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Abstract
Regional variability in the spatial distribution of resident population and across-country 
density divides have consolidated heterogeneous demographic patterns at the base of mod-
ern urban systems in Europe. Although economic, historical, institutional, and cultural 
factors have demonstrated to affect the spatial distribution of resident population, den-
sity-dependence and path-dependence are mechanisms persistently shaping demographic 
dynamics at both local and regional scale. Analysis of density-dependent patterns of popu-
lation growth (and decline) over sufficiently long time intervals allows a refined compre-
hension of socioeconomic processes underlying demographic divides. Despite a long set-
tlement history, empirical investigation of the role of density-dependence in the long-term 
evolution of human populations along urban–rural gradients is relatively scarce especially 
in Mediterranean countries. The present study performs a comparative analysis of popu-
lation distribution in 1033 Greek municipalities identifying (and testing the significance 
of) density-dependent and path-dependent mechanisms of population growth between 
1961 and 2011, using spatially implicit and explicit econometric approaches. Results 
highlight a positive impact of density on population growth where settlements are concen-
trated. Assuming goodness of fit of the tested models as a proxy of density-dependence, 
the empirical findings clarify how density-dependent mechanisms were not significant all 
over the study period, being instead associated with specific phases of the city life cycle—
basically urbanization with population concentrating in central locations. Density-depend-
ence was less intense with suburbanization and counter-urbanization—when population 
sprawled over larger areas at medium–low density. An improved understanding of density-
dependent and path-dependent mechanisms of population growth contributes to rethink 
spatial planning, regional development strategies, and socio-demographic policies adapting 
to heterogeneous (and rapidly changing) local contexts.
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1 Introduction

Unbalanced demographic dynamics and spatial inequalities in economic performances 
are intimately interconnected in social systems and determine an asymmetric path of local 
development (Sato & Yamamoto, 2005; Scheuer et  al., 2016; Zhang, 2002). Despite the 
inherent role in developmental studies (e.g. Johnson et  al., 2005; Mc Guirk & Argent, 
2011; Tapia et  al., 2018), comparative analyses of population dynamics over long time 
intervals are relatively scarce for advanced economies (Montgomery, 2008; Rees et  al., 
2012; Taylor et al., 2010). In this direction, investigating local-scale demographic trends in 
a continent such as Europe—where individual countries exhibit distinctive characteristics 
deriving from their intrinsic socioeconomic structure, history, and political/cultural back-
ground—provides significant insights in the analysis of regional growth (Coleman, 2005; 
Gardiner et al., 2011; Haase et al., 2010; Lutz et al., 2003).

A wealth of factors has reported to affect the spatial distribution of resident popula-
tion in Europe (Adveev et al., 2011; Arapoglou, 2012; Bocquier & Brée, 2018; Brombach 
et al., 2017), including (1) globalization, (2) structural change of economic systems, and 
(3) international migration (Champion, 2001; Cheshire, 1995; Haase et  al., 2016; Oues-
lati et  al., 2015). However, density-dependent mechanisms of population growth remain 
an important driver of demographic dynamics at regional scale (Lee, 1987; Lima & Berry-
man, 2011; Lutz et al., 2006). With this perspective in mind, local-scale population density 
is a pertinent variable whose investigation may clarify the recent evolution of European 
regions (Alados et al., 2014; Ciommi et al., 2018; Gavalas et al., 2014). Analysis may spe-
cifically decompose path-dependent socioeconomic transformations from density-depend-
ent mechanisms of population growth along a complete metropolitan cycle (Benassi et al., 
2020; Salvia et al., 2021; Zambon et al., 2017).

Complex cycles have been observed in Europe since World War II (Lerch, 2014; Reher, 
2004; Salvati et al., 2018). While compact urbanization driven by internal migration was 
associated with settlement concentration and medium–high population density, dispersed 
urbanization stimulated residential mobility to suburban areas (Bayona-i-Carrasco et  al., 
2014; Gkartzios, 2013; Kabisch & Haase, 2011). Suburbanization in turn affected metro-
politan structures and socioeconomic functions, determining a huge decline of central cit-
ies together with other impacts (Carlucci et  al., 2018; Duvernoy et  al., 2018; Henrie & 
Plane, 2008). In such contexts, analysis of demographic dynamics at disaggregated spatial 
scales may outline latent trends toward short-haul mobility and preference for large dwell-
ings in peri-urban locations (Allen et al., 2004; Cuadrado-Ciuraneta et al., 2017; Gutiérrez-
Posada et al., 2017).

Assuming that Mediterranean countries share comparable demographic outcomes at the 
regional scale and over long time periods (Carlucci et al., 2017), the results of global and 
local (econometric) models may contribute to define internal and external factors shap-
ing local-scale population dynamics (Lande et  al., 2017; Larramona, 2013; Leichenko, 
2001). With this perspective in mind, density-dependent regulation of population dynamics 
was tested at municipal scale in Greece over a time interval encompassing a metropolitan 
cycle with sequential waves from urbanization to re-urbanization (Egidi et al., 2020). More 
specifically, the time interval investigated here was divided in four sub-periods reflect-
ing urbanization, suburbanization, counter-urbanization, and re-urbanization dynamics 
(Morelli et al., 2014). The econometric specification was intended to distinguish density-
dependent from path-dependent processes of demographic growth, controlling for agglom-
eration, scale, and spatial effects (Salvati, 2020). Population growth rates at the decade t + 
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2/t + 1 (the dependent variable) was specified as a function of population growth rates at 
the decade t + 1/t, population size (log) at time t, demographic density at time t, and perim-
eter-to-area ratio (a control variable assessing size and morphology of each municipality 
and indirectly testing the possible influence of scale). To evaluate the role of territorial 
dynamics, both spatially implicit and spatially explicit techniques were adopted here (Lan-
fredi et al., 2022). By integrating basic indicators of demographic change and fluctuations 
in population density, comparative approaches based on global (e.g. quantile) and local 
(e.g. geographically weighted) regressions, may provide a basic knowledge of intensity and 
spatial direction of urban growth, reflecting trans-scalar dynamics over time (Benassi et al., 
2020; Salvati et al., 2019; Serra et al., 2014).

Integrated results of both parametric (spatially implicit Ordinary Least Squares, OLS, 
and spatial autoregressive) models and non-parametric techniques (quantile regressions) 
may better delineate the influence of different socioeconomic contexts (Nickayin et  al., 
2022) and the importance of spatial heterogeneity in local-scale population dynamics (Bee-
son et al., 2001; Crescenzi et al., 2016; Salvati & Carlucci, 2016). These findings contrib-
ute to regional science with a more complete understanding of the metropolitan cycle—an 
issue of vital importance when assessing long-term city metabolism and (rapidly changing) 
urban–rural relationships (e.g. Cecchini et al., 2019; Chen, 2009; Grafeneder-Weissteiner 
& Prettner, 2013). To accommodate such considerations, the present study was structured 
in six chapters as follows. Section 2 provides a brief literature review. Section 3 describes 
the methodology and input data adopted in this study. Section 4 illustrates the empirical 
results of the study. Section 5 discusses the novel contribution of the study with respect to 
recent literature, and Sect. 6 concludes the paper with indications for future research.

2  Literature

Earlier studies have demonstrated the validity of the hypothesis of density-dependent regu-
lation of population size for human populations (Åström et al., 1996; Baldini, 2015; Bell, 
2015). However, these studies have also highlighted some important differences with den-
sity-dependent mechanisms typical of biological (non-human) populations (e.g. Cayuela 
et al., 2019; Duncan et al., 2001; Salvati, 2020). An evident divergence with animal ecol-
ogy is intrinsically grounded in the fact that density-dependent regulation can explain only 
a part of the overall variability of population growth rates in the human species (Cohen, 
2003), being in turn mediated by individual choices/preferences, cultural, ethnic and reli-
gious factors, the socioeconomic context at large, and exogenous processes of a stochastic 
nature, not always identifiable and easily modeled (Getz, 1996; Mathur et al., 1988; Mill-
ward, 2008). Elements in common with the broad literature dealing with animal ecology 
are (1) the intrinsic stochasticity (Fauteux et  al., 2021) associated with density-depend-
ent mechanisms (i.e. the prevalence of positive, neutral, or negative impacts of density on 
short-term population growth rates), (2) temporal volatility (Nowicki et  al., 2009), and 
(3) spatial heterogeneity underlying the complex mosaic of growth and decline typical of 
human populations (Ciommi et al., 2020). These factors are observed under demographic 
conditions of dynamic equilibrium (Lesthaeghe, 2014; Rees et al., 2017; Reher, 2011), i.e. 
along sufficiently long time ranges and in geographical areas large enough to be representa-
tive of short and medium-range movements of a given population (e.g. a country or a large 
region).
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Density-dependent regulation of population growth proved to be interconnected with 
other socioeconomic processes (Hamilton et  al., 2009). As an indirect proof of such 
dynamics, density-dependent impacts on human population growth were demonstrated to 
be significant only in certain contexts, e.g. at specific times and spaces, and mostly in cor-
respondence with other economic phenomena that accelerate or limit their action (Benassi 
et  al., 2020; Gross, 1954; Turchin, 2009). Nonetheless, a comparative analysis of the 
(positive or negative) feedback mechanisms at the basis of population dynamics appears 
indispensable for regional demography, applied economics, and urban studies, consider-
ing together various socioeconomic aspects of population growth and decline (Ciommi 
et al., 2022), and controlling for the role of space (e.g. Salvati & Carlucci, 2017; Soutullo 
et al., 2006; Turchin, 1990). To investigate the intrinsic impact of distinctive background 
contexts, such analyses should be run over sufficiently long time intervals (Ciommi et al., 
2018; Salvati & Serra, 2016; Salvia et al., 2021).

Based on these premises, the sequential phases of a metropolitan cycle represent the 
appropriate background influencing density-dependent and path-dependent mechanisms of 
population growth (Salvati & Gargiulo, 2014). To our knowledge, the present study empir-
ically tested—for the first time in the literature—the working hypothesis that distinctive 
phases of the city life cycle (urbanization, suburbanization, counter-urbanization, and re-
urbanization) may differently shape population dynamics, distinguishing density-depend-
ent from density-independent regulation processes (Vinci et al., 2022). In this perspective, 
databases including representative data and variables at disaggregated spatial scales are 
still scarce and require refined procedures of standardization, validation, and control (Kroll 
& Kabisch, 2012; Osterhage, 2018; Partridge et al., 2009).

Despite the inherent complexity of metropolitan transformations, density-dependent 
population dynamics have been occasionally investigated along a complete metropolitan 
cycle in Europe. In regions with homogeneous settlement configurations (Allen et  al., 
2004), intense within-country variability in the spatial distribution of resident popula-
tion and across-country differences in population density have resulted in heterogeneous 
socio-demographic patterns (e.g. Salvati & Carlucci, 2017). In Mediterranean Europe, such 
trends have reflected intense economic downturns leading to urbanization-suburbanization-
reurbanization sequences accelerated by a rapid demographic transition toward low fertility 
and childbearing postponement, higher life expectancy, and rising immigration (Bayona-
i-Carrasco et  al., 2014; Cuadrado-Ciuraneta et  al., 2017; López-Gay, 2014). This region 
has represented a paradigmatic example of urban expansion all over Europe, with resident 
population growing steadily from 89 million inhabitants (1950) to 258 million inhabitants 
(1995), being estimated to reach 416 million inhabitants in 2030. Urbanization rates in 
1995 were ranging between 59% (Greece) and 77% (Spain), and are predicted to increase 
(more or less) markedly by the year 2030 (Carlucci et al., 2017; Oueslati et al., 2015; Zam-
bon et al., 2018). Together with Spain, Portugal and Italy, the recent history of Greece is 
representative of heterogeneous demographic dynamics at local scale, although with dif-
ferent population size in respect with other countries (e.g. Gavalas et al., 2014). The dens-
est locations coincided with central cities and the associated metropolitan areas including 
urban centers that attract economic activities and host key social functions (Zambon et al., 
2019).

Testing density-dependent population dynamics in Europe may benefit from the opera-
tional definition of Territorial Statistical Units (the so called NUTS nomenclature system) 
provided by Eurostat, the Statistical Office of the European Commission. Considering 
municipalities as the elementary analysis’ unit (e.g. Salvati & Carlucci, 2017), a rela-
tively vast amount of data, variables, and indicators was made available in the last decade, 
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allowing a proper between-country comparison as far as basic socioeconomic phenomena 
are concerned (Kabisch & Haase, 2011). The present study exploited a specific dataset 
recently released by Eurostat and derived from national censuses (Ciommi et  al., 2018) 
with the aim at testing the existence of density-dependent growth processes at a local scale 
in Greece, in turn distinguishing the impact of path-dependence, agglomeration, and spa-
tial heterogeneity over a long time period encompassing the last half century (1961–2011). 
A quantitative approach based on non-parametric techniques (quantile regression) and 
local models (geographically weighted regression) was proposed to achieve this goal (Sal-
vati et al., 2019). Indicators deriving from the empirical results of such models provided 
an integrated assessment of the importance of the regulatory mechanisms of population 
dynamics over time and space.

3  Methodology

3.1  Study Area

The investigated area extends the whole of Greece (131,982  km2). Municipalities (‘dimoi’ 
and ‘koinotites’ in Greek) corresponding to the NUTS-5 (Nomenclature of Territorial Sta-
tistical Units) level adopted by Eurostat, the Statistical Office of European Union, were 
chosen as the elementary spatial unit in this study (Rontos et al., 2016). Municipalities in 
Greece (n = 1033) were considered a suitable analysis’ unit when investigating spatial pat-
terns of population and economic activities, possibly as a function of basic geographical 
gradients (Morelli et al., 2014). Municipalities illustrate the geography of Greece identify-
ing (1) the major urban areas in the country (e.g. Athens, Thessaloniki, Heraklion), (2) 
dynamic (non-urban) coastal areas and islands in both Ionian and Aegean Sea attracting 
tourists and resident population, and (3) internal, rural areas exposed to depopulation and 
economic marginality (Zambon et al., 2019). Urban primacy was evident in Greece, since 
the Athens’ metropolitan region concentrated more than 30% of total country population 
since 1951 (Cecchini et al., 2019), a characteristic of other Mediterranean countries, such 
as Portugal, and large European nations, such as France (Ciommi et al., 2018).

3.2  Data and Variables

Taken as a basic element of European NUTS classification that includes territorial units 
representative of local communities, Local Administrative Units (LAU) have a key role 
in official statistics because of data availability from national censuses and relevance for 
implementation of local policy (Di Feliciantonio & Salvati, 2015). The present study made 
use of a collection of total population data disseminated by Eurostat (the statistical office 
of European Commission) and derived from homogeneous national censuses carried out 
every 10 years at each LAU-2 unit for 6 time points (1961, 1971, 1981, 1991, 2001, and 
2011). Since LAUs were subjected to minor changes over long observation times, Eurostat 
disseminated a homogenized list of spatial units and boundaries for cross-region and cross-
country comparisons (Salvia et al., 2021). Four variables were elaborated from total popu-
lation data: (1) per cent annual change in resident population over specific inter-census dec-
ades (i.e. 1961–1971, 1971–1981, 1981–1991, 1991–2001, 2001–2011), (2) demographic 
density, i.e. the ratio of resident population in total municipal area  (km2, log), (3) popula-
tion size, i.e. the absolute number of inhabitants in each municipality at a given time (log), 
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and (4) perimeter-to-area ratio, an indicator derived from landscape ecology and assessing 
the overall configuration and spatial form of local administrative units in Greece, being 
computed from a shapefile of municipal boundaries released by Eurostat (Benassi et  al., 
2020). Variables (1) and (2) allow an explicit test of path-dependent and density-dependent 
regulation of population dynamics (Salvati, 2020). Variable (3) was used to document the 
importance of agglomeration, as measured by population concentration (Carlucci et  al., 
2018) and variable (4), intended as an internal control, provides in turn an indirect verifi-
cation of the non-significant role of administrative size (i.e. municipal area) in population 
dynamics (Morelli et al., 2014).

3.3  Statistical Analysis

Data analysis was carried out mixing descriptive statistics and non-parametric correlations 
with spatially implicit and explicit (cross-section) models specifying population growth 
rates as a function of previous (i.e. lag-1) growth rates, demographic density, population 
size, and perimeter-to-area ratio of each municipality.

3.3.1  Descriptive Statistics

The statistical distribution of annual population growth rates across Greek municipalities 
(n = 1033) was analyzed using metrics of (1) central tendency/dispersion (average, stand-
ard error, minimum and maximum) and (2) ranking/form (median, skewness, kurtosis, 
25th and 75th percentile), calculated separately for each decade (1961–1971, 1971–1981, 
1981–1991, 1991–2001, 2001–2011). These metrics provide a preliminary description of 
the target variable and were enriched with a graphical approach based on Box-Wisher plot 
(Di Feliciantonio et al., 2018) illustrating the spatio-temporal pattern of the same variable 
through the use of minimum and maximum values (wishers), 25th and 75th percentiles 
(box), and the 50th percentile (the line within the box). The same variable was finally 
mapped for each Greek municipality using a shapefile provided by Eurostat (GISCO). 
Assuming that spatial variation in population growth rates is dependent on local contexts 
(Salvati & Serra, 2016), the relationship between population growth rates and demographic 
density was initially quantified using a pair-wise correlation analysis that compares para-
metric (Pearson product-moment) and non-parametric (Spearman rank) coefficients with 
the aim at testing linearity (or non-linearity) of the relationship between these two vari-
ables (Taylor & Demaster, 1993). Both coefficients range between 1 (the highest positive 
correlation between two variables) and − 1 (the highest negative correlation between the 
two variables) with 0 indicating uncorrelated variables. Significant pair-wise correlations 
were tested at p < 0.05 after Bonferroni’s correction for multiple comparisons (Ciommi 
et  al., 2019). The absolute ratio of Spearman to Pearson coefficients by year and coun-
try outlines the main type of relationship (prevalently linear or non-linear). A particularly 
high ratio (Spearman higher than Pearson coefficient) indicates a non-linear relationship 
between demographic density and population growth (Duvernoy et al., 2018).

3.3.2  Econometric Models

In line with earlier literature (e.g. Salvati, 2020), our work assumed different spatial 
regimes of population dynamics associated with each phase of the metropolitan cycle 
(sensu Zambon et al., 2019), modelling the variability in population growth rates  (PG1) as 



615Testing Density‑Dependent and Path‑Dependent Population…

1 3

a function of (1) population growth rate  (PG0) in the previous (i.e.  lag(−1)) time period, (2) 
population density  (PD0), and (3) the overall size of the resident population as a proxy of 
agglomeration  (PS0). The analysis has also considered (4) spatial dimension and configura-
tion of municipalities—estimated as the perimeter-to-area ratio (PA), a landscape ecology 
metric adopted as a proxy of scale (Kazemzadew-Zow et al., 2017) and, together, intended 
as a control variable under the assumption that the administrative size of municipalities 
does not influence population dynamics (Salvati et al., 2019). All variables were standard-
ized prior to analysis (Di Feliciantonio et al., 2018). Use of these variables in economet-
ric models testing density-dependent regulation of human population dynamics was earlier 
discussed in Benassi et al. (2020). Model specification was summarized as follows:

where a is the regression constant and e is the stochastic error of the model. Models were 
run controlling for time (i.e. distinguishing the impact of the four phases of the metropoli-
tan cycle mentioned above) and space (i.e. using global and spatially explicit econometric 
specifications and comparing results with those from spatially implicit, global specifica-
tions and from local specifications). These specifications allow distinguishing the role of 
density-dependent regulation of population growth from the more general path-dependency 
of local population dynamics (Cohen, 2003), highlighting the importance of direct spatial 
effects, and separating them from the indirect ones (i.e. spillovers). The time schedule of 
the four phases of the metropolitan cycle in Greece was defined according with Morelli 
et al. (2014) as follows: urbanization (1971–1981), suburbanization (1981–1991), counter-
urbanization (1991–2001), and re-urbanization (2001–2011). Cross-section regressions 
were run for each time interval mentioned above, assuming each phase of the metropolitan 
cycle as representative of distinctive socioeconomic contexts and demographic dynamics at 
the local scale (Di Feliciantonio & Salvati, 2015). A Variance Inflation Factor (VIF) was 
finally calculated for each time interval. Values systematically below 10 for all variables 
delineate a non-redundant structure of predictors’ matrix (Duvernoy et al., 2018).

3.3.2.1 Spatially Implicit, Global Models Assuming linear changes over time in population 
distribution across urban and rural areas, the relationship between population growth rates 
as the dependent variable and selected predictors (see above) was initially tested adopting a 
linear specification of standardized input variables separately for each year through the use 
of global regressions based on Ordinary Least Squares (OLS). The models’ goodness of fit 
was checked by way of adjusted  R2 coefficients. Inference on regression results (i.e. Fisher-
Snedecor F tests and Student t tests respectively on the overall regression fit and on indi-
vidual coefficients, testing against the null hypothesis of zero coefficients with p < 0.001) 
provided an additional criterion for model’s evaluation (Zambon et  al., 2018). To verify 
violations in the basic assumptions of a general linear model, a Durbin–Watson (DW) statis-
tic checking for serial correlation, a Breusch–Pagan (BP) index for heteroscedasticity, and a 
Moran (M) spatial autocorrelation coefficient for spatial dependence of residuals were run 
for each model, testing for significance at p < 0.05 against the null hypothesis of no serial 
correlation, no heteroscedasticity, and no spatial autocorrelation structure, respectively.

A non-parametric (quantile) regression was run to model the same relationship illus-
trated above (4 predictors and four percentiles of population growth rate as the depend-
ent variable) in a framework of non-linear dependence among variables and deviation 
from normality. This regression technique estimates changes in a specified percentile of 
the dependent variable produced by a given change in the predictors, without imposing 

(1)PG
1
= a + b

1
PG

0
+ b

2
PD

0
+ b

3
PS

0
+ b

4
PA + �
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stringent parametric assumptions. Model’s outcomes include slope coefficient estimates 
and the associated significance level (testing for the null-hypothesis of non-significant 
regression coefficient) based on Student t statistics at p < 0.05. Goodness-of-fit of each 
model was assessed using pseudo  R2 and tested for significance (against the null hypoth-
esis of non-significant model) through a Fisher–Snedecor F test with p < 0.001. A statistic 
assessing slope equality was finally provided to verify significant differences among regres-
sion coefficients against the null hypothesis of equal coefficients across quantile models.

3.3.2.2 Spatially Explicit, Global Models The relationship between population growth rates 
and the four predictors mentioned above was further assessed using global models that 
make spatial relations explicit using a linear distance matrix (W) among elementary units 
(i.e. municipalities). Separate regressions were run for each phase of the metropolitan cycle 
(Egidi et al., 2020), considering together the results of different statistical techniques that 
use the same specification to model the spatial distribution of decadal population growth 
rates across Greek municipalities. To delineate the most significant variables influencing 
population dynamics in local systems (Ali et al., 2007), a comparative approach based on 
the use of different regression techniques modelling the joint impact of predictors, allows an 
indirect assessment of stability in model’s outcomes (Salvati et al., 2019). While presenting 
a variable goodness-of-fit, consistent regression outputs (i.e. the same significant predictors 
with comparable intensity and sign) may identify a statistically stable (and conceptually 
relevant) relationship between population growth rates and the selected predictors (Benassi 
et al., 2020), under a specific background context (i.e. a given phase of the metropolitan 
cycle).

By investigating the dependence of a given variable’s value on the values of the same 
variable recorded at neighboring locations, spatial regressions were intended here as an 
extension of linear regressions (Fotheringham et al., 2003). Spatial autocorrelation assumes 
outcome in one area to be affected by outcomes, covariates or errors in nearby areas, mean-
ing that models may contain spatial lags of the outcome variable, spatial lag of covariates, 
and autoregressive errors, respectively (Partridge et al., 2009). The lag operator becomes 
a N × N matrix W describing the spatial arrangement of the N units computed using pla-
nar coordinates where each entry  wij ∈ W represents the spatial weight associated to units 
i and j (Ali et al., 2007). In order to exclude self-neighbors, the diagonal elements  wii are 
conventionally set equal to zero. Overall, our analysis run a cross-sectional Spatial Dur-
bin Model (SDM) and, to assess the stability of model’s results over time, two additional 
models were tested using the same specification and input variables: a Spatial Autoregres-
sive Model (SAR), and a spatial autoregressive error term (SEM). Both direct and indirect 
(spillover) effects between municipalities were detected. Best-fit estimation of the proposed 
models using empirical data was evaluated using pseudo  R2. Since the results of SAR and 
SEM are completely aligned with those from SDM, these results were not explicitly pub-
lished, remaining fully available from the authors.

As in the case of spatially implicit global models illustrated above (Sect. 2.3.3.1), a non-
parametric (quantile) regression was run to model the same relationship illustrated above 
(4 predictors and four percentiles of population growth rate as the dependent variable) in 
a framework of (1) deviation from normality, (2) non-linear dependence, and (3) spatial 
relations among variables. This technique estimates changes in a specified percentile of the 
dependent variable produced by a given change in the predictors, without imposing strin-
gent parametric assumptions and adopting W as the spatial weighting matrix (see above). 
Model’s outcomes include slope coefficient estimates and the associated significance level 
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(testing for the null-hypothesis of non-significant regression coefficient) based on Student t 
statistics at p < 0.05.

3.3.2.3 Spatially Explicit, Local Models To predict the intrinsic variability of population 
growth rates across Greece, the empirical results of global models were refined with a spa-
tially explicit (local estimation) strategy based on Geographically Weighted Regressions 
(GWRs) adopting the specification presented in Eq. 1. Originally proposed by Fothering-
ham et al. (2003), GWRs estimate regression parameters at each location using weighted 
least squares, implying that each coefficient in the model is a function of space (s), and 
thus giving rise to a distribution of local estimated parameters (Partridge et al., 2009). The 
weights for the estimation of local regression models were derived from a bi-square nearest 
neighbor kernel function, a common specification placing more weight on the observations 
closer to the location s (Ali et al., 2007). Regressions were estimated separately for each 
phase of the metropolitan cycle (Zambon et al., 2019). Model’s goodness of fit was assessed 
using (global and local)  R2 coefficients. A t-statistic testing for significant regression coeffi-
cients at p < 0.01 was considered an additional criterion for model evaluation. Maps with the 
spatial distribution of local parameters were provided for intercept, predictors’ coefficients, 
 R2 value, and the standardized residuals of each model (Carlucci et al., 2018).

4  Results

4.1  Descriptive Statistics

The statistical distribution of annual population growth rates over time was explored 
using descriptive metrics of central tendency and dispersion (Table  1). By computa-
tion on the municipal rates of population growth (n = 1033), both mean and median 
values were found slightly negative for the first (1961–1971) and the last (2001–2011) 
decades and positive for the remaining three decades, with moderate standard errors. 
Minimum and maximum rates indicate a substantial heterogeneity in population dynam-
ics, with accelerations during 1961–1971 and 1981–1991, and a weak deceleration 

Table 1  Indicators of the statistical distribution of population growth rates (%) across Greek municipalities 
by decade

Metric 1961–1971 1971–1981 1981–1991 1991–2001 2001–2011

Central tendency and dispersion
Minimum − 0.60 − 0.56 − 0.48 − 0.37 − 0.75
Maximum 2.46 1.94 2.56 2.49 1.80
Mean − 0.054 0.067 0.095 0.094 − 0.072
Std. error 0.009 0.009 0.008 0.007 0.008
Ranking and distribution form
Median − 0.12 0.01 0.05 0.04 − 0.10
25th perc − 0.21 − 0.09 − 0.05 − 0.04 − 0.22
75th perc 0.00 0.14 0.16 0.15 0.04
Skewness 3.08 2.16 3.03 2.97 1.77
Kurtosis 15.0 7.9 17.5 16.8 7.6
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during 2001–2011. Skewness was intense with positive population growth rates, and 
the reverse pattern was observed with demographic decline. Kurtosis followed a slightly 
different trend, reaching the highest values between 1981 and 2001 and declining since 
2001. A Box-Wisher plot (Fig.  1) reflects a particularly heterogeneous distribution of 
population growth rates with a long tail including positive values in urban and peri-
urban contexts. Less heterogeneous distributions were observed in two decades reflect-
ing distinctive demographic contexts (high fertility and medium–low mortality rates, 
1971–1981; low fertility and medium–high mortality rates, 2001–2011). The statisti-
cal distribution of population growth rates follows a spatial gradient from urban areas 
to rural districts (Fig. 2). The highest growth rates were observed in the metropolitan 
regions of Athens and Thessaloniki, the two largest agglomerations in Greece. Positive 
growth rates were also observed in Crete, Rhodes, Peloponnese (in correspondence with 
Patra’s agglomeration), and Central Greece (in correspondence with Ioannina urban 
area). Inland municipalities experienced intense population decline as a consequence of 
a continuous rural–urban exodus.
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Fig. 1  Box-Wisher plot illustrating the statistical distribution of population growth rates (%) across Greek 
municipalities by decade

Fig. 2  Spatial distribution of population growth (per cent annual rates) in Greek municipalities by decade
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1 3

Results of a preliminary correlation analysis exploring path-dependent and density-
dependent population growth in Greek municipalities were illustrated in Table 2. To dis-
criminate linear from non-linear pair-wise relationships, results of parametric (Pearson) 
and non-parametric (Spearman and Kendall) coefficients were analyzed together. More 
specifically, path-dependent growth was tested correlating the statistical distribution of 
population growth rates over a given decade with the same variable’s distribution over the 
previous decade. Density-dependent growth was instead tested correlating the statistical 
distribution of population growth rates over a given decade with the statistical distribu-
tion of population density at the beginning of the same decade. Path-dependent population 
growth was significant and linear for all decades, being more intense at the beginning and 
the end of the study period. Positive (and linear) density-dependence was observed only for 
the initial and final decade in Greece. The strength of non-linear correlation coefficients 
(both Spearman and Kendall) increased in correspondence with a weak demographic 
recovery (2001–2011) after a continuous fertility decline starting in the mid-1970s. In all 
cases, the absolute value of coefficients and the associated probability values testing for 
significance of the null hypothesis (absence of a pair-wise correlation between the studied 
variables) were not particularly intense, justifying a refined econometric analysis that con-
siders spatial issues explicitly.

4.2  Global Regression Models

Results of global econometric approaches (both spatially implicit and explicit) regressing 
population growth rates at a given decade with (1) population growth rates at the previous 
decade, (2) population size and, (3) demographic density—both measured at the begin-
ning of the previous decade, as well as (4) a control variable quantifying municipal form 
(perimeter-to-area ratio) were illustrated in Table 3.

4.2.1  Spatially Implicit Regression Models

Ordinary Least Square (OLS) regressions were run as a baseline. Computing on standard-
ized input variables, OLS regressions delineated a positive impact of both path-dependence 

Table 2  Pair-wise correlation coefficients between (left) population growth rate at decade t + 2/t + 1 and 
decade t + 1/t and (right) population growth rate at decade t + 1/t and population density at time t (para-
metric Pearson coefficients indicate linear correlations; non-parametric Spearman and Kendall coefficients 
indicate non-linear correlations

*Significant coefficient at 0.001 < p < 0.05
**Significant coefficient at p < 0.001; significance level after Bonferroni’s correction for multiple correla-
tions

Variable Pearson Spearman Kendall

Growth Density Growth Density Growth Density

1961–1971 – 0.47** – 0.44** – 0.31**
1971–1981 0.55** 0.34** 0.57** 0.36** 0.42** 0.25*
1981–1991 0.41** 0.11* 0.18* 0.20* 0.12* 0.14*
1991–2001 0.41** 0.12* 0.32** 0.24* 0.23* 0.17*
2001–2011 0.40** 0.36** 0.35** 0.52** 0.26* 0.37**



620 C. Ciaschini et al.

1 3

Ta
bl

e 
3 

 C
om

pa
ra

tiv
e 

re
su

lts
 o

f g
lo

ba
l (

le
ft)

 s
pa

tia
lly

 im
pl

ic
it 

O
rd

in
ar

y 
Le

as
t S

qu
ar

e 
(O

LS
) a

nd
 q

ua
nt

ile
 (τ

) r
eg

re
ss

io
ns

, a
nd

 (r
ig

ht
) a

 s
pa

tia
lly

 e
xp

lic
it 

D
ur

bi
n 

m
od

el
 (S

D
M

, 
ta

ke
n 

as
 b

as
el

in
e)

 a
nd

 q
ua

nt
ile

 (τ
) r

eg
re

ss
io

ns
 e

xp
lo

iti
ng

 a
 W

 d
ist

an
ce

 m
at

rix
 w

ith
 p

op
ul

at
io

n 
gr

ow
th

 ra
te

s 
be

tw
ee

n 
t +

 2 
an

d 
t +

 1 
as

 d
ep

en
de

nt
 v

ar
ia

bl
e 

an
d 

(1
) p

op
ul

at
io

n 
gr

ow
th

 ra
te

s 
be

tw
ee

n 
t +

 1 
an

d 
t, 

(2
) p

op
ul

at
io

n 
si

ze
 (l

og
) a

t t
im

e 
t, 

(3
) d

em
og

ra
ph

ic
 d

en
si

ty
 (l

og
) a

t t
im

e 
t, 

an
d 

(4
) p

er
im

et
er

-to
-a

re
a 

ra
tio

 a
s 

pr
ed

ic
to

rs
 (n

s 
no

t s
ig

ni
fic

an
t; 

*0
.0

1 <
 p 

<
 0.

05
; *

*p
 <

 0.
01

; V
IF

: V
ar

ia
nc

e 
In

fla
tio

n 
Fa

ct
or

)

Pr
ed

ic
to

r
O

LS
Sp

at
ia

lly
 im

pl
ic

it 
qu

an
til

e 
re

gr
es

si
on

SD
M

Sp
at

ia
lly

 e
xp

lic
it 

qu
an

til
e 

re
gr

es
si

on
V

IF

τ =
 0.

25
τ =

 0.
5

τ =
 0.

75
τ =

 0.
99

τ =
 0.

25
τ =

 0.
5

τ =
 0.

75
τ =

 0.
99

19
71

–1
98

1
In

te
rc

ep
t

≈
 0

.0
 (0

.0
25

)
−

 0
.4

48
 

(0
.0

24
)*

*
−

 0
.1

10
 

(0
.0

22
)*

*
0.

32
3 

(0
.0

42
)*

*
2.

11
1 

(0
.2

10
)*

*
0.

00
1 

(0
.0

25
)

−
 0

.4
20

 
(0

.0
22

)*
*

−
 0

.0
91

 
(0

.0
24

)*
*

0.
36

2 
(0

.0
54

)*
*

2.
18

0 
(0

.2
16

)*
*

Po
p.

gr
ow

th
0.

46
1 

(0
.0

30
)*

*
0.

44
0 

(0
.0

33
)*

*
0.

48
1 

(0
.0

39
)*

*
0.

61
2 

(0
.0

62
)*

*
0.

78
3 

(0
.1

74
)*

*
†0

.4
51

 
(0

.0
31

)*
*

0.
43

7 
(0

.0
40

)*
*

0.
49

0 
(0

.0
45

)*
*

0.
64

0 
(0

.0
74

)*
*

0.
63

6 
(0

.1
68

)*
*

1.
47

Po
p.

si
ze

−
 0

.2
77

(0
.0

51
)*

*
0.

03
7 

(0
.0

34
)

−
 0

.0
98

 
(0

.0
39

)*
−

 0
.2

94
 

(0
.0

69
)*

*
−

 0
.8

78
 

(0
.4

34
)*

−
 0

.2
68

 
(0

.0
52

)*
*

0.
05

5 
(0

.0
43

)
−

 0
.1

07
 

(0
.0

44
)*

−
 0

.3
18

 
(0

.0
91

)*
*

−
 0

.8
91

 
(0

.3
44

)*
*

4.
18

D
em

.d
en

si
ty

0.
23

2 
(0

.0
68

)*
*

0.
07

4 
(0

.0
41

)
0.

10
3 

(0
.0

53
)*

0.
15

1 
(0

.0
97

)
0.

30
7 

(0
.5

91
)

0.
21

4 
(0

.0
68

)*
*

0.
01

7 
(0

.0
66

)
0.

12
3 

(0
.0

60
)*

0.
17

5 
(0

.0
99

)
0.

33
0 

(0
.5

31
)

6.
28

Pe
r-a

re
a 

ra
tio

−
 0

.0
35

 
(0

.0
52

)
−

 0
.0

54
 

(0
.0

45
)

−
 0

.0
30

 
(0

.0
44

)
0.

00
3 

(0
.1

27
)

0.
29

1 
(0

.7
70

)
−

 0
.0

37
 

(0
.0

52
)

−
 0

.0
34

 
(0

.0
55

)
−

 0
.0

46
 

(0
.0

64
)

−
 0

.0
52

 
(0

.1
18

)
0.

27
8 

(0
.6

17
)

4.
26

B
re

us
ch

–
Pa

ga
n

95
.8

8*
*

§7
2.

0*
*

D
ur

bi
n–

W
at

s
1.

68
**

Sl
op

e 
eq

ua
l-

ity
25

.7
**

M
or

an
’s

 I(
z)

5.
09

*
W

 sp
. M

at
rix

**
ns

ns
ns

A
dj

us
te

d 
 R

2
0.

33
6

0.
15

6
0.

18
5

0.
23

9
0.

47
7

0.
34

5
19

81
–1

99
1

In
te

rc
ep

t
≈

 0
.0

 (0
.0

27
)

−
 0

.5
39

 
(0

.0
24

)*
*

−
 0

.0
99

 
(0

.0
31

)*
*

0.
40

7 
(0

.0
39

)*
*

2.
29

9 
(0

.5
25

)*
*

−
 0

.0
06

 
(0

.0
28

)
−

 0
.5

37
 

(0
.0

28
)*

*
−

 0
.1

10
 

(0
.0

39
)*

0.
41

6 
(0

.0
46

)*
*

2.
62

5 
(0

.4
76

)*
*

Po
p.

gr
ow

th
0.

35
3 

(0
.0

30
)*

*
0.

12
8 

(0
.0

36
)*

*
0.

29
5 

(0
.0

44
)*

*
0.

41
9 

(0
.0

55
)*

*
0.

63
6 

(0
.6

72
)

0.
34

2 
(0

.0
30

)*
*

0.
12

8 
(0

.0
56

)*
0.

29
8 

(0
.0

60
)*

*
0.

41
3 

(0
.0

60
)*

*
0.

57
2

(0
.1

47
)*

1.
25



621Testing Density‑Dependent and Path‑Dependent Population…

1 3

Ta
bl

e 
3 

 (c
on

tin
ue

d)

Pr
ed

ic
to

r
O

LS
Sp

at
ia

lly
 im

pl
ic

it 
qu

an
til

e 
re

gr
es

si
on

SD
M

Sp
at

ia
lly

 e
xp

lic
it 

qu
an

til
e 

re
gr

es
si

on
V

IF

τ =
 0.

25
τ =

 0.
5

τ =
 0.

75
τ =

 0.
99

τ =
 0.

25
τ =

 0.
5

τ =
 0.

75
τ =

 0.
99

Po
p.

si
ze

−
 0

.4
31

 
(0

.0
57

)*
*

−
 0

.0
56

 
(0

.0
45

)
−

 0
.2

59
 

(0
.0

49
)*

*
−

 0
.5

00
 

(0
.0

65
)*

*
−

 1
.2

82
 

(0
.7

52
)

−
 0

.4
16

 
(0

.0
58

)*
*

−
 0

.0
59

 
(0

.0
52

)
−

 2
.5

76
 

(0
.0

64
)*

*
−

 0
.4

91
 

(0
.0

71
)*

*
−

 1
.2

01
 

(0
.2

60
)*

*
4.

51

D
em

.d
en

si
ty

0.
31

7 
(0

.0
76

)*
*

0.
14

7 
(0

.0
58

)*
0.

20
6 

(0
.0

62
)*

*
0.

27
0 

(0
.0

81
)*

*
0.

59
7 

(0
.9

39
)

0.
28

5 
(0

.0
76

)*
*

0.
14

8 
(0

.0
68

)*
0.

21
3 

(0
.0

67
)*

0.
26

5 
(0

.0
10

)*
0.

51
3 

(0
.3

11
)

6.
87

Pe
r-a

re
a 

ra
tio

−
 0

.1
41

 
(0

.0
55

)
−

 0
.0

95
 

(0
.0

51
)

−
 0

.1
43

 
(0

.0
53

)*
*

−
 0

.1
38

 
(0

.0
65

)*
−

 0
.3

32
 

(0
.5

82
)

−
 0

.1
44

 
(0

.0
56

)
−

 0
.0

96
 

(0
.0

53
)

−
 0

.1
39

 
(0

.0
49

)
−

 0
.1

34
 

(0
.0

82
)

−
 0

.3
38

 
(0

.2
84

)
4.

20

B
re

us
ch

–
Pa

ga
n

16
3.

0*
*

§3
2.

8*
*

D
ur

bi
n–

W
at

s
1.

82
**

Sl
op

e 
eq

ua
l-

ity
28

.8
**

M
or

an
’s

 I(
z)

2.
75

*
W

 sp
. m

at
rix

ns
ns

ns
ns

A
dj

us
te

d 
 R

2
0.

23
0

0.
02

5
0.

05
7

0.
15

9
0.

40
7

0.
24

0
19

91
–2

00
1

In
te

rc
ep

t
≈

 0
.0

 (0
.0

27
)

−
 0

.5
03

 
(0

.0
26

)*
*

−
 0

.1
56

 
(0

.0
30

)*
*

0.
33

6 
(0

.0
38

)*
*

2.
84

5 
(0

.6
40

)*
*

≈
 0

.0
(0

.0
28

)
−

 0
.5

02
 

(0
.0

31
)*

*
−

 0
.1

50
 

(0
.0

32
)*

0.
34

7 
(0

.0
30

)*
2.

82
7 

(0
.3

51
)*

Po
p.

gr
ow

th
0.

32
5 

(0
.0

29
)*

*
0.

22
9 

(0
.0

39
)*

*
0.

31
0 

(0
.0

42
)*

*
0.

42
6 

(0
.0

49
)*

*
1.

08
5 

(0
.6

71
)

0.
32

7 
(0

.0
30

)*
*

0.
21

8 
(0

.0
50

)*
*

0.
31

6 
(0

.0
70

)*
0.

41
2 

(0
.0

47
)*

0.
87

3 
(0

.3
74

)
1.

14

Po
p.

si
ze

−
 0

.4
11

(0
.0

61
)*

*
−

 0
.0

44
 

(0
.0

46
)

−
 0

.2
03

 
(0

.0
44

)*
*

−
 0

.4
39

 
(0

.0
67

)*
*

−
 1

.6
76

 
(0

.5
91

)*
*

−
 0

.4
09

 
(0

.0
62

)*
*

−
 0

.0
20

 
(0

.0
64

)
−

 0
.1

88
 

(0
.0

63
)*

−
 0

.4
23

 
(0

.0
96

)*
−

 1
.7

39
 

(0
.3

53
)*

5.
05

D
em

.d
en

si
ty

0.
38

0 
(0

.0
79

)*
*

0.
13

6 
(0

.0
58

)
0.

22
9 

(0
.0

59
)*

*
0.

36
5 

(0
.0

72
)*

*
1.

43
9 

(0
.9

43
)

0.
37

8 
(0

.0
81

)*
*

0.
07

4 
(0

.0
76

)
0.

18
7 

(0
.0

68
)

0.
32

4 
(0

.1
16

)
1.

50
4 

(0
.5

41
)

7.
50

Pe
r-a

re
a 

ra
tio

−
 0

.0
81

 
(0

.0
56

)
−

 0
.0

40
 

(0
.0

34
)

−
 0

.0
68

 
(0

.0
47

)
−

 0
.1

16
 

(0
.0

44
)*

*
−

 0
.5

05
 

(0
.8

59
)

−
 0

.0
83

 
(0

.0
56

)
−

 0
.0

09
 

(0
.0

48
)

−
 0

.0
59

 
(0

.0
51

)
−

 0
.1

34
 

(0
.0

78
)

−
 0

.5
48

 
(0

.3
66

)
4.

20



622 C. Ciaschini et al.

1 3

Ta
bl

e 
3 

 (c
on

tin
ue

d)

Pr
ed

ic
to

r
O

LS
Sp

at
ia

lly
 im

pl
ic

it 
qu

an
til

e 
re

gr
es

si
on

SD
M

Sp
at

ia
lly

 e
xp

lic
it 

qu
an

til
e 

re
gr

es
si

on
V

IF

τ =
 0.

25
τ =

 0.
5

τ =
 0.

75
τ =

 0.
99

τ =
 0.

25
τ =

 0.
5

τ =
 0.

75
τ =

 0.
99

B
re

us
ch

–
Pa

ga
n

87
.3

**
§5

3.
7*

*

D
ur

bi
n–

W
at

s
1.

74
**

Sl
op

e 
eq

ua
l-

ity
20

.2
**

M
or

an
’s

 I(
z)

1.
56

W
 sp

. m
at

rix
ns

ns
*

*
A

dj
us

te
d 

 R
2

0.
22

3
0.

04
7

0.
08

1
0.

16
1

0.
33

2
0.

22
2

20
01

–2
01

1
In

te
rc

ep
t

≈
 0

.0
 (0

.0
27

)
−

 0
.4

99
 

(0
.0

30
)*

*
−

 0
.0

21
 

(0
.0

29
)

0.
39

0 
(0

.0
29

)*
*

3.
11

5 
(0

.2
93

)*
*

0.
00

2 
(0

.0
27

)
−

 0
.4

54
 

(0
.0

27
)*

−
 0

.0
23

 
(0

.0
31

)
0.

41
5 

(0
.0

27
)*

2.
96

0 
(0

.4
34

)

Po
p.

gr
ow

th
0.

39
0

(0
.0

29
)*

*
0.

19
8 

(0
.0

46
)*

*
0.

41
5 

(0
.0

43
)*

*
0.

58
8 

(0
.0

41
)*

*
1.

58
5 

(0
.3

26
)*

*
0.

38
8 

(0
.0

29
)*

*
0.

20
1 

(0
.0

40
)*

0.
40

1 
(0

.0
52

)*
0.

56
4 

(0
.0

53
)*

0.
60

7 
(0

.3
12

)
1.

14

Po
p.

si
ze

0.
14

5
(0

.0
61

)*
0.

30
3 

(0
.0

55
)*

*
0.

23
5 

(0
.0

46
)*

*
0.

10
0 

(0
.0

50
)*

0.
18

8 
(0

.5
42

)
0.

15
5 

(0
.0

61
)*

0.
33

1 
(0

.0
62

)*
0.

23
2 

(0
.0

58
)*

0.
07

9 
(0

.0
57

)
0.

24
5 

(0
.4

47
)

5.
10

D
em

.d
en

si
ty

0.
14

0
(0

.0
80

)
0.

08
1 

(0
.0

72
)

0.
02

3 
(0

.0
57

)
0.

06
1 

(0
.0

54
)

−
 0

.8
64

 
(0

.8
13

)
0.

12
2 

(0
.0

81
)

0.
04

3 
(0

.0
81

)
0.

01
9 

(0
.0

81
)

0.
05

3 
(0

.0
70

)
−

 0
.6

40
 

(0
.6

33
)

7.
75

Pe
r-a

re
a 

ra
tio

0.
04

5
(0

.0
55

)
0.

02
4 

(0
.0

50
)

0.
09

2 
(0

.0
48

)
0.

04
9 

(0
.0

32
)

0.
87

4 
(0

.6
79

)
0.

04
6 

(0
.0

56
)

0.
02

1 
(0

.0
56

)
0.

05
8 

(0
.0

57
)

0.
03

1 
(0

.0
50

)
1.

23
0 

(0
.7

32
)

4.
15

B
re

us
ch

–
Pa

ga
n

93
.5

**
§3

8.
6*

*

D
ur

bi
n–

W
at

s
1.

74
**

Sl
op

e 
eq

ua
l-

ity
26

.2
**



623Testing Density‑Dependent and Path‑Dependent Population…

1 3

Ta
bl

e 
3 

 (c
on

tin
ue

d)

Pr
ed

ic
to

r
O

LS
Sp

at
ia

lly
 im

pl
ic

it 
qu

an
til

e 
re

gr
es

si
on

SD
M

Sp
at

ia
lly

 e
xp

lic
it 

qu
an

til
e 

re
gr

es
si

on
V

IF

τ =
 0.

25
τ =

 0.
5

τ =
 0.

75
τ =

 0.
99

τ =
 0.

25
τ =

 0.
5

τ =
 0.

75
τ =

 0.
99

M
or

an
’s

 I(
z)

2.
74

*
W

 sp
. m

at
rix

*
*

*
*

A
dj

us
te

d 
 R

2
0.

23
6

0.
15

0
0.

16
7

0.
20

2
0.

23
2

0.
23

7
†  D

ire
ct

 e
ffe

ct
s o

f S
D

M
 re

po
rte

d 
he

re
; i

nd
ire

ct
 (s

pi
llo

ve
r)

 e
ffe

ct
s s

ig
ni

fic
an

t o
nl

y 
fo

r p
op

ul
at

io
n 

gr
ow

th
, 1

96
1–

19
71

 (c
oe

ff:
 0

.1
35

 ±
 0.

05
9)

*
§  B

re
us

ch
–G

od
fr

ey
 te

st 
fo

r s
er

ia
l a

ut
o-

co
rr

el
at

io
n 

of
 o

rd
er

 u
p 

to
 3



624 C. Ciaschini et al.

1 3

and density-dependence and a negative impact of population size for the first decade 
(1971–1981) under investigation. Similar results were found for the subsequent two dec-
ades (1981–1991 and 1991–2001), with slight changes in the regression coefficients. 
Although positive and significant, path-dependence declined over time and the reverse 
pattern was observed for density-dependence. The net impact of population size (taken as 
a measure of demographic agglomeration) was negative and significant, with regression 
coefficients increasing between the first and the second decade under investigation, and 
then decreasing in the third decade. Model’s estimation for the last decade (2001–2011) 
provided completely different results in comparison with the previous time intervals. The 
impact of path-dependence remained positive and significant; density-dependence was 
instead insignificant. The effect of population size become positive and moderately signifi-
cant. The control variable received insignificant coefficients, confirming the absence of any 
indirect effect of municipal size. Variance Inflation Factor (VIF) was systematically below 
10 for each variable, suggesting a non-redundant structure of predictors’ matrix.

Adjusted  R2 documents how model’s specification explained a variable proportion of 
the total variance, usually larger at the beginning of the study period (urbanization wave). 
Adjusted  R2 decreased from 0.34 (1971–1981) to 0.24 (2001–2011), suggesting that mod-
el’s specification provided better results during urbanization in respect with the subsequent 
three phases of the metropolitan cycle. Intermediate values of  R2 coefficients reflect an evi-
dent heterogeneity in the municipal sample, whose interpretation justifies the use of refined 
econometric techniques. Results of econometric tests (Breusch–Pagan, Durbin–Watson, 
and Moran) further indicate that OLS estimation was (more or less) biased for all the dec-
ades under investigation. Serial correlation, heteroscedasticity, and spatial dependence 
tests were all significant, and suggest the adoption of more flexible models with less rigid 
assumptions as far as the input variables are concerned.

Results of spatially implicit quantile regressions (Table 3) outline a completely different 
relationship between the dependent variable and the predictors, as far as regression coef-
ficients (slope equality tests) and goodness-of-fit (adjusted  R2) clearly document. While 
decreasing substantially over time and thus reflecting the pattern already observed with 
OLS regressions, goodness-of-fit increased systematically in homogeneous sub-samples 
of municipalities moving from low population growth rates (τ = 0.25) to higher rates 
(τ = 0.99). For all decades, path-dependence was always significant and positive, with the 
only exception of 0.99th percentile during suburbanization and counter-urbanization. Pop-
ulation size received significantly negative coefficients for both 50th, 75th and 99th percen-
tiles during urbanization, suburbanization, and counter-urbanization. With re-urbanization, 
population size has displayed positive coefficients, with the exception of more dynamic 
municipalities (τ = 0.99). Density-dependence was significant and positive for the second 
quartile (50th) with urbanization, and for the second (50th) and third (75th) quartiles with 
both suburbanization and counter-urbanization, being insignificant with re-urbanization. 
Perimeter-to-area ratio was systematically non-significant, being only weakly significant 
for the second and third quartiles during suburbanization and the third quartile during 
counter-urbanization.

4.2.2  Spatially Explicit Regression Models

A Spatial Durbin Model (SDM) was run as a baseline for global regressions considering 
the spatial structure of input data explicitly (Table 3). Using the same specification, results 
of SDM were compared with simplified (Spatially Autoregressive, SAR, and Spatial Error, 
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SEM) models. Comparing models’ outcomes over time revealed a satisfactory stability of 
regression coefficients, similar adjusted  R2 and aligned diagnostics (data not shown, availa-
ble upon request from the authors). Considering direct effects, SDM regressions delineated 
(1) a significant, positive impact of path-dependence (with coefficients decreasing along 
the cycle from urbanization to counter-urbanization and then recovering under re-urbaniza-
tion), (2) a negative impact of population size up to counter-urbanization (the highest coef-
ficient observed with suburbanization) turning to a positive impact with re-urbanization, 
and (3) a positive density dependence with increasing coefficients from urbanization to 
counter-urbanization, becoming insignificant with re-urbanization. Perimeter-to-area ratio 
was insignificant for all investigated decades, confirming the appropriateness of the econo-
metric specification. Indirect effects (spillovers) were systematically non-significant, with 
the only exception of population growth (lag-1) coefficient with urbanization. This result 
confirms the role of intrinsic regulations of population dynamics under specific phases of 
the metropolitan cycle. In line with the results of spatially implicit models, adjusted  R2 was 
larger with urbanization and declined afterwards. Results of a Breusch-Godfrey test indi-
cate a weak serial autocorrelation of order up to 3, suggesting use of non-parametric spatial 
quantile regressions.

Despite the results of Moran’s coefficients (see above), spatially explicit (quantile) 
regressions document the role of spatial effects only in some cases, being significant for the 
first quartile (25th) with urbanization and for the last two percentiles (75th and 99th) with 
counter-urbanization (Table 3). With suburbanization, spatial effects were not significant at 
all percentiles considered; conversely, spatial effects were always significant with re-urban-
ization. For all decades, path-dependence was always significant and positive, with the only 
exception of 0.99th percentile during counter-urbanization and re-urbanization. Density-
dependence was significant and positive for the second quartile with urbanization, and for 
first, second, and third quartiles with suburbanization, becoming not significant with coun-
ter-urbanization and re-urbanization. Population size received negative coefficients for both 
50th, 75th, and 99th percentiles during urbanization, suburbanization, and counter-urbani-
zation, and positive coefficients for the first and the second quartiles under re-urbanization. 
Perimeter-to-area ratio was always insignificant. As expected, path-dependence coefficients 
increased consistently moving from 25 to 99th percentile. Density-dependence coefficients 
followed the same pattern, with the only exception of re-urbanization.

4.3  Local Regression Models

Results of geographically weighted regressions were illustrated as global outcomes in 
Table 4 and as local outcomes in Figs. 3 and 4. GWR models had a superior goodness of 
fit in comparison with the corresponding global models (e.g. OLS or SDM). Considering 
models pooling the effects of the four predictors, the adjusted  R2 was relatively high for 
urbanization (0.47), lower for suburbanization (0.32) and counter-urbanization (0.31), and 
intermediate for re-urbanization (0.40). In line with the results of spatially implicit and 
spatially explicit models presented in Sect.  3.2, population growth rates in the previous 
decade (lag-1) explained the largest variability of the dependent variable, ranging between 
0.36 and 0.31 along the different phases of the metropolitan cycle. Considering the local 
outcomes of GWRs, local  R2 systematically above 0.4 were more frequent during urbani-
zation, being concentrated in the Aegean side of Central Greece (Attica and the neigh-
boring regions) and Southern Greece (e.g. Peloponnese, a region basically gravitating on 
Athens). During suburbanization, local  R2 systematically above 0.4 were found in Attica 



626 C. Ciaschini et al.

1 3

and in the surrounding regions that gravitate on Athens (e.g. Evvia, Viotia, Korinthia, 
Argolida). Goodness of fit of local GWR models maintained the same spatial pattern with 
systematically low values during counter-urbanization, evidencing the residual role of the 
Greek capital city. A completely different pattern was observed with re-urbanization, since 
the highest  R2 coefficients (systematically above 0.4) were observed in Northern Greece 
only (the region gravitating on Thessaloniki, the second city of Greece), while the role of 
Athens was progressively losing importance. A positive model’s intercept was observed in 
the regions around Athens during both urbanization and suburbanization, confirming the 
accelerated demographic dynamics typical of the capital city and the surrounding area in 
the first two phases of the metropolitan cycle in Greece. With counter-urbanization, posi-
tive local intercepts were residually observed in a small (coastal) region East of Athens. In 
the last observation decade, positive intercepts concentrated in the Aegean islands (Crete, 
Cyclades, Dodecanese), a dynamic region from the demographic point of view. Negative 
intercepts were observed in more peripheral districts of Western Greece during the whole 
study period. High (negative or positive) model’s residuals were rather scarce and sparsely 
distributed all over the area.

Path-dependence was positive and significant at all decades examined in this study, 
being more intense in (1) Central and Southern Greece during urbanization, (2) Central 
and South-Eastern Greece during suburbanization, (3) Eastern continental Greece dur-
ing counter-urbanization, and (4) almost all over Greece during re-urbanization, with the 
exception of Western Peloponnese and Eastern Trace. All over the study period, density-
dependence was positive and significant only in Eastern Greece, being more intense in 
the regions around Athens during urbanization. With counter-urbanization, a moderately 
positive density-dependence of population dynamics was observed in various regions 
gravitating on Athens and Thessaloniki. On the contrary, density-dependence was weak 
in Eastern Greece during suburbanization and re-urbanization, and completely absent in 
marginal districts of Western Greece, Trace, and Crete. Taken as a measure of agglom-
eration, population size received significantly negative coefficients in municipalities of the 
regions surrounding Athens (Evvia, Argolida, Beotia, Korinthia) during urbanization. The 
negative impact of this variable extended to Eastern Greece—from Macedonia to Southern 
Peloponnese—during suburbanization and counter-urbanization, losing strength with re-
urbanization, when a moderate, positive impact was observed in marginal districts of West-
ern Greece. Perimeter-to-area ratio, taken as a measure of scale, was insignificant during 
urbanization and basically insignificant during re-urbanization. During the two intermedi-
ate phases, perimeter-to-area ratio received weakly negative coefficients in Eastern Greece, 
especially in areas around Athens and Thessaloniki.

Table 4  Global results (adjusted 
 R2) of geographically weighted 
regressions with population 
growth rate over t + 2/t + 1 time 
interval as dependent variable 
and (1) population growth rate 
over t + 1/t 

Moving from left to right, models were augmented with additional 
predictors, namely (2) demographic density at time t, (3) population 
size at time t, and (4) perimeter-to-area ratio

Time interval Pop. 
Growth 
(lag-1)

 + Demo. 
density 
(log)

 + Popula-
tion size 
(log)

 + Perimeter-
to-Area ratio

1961–1981 0.363 0.386 0.451 0.473
1971–1991 0.239 0.263 0.299 0.318
1981–2001 0.214 0.232 0.285 0.305
1991–2011 0.309 0.386 0.398 0.402
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5  Discussion

During the last century, metropolitan regions in Europe have continuously expanded 
at the expense of rural areas thanks to accelerated demographic dynamics amplifying 
socioeconomic divides (Allen et al., 2004; Arapoglou, 2012; Paulsen, 2014). To under-
stand latent patterns of population growth, our study illustrates a diachronic analysis 
of demographic dynamics (1961–2011) at the municipal scale in Greece, verifying 

Fig. 3  Results of a Geographically Weighted Regression with population growth at time t + 2/t + 1 as 
dependent variable, population growth (t + 1/t), population density (log, t), population size (log, t), and 
perimeter-to-area ratio as predictors
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density-dependence, path-dependence, agglomeration/scale impacts, and spatial effects 
over a complete metropolitan cycle from urbanization to re-urbanization (Morelli et al., 
2014). Testing density-dependent population growth over time contributes to delineate 
mechanisms consolidating a metropolitan hierarchy representative of many other Euro-
pean countries (Benassi et al., 2020) and centered on large compact cities (Berliant & 
Wang, 2004). At the same time, density-dependence was regarded at the base of local-
scale settlement evolution typical of rural areas and common to different Mediterranean 
countries (Salvati, 2020). Population expansion along coastal, non-urban areas and the 
contemporary decline of inland, marginal districts have been sometimes explained with 
such dynamics (Salvia et  al., 2021). Assuming that demographic fluctuations reveal 
how people live and move around space, present population changes were modeled—
together with density levels—on the base of past (lag-1) changes, population size (a 
proxy of agglomeration), local administrative size (a proxy of economic scale and, at 
the same time, a control variable), and spatial heterogeneity (Salvati, 2020).

Fig. 4  Results of a Geographically Weighted Regression (local slope coefficients) with population growth 
at time t + 2/t + 1 as dependent variable, population growth (t + 1/t), population density (t), population size 
(log, t), and perimeter-to-area ratio as predictors (in each figure legend, + or—indicates a significantly posi-
tive (or negative) coefficient; significance was tested at * 0.01 < p < 0.05; ** 0.001 < p < 0.01; *** p < 0.001; 
ns indicates an insignificant relationship)
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Our study demonstrates how sequential waves of concentration and de-concentration of 
urban (and peri-urban) nodes were associated with density-dependent mechanisms of pop-
ulation growth, shaping the expansion of rural/accessible districts, and the abandonment of 
marginal districts (Crescenzi et al., 2016; Duncan et al., 2001; Morelli et al., 2014). While 
identifying distinctive (demographic) regimes at the local scale (Nickayin et al., 2022), the 
empirical results of our study outline the intrinsic characteristics of local contexts and the 
substantial differences in the relationship between population growth and density across 
time, corroborating the assumption that density-dependent regulation is intrinsically asso-
ciated with exogenous dynamics depending on metropolitan cycles and the consequent 
economic downturns (Ciommi et al., 2018).

Accentuating the divide in high-density and low-density areas, the results of the (global) 
econometric models document how density-dependence has been observed in correspond-
ence with urbanization, a specific phase of the metropolitan cycle  (Salvia et  al., 2021). 
This suggests the role of economic agglomeration, and highlights the importance of the 
internal balance (high fertility and medium–low mortality) and the inherent contribution of 
immigration (Bocquier & Brée, 2018). At the same time, density-dependent regulation was 
insignificant in both suburbanization and counter-urbanization phases, i.e. when population 
tends to be more dispersed across regions (e.g. Ciommi et al., 2020). In these contexts, the 
role of agglomeration and scale may reduce proportionally, becoming less negative and, in 
some cases, neutral or even positive, and density-independent factors that regulate popu-
lation growth may predominate (Cohen, 2003). With re-urbanization, the positive rate of 
population growth observed in rural areas counterbalanced the stable (or negative) pattern 
observed in urban areas (Duvernoy et  al., 2018), indicating a relationship with popula-
tion growth that reflects congestion externalities and subtle processes of peri-urbanization 
intensifying in recent decades (Gkartzios, 2013).

Taken together, the results of quantile regressions—with or without incorporation of 
spatial effects—indicate a non-linear relationship between population growth and density 
for all time intervals, although with important differences as far as the impact of individual 
factors is concerned (Paulsen, 2014). Results of quantile regressions document a positive 
effect of density on population growth rates, being stronger at higher concentration levels, 
while declining slightly over time (Partridge et al., 2009). Such findings are in line with the 
documented outcomes of sequential waves of urbanization, suburbanization, and re-urban-
ization characterizing the post-war metropolitan cycles in Mediterranean Europe (Cuad-
rado-Ciuraneta et al., 2017; Salvati & Carlucci, 2017; Zambon et al., 2017). In other words, 
the density-growth relationship is indicative of sequential waves of the metropolitan cycle, 
reflecting multiple factors of change (Di Feliciantonio & Salvati, 2015). Demographic 
dynamics and multifaceted urbanization patterns—from compact growth to sprawl—have 
played a key role shaping the spatial distribution of resident population (Arapoglou, 2012). 
More specifically, location factors promote distinctive patterns of local development based 
on population density (Alados et al., 2014).

In this perspective, long-term demographic processes in Mediterranean Europe were 
seen as representative of more general dynamics at the continental scale (Ciommi et al., 
2018). Consolidation of urban and rural poles, socioeconomic divides along the elevation 
gradient and a substantial density-dependent mechanism of population growth are general-
ized phenomena of interest for urban and regional planning (Oueslati et al., 2015; Oster-
hage, 2018). Moreover, a comparative analysis of local-scale population dynamics may 
emphasize the inherent complexity of different European contexts and the importance of 
a diachronic investigation of density-dependent and path-dependent regulation of demo-
graphic processes (Haase et al., 2010). Although urbanization processes tend to vary from 
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country to country, our results document how population growth in Mediterranean Europe 
was influenced by similar forces that can be better characterized in a comparative analysis 
of metropolitan cycles (Zambon et al., 2017). By reflecting similar regimes in the density-
dependent mechanisms of population growth, these factors are more intense in demograph-
ically dynamic regions. Spatial econometric approaches monitoring such factors may pro-
vide, at least implicitly, some novel indicators of practical use in official statistics. These 
indicators seem to be particularly appropriate when evaluating regional paths of change 
and socioeconomic progress toward globalization, competitiveness, and sustainability.

6  Conclusions

Integration of basic socioeconomic indicators, including demographic growth rates and 
population density, allows identification of (apparent and latent) spatial divides, outlining 
long-term and more recent socioeconomic trends and their impact on settlement structure 
and urbanization patterns. In this line of thinking, a comparative analysis of population 
dynamics clarifies the role of local contexts when designing and implementing joint strate-
gies for spatial planning and regional development at both country and continental scale in 
Europe. Population divides were easily identified at the municipal scale, being associated 
with density-dependent processes of urban growth, and reflect the socioeconomic divide 
in accessible/dynamic regions and marginal/inland districts. A refined analysis of socio-
economic contexts resulting from different demographic patterns and processes can also 
improve the reliability and accuracy of demographic forecasts. In this regard, geo-refer-
enced databases with local-scale, up-to-date information encompassing long time intervals, 
provide the basic knowledge to identify spatial regimes of demographic growth and the 
influence of population density. Results of this study encourage a spatially explicit anal-
ysis of population dynamics aimed at identifying spatial regimes of urban growth under 
variable socioeconomic conditions and heterogeneous local contexts. Spatial econometrics 
proved to be a particularly appropriate tool in this research direction.
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