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SPANSE: combining sparsity with density for

efficient one-time code-based digital signatures

Marco Baldi, Franco Chiaraluce, and Paolo Santini

Università Politecnica delle Marche, Ancona, Italy

{m.baldi, f.chiaraluce, p.santini}@univpm.it

Abstract. The use of codes defined by sparse characteristic matrices,
like QC-LDPC and QC-MDPC codes, has become an established so-
lution to design secure and efficient code-based public-key encryption
schemes, as also witnessed by the ongoing NIST post-quantum cryptog-
raphy standardization process. However, similar approaches have been
less fortunate in the context of code-based digital signatures, since no
secure and efficient signature scheme based on these codes is available to
date. The main limitation of previous attempts in this line of research has
been the use of sparse signatures, which produces some leakage of infor-
mation about the private key. In this paper, we propose a new code-based
digital signature scheme that overcomes such a problem by publishing
signatures that are abnormally dense, rather than sparse. This eliminates
the possibility of deducing information from the sparsity of signatures,
and follows a recent trend in code-based cryptography exploiting the
hardness of the decoding problem for large-weight vectors, instead of its
classical version based on small-weight vectors. In this study we focus on
one-time use and provide some preliminary instances of the new scheme,
showing that it achieves very fast signature generation and verification
with reasonably small public keys.

Keywords: Code-based cryptography · Digital signatures · Large-weight
decoding · QC-LDGM codes · QC-LDPC codes

1 Introduction

The problem of decoding a random-looking linear code is considered as one of
the most understood and well established problems in post-quantum cryptog-
raphy. Remarkably known to be NP-complete for both binary and non-binary
codes [11,9], the decoding problem is at the basis of several secure and efficient
encryption schemes, stemming from the original proposals of McEliece [22] and
Niederreiter [25], or following more recent approaches [23,2]. As an evidence,
three encryption schemes (ClassicMcEliece, BIKE and HQC) out of the seven
currently admitted to the third round of the NIST post-quantum standardization
process [24] are based on codes.

Differently from such a rather consolidated scenario for encryption schemes,
the situation is different concerning digital signature schemes. There are basically

http://arxiv.org/abs/2205.12887v1
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two approaches to code-based digital signatures. The first one, derived from the
“hash-and-sign” paradigm used for instance in RSA signatures, encounters some
obstacles when applied to the code-based setting. This is due to the difficulty of
randomly picking a decodable syndrome, yielding code-based schemes that are
inefficient or insecure (or both). Two historical proposals along this line are CFS
[14] and KKS [20], which however have important limitations. In fact, it is very
difficult to find secure though efficient instances of the KKS scheme [26]. The
CFS scheme is more consolidated, but requires Goppa codes with unpractical
parameters yielding very large public keys. Moreover, Goppa codes with very
high rate are required, which may expose the scheme to Goppa code distinguish-
ers [17]. A recent important advance in this line of research is represented by the
WAVE signature scheme [15], which however still requires a public key size in
the order of 3 megabytes for 128 bits of classical security. Interestingly, WAVE
avoids previous attacks against signature schemes derived from CFS by replac-
ing Goppa codes with some new codes with a special (U,U + V ) structure and
relies on the hardness of decoding large-weight vectors, instead of the classical
decoding problem looking for small-weight vectors.

Other variants of CFS relying on codes different from Goppa codes have
been proposed, but with less fortune. In [7], a digital signature scheme based
on quasi-cyclic low-density generator matrix (QC-LDGM) codes was proposed,
able to achieve very efficient signature generation and verification procedures,
besides compact public keys. Unfortunately, the use of sparse signatures in such
a scheme turned out to produce some leakage of information concerning the
private key, which lead to successful cryptanalysis [27].

Opposed to the hash-and-sign paradigm used in the aforementioned signa-
ture schemes, a different approach to the design of code-based signatures is that
of applying the Fiat-Shamir transform [18] to an identification scheme, which
has the advantage of not relying on any trapdoor for key derivation. In fact,
consolidated zero-knowledge code-based identification schemes exist since a long
time [28], which however exhibit significant soundness errors and thus require
many repetitions to achieve reasonable security levels. This results in large sig-
nature sizes when they are used for digital signatures. Subsequent variants of
these schemes aim at overcoming such limitations [30,13,1,16,10,8,6,19,12], al-
though their features are still far from being comparable with those of signature
schemes relying on other mathematical objects, such as lattices [21].

1.1 Our contribution

We propose SPANSE, an evolution of the code-based signature scheme proposed
in [7], following the hash-and-sign paradigm, with the aim of overcoming its main
limitations and providing a new secure and efficient signature scheme based on
a code-based trapdoor. The main innovations over [7] are as follows:

1. Codes and vectors are defined over Fq, with q > 2 being a prime, while in
[7] they were binary.

2. The transformation matrix S was sparse in [7], while it is chosen to be dense
in the new scheme, with entries from a subset of the underlying finite field.
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3. A transformation matrix Q was needed in [7] to hide the sparse nature of
the other two secret matrices (H and S), while it is no longer required in
the new scheme, owing to the dense nature of S. For this reason, the matrix
Q is replaced with a simple permutation matrix P .

4. The generated signatures were sparse in [7], while they are dense and free of
zero entries in the new scheme.

The above modifications allow avoiding attacks exploiting sparsity of signa-
tures, which are no longer sparse, and make the scheme security rely on the
hardness of decoding large-weight vectors instead of low-weight ones. Still, some
tuning of the overall statistical distribution of produced signatures will be needed
in order to make it indistinguishable from a random distribution when long-term
keys are used. This, however, is left for future investigations, while in this paper
we only focus on one-time keys. The public matrices in SPANSE still have a
product structure like those used in the LEDA cryptosystems [4,5]. However,
the dense nature of the multiplied matrices avoids the existence of weak keys
like those identified in [3]. Codes in quasi-cyclic (QC) form like in [7] are used
in the scheme we propose, and allow achieving public keys of reasonable size (in
the order of 2 megabytes for 128 bits of classical security). Such a public key size
may be further reduced by increasing the circulant block size, which we keep
very limited in this preliminary study.

One important advantage of the new scheme stemming from [7] is that it ex-
ploits a straightforward decoding procedure, which makes signature generation,
besides signature verification, very efficient from the computational standpoint.
This is a favourable aspect with respect to alternative code-based schemes resort-
ing to classical decoding algorithms like WAVE, which uses a modified Prange
decoder exploiting the (U,U +V ) code structure resulting in a signature genera-
tion complexity of order O(λ3), where λ is the security level. Notice that, in the
one-time case we consider, the running time of our algorithm is dominated by
the key generation procedure, which is still of order O(λ3), while signature gen-
eration has complexity reduced to order O(λ2). However, even in the one-time
case, key generation can be performed offline, so that its complexity is some-
what less important than the signature generation complexity. Moreover, in the
multiple-time case using long-term keys, the signature generation complexity is
definitely more important than the key generation complexity.

As anticipated, in this work we focus on one-time use of the new scheme and
show that it is secure against known attacks. The study of multiple-time use,
which will likely require the introduction of a final rejection sampling stage to
avoid statistical attacks against long-term keys, is left as a future work.

2 Preliminaries

In this section we introduce the notation we will use throughout the paper and
recall some basic notions concerning code-based cryptography.
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2.1 Linear codes

Let Fq denote the Galois field of order q and let F
n
q denote the n-dimensional

vector space defined on Fq. A linear block code with length n and dimension
k, denoted as C (n, k), is a linear subspace of dimension k of the vector space
F
n
q formed by n-tuples defined over Fq. An encoding for the code C is a map

F
k
q 7→ F

n
q that creates a unique association between any k-tuple (or information

word) u and an n-tuple (or codeword) c belonging to the code C. Decoding
instead starts from a version of c corrupted by an error vector e, ĉ = c+ e, and
aims at recovering c and e.

For any linear block code C (n, k), any set of k linearly independent codewords
{g0, g1, . . . gk−1} forms a basis of the codeword space, such that any codeword c =
[c0, c1, . . . , cn−1] can be expressed as a linear combination of the basis vectors:

c = u0g0 + u1g1 + . . .+ uk−1gk−1. (1)

The coefficients ui are taken from the information vector u = [u0, u1, . . . , uk−1],
such that encoding of u into c simply corresponds to the matrix operation c =
uG, with

G =




g0
g1
...

gk−1


 (2)

being a k × n matrix known as generator matrix of the code C (n, k).
Any k linearly independent codewords can be selected to form G, therefore

any code can be provided with as many encodings as the overall number of
possible generator matrices. Encoding is said to be systematic if every codeword
contains the information vector it is associated with.

A conventional form of systematic encoding is that in which each codeword
is obtained by appending r = n − k redundancy symbols to its corresponding
k-symbol information word, that is

c = [u0, u1, . . . , uk−1|t0, t1, . . . , tr−1] (3)

It follows that the associated generator matrix G can be written as

G = [Ik|P ] (4)

where Ik denotes the k × k identity matrix and P is a k × r general matrix.
Let us consider the orthogonal complement Γ⊥ of the set of codewords Γ .

Its dimension is
r = dim

(
Γ⊥

)
= n− dim (Γ ) = n− k. (5)

Given r linearly independent n-symbol vectors {h0, . . . , hr−1} belonging to Γ⊥,
a basis of Γ⊥ is simply obtained as

H =




h0

h1

...
hr−1


 (6)
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and Γ = Null {H}. The matrix H is known as a parity-check matrix of the code
C (n, k) and every codeword c ∈ Γ must verify

HcT = 0r×1 (7)

where 0r×1 represents the r× 1 all-zero vector. For any n-symbol vector x ∈ F
n
q ,

the r× 1 vector s = HxT is denoted as the syndrome of x through H . It follows
that a codeword belonging to C has an all-zero syndrome through H .

2.2 QC-LDGM codes

A linear block code is said to be low-density generator matrix (LDGM) if at least
one of its generator matrices is sparse, i.e., has a fraction of non-zero entries
≪ 1/2. SPANSE uses a secret LDGM code with length n and dimension k,
characterized by a generator matrix that is sparse and has non-zero entries taking
small values (only 1, as a special case). The rows of G have Hamming weight
wg ≪ n. Due to their sparse nature, it is very likely that, by summing two or
more rows of the generator matrix of an LDGM code, a vector with Hamming
weight > wg is obtained. If the linear combination of any group of rows of G
yields a codeword with weight greater than or equal to wg, then the LDGM code
has minimum distance wg.

The special class of LDGM codes used in SPANSE is that of QC-LDGM
codes, having generator and parity-check matrices formed by circulant bocks
with size p × p, p ∈ [2; r]. As already known, using matrices in this form allows
reducing the memory needed to store them, and hence the public key size. In
fact, a QC code is defined as a linear block code with dimension k = p · k0 and
length n = p · n0, in which each cyclic shift of a codeword by n0 symbols results
in another valid codeword [29]. From the definition of QC codes it follows that
the characteristic matrices of these codes can be written as formed by circulant
blocks of the type:

A =




a0 a1 a2 · · · ap−1

ap−1 a0 a1 · · · ap−2

ap−2 ap−1 a0 · · · ap−3

...
...

...
. . .

...
a1 a2 a3 · · · a0



. (8)

It is then evident that any circulant matrix can be fully described by just one
of its rows or columns. The set of p× p circulant matrices with entries from Fq

forms a ring under the standard operations of matrix addition and multiplication
over Fq. The zero element is the all-zero matrix, and the identity element is the
p×p identity matrix. If we consider the algebra of polynomials mod (xp − 1) over
Fq, Fq[x]/〈xp + 1〉, the following map is an isomorphism between this algebra
and that of p× p circulant matrices over Fq:

A ↔ a (x) =

p−1∑

i=0

ai · xi. (9)
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According to (9), any circulant matrix is associated to a polynomial in the vari-
able x having coefficients over Fq which coincide with the entries in the first row
of the matrix:

a (x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ ap−1x
p−1. (10)

Similarly, the all-zero circulant matrix corresponds to the null polynomial and
the identity matrix to the unitary polynomial.

As it will be described next, the main part of the secret key of SPANSE is
formed by a QC-LDGM code described through its k × n generator matrix G
and r × n parity-check matrix H . The values of n, k and r are all multiples of
the circulant block size p.

For a QC-LDGM code, the generator matrix G takes the following general
form

G =




G0,0 G0,1 G0,2 . . . G0,n0−1

G1,0 G1,1 G1,2 . . . G1,n0−1

G2,0 G2,1 G2,2 . . . G2,n0−1

...
...

...
. . .

...
Gk0−1,0 Gk0−1,1 Gk0−1,2 . . . Gk0−1,n0−1



, (11)

where each Gi,j is a sparse circulant matrix or a null matrix with size p × p.
Hence, in this case the code length, dimension and redundancy are n = n0p,
k = k0p and r = (n0 − k0)p = r0p, respectively. Since a circulant matrix is
defined by one of its rows (conventionally the first), storing a matrix in the form
(11) requires k0n0p symbols, yielding a reduction by a factor p with respect to
a matrix with a general form.

An important feature of the LDGM codes used in SPANSE is that it is
easy to obtain a random codeword c belonging to the code and having weight
approximately equal to a fixed, small value wc. Let us suppose, for simplicity,
that wc is an integer multiple of wg . Since the rows of G are sparse, it is very
likely that, by summing a small number of rows, the Hamming weight of the
resulting vector is about the sum of their Hamming weights. Hence, by summing
wc

wg
rows of G, chosen at random, we get a random codeword with Hamming

weight about wc. It follows that the number of random codewords with weight
close to wc can be roughly estimated as

Awc
≈

(
k
wc

wg

)
. (12)

3 Dense code-based signatures

SPANSE inherits the setting for the generation of sparse code-based signatures
introduced in [7], with the main difference that the structure of the matrix S is
changed to obtain dense signatures intead of sparse ones.
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As in [7], two public functions are fixed beforehand: a hash function H and
a function FΘ that converts the output vector of H into a sparse binary vector
s with length r and weight w (≤ r). Note that, by sparse, we here refer to a
vector taking values in {0; 1} ⊆ Fq. The vector s is a public binary syndrome
vector resulting from the signature generation procedure. The output of FΘ is
uniformly distributed and depends on a parameter Θ, which is chosen for each
message to be signed and is made public by the signer. The choice of FΘ is
discussed in Section 3.2.

3.1 Key generation

A first component of the secret key of SPANSE is a secret QC-LDGM code having
a generator matrix of the type (11). The overall row weight of the generator
matrix G of the secret code used in SPANSE is equal to wg. A SPANSE key pair
is generated according to the following steps.

1. The signer randomly chooses a secret QC-LDGM code with length n = n0p
and dimension k = k0p, having a generator matrix G in the form (11), with
row weight wg, and from G computes a systematic parity-check matrix H for
the same code. Note that G is binary as well, i.e., takes values in {0; 1} ⊆ Fq.

2. Differently from [7], where the two secret matrices Q and S were used, in
SPANSE the signer chooses two different secret matrices, P and S, still in QC
form: an r×r secret permutation matrix P and an n×n matrix S with entries
∈ Fq. Having S defined over Fq is another important difference of SPANSE
with respect to [7]. In fact, in [7] the matrix S was sparse (besides QC).
In SPANSE, instead, S is still in QC form but it is dense, with a different
constraint of having small-valued entries taken from Fq. Let us denote as di
the fraction of entries equal to i, i = 0, 1, 2, . . . , q−1, in each row of S. Then,
we define

d(x) =

q−1∑

i=0

dix
i, (13)

with
∑q−1

i=0 di = 1 as the polynomial describing the density of the symbols of
Fq in each row of S. As we will see next, the polynomials used in SPANSE
as d(x) are characterized by large values of di for small values of i, and
small or zero values of di for large values of i. For brevity, we say that such
polynomials are zero-concentrated. Note that this does not mean that S is
sparse. In fact, as we will see next, the overall density of non-zero entries in
S can easily be in the order of 50%. The matrix Q used in [7], instead, is no
longer needed in SPANSE because of the dense nature of S, and is replaced
with a simple permutation matrix P .

3. The private key is {P,G, S} and the public key is obtained as H ′ = P−1 ·
H · S−1.

3.2 Signature generation

In SPANSE, the signature of a message (m) is computed as follows.
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1. The signer computes h = H(m) and s = FΘ(h). The parameter Θ is chosen
at random if statistical signatures are desired, otherwise it is fixed or com-
puted as a one-way function of the message m if deterministic signatures are
desired. The chosen value Θ∗ is published along with the signature.

2. The signer computes the permuted syndrome s′ = Ps. Then, being provided
with the systematic parity-check matrix H corresponding to the secret gener-
ator matrix G, the signer computes a sparse error vector e having syndrome
s′ through H . Due to the systematic form of H , e is easily obtained as
e =

[
01×k|s′T

]
, where 01×k is an all-zero row vector of length k.

3. The signer selects a random weight-wc codeword c belonging to the secret
QC-LDGM code and computes the signature of m as σ = (e + c) · ST . If σ
has one or more zero entries, the signer chooses another random codeword c
and tries again, until σ is free of zero entries.

4. The message m, the associated parameter Θ∗ and the signature σ are then
published.

An important parameter for any digital signature scheme is the total number
of different signatures. In SPANSE, a different signature corresponds to a differ-
ent r-bit vector s, having weight w and values in {0; 1}, so the total number of
different signatures is

Ns =

(
r

w

)
. (14)

3.3 Signature verification

Signature verification in SPANSE is performed as follows.

1. The verifier checks that σ is free of zero entries. If such a check fails, the
signature is discarded.

2. Otherwise, the verifier computes s∗ = FΘ∗(H(m)) and checks that s∗ has
weight w. If such a check fails, the signature is discarded.

3. Otherwise, the verifier computes H ′ · σT = P−1 · H · S−1 · S · (eT + cT ) =
P−1 ·H · (eT + cT ) = P−1 ·H · eT = P−1 · s′ = s and compares it with s∗.

4. If s = s∗ the signature is accepted; otherwise, it is discarded.

4 Security analysis

As anticipated, in this work we study the security of SPANSE under the simpli-
fying assumption of one-time use, which is a necessary condition for a possible
multiple-time use. Since secure instances of SPANSE in the one-time case can
easily be identified, as it will be shown next, the possible extension to multiple-
time use will be the object of future works.

As a preliminary observation, we note that SPANSE lays its foundations on
the scheme introduced in [7], with the crucial difference that attacks exploit-
ing the sparsity of signatures are intrinsically avoided. Among these, support
decomposition attacks described in [7] are the most dangerous ones, and are
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actually avoided in SPANSE by resorting to dense signatures. The other attacks
described in [7] are still feasible, at least in principle, but their complexity re-
mains exponential in the key size and can be easily rendered very large, as we
will show next.

4.1 Attacks based on decoding large-weight vectors

Opposed to the system proposed in [7], which is based on the hardness of the
classical decoding problem for low-weight vectors, the security of SPANSE re-
lies on the difficulty of finding large-weight vectors through decoding of general
codes. In fact, general decoding algorithms could be used to:

– mount key recovery attacks based on retrieving the rows of the dense gener-
ator matrix of the public code G′ = GST , from which an attacker could try
to recover the two secret matrices G and S, or

– mount forgery attacks by searching for a dense vector σf corresponding to
a given syndrome s through the public parity-check matrix H ′.

In both these cases, an attacker should be able to find a vector free of zero
entries1 that corresponds to a given syndrome (the all-zero vector for a key
recovery attack and s for a forgery attack) through the public parity-check matrix
H ′. By using brute force, the probability of success for the attacker is easily
computed as the fraction of valid vectors for each syndrome, that is,

pBF =
(q − 1)n

qnqr
. (15)

For example, by considering n = 15000 and q = 127, we have that
(

q−1
q

)n

<

2−170, which clearly highlights the unfeasibility of signature forgery attacks
through brute force, even if the term qr is neglected.

So, as in WAVE, the security of our scheme relies on the hardness of decoding
a given syndrome into a large-weight vector. Differently from WAVE, however,
we require signatures to have maximum weight. A similar condition can also
be imposed on the rows of the public code generator matrix G′ = GST , as
can be easily shown. Obtaining vectors of full density is made easy in SPANSE
by combining together sparsity and density in vector-matrix products. Let us
focus on signatures, but a similar reasoning also applies to the computation of
G′ = GST . Generating signatures free of zero entries is made easy in SPANSE
by the sparse nature of the vector e + c combined with the dense and zero-
concentrated nature of S. To show this, let us consider Fq with q being a prime
and let us drop the modulo operation, considering for the moment that the
operations are performed on the full set of integers. The dense nature of S makes
the probability that any entry of the signature computed as (e+ c)ST is exactly
equal to zero negligible. Furthermore, the sparse nature of e+c together with the

1 Note that, more generally, one may require vectors to have weight larger than some
threshold value (which should be ≥

q−1

q
n).
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zero-concentrated nature of S allow making the probability that any signature
entry overcomes q−1 arbitrary small, or even null. Based on these considerations,
when we restore the modulo operation we obtain that the probability of having
a zero entry over Fq is negligible or even null. This motivates the fact that
generating signatures free of zero entries is easy for the signer. Nevertheless,
generating valid signatures may require some rejection sampling, depending on
the choice of d(x). However, we show that when proper parameters are chosen,
the number of needed attempts is very small.

The PGE+SS framework In [15] the authors study the so-called PGE+SS
framework to solve the large-weight vector decoding problem over the ternary
finite field (i.e., for q = 3). Their algorithm works by first applying Partial
Gaussian Elimination (PGE) to reduce to a smaller instance, which is then solved
through techniques inherited from the Subset Sum (SS) framework. We extend
the approach in [15] to the setting of interest for SPANSE, that is, considering
vectors with entries over Fq with q > 3 and full (or very large) density. Starting
from s and H , a PGE can first be used to obtain

H ′ =

[
A ∈ F

(r−u)×(n−u)
q 0(r−u)×u ∈ F

(r−u)×u
q

B ∈ F
u×(n−u)
q Iu ∈ F

u×u
q

]
, (16)

where u = ϕn with 0 < ϕ < r = (1−R)n. We apply the same transformation to
the syndrome s, obtaining s′ = [sA, sB], where sA has length r − u and sB has
length u. Let e = [eA, eB] such that HeT = s. Then, we obtain

{
AeTA = sA,

eTB = sB −BeTA.
(17)

To solve the above system, one first finds eA and then uses it to compute the
corresponding eB. Since both eA and eB must have full weight, we have that A
and sA represent the input parity-check matrix and syndrome for another large
weight decoding instance, with length n′ = n − u = (1 − ϕ)n and redundancy
r′ = r − u = (1 − R − ϕ)n. We refer to it as the small instance and use a SS
solver to find solutions, i.e., candidates for eA.

As in [15], we consider here the application of a tree merging structure, in
which we start from 2b lists and then pairwise merge them until we are left with
a final list of solutions. Each list if populated with L vectors of length n′2−b and
full Hamming weight n′2−b. Due to lack of space, we do not report here the full
details of the algorithm, but it can be easily seen that it is a simple generalization
of the technique described in [15]. Its operating principle is exemplified in Figure
1 for the case of b = 3.

We consider L = 2νn
′

and, as in [15], focus on the use of the so-called
amortized lists: in each merge we desire output lists having the same (average)
size of the input ones. In other words, given that we start from lists of size L,
we want to always have lists of the same average size. This is achieved if, in the
first b− 1 levels, one always merges on ℓ = νn′

log
2
(q) positions.
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Level 0 2
3 lists, each with L = 2

νn′

syndromes of vectors

with length n/8 and Hamming weight n/8

Level 1 2
2 lists, each with syndromes of vectors

with length n/4 and Hamming weight n/4

Merged on ℓ = νn′

log2(q)
coordinates

Average list size L = 2
νn′

Level 2 2 lists each with syndromes of vectors

with length n/2 and Hamming weight n/2

Merged on another ℓ = νn′

log2(q)
coordinates

Average list size L = 2
νn′

Level 3 Final list: syndromes of vectors

with length n and Hamming weight n

Merged on the remaining r′ − 2ℓ coordinates

Average number of produced solutions = N ′

Fig. 1. Example of the algorithm to solve the small instance, for the case of b = 3.

The list which is produced as the output of the last level contains the solutions
to the problem; note that its average size can be estimated as

N ′ = 22νn
′−(r′−(b−1)ℓ) log2

(q)

= 2ν(b+1)n′−r′ log
2
(q)

= 2((b+1)ν−(1−R′) log
2
(q))n′

= 2((b+1)ν−(1−R′) log
2
(q))(1−ϕ)n

= 2ρ(b,ν,ϕ)n, (18)

where R′ = 1 − r′

n′
= R

1−ϕ . When constructing the initial lists, we also have the

constraint that it must be 2νn
′ ≤ (q − 1)n

′2−b

, from which we obtain

ν ≤ 2−b log2(q − 1). (19)

Also, consider that each of the initial lists must contain at least one element, so
that we also obtain the following constraint

b ≤ ⌊log2(n′)⌋
= ⌊log2(n) + log2(1− ϕ)⌋. (20)
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Once the small instance has been solved, we use each found candidate for eA to
construct eB. The probability that a candidate eB is valid, i.e., that it has full

weight u, can be estimated as
(
1− 1

q

)u

= 2log2
(1−1/q)ϕn, so that the probability

that one iteration of the algorithm is successful is

Pr[success] = 1−
(
1− 2log2(1−1/q)ϕn

)N ′

≈ min
{
1 ; N ′2log2(1−1/q)ϕn

}

= min





1 ; 2

(
((b+1)ν−(1−R′) log

2
(q))(1−ϕ)+ϕ log

2
(1−1/q)

)
n






= min
{
1 ; 2χ(b,ϕ)n

}

= 2n·min{0 ; χ(b,ϕ)}. (21)

We neglect the cost of performing PGE (since it is polynomial in n), and con-

sider that lists initialization and merging comes with a cost of L = O
(
2νn

′

)
=

O
(
2(1−ϕ)n

)
. Testing each one of the produced N ′ solutions for the small in-

stance requires O(N ′) operations. So, each iteration of the algorithm requires
O
(
2ν(1−ϕ)n + 2ρ(b,ν,ϕ)n

)
= O

(
2n·max{ν(1−ϕ) ; ρ(b,ν,ϕ)}

)
operations. Multiplying

this quantity by the average number of performed iterations, that is, the recip-
rocal of the success probability, we obtain the following cost estimate

TSDP = min
ϕ∈R, 0<ϕ<1−R

b∈N, b≤⌊log
2
((1−ϕ)n)⌋

ν∈R, 0<ν<2−b log
2
(q−1)

{
2ν(1−ϕ)n + 2ρ(b,ν,ϕ)n

Pr[success]

}
. (22)

Taking into account all the above considerations, it is easily seen that the time
complexity of the resulting algorithm can be compactly expressed as 2α(ϕ,b,ν)n,
where the complexity exponent is computed as

min
ϕ∈R, 0<ϕ<1−R

b∈N, b≤⌊log
2
((1−ϕ)n)⌋

ν∈R, 0<ν<2−b log
2
(q−1)

{max {ν(1− ϕ) ; ρ(b, ν, ϕ)} −min {0 ; χ(b, ν, ϕ)}} .

(23)

4.2 Decoding One Out of Many

In the Decoding One Out of Many (DOOM) setting, one has a set of syndromes
S =

{
s(0), s(1), · · · , s(N−1)

}
and wants to find a vector e with some weight

requirement and so that H ′eT ∈ S. For the low weight SDP, it is well known
that general decoding algorithms receive a speed-up of

√
N . At the best of our

knowledge, the DOOM setting has not been studied for the problem of decoding
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vectors with large weight. However, it is likely that DOOM is easier that the
standard case in which there is only one target syndrome. In the scheme in [7],
an attacker can construct a set S with the following strategy:

– prepare a set of N ′ syndromes, computed as s̃(Θ) = F(m||Θ), where Θ is a
counter and takes values in {0, 1, · · · , N ′ − 1};

– populate S with each s̃(Θ) and all of its p− 1 QC shifts.

By doing this, the attacker end up with a set S of size N = pN ′: clearly, solving
DOOM in this case yields a valid syndrome for the message m.

In SPANSE, differently from [7], the matrix Q is replaced by a permuta-
tion matrix and Θ is no longer used for rejection sampling, thus it can be
fixed as a one-way function of the message to obtain deterministic signatures.
Consequently, at best, an attacker can build S by using only the QC shifts of
s = F(m). This implies that N = p. To consider the possible speed-ups coming
from DOOM, we assume that the gain is the same that one has in the low-weight
regime. Hence, we assess the cost of a signature forgery attack as

TDOOM =
TSDP√

p
= O

(
2α(ϕ,b,ν)n−0.5 log

2
(p)

)
. (24)

5 System design

In this section we study the system design and the choice of the relevant parame-
ters. We also provide a preliminary set of parameters for an instance of SPANSE
able to achieve 128 bits of classical security. We remark that such a set of pa-
rameters does not result from an optimization procedure, and that many degrees
of freedom exist for tuning the system parameters, which can be exploited to
design other instances of SPANSE possibly achieving even better tradeoffs and
higher levels of security. This, however, is left for future works.

There are two main factors that affect the design of parameters for SPANSE:

– The security level, which is based on the difficulty of decoding large-weight
vectors, as shown in the previous section.

– The average number of attempts needed for generating a valid signature,
which depends on the desired density of the signatures (related to the security
level) and the distribution d(x) of the entries of S.

For the latter, in the next section we consider the simplified case in which
the entries of S take values in {0; 1} with equal probability, that is d(x) =
0.5 + 0.5x. This choice allows an easy modeling of the rejection sampling rate,
as shown in the next section. However, more general choices of d(x) are possible,
which may provide stronger security guarantees paid in terms of some slower
rejection sampling. Some examples will be provided in Section 5.3, along with
the corresponding rejection rates estimated through Monte Carlo simulations. A
more general theoretical analysis of the rejection rate is left for future works.
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5.1 Rejection sampling

As described in Section 3.2, the signature generation of SPANSE may require
some rejection sampling in order to guarantee that each produced signature has
maximum weight n. To this end, we need to estimate the probability that a
random signature is valid: the reciprocal of this probability corresponds to the
average number of attempts needed to generate a valid signature.

To do this, we consider that

σ = (c+ e)ST = cST + eST = c̃+ ẽ,

where c = uG with u having weight mg, G is formed by rows with weight wg, e
has weight w and S has columns and rows with weight mS . In particular, e is
partitioned as

e = [ e′︸︷︷︸
Length k

|| e′′︸︷︷︸
Length n − k

],

where e′ is an all-zero vector and e′′ has weight w. Note that u and e take values
in {0; 1}, while σ generically takes values in Fq. From now on, we consider the
simplified case in which also the entries of G and S take values in {0; 1}. Note
that this is not a constraint in SPANSE, and is considered in this preliminary
work only for easiness of analysis.

We start by deriving the weight distribution of c̃. To this end, we consider
that also c has a varying weight: indeed, each of its entries is obtained as the
inner product between u and the corresponding column of G. We approximate
each column of G as a vector formed by k samples of a Bernoulli variable with
parameter

wg

n . Since mg < q, any entry of c will be equal to x with probability

Pr[ci = x] =

(
mg

x

)(wg

n

)x (
1− wg

n

)mg−x

= fwg
n

(mg, x) . (25)

When mg ≪ k and wg ≪ n, one can approximate the above probability by
simply considering that either ci = 0 or ci = 1. Consequently, we approximate
c as a vector of n samples of a Bernoulli variable with parameter ρc = 1 −(
1− wg

n

)mg ≈ mgwg

n .

We now consider the product c̃ = cST : each column of ST has constant weight
mS , so that each entry of c̃ is in the form

∑n−1
i=0 cisi. Again, we approximate si

as a Bernoulli variable with parameter ρS = mS

n . Consequently, we have

Pr [c̃i = x] =

mgwg∑

z=x

fρc
(n, z)

∑

x′=x,x+q,···
x′≤z

fρS
(z, x′). (26)
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We repeat the same reasoning for ẽ = eST , considering that e has constant
weight w only in the last n− k entries. Since w < q, we obtain

Pr [ẽi = x] =

(
w

x′

)(mS

n

)x′
(
1−mS

n

)z−x′

= fρS
(w, x′). (27)

We are finally ready to obtain the probability that an entry in σ is null, that is

Pr[σi = 0] =

q−1∑

x=0

Pr[c̃ = x]Pr[ẽ = −x]. (28)

So, the probability to obtain a valid signature is

Pr[σ is valid] =
(
1− Pr[σi = 0]

)n

. (29)

The reciprocal of the above probability is the average number of attempts, before
a valid signature is generated.

5.2 Computational complexity

As we have described in the previous section, the bottleneck in the attacks
consists in forgery attacks, whose running time is an exponential function of
the code length n. Actually, because of the DOOM setting, the time complexity
receives a small speed-up owing to the quasi-cyclicity of the code. Yet, the speed-
up grows with the square root of p. Also, note that the code length n is linear
in p. In practice, we choose p as a very small constant (say, a few hundreds), so
that the cost of forgery attacks is essentially linear in n. Then, in practice, to
achieve a security level of λ bits we need n = O(λ).

Key generation requires to compute inversions over Fq (since we need to
compute the systematic parity-check matrix and S−1), which can be performed
with cost O(n3) = O(λ3). The generation of a signature, instead, requires only2

vector sums and vector-matrix multiplications, so takes time O(n2) = O(λ2).
Notice that, in principle, one needs to consider also the average number of re-
jected signatures before a valid one is obtained. Yet, when q is large enough,
the rejection rate is practically constant (and extremely close to 0). This implies
that the final rejection sampling has no practical impact on the cost of the sig-
nature generation algorithm, which we consequently estimate as O(λ2). Finally,
signature verification clearly comes with the same cost O(λ2) since, again, only
hashes and multiplications are involved.

5.3 System parameters

Based on the above considerations, let us consider a possible instance of SPANSE
with the following parameters.

2 Note that computing hash functions takes time which does not depend on n
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– Code length: n = 24000
– Code dimension: k = 12000
– Circulant block size: p = 101
– Field order: q = 127
– Syndrome weight: w = 26
– Weight of the rows of G: wg = 11
– Number of rows of G selected per generated codeword: mg = 12

For the choice of the distribution of the entries of Fq in each row of S, we can
consider several solutions. A first simple case is that of considering a uniform
binary matrix, that is, d(x) = 0.5+0.5x. Through the analysis reported in Section
5.1 we can verify that this guarantees a negligible rejection rate for the system
parameters we are considering. In fact, for these parameters, the probability that
a produced signature is not valid (i.e., does not have full weight) is estimated as
1.44 · 10−6, confirming that the rejection rate can, in practice, be neglected. For
instance, the probability that signature generation has to be repeated for more
than two times is lower than 2−38.

However, we may also consider other distributions for the entries of S in-
cluding more elements of Fq. For example, by considering d(x) = 0.5783 +
0.4167x + 0.0042x2 + 0.00083x13 we have verified through Monte Carlo sim-
ulations that the signature rejection rate is in the order of 1%, which is still
largely acceptable. Including larger values from Fq in the entries of S inevitably
increases the signature rejection rate. As another example, we have considered
d(x) = 0.5775+0.4167x+0.0042x2+0.00083x13+0.00083x25 and verified through
Monte Carlo simulations that the signature rejection rate in this case is in the
order of 98.5%. Considering that the generation of each signature in SPANSE is
very fast, however, such a rejection rate may still be acceptable and result in an
overall fast signature generation.

From the above choice of the system parameters, it follows that:

– The public key size is Ks = 2436.6 kB.
– The number of different signatures is Ns = 2263.9.
– The number of different codewords is Nc = 2133.8.
– The work factor of attacks based on information set decoding (ISD) is 2132.

Concerning the PGE+SS solver, we found that the attack is optimized with
the following parameters:

– b = 9;
– ν = 0.010725;
– ϕ = 0.493000.

The resulting cost, taking also DOOM into account, is 2131.6.

6 Conclusion

We have introduced SPANSE, a code-based digital signature scheme exploiting
the hash-and-sign paradigm and the difficulty of performing decoding of large-
weight vectors for random-like codes. The new scheme stems from the previous
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proposal in [7], but prevents the applicability of attacks exploiting sparse matri-
ces by replacing them with dense ones. This is paid in terms of public key size,
which is increased by the use of non-binary codes defined over Fq instead of the
binary ones that were used in [7]. However, the resulting public keys appear to be
in the order of 2.5 MB for 128 bits of classical security, which seems a reasonable
size. Moreover, the new system exploits a straightforward signature generation
procedure, only based on vector-matrix operations, which makes it intrinsically
faster than alternative systems requiring decoding for signature generation.

In this first work we only studied the case of one-time keys, showing that
known attacks have exponential complexity and allow devising secure instances
under such a setting. The multiple-time case needs the introduction of an addi-
tional rejection sampling stage to tune the distribution of produced signatures,
and will be studied in future works.
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