P )

Σ2 =

∑

t(Yt −M−AXt−1B
′
)Σ−1

2 (Yt −M−AXt−1B
′
)

′

G(T − P )

(4.11)

Prior formulation

To ease the exposition, we consider a MAR(P) with no constant. Poste-

rior inference for the model in equation (4.1) under an Independent Normal

Wishart framework is derived by assuming a Normal prior for the vectorized

version of A and B:

π(α) ∼ N (α0, Ωα)

π(β) ∼ N (β0, Ωβ)
(4.12)
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where α = vec(A) and β = vec(B). The two covariance matrices are however

not separately identiĄable from the likelihood, hence prior restrictions have

to be used to achieve identiĄcation (for a deeper explanation see (Hoff, 2015;

Billio et al., 2022) among others). For the pair of covariance matrices Σ1

and Σ2, we assume the following hierarchical prior distribution:

π(γ) ∼ Ga(a0, b0)

π(Σ1♣γ) ∼ IW(γS1, ν1)

π(Σ2♣γ) ∼ IW(γS2, ν2)

(4.13)

Posterior approximation

By combining the log-likelihood in equation (4.10) with prior assumptions we

can analytically derive the full conditional distributions of A, B, Σ1, Σ2, γ.

Since the joint posterior distribution is not tractable, we implement a Gibbs

sampler that iterates over the following steps:

• Draw Σ1 from IW(S1, ν1 + G), where

S1 = γS1 +
∑

t(Yt −AXt−1B
′
)′Σ−1

1 (Yt −AXt−1B
′
)

• Draw α from N (α, Ωα), where Ωα = [Ω−1
α + (

∑

t Xt−1B
′
Σ−1

2 BX
′

t−1)⊗

Σ−1
1 ]−1 and α = Ωα[Ωαα0+vec((

∑

t YtΣ
−1
2 BX

′

t−1)(
∑

t Xt−1B
′
Σ−1

2 BX
′

t−1)
−1)]

• Draw Σ2 from IW(S2, ν2 + N), where

S2 = γS2 +
∑

t(Yt −AXt−1B
′
)Σ−1

2 (Yt −AXt−1B
′
)

′

• Draw β from N (β, Ωβ), where Ωβ = [Ω−1
β + (

∑

t X
′

t−1A
′
Σ−1

1 AXt−1)⊗

Σ−1
2 ]−1 and β = Ωβ[Ωββ0+vec((

∑

t Y
′

tΣ
−1
1 AXt−1)(

∑

t X
′

t−1A
′
Σ−1

1 AXt−1)
−1)]

• Draw γ from π(γ♣Σ1, Σ2) ∼ Ga
(

a0 + 1
2

[

ν1G + ν2N
]

, b0 + 1
2

[

tr(S1Σ
−1
1 ) +

tr(S2Σ
−1
2 )

]

)

We refer the reader to Celani and Pagnottoni (2022) for further details

on the derivation of the posterior distributions of the parameters.
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Multidimensional connectedness measures

The connectedness framework based upon Generalized Forecast Error Vari-

ance Decomposition (GFEVD) developed by Diebold and Yilmaz (2012,

2014) is well suited to the analysis of relatively small-sized VAR models.

For a sufficiently large number of variables, it becomes hard to interpret the

relationships arising from the elements on a disaggregated basis. While this

issue could be at least partially recovered via dimensionality reduction, the

methodological framework is not well suited to the study of potentially large,

multidimensional models, as its levels of aggregation of the information are

essentially two: a) no aggregation, with bilateral connectedness measures

being either determined individually, or on a variable-by-variable basis; or

b) complete aggregation, where bilateral connectedness measures are aggre-

gated into single spillover indices. Therefore, the framework as such does not

admit intermediate levels of aggregation, such as connectedness across Ąnan-

cial assets in aggregate rather than among individual variables, or aggregate

linkages across variables in aggregate rather than among individual assets.

We propose, in line with Greenwood-Nimmo et al. (2021), a simple approach

to tackle both issues based on re-normalisation and block aggregation of

the connectedness matrix. Such method can yield generalized connectedness

measures embedding multidimensional relationship structures, preserving the

original matrix structure of the data.

Dynamic analysis via GIRF and GFEVD can be carried out easily on a

variable by variable basis. In this context, the modiĄcation of the GFEVD by

Lanne and Nyberg (2016) obtained from the Generalized Impulse Response

Function (GIRF) of Koop et al. (1996) is appealing, as it boasts the desired

property of unit row sum. Let Λ = diag(Σ−1), where Σ = Σ2 ⊗ Σ1. The

GFEVD for the vectorized MAR(P) has the standard form

GFEV D(yit, ejt, H) = θH
ij =

∑H
h=0 e

′

iΨhΣΛ
1/2
jj ej

∑H
h=0 e

′

jΨhΣΛΣΨ
′

hej

(4.14)

where ei is a selection vector with all zeros and one in the i-th element. The
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collection of θH
ij ∈ ΘH is referred to as the GFEVD (connectedness) matrix.

Nevertheless, the dimension speciĄc inĆuences θH among indicators and

assets cannot be easily recovered from ΘH . This emerges as a consequence

of conducting dynamic analyses through the vectorized form of the MAR.

Following Greenwood-Nimmo et al. (2021), we outline a simple yet effective

method to overcome this issue, Ćexible enough to be accommodated also

in a MAR framework. In particular, we design an aggregation scheme to

disentangle the effect of indicators and assets in a multi-variable, multi-asset

context. Consider the sub-GFEVD ΘH
I to be the G× G matrix embedding

indicator-speciĄc inĆuences. Further deĄne Ig = ¶g, g + G, ..., g + G(N − 1)♢

as the set of positions of the indicator g in ΘH . Then the generic element of

ΘH
I is simply deĄned as

θH
I,g1g2

=
∑

i∈Ig1

∑

j∈Ig2

θH
ij (4.15)

Analogously, let ΘH
C pe the N×N sub-GFEVD embedding crypto inĆuences.

In this case, the set of positions where crypto n appears in ΘH is In =

¶(n− 1) ∗G + 1, (n− 1) ∗G + 2, ..., n ∗G♢. Consequently, its generic element

is:

θH
C,n1n2

=
∑

i∈In1

∑

j∈In2

θH
ij (4.16)

Given that this aggregation scheme does not ensure that the two sub-GEFVDs

have a unit row sum, a normalization scheme such as those employed in

Diebold and Yilmaz (2012) and Greenwood-Nimmo et al. (2021) is needed.

Therefore, the collection of the row normalized θH
I,ij ∈ ΘH

I and θH
C,ij ∈ ΘH

C

are referred to the indicator and asset sub-GFEVD matrices, respectively.

For each of the two sub-GFEVDs, we deĄne the total H step ahead

spillover from, to and within as follows:

FH
i←• =

K
∑

j=1,j ̸=i

θH
ij , T H

•←i =
K
∑

j=1,j ̸=i

θH
ji , WH

i←i = θH
ii (4.17)
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In a similar way, we deĄne the aggregate spillover index as:

SH =
K
∑

i=1

FH
i←• ≡

K
∑

i=1

T H
•←i (4.18)

Finally, we employ a pair of indices to measure: a) the level of depenence

of the i-th indicator (asset) on external conditions; and b) to what extent

the i-th indicator (asset) inĆuences the system. To answer the Ąrst question,

we deĄne the dependence index:

OH
i =

FH
i←•

FH
i←• +WH

i←i

(4.19)

where 0 ≤ OH
i ≤ 1. Similarly, we deĄne the inĆuence index as:

IH
i =

T H
•←i −F

H
i←•

T H
•←i + FH

i←•

(4.20)

where −1 ≤ IH
i ≤ 1.

4.4 Real application

We demonstrate the properties of our proposed method through a real ap-

plication to study the multidimensional interconnectedness of a set of cryp-

tocurrency prices, volatility and Google search volumes. Firstly, we provide

a full sample (static) analysis to show the properties of the model. Secondly,

we study the dynamic evolution of spillovers across the two categories of

interest: indicator and crypto (asset) dimensions.

We select four major cryptocurrencies, i.e. Bitcoin (btc), Ethereum (eth),

Litecoin (ltc), Ripple (xrp) and three indicators, namely continuous price

returns (ret), the realized volatility (vol) and Google query index (sent).

The sample period ranges from 01/01/2018 to 09/30/2022, for a total of

T = 1733 observations. In our application, volatility is measured following

Garman and Klass (1980) and Alizadeh et al. (2002). In other words, we use
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daily high, low, opening and closing prices obtained from underlying daily

high/low/open/close data to estimate return volatility:

vn,t =0.511(Hn,t − Ln,t)
2 − 0.019[(Cn,t −On,t)(Hn,t + Ln,t − 2On,t)

− 2(Hn,t −On,t)(Ln,t −On,t)]− 0.383(Cn,t −On,t)
2

(4.21)

where H is the daily high, L is the low, O is the open and C is the close

(all in natural logarithms).

For the purpose of illustrating our method, we estimate a Bayesian MAR(1)

which yields the full conditional posterior distribution of the parameters of

interest. As far as the prior setting, we use diffuse but proper priors. In par-

ticular, we set the following hyperparameters: α0 = 0, β0 = 0, Ωα = 100IG2 ,

Ωβ = 100IN2 , a0 = b0 = 0.1, S1 = IG/G, S2 = IN/N , ν1 = G+2, ν2 = N +2.

We illustrate in Figure 13 the posterior distribution of the left (Â) and

right (B̂) Ąrst order coefficient matrices, and of the left (Σ̂1) and right (Σ̂2)

variance-covariance matrices of innovations, along with their estimated pos-

terior median and 95% credible intervals. We evaluate in Appendix A.3 the

convergence of the MCMC algorithm via the diagnostic proposed by Raftery

and Lewis (1970), and document that the convergence of the Gibbs sampler

is achieved. In particular, we rely on their procedure to select the best combi-

nation of initial burn-in periods and thinning factor after having run the MC

for a total of interations suggested by the methodology of Gong and Flegal

(2016); Vats et al. (2019). We are motivated to employ both the methodolo-

gies because we observed instabilities of the MC in the rolling exercise. The

reduction in the autocorrelation of the MC, thanks to the cleaning procedure

of Raftery and Lewis (1970) is acceptable to carry out inference.

It is evident from the Ągure that diagonal elements of the parameter

matrices are generally of larger magnitude if compared to off-diagonal ones.

As far as the left coefficient matrix, volatility seems to be the indicator

whose past values impact in a larger way current ones, followed by sentiment
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Figure 13: Posterior distribution of coefficient matrices
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Estimated posterior distribution of the left and right Ąrst order coefficient

matrices (Ąrst row) and of the left and right variance-covariance matrix of

innovations (second row). Red vertical lines correspond to ML estimates.

Dotted black vertical lines delimit the 95% credible intervals.
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Figure 14: Posterior distribution of the dynamic indicators GFEVD.

and returns, allegedly given by the fact that volatility is a naturally more

persistent stochastic process. Further, the credible intervals of the latter

include zero, conĄrming the inherent characteristic of non-predictability of

Ąnancial returns. Cross-impacts highlight the weak explanatory power of

returns on volatility, and viceversa, which is corroborated by the just as low

contemporaneous covariance among the two. On the other hand, a signiĄcant

relationship between sentiment and volatility appears in both directions, and

a signiĄcant one from sentiment to returns, indicators for which also the

contemporaneous covariance is of sizeable magnitude.

As far as the right coefficient matrix is concerned, Litecoin presents the

highest autoregressive coefficient, followed by Ripple, Bitcoin and Ethereum.

Cross-inĆuences of Bitcoin and Litecoin are the ones of most considerable

magnitudes, whereas Ethereum and, especially, Ripple show non-signiĄcant
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Figure 15: Posterior of the spillover indices

(a) (b)

Posterior distribution of the spillover index for the indicator (panel a) and

crypto (panel b) dimension.

lagged impacts on others. Further notice that contemporaneous variances

are almost of comparable magnitudes relative to covariances, highlighting a

higher degree of contemporaneous correlation in the crypto dimension, rather

than in the indicator one. We have further performed dynamic analysis via

generalized impulse response functions (GIRFs) arising from a global shock

in each indicator; results associated to a positive 1-standard-deviation shock

are reported in Figure 34 in Appendix.

Full-sample connectedness provides a static, average representation of

market spillovers. However, several changes and noticeable market move-

ments took place during our sample period. Against the background of cryp-

tocurrency market evolution and turmoil, it seems at least partially inade-

quate to model connectedness in a static fashion. It seems unfeasible for any

single Ąxed-parameter model to successfully apply over the entire sample.

To cope with this issue, we estimate dynamic connectedness measures based

on rolling samples, so to gauge the nature and magnitude of variations in

spillovers over time by analyzing the corresponding time series of spillover

measures. This is done in the next subsection on dynamic connectedness
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Figure 16: Posterior of the indicator inĆuence indices

Posterior distribution of the rolling inĆuence index for the indicator dimen-

sion.

estimation.

Dynamic connectedness

In this subsection, we investigate connectedness measures derived via a dy-

namic estimation of the proposed MAR model. In particular, we set a rolling

window w = 150 days (with a total of 1583 estimation stages), where each

one has a Ąxed lag length of P = 2, and a forecast horizon for the dynamic

analysis of 20-step-ahead.

We Ąrst illustrate in Figure 15 the posterior distribution of the dynamic
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Figure 17: Posterior of the indicator dependence indices

Posterior distribution of the rolling dependence index for the indicator di-

mension.

total spillover index for the two dimensions: indicator and crypto dimension.

It is evident that the indicator dimension exhibit comparably lower mag-

nitudes of total spillovers compared to the crypto dimension, though there

are some phases of relatively increased/decreased interconnectedness. In-

terestingly, there is no apparent synchronicity between the levels of the two

spillover indices: an increased spillover in the indicator level is not associated

with neither an increased nor a decreased level of spillover in the crypto di-

mension. However, during these turbulence phases, both posterior estimates

show a high degree of variability.
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Figure 18: Scatter of the inĆuence-dependence indices
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Indicator inĆuence-dependence scatter plot for the four windows. Colours

represent different indicators: blue (return), orange (volatility), yellow (sen-

timent).

Indicator analysis

The indicator analysis studies interconnectedness across different indicators

belonging to the same cryptocurrency. We show in Figure 14 the dynamic

evolution of the posterior median of the GFEVD for each equation. There

seems to be a relative independence across the three indicators, although

there are some periods in which spillovers rise. Returns and, particularly,

sentiment transmit information to the system in such cases, whereas volatility

has a limited informational outĆow.

The latter considerations are corroborated by the inĆuence and depen-
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dence indices depicted in Figures 16 and 17, respectively. Sentiment appears

a relevant net shock transmitter, volatility as a net shock receiver, with re-

turns exhibiting similar magnitude of from and to spillovers. Dependence

indices are comparable in their magnitudes, with the one related to volatility

showing relatively higher values.

To gain further insights on the dynamic relationships across indicators, we

represent each indicator in the inĆuence-dependence space in Figure 18. We

select four equally sized windows of 13 months covering our sample period,

i.e. 1 June 2018 - 30 June 2019 (window 1), 1 July 2019 - 30 July 2020

(window 2), 1 August 2020 - 30 August 2021 (window 3), 1 September 2021

- 30 September 2022 (window 4). In this way we can determine the extent

to which each indicator can be viewed as dependent or independent from

the dynamics of the others (from spillover higher or lower than the within

spillover), as well as shock transmitter or receiver (to spillover higher or lower

than from spillover).

Sentiment is systematically located in the upper-left section of the space,

thus being the most inĆuencing variable, with a strong within spillover that

makes it resilient to shocks transmitted from others. Similarly, returns

exhibit a stronger within spillover than the spillover received from others,

though the spillovers transmitted to others are of lower magnitude than the

ones received from others - except for the third phase.

Volatility is instead placed in the lower part of the space, with some

phases showing a relatively higher dependence index than those of others,

suggesting a strong dependence combined with a low inĆuence towards the

others

Crypto analysis

The crypto analysis investigates interconnectedness across the same indi-

cators belonging to different cryptocurrencies. We show in Figure 19 the
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Figure 19: Posterior distribution of the dynamic cryptos GFEVD

Posterior median of the rolling GFEVD for the crypto dimension.

dynamic evolution of the posterior median of the GFEVD related to the

crypto dimension. As also conĄrmed by the total spillovers, the crypto di-

mension shows a much higher degree of interconnectedness compared to the

variable dimension. Although own variance shares concur to a larger extent

to spillovers, cross-variance shares are of considerable magnitude, relatively

stable, and generally weigh for more than half of each single crypto GFEVD.

An exception is Ripple, whose portion of own variance is higher than those

of the other cryptocurrencies, and particularly in the aftermath of 2021.

The posterior distribution of the dynamic inĆuence and dependence in-

dices for each cryptocurrency are represented in Figures 20 and 21, respec-

tively. On the one hand, the posterior median inĆuences appear more volatile
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Figure 20: Posterior of the crypto inĆuence indices

Posterior distribution of the rolling inĆuence index for the indicator dimen-

sion.

than their indicator counterparts, as well as they cross the zero horizontal

line more frequently. This suggests an as such more frequent change in shock

transmission leadership across cryptocurrencies, without the possibility to

rank them systematically in terms of dominance. The only exception is

given by Ripple, which consistently manifests as an overall receiver of shock

impacts. On the other hand, the posterior median dependence indices show a

relatively steady dynamics, as well as similarity of magnitudes. Despite that,

during the period following 2021, all dependence indices drop signiĄcantly,

due to an increased within spillover dynamics. This affects Ripple in a more

noticeable way, with the dependence index dropping by more than two thirds

with respect to its initial sample values.
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Figure 21: Posterior of the crypto dependence indices

Posterior distribution of the rolling dependence index for the indicator di-

mension.

As for the indicator case, we represent each cryptocurrency in the inĆuence-

dependence space in Figure 22. The joint representation of inĆuence-dependence

conĄrms the non-existence of a clear ranking of cryptocurrencies in terms of

their shock transmission capability. Particularly, the leadership seems to be

shared by Bitcoin, Ethereum and Litecoin, but this comes without a marked

dominance. However, evidence suggests that Ripple does not appear as a

net shock transmitter and, even more, it is generally less dependent on the

others, except during the second phase. Further, all cryptocurrencies become

more independent during the third phase, conĄrming the previous Ąnding of

a more asynchronous dynamics of the indicators within each cryptocurrency.

91



Figure 22: Scatter of the inĆuence-dependence cryptos
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Indicator inĆuence-dependence scatter plot for the four windows. Colours

represent different indicators: blue (return), orange (volatility), yellow (sen-

timent).

4.5 Forecasting Experiment

We now illustrate the forecasting performance of our model in an out-of-

sample rolling exercise against some competitor models, which we present

below.

Along with the MAR, we consider four models which arise by imposing

a priori restrictions on the VAR. Indeed, standard time series econometric

theory imposes to work with the vectorized version of our dependent variable

yt = vec(Yt). In a fully parametrized VAR framework we have, for each lag

order, a high-dimensional coefficient matrix Φ embedding G2N2 parameters.
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Nevertheless, when the number of observations is limited, as in our dynamic

connectedness analysis, the standard ML estimator is inefficient and will

work poorly in a forecasting exercise. Thus, the unrestricted VAR is likely

to be an inadequate informative benchmark. Here we do not employ data-

driven standard dimensionality reduction techniques mainly because they

imply hyperparameter tuning which makes the estimation practically infea-

sible, provided the large number of rolling window estimations. We stress

that the MAR approach is a natural consequence of treating variables as

matrices and thus is hyperparameter-free.

We now explain how the different restrictions work. Without loss of

generality, we restrict the attention to the case P = 1. Higher-order lags

are just a generalization of the Ąrst-order case. Let us deĄne Φij to be the

G×G block of Φ providing the response of cryptocurrency i to the Ąrst lag

of cryptocurrency j. For matrix Φij, the coefficient ϕlm
ij gives the response of

indicator l of cryptocurrency i to the Ąrst lag of indicator m of cryptocurrency

j. From the least to the most restricted case, we have four scenarios:

1. VAR: no restrictions are imposed. ϕlm
ij ̸= 0 ∀ i, j, l, m. The model has

a total of G2N2 parameters.

2. Indicator block VAR (IB-VAR): there are no feedback effects among

indicators, but all the cryptocurrencies are allowed to affect each other.

ϕlm
ij ̸= 0 ∀ i, j but only if l = m. The model has a total of GN2

parameters. This corresponds to performing N VAR estimations, one

for each cryptocurrencyŠs set of indicators.

3. Crypto block VAR (CB-VAR): there are no feedback effects between

different cryptocurrencies, but all the indicators affect each other. ϕlm
ij ̸=

0 ∀ l, m but only if i = j. The model has a total of NG2 parameters.

This corresponds to performing a G VAR estimations, one for each

indicator belonging to a set of cryptocurrencies.

4. AR: there are only univariate autoregressive dynamics. ϕlm
ij ̸= 0 only if
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i = j and l = m. The model has just GN parameters.

We estimate the models with same setting of the dynamic analysis. We

then forecast each variable out-of-sample, with step ahead forecasts H =

1, ..., 4. Forecast accuracy is then measured in terms of Mean Squared Fore-

cast Error (MSFE). In particular, let M = 1, ..., 4 be the set of models con-

sidered, withM = 0 being the MAR model as a benchmark. For each ending

point T = 150, ..., 1733 of the rolling windows, the H-step-ahead MSFE for

variable d = 1, ..., D of the M-th model is deĄned as:

MSFEMd,T,H =
1

H

H
∑

h=1

(ŷMd,T +h − yd,T +h)2 (4.22)

where ŷMd,T +h denotes the h-step forecast of indicator d of modelM, whereas

yd,T +h is the corresponding observed value. We report results for MSFE

relative to the benchmark, i.e. the relative MSFE (RMSFE), that is:

RMSFEMd,T,H =
MSFE0

d,T,H

MSFEMd,T,H

(4.23)

A value greater than 0 means that model M exhibit a better forecasting

performance compared to the MAR, and viceversa.

The results of the forecasting exercise can be graphically seen in Figures

23, 24, and 25, where the cumulative logarithms of the RMSFE are depicted,

for each variable, for all the forecast horizons. To ease the interpretation,

results are presented as averages for the four cryptocurrencies considered. We

refer the reader to Figure 35 in Appendix for a comparative representation of

the Bayes-Schwarz information criteria for the MAR model and the analyzed

competing alternatives. Additionally, results of the forecasting experiment

with alternative rolling window settings (w = 100, 150, 200) and lag order

(P = 1, 2) are reported in Figures 36-38.

Overall, we observe that the VAR model has a poor forecasting power

with respect to the extant competing alternatives. This can be reconducted
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Figure 23: Cumulative logarithm of the RMSFE for the return indicator.
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to the current high-dimensional setting for which we are evaluating forecasts.

Another interesting common Ąnding is that the IB-VAR generally outper-

forms the CB-VAR. This result is the offspring of the fact that, as far as

forecasting performance is concerned, it is better to model in a VAR fashion

the same indicator belonging to different cryptocurrencies, rather than the

set of different indicators pertaining to the same cryptocurrency. The latter

conclusion supports once more the relatively higher interrelated dynamics of

the crypto dimension rather than that of the indicator dimension.

When considering forecasting performances in detail, we observe a differ-

ent behaviour of the predictive accuracy of the considered models depend-

ing on the indicator to be forecasted. As far as price returns, the MAR

model generally outperforms the VAR, CB-VAR and IB-VAR, while the lat-

ter yields sometime comparable values of the RMSFE. The AR, instead,
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Figure 24: Cumulative logarithm of the RMSFE for the volatility indicator.
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tends to perform better than all other alternative models: this is generally

true, though in some cases it has similar forecasting accuracy with respect to

the MAR model. As far as volatility is concerned, the MAR model generally

outperforms all competing models. While the IB-VAR is close in terms of

forecasting accuracy, the CB-VAR and, especially, the AR and VAR models

perform worse. Sentiment is instead the variable for which the MAR model

yields poorer forecasting performances, if compared to the others - except for

the VAR model. In this case, the AR model overperforms the competitors

for forecast horizons 3 and 4, whereas it yields quite comparable forecast

accuracy with the two block models, particularly with the IB-VAR.

We further perform the Diebold and Mariano (2002) test for predictive

accuracy to compare the forecasts given by the MAR against the AR and

VAR models, whose results are contained in Tables 6 and 7 in Appendix.
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Figure 25: Cumulative logarithm of the RMSFE for the sentiment indicator.
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The test shows that, overall, the VAR and the MAR model generally exhibit

different forecasting accuracy, which conĄrms the superior performance of

the MAR model in terms of forecasting. When it comes to the comparison

of MAR and AR, the test often does not reject the null hypothesis of a zero

expected loss differential and, particularly, when returns are forecasted.

4.6 Conclusion

We have proposed a ML and Bayesian estimation of autoregressive models for

matrix-valued Ąnancial time series. The model, compared to a standard vec-

tor autoregressive model, preserves the original matrix structure of Ąnancial

data and admits corresponding enhanced interpretations due to its bilinear

form. We have outlined a procedure to derive generalized multidimensional

97



connectedness measures, and provided a forecasting experiment which high-

lights the comparable forecasting performances of the model relative to AR

and VAR models.

Our approach and its results might be useful for risk management and

regulatory policy making: while fund managers aim mostly at predicting

returns, regulatory institutions are periodically asked to forecast volatility,

whilst sentiment being a potentially key predictor.

As supported by the theoretical literature, our Ąndings reveal only a

weak evidence of directional spillover from sentiment indicators to returns

and volatility. Therefore, there is weak evidence towards the hypothesis that

noise traders impact returns or volatility.

There are many possible extensions to the outlined approach. In the

future, time-varying parameter autoregressive models for matrix-valued time

series could be considered. Further, dynamic factor matrix autoregression

can be of interest for multidimensional market models.
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5 Concluding Remarks

The motivation of this thesis is grounded on the growing attention of statis-

tical and econometric methods for high and multidimensional frameworks.

In conclusion, this thesis makes a signiĄcant contribution to the literature of

high and multi-dimensional models in the Ąelds of Economics and Finance.

By proposing novel Bayesian estimation techniques and Graph Theory ap-

proaches, we aim to address the inferential and interpretational issues that

arise when modeling complex systems.

In Chapter 2 we studied shock propagation in longitudinal time series

data using statistical and econometric techniques and network theory. We

build on a dynamic spillover network framework derived from a Global VAR

model, and apply network analysis to study the network topology of spillover

indices across European countries, macroeconomic variables, and sentiment

data. The usefulness of the method is demonstrated by analyzing the network

structure of shock propagation and showing how different crises have diverse

impacts on the real economy, economic sentiment, and the entire countriesŠ

macroeconomic network structure.

In Chapter 3 we proposed a Bayesian method for variable selection in

high-dimensional MAR models. The method consists of two computational

procedures: an MCMC algorithm and an EMVS estimation procedure, which

allow for fast dynamic posterior exploration. The efficiency of the proposed

estimators was numerically investigated, and both are found to perform well

compared to alternative models. The method was applied to a panel of nine

countriesŠ economic indicators. We Ąnd that US and Canada have the largest

pairwise contributions to each otherŠs economy, while both the US and China

are prone to transmitting large portions of GFEVD to other countries, with

China generally being more resilient to shocks in other countries.

In Chapter 4 we proposed a method for estimating autoregressive models

for Ąnancial time series using both maximum likelihood and Bayesian tech-
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niques. The method preserves the original matrix structure of the Ąnancial

data, allowing for enhanced interpretations due to its bilinear form, and also

includes a procedure to derive generalized multidimensional connectedness

measures. The forecasting experiment showed that the proposed model had

comparable forecasting performance relative to AR and VAR models. The

results of the study have potential applications for risk management and

regulatory policy-making. The Ąndings reveal only weak evidence of direc-

tional spillover from sentiment indicators to returns and volatility, suggesting

limited impact of noise traders on returns or volatility.

Extensions and Further Research

While the methods described in Chapter 2 are an important step towards

combining econometrics and network theory, there is still a lot of room for

further development in both methodology and practical applications in these

Ąelds. Currently, network theory is not often applied to econometric models,

but it has the potential to greatly enhance our understanding of time series

models and to facilitate the creation of interdisciplinary research Ąelds.

The most promising evolution of the Variable Selection procedure for

MAR presented in Chapter 3 is probably the inclusion of time variation in the

coefficients. This extension would enable the modeling of more sophisticated

and practical scenarios, particularly in the Ąnancial and economic domains,

which would result in more precise and practical outcomes.

From the methodological point of view, the possible extensions concerning

the MAR employed in Chapter 4, basically resemble the one suited for the

Variable Selection MAR. Nevertheless, an intriguing empirical application

would be to consider an enlarged Financial dataset, where different crypto

prices are observed through different exchanges. This would also lay the

ground for the development of cointegrated methods for matrix and tensor

variate data. Different exchange prices obey to the one price law, which
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annilihates the possibility of arbitrage by buying and selling through differ-

ent exchanges. Now suppose that data are organized for each time point

as a matrix with rows representing exchanges and colums cryptos. In this

case, the left hand autoregressive matrices could be reformulated as mimic a

VECM, whereas at the same time the right hand matrices are free from any

restriction.
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A Appendix

A.1 Technical Details of Chapter 2

Global VAR forecast error variance decomposition

Given the nature of the variables underlying the Global VAR dynamical sys-

tem, we follow Greenwood-Nimmo et al. (2021) who propose an aggregation

scheme for the GFEVD in order to reduce its dimensionality with a direct

interpretation on the countries (variables) FEVD. First, we re-normalise such

that C
(h)
R = K. After re-normalisation, the (i, j) -th element of C

(h)
R repre-

sents the proportion of the total h -steps-ahead FEV of the system accounted

for by the spillover effect from variable i to variable i. With this modiĄcation

we are ensured that we may achieve a percentage interpretation even after

aggregating groups of variables in the system.

Suppose we are interested in analyzing the spillover measures developed

by Diebold and Yilmaz (2014) but focusing on the countries. It makes sense

to aggregate the FEVD according to country blocks, where each ith element

is obtained as an aggregation (sum) of the ith country block with its own

variables. If, instead, the aim is to carry a variable analysis, the aggregation

can be done considering the variable blocks.

Once we have collected xt into b groups C
(h)
R can be equivalently expressed

as:

C
(h)
R

(m×m)

=

















B
(h)
1←1 B

(h)
1←2 · · · B

(h)
1←b

B
(h)
2←1 B

(h)
2←2 · · · B

(h)
2←b

...
...

. . .
...

B
(h)
b←1 B

(h)
b←2 · · · B

(h)
b←b

















. (A.1)

Let us stress that no information is lost in this process. Consider all

the blocks lying on the main diagonal of that matrix (i.e. B
(h)
k←k ); they
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contain all of the within-group FEV contributions. We can therefore deĄne

the within-group FEV contribution for the k th group as follows

W(h)
k←k = e′mk

B
(h)
k←kemk

, (A.2)

where emk
is the usual selection vector. Roughly speaking, the within-

group FEV contribution for the k th group is equal to the sum of the elements

of the block B
(h)
k←k′ . Analogously, Bk←ℓ for k ̸= ℓ relates to the transmission

of information across groups. Hence we deĄne the spillover from group ℓ to

group k as F (h)
k←ℓ = e′mk

B
(h)
k←ℓemℓ

and the spillover to group k from group ℓ

as T (h)
ℓ←k = e′mℓ

B
(h)
ℓ←kemk

. By collecting all these measures, we can deĄne the

h-step ahead block connectedness matrix of dimension b× b as

B
(b×b)

(h) =

















W(h)
1←−1 F

(h)
1←−2 · · · F

(h)
1←b

F (h)
2←1 W(h)

2←2 · · · F (h)(h)

2←b
...

...
. . .

...

F (h)
b←1 F (h)

b←2 · · · W(h)
b←b

















. (A.3)

Note that the dimension of this grouped matrix is b2 < K2, which implies

a signiĄcant improvement on the FEVD interpretation in large models ease

the processing constraints encountered in large models. It is now straight-

forward to develop aggregate connectedness measures at the group level.

Data description and preliminary analysis

Among the economic variables, we analyse the Industrial Production index,

a business cycle indicator which measures monthly changes in the price-

adjusted output of industry. The second variable is the index of the volume

of Retail Trade, a business indicator which measures the monthly changes

of the deĆated turnover of Retail Trade both at the level of the European

Union (EU) and of the Eurozone. Both the economic indices are provided in
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their seasonally and calendar adjusted versions and normalized to 100 for the

year 2015. As a measure of sentiment and expectations towards the future of

economies, we select a third variable, i.e. the monthly Economic Sentiment

index provided by the Directorate-General for Economic and Financial Af-

fairs (DG ECFIN). The indicator is calculated on the basis of a selection of

questions from six different sectors and different topics:

• Consumer: Ąnancial situation, general economic situation, price trends,

unemployment;

• Industry: production, employment expectations, stocks of Ąnished prod-

ucts and selling price;

• Services: business climate, evolution of demand, evolution of employ-

ment and selling prices;

• Financial services: business situation, evolution of demand and em-

ployment;

• Retail Trade: business situation, stocks of goods, orders placed with

suppliers and ĄrmŠs employment;

• Construction: trend of activity, order books, employment expectations,

price expectations and factors limiting building activity.

Each indicator is the core of the surveys which leads to the construction

of sectorial monthly conĄdence indices, aimed at reĆecting the overall per-

ceptions and expectations at the individual sector level in a one-dimensional

index. Economic Sentiment is then formulated by aggregating information

from the six conĄdence indices, obtaining a comprehensive measure which is

able to track the overall economic activity. All of the economic variables are

publicly available and provided by EUROSTAT3.

3Available at EUROSTAT: https://ec.europa.eu/eurostat/data/database
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As far as the weights matrix used to build the foreign variables of the

country models, we use the annual data on bilateral trade Ćows, which are

made publicly available by the International Monetary Fund (IMF) 4. We

therefore deĄne ωij = ωji as the sum of the import and export of country i

with country j.

Figure 26 shows the dynamics of the time series of Industrial Production,

Retail Trade and Economic Sentiment of the set of 12 analyzed European

countries over the whole sample period. It evidently appears how different are

the time series in their temporal dynamics. As for the Industrial Production

and Retail Trade indicators, countries have particularly different values in the

Ąrst half of the time series, while starting from 2016 values tend to converge.

Moreover, we can spot a clear drop along all the time series in 2020 (COVID-

19 pandemic) and another signiĄcant one in 2009-2010, with major evidence

on the sentiment index.

4Available at IMF: https://data.imf.org/?sk=9D6028D4-F14A-464C-A2F2-

59B2CD424B85&sId=1409151240976
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Figure 26: Time series of the indicators
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The Ągure shows the dynamics of the time series of Industrial Production,

Retail Trade and Economic Sentiment of the set of 12 analyzed European

countries expressed in logarithmic terms over the whole sample period.
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Table 5: Weak exogeneity test

Country pi qi C. R. Crit. Val. IND RET SENT

AT 1 1 2 F(2,250) 0,780 5,224∗ 3,855

BE 3 3 2 F(2,236) 0,478 0,265 0,577

DK 1 1 0 F(0,252)

FR 3 2 2 F(2,239) 1,275 4,122 0,108

GE 2 2 0 F(0,245)

IR 1 1 0 F(0,252)

IT 3 3 1 F(1,237) 2,502 2,486 3,166

NL 1 1 0 F(0,252)

PL 1 1 0 F(0,252)

SP 1 2 1 F(1,247) 0,527 0,671 0,241

SE 1 1 1 F(1,251) 4,442 7,490∗ 0,996

UK 1 1 1 F(1,251) 6,681∗ 0,002 0,229

F-statistics for testing the weak exogeneity of the country-speciĄc foreign

variables. ∗ denotes statistical signiĄcance at the 1% level. CR is the number

of cointegrating relationship found in the single country model.

Weak exogeneity test

A Ąrst estimation attempt consists of using OLS to estimate the single coun-

try VARX models. However, it is well known that the main assumption un-

derlying the estimation of the individual country VARX models is the weak

exogeneity of x∗it with respect to the long run parameters of the conditional

model. This assumption might be in practice violated.

For this reason, we Ąrstly estimate the single country VARX models by

means of OLS, and then verify the validity of this assumption through the

weak exogeneity test outlined in Harbo et al. (1998). The results are reported

in Table A.1.
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The weak exogeneity assumptions are rejected only in 3 cases out of

21. The Ąrst one pertains Industrial Production of UK, which is consistent

with Dees et al. (2007), who found a rejection in the UK country model.

The second and third ones are Retail Trade of Austria and Sweden. Given

these premises and the suggestion of an anonymous Referee, we change our

modelling strategy towards a more consistent estimation procedure outlined

in the methodological section.

Global analysis

In order to measure the impacts of shocks on the real economy, the economic

sentiment and their interrelationships across countries on a time-varying ba-

sis, we conduct a dynamic analysis. In other words, we set a rolling window

w to estimate the Bayesian GVAR parameters and we obtain time varying

estimates of the global forecast error variance decomposition connectedness

measures. Our results are therefore obtained considering a Bayesian GVAR

model based on twelve countries approximating VAR models estimated dy-

namically on a rolling window basis of six years and an H step ahead forecast

horizon of 40 months.

As a preliminary analysis, we dynamically test for possible cointegrating

relations among time series (in log-levels) through the Johansen Maximum

Eigenvalue test. Figure 27 shows the proportion of signiĄcant cointegrat-

ing relationships with respect to the total number of possible cointegrating

relationships present in the country models. Results clearly highlight that

the number of cointegrating relationships tends to increase during crisis pe-

riods (see the Global Financial Crisis and the COVID-19 outbreak periods).

This is equivalent to say that, in turbulent times, Industrial Production,

Retail Trade and Economic Sentiment start to co-move more signiĄcantly.

Interestingly, Ąrst evidence on the COVID-19 period supports the fact that

the number of cointegrating relationships were immediately larger due the

COVID-19 outbreak, if compared to those observed during the Ąnancial cri-
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sis of 2008. In spite of this, the former had an instantaneous impact on the

cointegrating relationships of the system variables, meaning that the shock

seems to dissipate relatively quicker over time, while the latter had more

persistent effects on time series co-movements.

Figure 29 shows the MST representation of the predictive spillover net-

works relative to the four periods of interest. It clearly appears a temporal

dynamics in the backbone structure of the network. Evidence shows that the

GFEVD network clusters are not constant and evolve dramatically over time

- see Figure 30. We can see that the COVID-19 period shows the strongest

links and the denser structure. Moreover, the two crisis periods are com-

pletely divergent: during the Global Financial Crisis the network is clustered

and with few relevant links. During the COVID-19 period, instead, not only

does the intensity of links increase, but also the number of clusters decrease,

suggesting a higher degree of interconnectedness.

Country analysis

Figure 31 shows dependence-inĆuence country relationships. The scatter

plot is obtained by generating a Cartesian plane with the inĆuence index on

the x axis and the dependence index on the y axis. Both the indices are

calculated from the country aggregation of the GFEVDs. Similarly to what

observed in Figure 3, the Ąrst three periods are again comparable, despite

some variability in the country speciĄc positions in terms of dependence-

inĆuence. The real change occurs in phase 4, in which countries are basically

equal in terms of dependence, allegedly due to the effect of the exogenous

shock exerted by the pandemic outbreak.

Figure 28 shows the directed weighted GFEVD spillover network obtained

from the country aggregation of the GFEVD during the four phases under

analysis. In accordance with the results of the hub and authority algorithms,

we Ąnd that Netherlands is a central node in the network in terms of shock
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spreading power, especially during the Global Financial Crisis. Conversely,

and still in line with the previous results, Germany appears to gain a pivotal

role in the network in the aftermath of the Global Financial Crisis, which

lasts even after the COVID-19 outbreak.
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Figure 27: Fraction of signiĄcant cointegrating relationships
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The Ągure shows the dynamics of total number of signiĄcant cointegrating

relations in country models over the total number of possible cointegrat-

ing relationships (black line). The beginning of the Global Financial Cri-

sis (September 2008) and of the COVID-19 outbreak (February 2020) are

marked in red. Results refer to the Johansen Maximum Eigenvalue test for

multiple cointegrating relationships considering a signiĄcance level of 10%.

128



Figure 28: Directed dynamic GFEVD country spillover network
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Directed GFEVD country spillover network. The Ągure shows the directed

weighted GFEVD spillover network obtained from the country aggregation

of the GFEVD phase by phase. Nodes represent countries, whereas links

represent the magnitude of pairwise forecast error variance transmitted to

others. Results are relative to the four sub-samples under analysis. Self-

loops are omitted from the graphical representation.
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Figure 29: Sub-sample global forecast error variance MSTs
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The Ągure shows the MST representation derived from the generalized fore-

cast error variance decomposition (GFEVD) relative to the four periods of

interest. Network nodes represent system variables, whereas edges represent

the directional contribution of each variable to the forecast error variance

decomposition of the others. Colours stand for Industrial Production (red),

Retail Trade (green) and Economic Sentiment (blue). Self-loops are omitted.
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Figure 30: Sub-sample global forecast error variance clustering
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The Ągure shows the clustered generalised forecast error variance decompo-

sition (GFEVD) network structure of real economy and economic sentiment

variables, where groups are classiĄed according to the Louvain clustering al-

gorithm. Squares: Industrial Production, triangles: Retail Trade, circles:

Economic Sentiment.
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Figure 31: Dependence-inĆuence country relationships
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The Ągure shows a scatter plot obtained by generating a Cartesian plane

with the inĆuence index on the x axis and the dependence index on the y

axis. Both the indices are calculated from the country aggregation of the

rolling GFEVDs.
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A.2 Technical details of Chapter 3

Tensor operations and the Tucker product

A tensor is a multidimensional array, whose order expresses the number of

dimensions, also known as ways or modes To avoid confusion, we use the

term way to express the dimension of a tensor, given that mode is already

used to express the maximum value of a given distribution. More formally,

an N -th way tensor is an N dimensional array X ∈ R
I1×...×IN with entries

Xi1...iN
with in = 1, ..., In and n = 1, ..., N .

Vectors are tensors of order one (denoted by boldface lowercase letters,

e.g., x) whereas matrices are tensors of order two (denoted by boldface capital

letters, e.g., X).

Tensor norm and inner product

The Frobenius norm of a tensor X is the square root of the squared sum of

all its elements, ie.

♣♣X ♣♣F =

√

√

√

√

√

J1
∑

j1=1

...
JN
∑

jN =1

x2
j1...jN

=
√

vec(X )′vec(X ) (A.4)

which is analogous to the Frobenious norm of a matrix.

The inner-product of two tensors of the same dimension X ,Y ∈ R
J1,...,JN

is the sum of the product of their entries:

⟨X ,Y⟩ =
JN
∑

j1=1

....
JN
∑

jN =1

xj1...jN
yj1...jN

= vec(X )
′

vec(Y) (A.5)

Matricization and Tucker product

The process of reordering the elements of an N -way array into a matrix is

called matricization. The n-th way matricization of X is denoted by Xn =
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matk(X ), and is obtained by reshaping the elements of the original tensor

so that the resulting matrix is of dimension [In ×
∏

j ̸=n Ij]. The special case

of contemporaneous matricization along all the ways of a tensor is called

vectorization, which is analogous to the vectorization of a matrix:

x = vec(X ) = mat1,...,N(X ) (A.6)

Given the matrices B1, ..., BN with Bn ∈ R
in×jn , a map from the space

of X to the space generated by the rows of Bn (Ri1×...×iN ) is made by Ąrst

obtaining x, then computing:

m = (BN ⊗ ....⊗B1)x (A.7)

and eventually forming an [i1× ...× iN ] dimensional arrayM from m. This

transformation between the tensor X and the list B = ¶B1, ..., BN♢ is known

as the Tucker product (Tucker, 1966), and can be written as:

M = X×̄¶B1, ...BN♢ (A.8)

It is worth noting that the matricization operator connects the multidimen-

sional Tucker product to the well known matrix multiplication, facilitating

both understanding and computation of the former. In fact, by applying

the n-th way matricization to both sides of equation (A.8) we obtain the

equivalent formulation:

Mn = BnXnB
′

−n (A.9)

where B−n = (BN⊗...⊗Bn+1⊗Bn−1⊗...⊗B1). By repeating the operation for

n = 1, ..., N , it emerges that the Tucker product can be expressed as a series

of N matrix reshaping and multiplications. Matricization and vectorization

applied to the Tucker product give raise to the following set of equivalences:

M = X×̄¶B1, ..., BN♢

Mn = BnXnB
′

−n

m = (BN ⊗ ....⊗B1)x

(A.10)

The VAR as well as the MAR equivalent form of a TAR can be easily derived

with the abovementioned tools.
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Conditional Posterior Distribution

The conditional posterior of each γi,k is:

π(γi,k♣−) ∼ Ber(θ̄i,k) (A.11)

where

θ̄i,k =
θkN (ϕi,k, τ1)

θkN (ϕi,k, τ1) + (1− θk)N (ϕi,k, τ0)
(A.12)

The conditional posterior of each ϕk is:

π(ϕk♣−) ∼ N (µ̄k, Ω̄k) (A.13)

where

Ω̄k = (X̃kX̃k′

⊗Σ−1
k + V−1

k )−1

µ̄k = Ω̄k(X̃kX̃k′

⊗Σ−1
k ϕ̂k)

(A.14)

where Φ̂k = (ỸkX̃k′
)(X̃kX̃k′

)−1 and ϕ̂k = vec(Φ̂k).

The conditional posterior of each Σk is:

π(Σk♣−) ∼ W−1(Ω̄k, n2,k + νk) (A.15)

where Ω̄k = (Ỹk − Φ̂kX̃k)(Ỹk − Φ̂kX̃k)
′
+ ξΩk.

The conditional posterior of each θk is:

π(θk♣−) ∼ Beta(ᾱk, β̄k) (A.16)

where ᾱk = ♣γk♣+ αk and β̄k = Nk + βk + αk.

The conditional posterior for ξ is:

π(ξ♣−) ∼ Ga(ν̄1, ν̄2) (A.17)

where ν̄1 = 1
2

∑

k dkνk + ν1 and ν̄2 = 1
2

∑

k ΩkΣ−1
k + ν2.

135



E-M steps

For each k, the E-steps proceeds by computing the conditional expectations

of v−1
i,k ∈ V

−1
k in Q1,k(·) and of γi,k for ♣γk♣ in Q3,k(·). Consider the latter

Ąrst. At the j-th step we have:

Eγk♣·(γi,k) = P(γi,k = 1♣ϕ[j−1]
k , θ

[j−1]
k )

=
θ

[j−1]
k N (ϕi,k♣0, τ1)

θ
[j−1]]
k N (ϕi,k♣0, τ1) + (1− θ

[j−1]
k )N (ϕi,k♣0, τ0)

(A.18)

The E-step for the former is:

Eγk♣·(v
−1
i,k ) = Eγk♣·[τ0(1− γi,k) + τ1γi,k]−1 =

1− P(γi,k = 1♣ϕ[j−1]
k , θ

[j−1]
k )

τ0

+
P(γi,k = 1♣ϕ[j−1]

k , θ
[j−1]
k )

τ1

(A.19)

The maximization steps are:

ϕk = [V−1 + (X̃k′

X̃k ⊗Σ−1
k )]−1[(X̃k′

X̃k ⊗Σ−1)ϕ̂k] (A.20)

Σk =
(Ỹk −ΦkX̃k)(Ỹk −ΦkX̃)

′
) + ξΩk

Jk + J−k + νk + 1
(A.21)

θk =
♣γk♣+ αk − 1

nk + αk + βk +−2
(A.22)

ξ =
1
2

∑

k(Jkνk) + η1 − 1
1
2

∑

k tr(ΩkΣ−1
k ) + η2

(A.23)

Additional Simulation Results

Competing models

In compact form, a PVAR mode can be rewritten as:

Y = BX + U, (A.24)
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or

y = (X
′

⊗ IGN)β + u, (A.25)

where Y = [yP +1, ..., yT ] and the coefficient matrix B = [Φ1, ..., ΦP ] is

of dimension GN × GNP . X = [XP , ..., XT−1], with Xt = [yt−1, ..., yt−P ].

Equation (A.25) is the vectorized form, where y = vec(Y), u = vec(U) and

β = vec(B).

We consider the following competing models:

1. CC: Canova and Ciccarelli (2009, 2013) use a factorization approach of

the parameters such that they can be divided into common, country-

speciĄc, and variable-speciĄc factors. They specify the model in a

hierarchical structure:

β♣F ∼ N (ΛF, Σ⊗ IGN),

F ∼ N (0, cF),
(A.26)

where Λ is an GN × f matrix of loadings and F is an f -dimensional

vector of factors where f < GN . The number of factors are, respec-

tively, N for coefficients of each country and G for coefficients of each

variable, and one common factor for all coefficients. There is only one

hyperparameter to set is c, related to the prior variance of the factors.

2. SSVS: George et al. (2008) specify a prior whereby each coefficient of

B is drawn from a mixture of two normal distributions: the former

with a small variance aiming at shrinking the coefficient towards 0 and

the latter with a relatively large one. The higher the magnitude of

Bij, the higher is the probability that it will be drawn from the second

distribution, and viceversa.

βk♣γk ∼ (1− γk)N (0, τ 2
1) + γkN (0, τ 2

2),

γk ∼ Ber(πk),
(A.27)

with k = 1, ..., G2N2P .
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3. SSSS: This algorithm designed by Koop and Korobilis (2016), who

build on George et al. (2008) but taking in into account for panel re-

strictions. They specify two types of restrictions: dynamic interdepen-

dencies (DI) and cross-sectional homogeneity (CSH).

The DI works on off-diagonal blocks. Let Bij ∈ B be the G×G block

embodying the parameters of country j-th on country i-th equations.

The prior has the following form:

vec(Bij)♣γ
DI
ij ∼ (1− γDI

ij )N (0, τ 2
1IG

2) + γDI
ij N (0, τ 2

2IG
2),

γDI
ij ♣π

DI
ij ∼ Ber(πDI

ij ),∀j ̸= i,

πDI
ij ∼ Beta(1, ϕ),

(A.28)

whereas the CSH prior works on the main block diagonal of B. The

prior reads as:

vec(Bii)♣γ
CSH
ij ∼ (1− γCSH

ij )N (Bjj, ξ2
1I

2
G) + γCSH

ij N (Bjj, ξ2
2I

2
G),

γCSH
ij ♣πCSH

ij ∼ Ber(πCSH
ij ), ∀j ̸= i,

πCSH
ij ∼ Beta(1, ϕ).

(A.29)

Hyper/regularization parameter tuning

• CC: We set c = 4.

• SSVS: We set τ 2
1 = 0.01, τ 2

2 = 4 and πk = 0.5.

• SSSS We set τ 2
1, ξ2

1 = 0.01, τ 2
2, ξ2

2 = 4, πDI
ij , πCSH

ij = 0.5 and πk = 1.

Additional results
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Figure 32: Average MSE and 1 step ahead forecasting performance
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Average estimation error (MSE) (a,b,c) and 1 step ahead forecasting per-

formance (MSFE) (d,e,f) over 50 repetitions of each model for (G, N) =

(2, 3), (4, 6), (8, 10) with T = 500.
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Figure 33: One step ahead MSFE and computational time
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One step ahead MSFE (a) and computational time (b) of each model over

different rolling windows spanning from 1995Q1 (T = 60) to 2019Q2 (T =

120).
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A.3 Technical details of Chapter 4

Static connectedness

Given the MA(∞) representation of the MAR in vectorized form - see equa-

tion (4.5), we can perform dynamic analysis via impulse response functions.

In particular, in Figure 34 we illustrate the generalized impulse response

functions, for H = 1, ..., 20 relative to what we deĄne a "global shock". A

global shock is deĄned as such as it does not originate from a particular as-

set, but is common to the set of securities as a whole. In other words, we

study shocks arising from endogenous variables of the system, deĄned as a

weighted average of variable speciĄc shocks across all the indicators of one

asset (or across one indicator of all assets) in the autoregressive model.

The Generalized Impulse Response (GIRF) function (Koop et al., 1996)

in the case of a one standard error global shock equally distributed across

the assets at time t, considering a forecast horizon H, can be written as:

GIRF(H) =
ΓH(Σ2 ⊗Σ1)e
√

e
′(Σ2 ⊗Σ1)e

, (A.30)

where ΓH is the H step matrix of dynamic multipliers and e is a GN×1 vector

of shocks such that
∑

i ei = 1. We illustrate the resulting impulse responses

for each cryptocurrency associated to a positive 1 standard deviation shock

in Figure 34.

Forecasting experiment
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Figure 34: Generalized impulse response functions for the four indicators.
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Figure 35: Rolling BIC
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Rolling Bayes-Schwarz Information Criterion (BIC) for the Ąve models con-

sidered.
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Figure 36: Rolling cumulative logarithm of the RMSFE for the return indi-

cator and the Ąve different models.
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Figure 37: Rolling cumulative logarithm of the RMSFE for the volatility

indicator and the Ąve different models.
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Figure 38: Rolling cumulative logarithm of the RMSFE for the sentiment

indicator and the Ąve different models.
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Table 6: Diebold Mariano test P-value (MAR-AR)

btc eth ltc xrp

ret 0.133 0.059 0.055 0.010

vol < 0.01 0.014 < 0.01 0.489

sent 0.285 0.370 < 0.01 < 0.01

FH 1

btc eth ltc xrp

ret 0.066 0.036 0.053 0.124

vol 0.241 0.047 < 0.01 0.721

sent 0.917 0.402 0.090 < 0.01

FH 2

btc eth ltc xrp

ret 0.813 0.070 0.373 0.136

vol 0.303 0.013 < 0.01 0.178

sent 0.499 0.254 0.131 < 0.01

FH 3

btc eth ltc xrp

ret 0.276 0.175 0.479 0.296

vol 0.053 < 0.01 < 0.01 0.283

sent 0.645 0.189 0.374 < 0.01

FH 4

P-value of the Diebold-Mariano test for each variable. The null hypothesis

is that MAR and AR have the same forecast accuracy. Setting: w = 150,

P = 2.
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Table 7: Diebold Mariano test P-value (MAR-VAR)

btc eth ltc xrp

ret < 0.01 < 0.01 < 0.01 < 0.01

vol < 0.01 < 0.01 < 0.01 < 0.01

sent < 0.01 < 0.01 < 0.01 < 0.01

FH 1

btc eth ltc xrp

ret < 0.01 < 0.01 < 0.01 < 0.01

vol < 0.01 < 0.01 0.017 < 0.01

sent < 0.01 < 0.01 < 0.01 < 0.01

FH 2

btc eth ltc xrp

ret < 0.01 < 0.01 0.016 < 0.01

vol 0.103 0.336 0.687 < 0.01

sent < 0.01 < 0.01 < 0.01 < 0.01

FH 3

btc eth ltc xrp

ret < 0.01 < 0.01 0.025 < 0.01

vol 0.972 0.667 0.600 < 0.01

sent < 0.01 < 0.01 0.036 < 0.01

FH 4

P-value of the Diebold-Mariano test for each variable. The null hypothesis

is that MAR and VAR have the same forecast accuracy. Setting w = 150,

P = 2.
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MCMC convergence

We have carried out a convergence diagnostics based on the LeSageŠ Econo-

metrics toolbox 5 to evaluate the convergence of the MCMC algorithm in the

full sample exercise. In particular, we rely on the diagnostic of Raftery and

Lewis (1970).

Raftery and Lewis provide an answer regarding how long to monitor the

chain in order to reach a predermined posterior summary accuracy. SpeciĄ-

cally, given a posterior quantile q of interest, an acceptable tolerance r of the

probability p of being within the interval (q − r, q + r), it provides an esti-

mates of the number of iterations (MC), the number of burn-in (BI) and the

thinning period (TH) necessary to satisfy the speciĄed conditions regarding

quantile q. Also, the number of draws that would be needed if the draws

represented an i.i.d. chain are given (MCmin). Finally, also the I-statistic

(I-stat), which is given by MC/MCmin, is reported. It provides evidence of

convergence problems if its values exceeds 5.

We compute these measures for some randomly chosen entries of the

estimated coefficient matrices Â and B̂, related to the full sample experiment,

respectively. The results are reported in Table 8.

As expected, results are coherent between the two set of coefficients. The

thinning estimate provided by the second and seventh columns is 1, which

is consistent with the lack of autocorrelation in the sequence of draws. Re-

garding the number of burn in, it is suggested that only 2 draws for A and

3 for B are required, which are pretty small. We remark that our starting

values are represented by the mode of the posterior distribution, estimated

via the MAP, which are supposed to be nearby the true values. The fourth

and eight columns, report the number of draws needed to achieve the desired

level of accuracy. In both cases the value is far below 5000, which corre-

sponds to the number of draws we employed, conĄrming the overall efficieny

5Available at: https://www.spatial-econometrics.com/
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Table 8: Raftery and Lewis diagnostics

BI TH MC MCmin I-stat BI TH MC MCmin I-stat

A3,2 1 3 4129 3746 1.102 B3,4 1 2 3866 3746 1.032

A2,4 1 3 4129 3746 1.102 B2,5 1 2 3866 3746 1.032

A3,4 1 3 4129 3746 1.102 B2,7 1 2 3866 3746 1.032

A2,7 1 3 4129 3746 1.102 B4,9 1 2 3866 3746 1.032

A3,7 1 3 4129 3746 1.102 B2,13 1 2 3866 3746 1.032

A1,10 1 3 4129 3746 1.102 B1,14 1 2 3866 3746 1.032

A1,11 1 3 4129 3746 1.102 B2,14 1 2 3866 3746 1.032

A2,12 1 3 4129 3746 1.102 B4,14 1 2 3866 3746 1.032

A1,12 1 3 4129 3746 1.102 B1,16 1 2 3866 3746 1.032

A3,12 1 3 4129 3746 1.102 B3,16 1 2 3866 3746 1.032

Raftery and Lewis diagnostics for ten randomly selected entries of Â

(columns 1:6) and B̂ (columns 7:12). The column stand for the number

of burn-in (BI) and the thinning period (TH), the number of Monte Carlo

draws (MC), the minimum number of draws (MCmin), I-statistic (I-stat)

of the estimation process.
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