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A B S T R A C T   

The ongoing paradigm transition from Industry 4.0 to Industry 5.0 is driving toward a new industrial vision 
rooted in addressing human and planetary needs rather than solely focusing on innovation for profit. One of the 
most significant shifts that defines Industry 5.0 is the change in focus from technology-driven progress to a 
genuinely human-centric approach. This means that the industrial sector should prioritize human needs and 
interests at the core of the production process. Instead of replacing workers on the shop floor, technologies 
should enhance their capabilities, leading to a safer and more fulfilling work environment. Consequently, the role 
of industrial operators is undergoing a substantial transformation. This subject has garnered increasing interest 
from both researchers and industries. However, there is a lack of comprehensive literature covering the concept 
of Operator 4.0. To address this gap, this paper presents a systematic literature review of the role of Operator 4.0 
within the manufacturing context. Out of the 1333 papers retrieved from scientific literature databases, 130 
scientific papers met the inclusion criteria and underwent detailed analysis. The study aims to provide an 
extensive overview of Operator 4.0, analyzing the occupational risks faced by workers and the proposed solu-
tions to support them by leveraging the key enabling technologies of Industry 4.0. The paper places particular 
emphasis on human aspects, which are often overlooked although the successful implementation of technologies 
heavily relies on who uses them and how they are utilized. Finally, the paper discusses open issues and chal-
lenges and puts forth suggestions for future research directions.   

1. Introduction 

The fourth industrial revolution is a widely discussed paradigm 
aimed at digitizing and automating manufacturing production systems. 
New tools and methodological approaches need to be developed to 
adapt to the new industrial scenario. However, in recent years, more 
attention has been paid to enabling technologies with which the oper-
ator interacts rather than his/her needs. The Industry 4.0 paradigm is 
bringing about significant changes in the role of workers, leading to an 
evolution in human-machine interaction. This transformation will 
reshape the industrial workforce and have significant implications for 
the nature of work [1]. Workers are now required to possess high flex-
ibility and demonstrate adaptive capabilities in dynamic working en-
vironments [2]. In the factory of the future, human beings, with 
cognitive abilities that cannot be replicated by machines, will continue 
to play a central role in driving continuous improvement and providing 
real added value to maintain competitiveness. Although smart auto-
mation, robots, and other technological advancements have enhanced 

production systems, it is the human who ultimately makes the final 
decisions and remains responsible for creative work [3,4]. The operator 
remains at the core of the manufacturing system, even though their role 
is undergoing change [5]. 

Hence, it is imperative for industries to address human sustainability 
and adopt a human-centered production approach that aims to enhance 
workers’ skills, health, and safety [6]. The efficiency and productivity of 
a manufacturing system are directly linked to human performance. 
Ensuring the well-being, safety, and health of workers has a positive 
impact on the entire industrial ecosystem [7,8]. 

In recent years, manufacturing companies have increasingly priori-
tized the safety and well-being of their employees. According to the 
European Business Survey on New and Emerging Risks (ESENER), 
approximately 25–30% of European industries have implemented 
appropriate procedures to manage psychosocial risks [9]. The absence of 
such measures leads to work-related illnesses affecting millions of 
workers, resulting in significant social costs and economic conse-
quences. More than one in three workers state that their work negatively 
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affects their health, and approximately three out of five workers report 
complaints of musculoskeletal disorders (MSDs), particularly in the 
upper limbs [10]. MSDs are the most prevalent occupational diseases in 
the manufacturing sector, causing both pain and a decrease in produc-
tivity [11]. 

Over the past few decades, significant changes in demographics, 
increased economic globalization, and rapid technological advance-
ments have profoundly transformed the world of work. These trans-
formations have led to the emergence of psychosocial risks, which have 
had a detrimental impact on the health and safety of workers [12]. 
Psychosocial risks are defined by Cox and Griffiths [13] as "those aspects 
of work design, the organization, and management of work, and their 
social and environmental contexts, which have the potential to cause 
psychological, social, and physical harm”. ESENER [9] reported that 
over 40% of European industries perceive psychosocial risks as chal-
lenging to address compared to traditional risks. According to [14], 
27.9% of employees reported that their exposure to these risks affected 
their mental well-being, corresponding to approximately 55.6 million 
workers. 

In this context, the key enabling technologies (KET) of Industry 4.0, 
in addition to the inherent benefits of automation, are providing new 
opportunities for physical, cognitive, and sensorial assistance. Incorpo-
rating work processes into the Industry 4.0 concept emphasizes the 
importance of empowering workers to achieve enhanced productivity 
rather than replacing them [15]. The widespread utilization of advanced 
sensor-based systems and the application of artificial intelligence (AI) 
for analyzing large volumes of data are further expanding these oppor-
tunities by enabling real-time diagnosis and intervention. These de-
velopments offer tangible benefits in terms of productivity, quality, 
reliability, and even worker well-being. Dornelles et al. [16] proposed a 
shift in perspective, viewing Industry 4.0 not just as a collection of 
technologies aimed at improving process efficiency, but also as a suite of 
technologies capable of assisting the workforce within a company. 

In this evolving scenario, the concept of “Operator 4.0″ emerges, 
referring to a smart and qualified worker who cooperates synergically 
with advanced human-machine interaction technologies toward a 
complete symbiosis between humans and automation [5]. The Operator 
4.0 generation is supported by smart machines, interacts with collabo-
rative robots and advanced production systems, and utilizes KETs, such 
as virtual reality (VR), augmented reality (AR), and wearable devices, 
exploiting their benefits. To ensure the success of the smart factory of the 
future, it is crucial to not overlook the interaction between the work-
force and KETs, as well as the potential broader impacts these technol-
ogies may have on the operator. Considering the needs of the worker and 
the secondary effects that these technologies may impose on them is 
essential. 

Romero et al. [17] presented a first comprehensive analysis of 
“Operator 4.0″, categorizing the types of Operator 4.0 based on the 
supporting technology. Subsequently, the scientific community has 
increasingly focused its research on the role of the smart operator, 
building upon this classification. However, the prevailing methodolog-
ical approach is often technology-driven, neglecting the human aspects, 
despite the well-established knowledge that the successful imple-
mentation of technology strongly depends on who is using it and how 
they interact with it [18]. 

Several studies have emphasized the ongoing uncertainty sur-
rounding the potential impact and enabling effects of advanced digital 
technologies on workers within the rapidly evolving domain of digital 
transformation [19]. These studies raise important questions about how 
these technologies will shape the future of work and the workforce. 
Meindl et al. [20] revealed a lack of clarity regarding the interface be-
tween Operators 4.0, the utilized technologies, and the multiple oper-
ational processes necessary for implementing a smart working approach. 
The intricate interplay among these elements remains unclear, posing 
challenges in effectively integrating advanced technologies into work 
environments and optimizing their benefits for workers. Further 

research is essential to comprehensively understand the relationships 
and dynamics involved in the impact of advanced technologies on op-
erators to ensure the successful adoption and implementation of digital 
transformation strategies. 

For these reasons, a comprehensive study of the current state of the 
art has been conducted to provide a clear and thorough analysis of 
Operator 4.0. The focus is on examining the different typologies of 
future operators and analyzing the impact of enabling technologies 4.0 
on the performance and psycho-physical well-being of the operators. 
This analysis encompasses the evaluation of the stakeholders involved, 
the types of interaction, the required changes for operators, and the new 
benefits obtained by workers. Moreover, the study identifies and sug-
gests future research directions to address the existing gaps in knowl-
edge and understanding. 

1.1. Motivation and novelty of the work 

Concerning recent literature reviews on the topic of Industry 4.0, 
Human factors, and Operator 4.0, several studies can be identified. In  
Table 1 the identified papers are listed, highlighting the main topic 
discussed, future directions proposed by the authors, and the identified 
limits. 

Some of the reviewed papers discussed topics unrelated to the spe-
cific area of interest, such as the aging workforce [32], risk management 
[33], manual smart assembly systems [34,35], and digital trans-
formation [36]. Other literature reviews focused on specific aspects 
related to HF/E, including the relationship between Industry 4.0 and 
participatory ergonomics [30], safety and ergonomics in HRC [27], HF 
in production and logistics [25], and organizational and management 
aspects of HF/E [28]. Conversely, some reviews provided general 
overviews of the changing role of the operator before and after the 
emergence of Industry 4.0 [24], and the potential scenarios, hazards, 
and possibilities in the work of the future [26]. Nevertheless, both did 
not investigate how operators are actually coping with these changes. 

Mark et al. [31] presented an overview of worker assistance systems 
used in industrial settings, focusing on the technologies and how to 
leverage their benefits to improve applicability in the industry. 

Four reviews specifically discussed human aspects within the In-
dustry 4.0 paradigm. Badri et al. [21] identified only eleven relevant 
papers and the review adopted a technological perspective; Leso et al. 
[22] limited their review to the impact of Industry 4.0 on occupational 
safety and health management systems. Kadir et al. [23] and Grosse 
et al. [29] conducted broader searches, considering HF/E in general 
related to Industry 4.0. The former followed a technology-driven vision 
and did not consider how the human role has changed; the latter per-
formed a content analysis but analyzed only the keywords, disregarding 
the actual content of the papers. Nevertheless, all authors concluded that 
the literature on this topic is still limited and scarce, emphasizing the 
need for further research on Industry 4.0 with a stronger focus on HF/E. 

In summary, there is still a lack of a detailed literature review 
focusing on the role of Operator 4.0 in the manufacturing context, as 
well as the research gaps and future directions in this area. The need for 
such a review arises from the new paradigm of human-centric produc-
tion, which aims to prioritize humans and their needs. This work aims to 
contribute in several novel ways:  

• Providing a clear and comprehensive overview of Operator 4.0 by 
analyzing the various typologies of future operators. 

• Analyzing all the risks to which operators are exposed and how In-
dustry 4.0 can help mitigate these risks.  

• Investigating technological solutions that can support Operator 4.0 
and assessing how these technologies impact the performance and 
psycho-physical well-being of operators.  

• Discussing the emerging risks associated with the use of KETs and 
proposing strategies for researchers and industries to address the 
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identified research gaps and challenges by following the suggested 
future research directions. 

2. Methodology 

To achieve the objective of this paper, a systematic literature review 
was conducted, covering papers published until May 2021. The meth-
odology employed follows the approach developed by Tranfield et al. 
[37], which enables the identification of relevant existing studies related 
to a specific subject or research issue. This systematic approach mini-
mizes subjectivity and ensures the repeatability and transparency of the 
study’s results [38]. 

The research involved searching for relevant works within the main 

online databases of scientific literature that collect academic studies 
published in indexed journals. The databases used for this research are 
Web of Science, Scopus, and Science Direct. These databases cover a 
wide range of academic disciplines, including industrial production 
management, human-centered manufacturing, and engineering. They 
also allow accurate and customized searches. 

A set of keywords was defined to find a relevant range of papers. The 
following search keywords and Boolean operations were used: “Oper-
ator 4.0″ OR (“Operator” AND “Human Factors” AND “Industry 4.0″). 
The search was carried out using the title, abstract, and keywords. Since 
Operator 4.0 is the core of this analysis, all papers containing this 
keyword (or the synonym “Worker 4.0″) have been included. With 
"Operator" and its synonyms, the theme of the operator understood as a 

Table 1 
Identified previous literature reviews.  

Paper Year Content Future research directions Main limits 

[21]  2018 Considerations regarding the integration 
of Occupational Health and Safety (OHS) 
within the Industry 4.0 paradigm. 

New measures based on a comprehensive vision of managing 
change to ensure a smooth and safe transition to the new 
paradigm 

Only 11 papers are analyzed (only 4 are journal 
papers). It adopts a technological perspective, 
neglecting worker health and safety. 

[22]  2018 Impacts of Industry 4.0 on workplaces in 
terms of practical effects and consequences 
on OHS 

A proactive approach to risk assessment at the design or early 
stage of the new system implementationConsideration of 
different characteristics of workers for the job designFurther 
investigation for new learning modalities for workersThe 
development of international standards aimed at protecting 
workers from all potential risks 

Only 22 peer-reviewed papers are analyzed, 
including journal papers and conference 
proceedings. 
It is not a systematic literature review. 

[23]  2019 To what extent, what type of, and how do 
academic publications on Industry 4.0 
integrate Human Factors and Ergonomics 
(HF/E) in their research 

Focus on empirical dataTest of conceptual tools, methods, 
and designs in real industrial scenariosAdoption of a holistic 
research view on HF/E in Industry 4.0, including the three 
main domains (physical, cognitive, and organizational) 

Few peer-reviewed papers (only 13 are journal 
papers). 
It adopts a technological perspective. 

[24]  2020 How Industry 4.0 will change the role of 
the operator in production systems 

Development of assistance systems (cognitive and sensorial 
aid)The production system needs to be designed to facilitate 
the physical work ergonomically and assist the operator in 
complex tasksBalance the workload of the Operator 
4.0Understand the effects of Industry 4.0 in its practical 
implementation regarding the people involved 

It is a general overview of the role of the operator 
that changes before and after Industry 4.0. 
However, it does not focus on how the operator 
deal with these changes and their impacts on him. 

[25]  2020 Overview of the research challenges and 
opportunities in the field of Human Factors 
(HF) in production and logistics systems 

Development of a human-centered perspective in production 
and logistics systemsNew human-centered approaches for 
the design, modeling, and management of these systems 

It is mainly focused on the management and design 
of production and logistics systems. It analyzes only 
IFAC conference papers, and it is not a systematic 
literature review. 

[26]  2020 Identification and characterization of 
scenarios and hazards in the future of work 

Collaboration between scientific and industrial communities 
for the implementation of measures to guarantee a gradual 
and safe transition toward the futureResearch on 
psychosocial risks, prevention through design, and emergent 
risks at all levels of productionStrategic foresight to be 
prepared for the introduction of AI technologies to workers’ 
safety, health, and well-being.Standards for specific training, 
reskilling, and upskilling of workers 

It is a general overview of the future of the work in 
terms of all the possible scenarios, related risks, and 
recommendations to address them. However, it 
does not investigate how the operator faces this 
change. 

[27]  2021 Description of the current state of the art of 
safety and ergonomics in collaborative 
robotics. 

Balance of the developments of different research areas 
related to Human-Robot Collaboration (HRC). This will be 
necessary to create genuine and human-oriented potentials 
and not technological barriers. For these reasons, future 
developments should focus on the alignment of Human- 
Robot Interaction (HRI). Enhance safety and ergonomics 
research themes, especially in terms of sustainability, 
operator well-being, and related human-centered design, 
social, and psychophysical aspects of collaboration. 

It is focused on a specific KET (HRC) evaluating 
aspects related to considers safety and ergonomics. 

[28]  2021 Description of the state of the art of the 
HF/E aspects related to the Industry 4.0 
paradigm focusing on organizational and 
management aspects. 

Analytics of processes combined with HF/EUnderstand 
organizations’ capabilities and their maturity in process 
analyticsUnderstand the maturity of technologies and the 
entire manufacturing process performance from the HF/E 
perspective 

Few peer-reviewed papers (only 16 are journal 
papers). 
It is focused on organizational and management 
aspects, rather than on the operator’s well-being. 

[29]  2021 Which HF aspects and to what extent have 
been considered in the scientific literature 
on Industry 4.0. 

Systematic integration of HF in future Industry 4.0 research 
and development 

Content Analysis (CA) is limiting, since it analyzes 
only the keywords, ignoring the actual content of 
the paper. Moreover, the identified keywords (RU) 
can have ambiguous meanings. 

[30]  2021 Literature review of the existing research 
works on the relationship between 
Industry 4.0 and Participatory 
Ergonomics. 

The authors do not suggest future research directions to 
include participatory ergonomics in the context of Industry 
4.0 

Only 10 papers are analyzed in detail. It is focused 
specifically on participatory ergonomics and its 
relationship with Industry 4.0. 

[31]  2021 Description of the current state of the art of 
worker assistance systems in 
manufacturing 

Further industrial applications of worker assistance systems 
in manufacturing New methodologies for the choice of the 
most suitable system for a specific use caseNew 
methodologies for a structured evaluation of the suitability of 
worker assistance system 

It is focused on a specific topic: worker assistance 
systems.  

M. Ciccarelli et al.                                                                                                                                                                                                                              



Journal of Manufacturing Systems 70 (2023) 464–483

467

worker and as a person is included in the analysis. The "Human Factors" 
group considers aspects related to ergonomics and operator well-being, 
also including the themes of "Human-centered manufacturing" and 
"Human-centered design". Finally, within the keyword "Industry 4.0", 
both the concepts of the intelligent factory and the most widespread 
enabling technologies in the industrial environment, with which the 
operator can interact and from which he/she can be supported, have 
been included. For each of these groups, synonyms were chosen to cover 
as many papers as possible published in the existing scientific literature. 
The complete list of keywords is shown in Fig. 1. 

To determine the most relevant papers in the scientific literature, 
specific inclusion and exclusion criteria were established. The focus was 
placed on papers published in academic journals, while other types of 
publications such as conference papers, periodicals, and working papers 
were excluded. These types of publications generally undergo a less 
rigorous peer-review process [39]. Additionally, papers that were not 
written in English and those that were not digitally available were also 
excluded from the review. 

The methodology of the systematic research process is shown in  
Fig. 2. The electronic database research provided a collection of 1333 
journal papers, excluding duplicates. After carefully screening the titles 
and abstracts, the number of papers was reduced to 195. The aim is to 
exclude papers not relevant to the topic of Operator 4.0. For example, 
papers focused on medical or educational aspects have been removed. 
Subsequently, a preliminary analysis of the entire paper was carried out 
to select only the relevant papers for the review topic. Finally, at a later 
stage in the process, and to ensure a thorough analysis of the topic, 
additional academic studies were identified through the manual cross- 
referencing screening. As a result, 130 scientific papers have been 
selected for detailed analysis, out of which 16 are review papers. The 
review papers have been thoroughly discussed and analyzed in the 
previous section. They have been included in the descriptive analysis but 
excluded from the detailed analysis and discussion. 

3. Descriptive analysis 

3.1. Journal and year of publication 

To investigate the evolution and current significance of the topic, an 

analysis of the distribution of scientific papers over the years was con-
ducted. Fig. 3 illustrates the temporal distribution of the selected papers. 
From 2018–2021, there has been a significant exponential increase in 
the number of academic contributions focusing on Operator 4.0, indi-
cating a growing interest in this field. This surge in attention from the 
scientific community can be attributed to the widespread adoption of 
KETs within the industrial sector to support operators. However, the 
integration of these new technologies into work environments necessi-
tates further research and the development of new methods and tools 
that prioritize the well-being of the operator. 

The discussion surrounding Operator 4.0 encompasses various as-
pects, leading to a wide range of journals being involved in publishing 
relevant papers (68) with different scopes (Fig. 4). Most of the papers 
were published in Computers and Industrial Engineering and Applied 
Sciences (Switzerland) (11), followed by Journal of Manufacturing 
Systems (7), International Journal of Advanced Manufacturing Tech-
nology (6), Robotics and Computer-Integrated Manufacturing (6), 
Applied Ergonomics (5). Fig. 4 shows the distribution of the selected 
papers across the main journals. Journals with fewer than 2 papers were 
not included in the chart. 

3.2. Category of research studies 

The selected papers have been categorized based on their research 
study approach, as depicted in Fig. 5. The most prevalent research study 
category is the mixed approach, comprising 39 papers. This approach 
involves the development of a new method along with its validation 
through a case study, which can be conducted in a laboratory setting (18 
papers) or a real industrial context (21 papers). There were 23 papers 
focused solely on experimentation, either in a laboratory or a real in-
dustrial environment, without proposing a new theoretical framework. 
Additionally, 21 papers presented the development of an application or 
tool, including its testing in either a laboratory or an industrial setting. 
Finally, 16 papers analyzed the context and the state of the art, followed 
by a group of papers proposing a new theoretical method (14 papers). 
Considering the papers that include a real case study, the main industrial 
sectors covered are metalworking and engineering industries, automo-
tive and industrial vehicles, manufacturing companies (e.g., footwear, 
wood), and logistics. 

Fig. 1. Combination of research in the literature search.  
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3.3. Keywords analysis 

The keywords provided by the authors of the selected papers were 
analyzed. Firstly, a co-occurrence analysis of the keywords was con-
ducted using VOSviewer software [40], and the main results are shown 
in Fig. 6. A minimum of 3 occurrences was used for each keyword, 
resulting in a network map of 22 keywords and 155 links. Fig. 6 shows 

the co-occurrence network map of the keywords, along with a table 
indicating the frequency and total link strength for each keyword. The 
size of the nodes represents the frequency of keyword occurrences. The 
presence of a link between two nodes indicates that they have been used 
together in the same paper, and the thickness of the line represents the 
strength of the link, which indicates how frequently the two terms occur 
together. For example, in this case, the keywords "industry 4.0" and 

Fig. 2. Workflow of the scientific literature research process.  

Fig. 3. Distribution of the selected papers across years.  
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"human factors" are frequently used together. For example, in this case, 
the keywords “industry 4.0″ and “human factors” are frequently used 
together. 

Additionally, for each keyword, the "total link strength" is calculated, 
which is the sum of all link strengths ending on that specific node. For 
example, the keyword “cognitive load” has one link with a strength 
equal to 1 and another link with a strength of 2, the total link strength of 
that node is 3. The color of the nodes corresponds to the average pub-
lication year of the keyword. 

The analysis of the keywords in the selected papers has provided 
insights into the main topics discussed. The keyword "industry 4.0" had 
the highest frequency, indicating its significance in the literature. 
Among the technology-related keywords, "augmented reality" had the 
highest number of occurrences. In terms of human aspects, the most 
commonly used keywords were "human factors" and "ergonomics". 

When examining the trends over the years, it becomes evident that 
the concept of "Operator 4.0" is more recent compared to "industry 4.0". 
"Digital transformation" emerged as a topic due to the widespread 
adoption of the new industrial revolution. On the other hand, "ergo-
nomics" and "human factors" are more established aspects in the 
literature. 

Analyzing the links between nodes, it is noticeable that the keyword 
“industry 4.0″ is frequently associated with “human factors”, “ergo-
nomics”, “social sustainability”, and “operator 4.0″. This finding 

highlights the increasing focus on social and human aspects related to 
the fourth industrial revolution. It also demonstrates that despite the 
close relationship between Industry 4.0 and technological advance-
ments, there is a significant emphasis on humans. 

However, the software used considers different words, even if they 
differ by only one letter but represent the same concept. Therefore, 
keywords with similar meanings have been grouped. For example, 
keywords related to occupational health and safety (OHS), such as 
"human factors," "ergonomics," and "well-being," have been aggregated 
into a group that is comparable in number to "industry 4.0". A similar 
approach has been applied to enabling technologies, where keywords 
like "augmented reality," "mixed reality," and "virtual reality" have been 
merged into the concept of extended reality (XR). Likewise, keywords 
related to human-robot collaboration, such as "human-robot interaction" 
and "collaborative robot," have been combined. The resulting graph in  
Fig. 7 shows the aggregated keywords. It can be observed that "industry 
4.0" remains the most common keyword, followed by those related to 
human factors and ergonomics (HF/E). Among the chosen research 
keywords, XR and HRC are the most frequently mentioned technologies. 
The analysis also indicates that the topic of digitalization is relatively 
underrepresented in the literature. Finally, assembly is the most 
frequently cited activity, followed by maintenance. 

4. Operator 4.0 

The focus of this review is on Operator 4.0, the worker of the smart 
factory of the future. The new production paradigm is shifting from 
independent automated and human activities towards a human- 
automation symbiosis, characterized by synergic cooperation between 
machines and humans. Automation is not meant to replace human skills 
and abilities but rather to support and enhance them, leading to 
improved performance and efficiency. Over the years, operators have 
adapted their activities based on advancements in industrial and digital 
production technologies, giving rise to different generations of operators 
[41]. The Operator 1.0 generation primarily performs manual and 
dexterous work with the assistance of manually operated machine tools. 
Operator 2.0 is aided by computer tools and information systems. The 
third operator generation cooperates with robots, machines, and com-
puter tools. According to [17], the Operator 4.0 generation is repre-
sented by “a smart and skilled operator, who performs not only 
cooperative work with robots but also work aided by machines as and if 

Fig. 4. Distribution of the papers in the main journals.  

Fig. 5. Distribution of the papers considering the study category.  
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needed, employing human cyber-physical systems, advanced 
human-machine interaction technologies, and adaptive automation to-
wards human-automation symbiosis work systems”. Operator 4.0 in-
troduces a new design and engineering philosophy for adaptive 
production systems, where automation is seen as a means to enhance 
humans’ physical, cognitive, and sensorial skills by integrating 
human-cyber-physical systems (HCPS). This new generation of opera-
tors is capable of managing complex systems by leveraging and 
enhancing human skills and capabilities through the utilization of 
human-machine interaction technologies [42]. Operator 4.0 possesses 
superior knowledge that augments their skills and abilities within the 

working environment, utilizing information and guidance generated in 
virtual contexts. Di Nardo et al. [43] have highlighted the differences 
between traditional workers and Worker 4.0 in terms of competence and 
knowledge gaps. In this new context, smart companies need to invest in 
"re-skilling" or "skill revolution," which involves training and updating 
workforce competencies. 

Since the definition proposed by Romero et al. [17], the concept of 
Operator 4.0 has been extensively investigated in the literature, leading 
to a significant increase in the number of scientific papers addressing it. 
26 papers (approximately 23%) have specifically focused on the concept 
of Operator 4.0, providing detailed descriptions of their abilities, roles, 

Fig. 6. Keywords co-occurrence trend using VOSviewer.  

Fig. 7. Most common authors’ keywords.  
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and responsibilities. Many authors have adopted the description pre-
sented by Romero et al. [41] as a reference, adapting it to the specific 
context and objectives of their paper. This skilled operator of the future 
can and should be aided in various ways to create socially sustainable 
workplaces [44]. Kaasinen et al. [45] emphasized the need for socially 
sustainable factories that are well-suited for the Operator 4.0 genera-
tion. They discussed the importance of enabling workers to understand 
and develop their creative and innovative skills using digital assistance 
systems and technologies without compromising production perfor-
mance. De Miranda et al. [46] defined Operator 4.0 as a cyber-physical 
system (CPS) with extensive connectivity capabilities at various scales 
and levels. They highlighted the operator’s creative intelligence and 
expertise in the relevant knowledge domain, which enable analytical 
thinking, calculations, and simulations. Ruppert et al. [47] similarly 
emphasized the concept of Operator 4.0 as being based on HCPS, 
designed to facilitate synergistic cooperation and integration between 
humans and machines. Taylor et al. [48] presented a different 
perspective, envisioning the operator of the future transitioning from 
operators to makers, contributing to a better working life and socially 
sustainable factories. They referred to this as the "Maker 1.0" concept, 
where operators take on the role of product engineers rather than su-
pervisors of production processes. In the changing paradigm of the smart 
factory, Cimini et al. [49] defined the roles of humans as data acquisi-
tion, state inference, state/system “influencing”, and actuation. The 
proper integration between humans and CPPS requires the introduction 
of KETs to enhance human capabilities. Moreover, Operator 4.0 needs to 
establish a synergic symbiosis with AI, as AI primarily serves to improve 
and augment human capabilities [50]. To foster shared trust and mini-
mize communication overhead between Operator 4.0 and AI, both en-
tities should work together, leveraging and enhancing each other’s 
complementary strengths. 

The objective is to establish trusting and reliable relationships be-
tween humans and automation, empowering Operator 4.0 with new 
skills and technologies facilitated by the Industry 4.0 revolution. Table 2 
describes all the Operator 4.0 typologies found in the selected papers. 
Different authors have defined distinct typologies that best characterize 
the Operator 4.0 figure they have considered. Mattsson et al. [51] 
described Operator 4.0 as a proactive operator capable of managing 
dynamic and flexible digitalized work, handling many different tasks, 
gathering information, and interacting with several technologies and 
systems. Mazali [52] defined the factory worker of the future as 
participative and proactive, in contrast to the resistant and reactive 
factory worker of the twentieth century. As mentioned earlier, Taylor 
et al. [48] proposed a significant shift in the role of humans, recognizing 
their creative potential as a complement to automated production sys-
tems. In this way, the operator becomes a creative operator. The 
growing attention to occupational health and safety in the factory of the 
future has led to the emergence of a new typology of Operator 4.0. 
Indeed, Nicoletti et al. [53] identified the Industrial Safety 4.0 Operator, 
who leverages KETs to ensure health and safety, even in emergency 
scenarios. Finally, Kong et al. [54] introduced the concept of the 
Empowered Operator, equipped with industrial wearable devices inte-
grated with AI (similar to the smarter operator). This empowered 
operator is connected in real-time with other onsite operators and 
backend administrators, fostering effective communication and collab-
oration (similar to the social operator). 

Among the selected papers, a majority (77 papers, 67%) categorized 
Operator 4.0 according to the classification described above. Fig. 8 
shows the distribution of studies across the different types of operators. 
Most of the research works focused on augmented (29 papers, 38%) and 
collaborative (19 papers, 25%) operators. Healthy (10 papers, 13%) and 
smarter (6 papers, 8%) operators received less attention. Other typol-
ogies of operators, such as analytical and super-strength operators, were 
not identified in the papers analyzed. As shown in the figure, some pa-
pers considered multiple technologies, resulting in the combination of 
different operator typologies to describe their smart operator. For 

example, the operator who uses an AR device during the HRC can be 
defined as an augmented and collaborative operator [55,56]. 

Contrary to the findings from the keyword analysis, where HF/E- 
related keywords were more prevalent compared to XR and HRC key-
words, the literature mentions the healthy operator less frequently than 
the augmented and collaborative operators. This mismatch could be 
attributed to a tendency to associate Operator 4.0 with the technologies 
rather than his/her health. Thus, there is a need to shift the perspective 
and prioritize human health by adopting a thoroughly human-centric 
approach, placing humans at the center of the production process 
rather than being driven solely by technology. 

4.1. Work-related risks 

The Occupational Safety and Health Administration (OSHA) has 
categorized occupational hazards into five main categories: safety haz-
ards, chemical hazards, biological hazards, physical hazards, and ergo-
nomic hazards. In recent years, another category has been added to the 

Table 2 
Operator 4.0 typologies.  

Operator 4.0 
Typology 

Description Reference 

Super-strength 
operator 

Powered exoskeletons represent a type of 
biomechanical system where the human-robotic 
exoskeleton works cooperatively with the 
operator to increase his/her strength and 
endurance for effortless manual activities. 

[17] 

Augmented 
operator 

AR allows for enriching the real world with 
digital information and media that is overlaid in 
the operator’s field of view 

[17] 

Virtual operator VR allows the operator to interact with any 
object in interactive multimedia and computer- 
simulated reality with reduced risk and real-time 
feedback 

[17] 

Healthy operator The operator uses wearable devices, which are 
designed to measure health-related metrics and 
other personal data, to monitor his/her state of 
health 

[17] 

Smarter operator The operator uses an Intelligent Personal 
Assistant (IPA), equipped with AI, which helps 
the operator to interface with machines, 
computers, and all the production systems that 
are connected and integrated with all the others. 

[17] 

Collaborative 
operator 

Collaborative robots directly cooperate with 
operators through intuitive interaction 
technologies, performing non-ergonomic and 
repetitive tasks 

[17] 

Social operator The use of Enterprise Social Networking Services 
allows the operator to connect him/her on the 
shop floor with all the smart factory resources. 

[17] 

Analytical 
operator 

Big Data Analytics, the process of collecting, 
organizing, and analyzing many data, allows the 
operator to predict failures, determine when to 
carry out preventive maintenance, and 
understand the smart factory performance 

[17] 

Proactive operator The operator performs self-directed action, 
foresees or initiates change in the work system 
and work roles, and completes several different 
tasks, from monitoring and planning to verifying 
production strategies. 

[51] 

Creative operator The operator is considered a maker, who works 
alongside automated production systems but in 
a creative role rather than simply monitoring 
non-discretionary workflow processes. 

[48] 

Industrial Safety 
operator 

The operator exploits KETs to master procedures 
and safety regulations, and learn how to face 
emergency scenarios. 

[53] 

Empowered 
operator 

The operator is equipped with industrial 
wearable devices, which can enhance his/her 
perception and communication ability thanks to 
AI. His/her decision-making ability is improved 
by human experience and multidimensional 
information support. 

[54]  

M. Ciccarelli et al.                                                                                                                                                                                                                              



Journal of Manufacturing Systems 70 (2023) 464–483

472

classification, which is psychosocial and organizational hazards, 
reflecting the increasing recognition of psychosocial aspects. Safety 
hazards encompass potentially dangerous situations that can lead to 
injuries, accidents, and illnesses in the workplace. These hazards are 
more likely to affect operators who directly work with machinery and 
include risks such as slips, trips, falls, electrical hazards, and operating 
dangerous machinery. Chemical hazards pose a threat to workers who 
are exposed to hazardous liquids, solvents, gases, or acids. Exposure to 
these substances can cause illnesses, skin irritations, breathing prob-
lems, and in severe cases, even death. Biological hazards include any 
biological substance that could harm humans, such as viruses, bacteria, 
or molds, generally associated with working with animals, people, or 
infections plant materials. Physical hazards affect workers in extreme 
weather conditions or harmful working environments. They encompass 
various factors present in the work environment that can harm workers 
without direct physical contact. Examples include continuous loud 
noise, high or low temperature, radiation, or high exposure to sunlight/ 
ultraviolet rays. Ergonomic hazards arise from manual activities, body 
positions, and working conditions that strain the worker’s body. These 
risks are not always immediately apparent, making their identification 
challenging. Short-term impacts may result in muscle soreness, while 
long-term exposure can lead to musculoskeletal injuries. Ergonomic 
hazards include activities that involve awkward postures, manual 
handling of heavy objects, repetitive movements, excessive force, and 
excessive vibrations. In recent years, the recognition of psychosocial and 
organizational aspects has grown, necessitating their consideration in 
the analysis of operator risks. These hazards have negative effects on 
individual (e.g., health and well-being) and/or organizational (e.g., low 
productivity) outcomes [57]. They are primarily attributed to work or-
ganization and psychological factors, including high workload demands, 
intense work pace, and social relationships. 

Although the terms "hazard" and "risk" are frequently used inter-
changeably while debating health and safety aspects, their meaning and 
function are different. A hazard is typically defined as something that 
has the potential to cause harm, while risk takes into account the 
probability of exposure and the potential severity of the harm [58]. 
Hazards are associated with the intrinsic ability of a situation to cause 
negative effects (e.g., electric wiring). On the other hand, risk considers 
the likelihood of a damaging event occurring and its potential impact (e. 

g., the exposed electric wiring puts it in the "high-risk" category if it was 
entangled with a sharp object). However, in scientific papers, the au-
thors often identify the risks that operators are exposed to in specific 
conditions. For this reason, going forward, we will use the term “risk”. 

The selected papers were analyzed to identify the main risks to which 
the operator is exposed and the associated risk factors. Papers that 
mentioned certain risks for the operator in the introduction and did not 
address them further in the rest of the paper were disregarded. From the 
analysis, it emerged that 36% (41 papers) identified specific risks for the 
worker that need to be mitigated and reduced. The risks have been 
categorized according to the previous classification. Some authors 
identified multiple risk categories in their papers: 20 papers (approxi-
mately 49%) addressed ergonomic risks, 20 papers (approximately 49%) 
discussed psychosocial and organizational risks, and only 11 papers 
(approximately 11%) identified safety risks. No papers highlighted 
chemical, biological, and physical risks since they pertain to specific 
working environments. For each category, the effects and impacts that 
the risks may have on the operator were also reported if specified by the 
authors in their papers. Specifically, the following effects have been 
identified:  

• Ergonomic risks: biomechanical overload, MSDs, occupational 
illness 

• Psychosocial and organizational risks: detrimental effects on opera-
tors’ mental well-being, and human errors  

• Safety risks: injuries, and accidents. 

However, it has not always been possible to identify one or more 
effects in all the analyzed papers. In some cases, authors did not specify 
the impacts within the risk category (e.g., MSDs in ergonomic risks), but 
they referred to it in general (e.g., “not defined ergonomic risks”). 
Additionally, since understanding the causes of risks is essential for risk 
mitigation, all the possible risk factors identified in each paper have 
been included in the analysis. In literature, risk factors are defined as 
actions or conditions that increase the likelihood of injury [59]. 

To present the correlations between risk category risks effects, and 
risk factors, a Sankey diagram has been realized, shown in Fig. 9. The 
diagram depicts the flow between causes and effects, and the width of 
the arrow represents the magnitude of the flow. This allows for an 

Fig. 8. Presence of different operator’s typologies in the analyzed papers.  
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analysis of the most common factors leading to ergonomic, psychosocial, 
or safety risks, as well as the main effects and impacts within each risk 
category. Since ergonomic risks are more widely recognized within the 
scientific community, it is easier to specify an ergonomic risk compared 
to a psychosocial risk. As a result, there is a greater number of identified 
ergonomic effects compared to psychosocial effects, even though the 
number of papers that have identified these two risk categories is the 
same. 

The analysis showed that ergonomic risks are mainly caused by 
prolonged exposure to uncomfortable and awkward working postures 
[60], manual handling of heavy objects (i.e., lifting, pushing, carrying, 
etc.) [61], repetitive manual work operations [62], and physical strain, 
which includes physical fatigue, forceful and sustained movements, and 
excessive exerted forces [63]. These factors can result in biomechanical 
overload, MSDs, and occupational illnesses that require long-term 
treatments. As a result, workers may need to take absences from the 
production process, leading to productivity loss for the company. While 
MSDs are commonly associated with high physical workloads, psycho-
social and organizational factors have gained increasing importance in 
recent years in the insurgence of MSDs [64]. For example, an increase in 
work pace and a lack of recovery time have been linked to higher 
musculoskeletal strain [65]. The way work instructions are displayed 
and the layout of the workplace can also impact the worker’s ergo-
nomics, potentially forcing them to adopt uncomfortable postures [66]. 
A survey conducted by Wixted et al. [64] pointed out that psychosocial 
factors, such as poor social relations and low job control, are linked to an 
increase in self-reported musculoskeletal complaints, particularly in the 
upper back and upper limbs. 

One of the significant factors contributing to psychosocial and 
organizational risks is excessive mental workload, which refers to the 
level of cognitive engagement and effort required when performing a 
task [67]. High mental workload and excessive concentration can have 
negative effects on operators’ mental well-being, leading to stress [68], 
dissatisfaction [42], decreased productivity, and increased errors [69]. 
Additionally, various aspects related to work instructions and the 
complexity of operations can impact workers’ health and performance. 
Manual activities now require higher precision, and the trend of mass 
customization has led to an increase in product variants, placing a 

significant demand on working memory [70]. Traditional work and 
procedural instructions (i.e., paper-based) are often difficult to under-
stand, confusing, redundant, and inflexible, requiring significant time 
and effort to memorize [71,72]. Inadequate training sessions can also 
contribute to an increased likelihood of errors as they fail to provide 
sufficient skills and knowledge. In some cases, mistakes made by oper-
ators can be attributed to inadvertence, such as omission, misunder-
standing, or distraction [73]. Furthermore, physical strain, particularly 
fatigue, can also pose psychosocial and organizational risks. Excessive 
physical and mental fatigue can lead to an increased likelihood of errors 
and can compromise the overall production process [63]. 

Finally, research has shown that a majority of accidents and injuries 
occur in hazardous work environments, particularly in specific 
manufacturing industries [74,75]. Studies have indicated that accidents 
often result from inadvertence, omissions, and misunderstandings [73]. 
Improper training systems or work instructions have also been identified 
as contributing factors to accidents and injuries [76]. Physical and 
mental fatigue can further increase the incidence of accidents as 
short-term effects [77]. Additionally, there is a link between exposure to 
safety hazards and increased mental demand, further highlighting the 
interconnectedness of psychosocial and safety risks. 

5. Technological solutions to support Operator 4.0 

In this section, the papers were categorized based on the solutions 
they proposed to address the identified risks and the KETs that were 
used. The solutions were classified into three different categories:  

1. Design: it encompasses papers that presented a methodology or a 
framework to design workstation, work, process, plant, and collab-
oration between humans and robots/machines 

2. Application/System: it includes papers that described the develop-
ment of an application or a system using specific technologies, 
without necessarily defining a theoretical framework  

3. Evaluation: it comprises papers that presented assessments or 
evaluations. 

Fig. 10a depicts the correlation between the categories of solutions 

Fig. 9. Sankey diagram of the relation between risk factors, risk effects, and risk categories.  
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and the technologies, acknowledging that each article may encompass 
multiple KETs. Thus, each solution’s category can be associated with 
more than one KET. The majority of the works focused on design 
methodologies or system development. The used technologies were 
categorized into six main groups: XR, HRC, AI, CPS, Internet of Things 
(IoT), and Digital Twin (DT)/simulation. The XR category encompasses 
all X-Reality technologies, including AR, Mixed Reality (MR), and VR. 
The IoT category also includes wearable systems and devices. The 
analysis revealed that CPS and CPPS were generally employed together 
with other technologies. In the Design category, the most frequently used 
KETs were HRC, IoT, and CPS. For Application/System, XR prevailed, 
whereas for Evaluation, IoT and wearable devices were the most used 
technologies, as indicated in the graph. 

The Design of human-centered frameworks and/or methodologies is 
crucial before developing systems and applications to support Operator 
4.0. The majority of works proposed a framework to assist in the oper-
ator’s decision-making processes by using CPS and AI [50]. These 
frameworks aimed to address operators’ inquiries regarding tasks, pro-
cedures, and tools through intelligent personal digital assistants such as 
AR and CPS [2]. Additionally, they focused on responding intelligently 
to operators’ cognitive and physiological states using CPS and wearable 
sensors [78]. However, to perceive the advantages of introducing CPS 
and IoT technologies in the production systems and achieving suitable 
performances, it is necessary to properly integrate humans in this new 
environment. Therefore, some papers presented frameworks to integrate 
humans and technologies leading to dynamic and efficient cooperation 
[49,79]. Similarly, studying the interaction between humans and smart 
machines [80] and collaborative robots [81]. Highly adaptive and 
fast-reconfigurable systems are also necessary to establish efficient 
cooperation with smart systems [62]. Thus, the interest in designing 
systems that enable adaptive collaborative robots or smart machines 
based on human states or actions is highly increasing [62,82]. Other 
works presented methodologies for integrating technologies, such as 
IoT, DT, VR, and CPS, into the design of workstations [83], 
manufacturing processes [84], and work configurations [85]. This novel 
approach not only helps reduce design costs but also ensures the 
incorporation of HF from the early stages of the design process. Finally, 
the remaining papers in the Design category focused on HRC, specifically 
on the design of new collaborative workstations [86,87] and the defi-
nition of task allocation [88,89]. 

In the Application/System category, the development of XR applica-
tions is prevalent (31 papers). As depicted in the graph, the human- 
centered design approach for XR technologies is mostly overlooked, 
and the focus is directly on the development phase. Specifically, AR and 
MR devices are commonly employed to support and assist operators in 
manual activities [90], and enhance the interaction between humans 
and robots [55,56,91], or machines [92], while ensuring operator safety 

and productivity. Moreover, VR is utilized as an effective tool during the 
training phase, creating highly immersive and interactive virtual envi-
ronments where HRC can be studied and evaluated without exposing 
operators to any risks [93,94]. The remaining papers focused on the 
implementation of wearable devices, IoT systems, and CPS without 
proposing a theoretical framework [54,95]. 

Papers that concentrated on the assessment of operators’ well-being 
are classified under the Evaluation category. The majority of these papers 
employed wearable devices to measure and evaluate both the physical 
[61] and cognitive [96] ergonomics of shop floor operators. In some 
specific cases, the assessment was conducted within a virtual environ-
ment [97,98], during HRC [99–101], or while using AR applications 
[102,103] to monitor fatigue, mental stress, physical effort, and postural 
risks. 

Considering the significance of HF, an analysis was conducted to 
determine the number of works that incorporated human aspects such as 
ergonomics, well-being, and social sustainability in their proposed so-
lutions. To emphasize this aspect within each defined category, the 
graph in Fig. 10b only included papers that considered HF. It is imme-
diately evident that theoretical frameworks and assessments consis-
tently integrate human aspects, whereas they are often neglected in the 
development of applications or systems. By incorporating HF into the 
design of work environments, companies can create more inclusive and 
resilient systems that support the well-being of their employees, thereby 
contributing to social sustainability [104]. This would also promote the 
adoption of a proactive and preventive approach to work-related risks 
rather than a reactive one. 

The implementation of a smart solution can be driven by different 
factors. Analyzing the selected papers, the following drivers were 
identified:  

• D1: Increase social sustainability 
Social sustainability in production plants embraces various as-

pects, including the quality of working activity, workers’ empower-
ment, individual/collective learning, employee participation, work- 
life balance, workers’ rights, preventive occupational health and 
safety, and human-centered design of work [105,106]. The opera-
tor’s well-being is encompassed within the concept of social sus-
tainability, as it can be defined as a state characterized by 
satisfaction and positive emotions [107]. Common terms used to 
describe operator well-being include job satisfaction, motivation, 
good working conditions, and health and safety at work [70,108]. 
The aim is to preserve or build up human capital, promoting sus-
tainable prevention and encouraging greater participatory efforts.  

• D2: Reduce physical ergonomics risks 
Physical ergonomics risks are thoroughly described in section 4.1. 

Fig. 10. Correlation between technologies, solutions, and human factors.  
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The prevention, reduction, and elimination of these risks result in a 
safer and healthier work environment.  

• D3: Reduce Psychosocial risks 
Psychosocial risks are deeply thoroughly in section 4.1. Supporting 

the operator with advanced technologies during working activities 
leads to a reduce mental demand and cognitive workload.  

• D4: Increase safety and reduce accidents and injuries 
Safety risks are deeply described in section 4.1. Ensuring operator 

safety is the first aspect that a manufacturing environment should 
ensure, according to the Industrial Human Needs Pyramid [109].  

• D5: Improve interaction and collaboration between human and machine/ 
robot 

The Industry 4.0 paradigm demands a deeper consideration of the 
modality of interaction and collaboration between humans and 
advanced production systems. The aim is to establish efficient, 
satisfying, and even enjoyable cooperation, always guaranteeing 
operator safety and awareness [110].  

• D6: Face work change 
The paradigm shift from mass production to mass customization, 

along with the growing demand for more and more product variants 
and the rising cognitive tasks for operators, require a change in the 
organization of work [111]. To remain competitive and profitable, 
companies need further production flexibility, efficiency, and sus-
tainability [86]. On the other hand, the new production paradigm 
changes the role and the work of operators, who must cope with the 
increasing amount of information and product complexity [51,112].  

• D7: Increase human performance and company productivity 
The enhancement of human performance includes the reduction of 

human errors and competition times [72], while the improvement of 
company productivity means production efficiency, the reduction of 
time-to-market, and the improvement of product quality [69]. The 
introduction of new technologies to support the operator can be 
driven by improving these aspects.  

• D8: Reduce Costs 

The integration of the Industry 4.0 paradigm and the development of 
digital technologies can result in more efficient and flexible processes 
able to manufacture high-quality products, reducing costs and time, and 
providing a considerable competitive edge [113]. 

Fig. 11 illustrates the identified drivers and displays their corre-
sponding count in the articles, allowing for the inclusion of two or more 
drivers in a single paper. The most prevalent driver is the desire to in-
crease human performance and company productivity, followed by the 
aim to reduce psychosocial and physical ergonomic risks. Notably, there 
is greater attention towards psychosocial aspects compared to physical 

ergonomics, highlighting the growing interest in mental health. Never-
theless, considering both domains, physical and cognitive, ergonomics 
remains the prevailing driver that motivates companies to introduce and 
implement new technologies to support operators. The necessity to face 
the work change encompasses aspects related to performance and pro-
ductivity. Similarly, efforts to enhance collaboration and interaction 
between humans and machines or robots are aimed at improving per-
formance (e.g., right workload distribution), safety, and human aware-
ness. Social sustainability includes ergonomics but also encompasses 
other aspects that focus more specifically on human well-being and 
satisfaction. Lastly, the reduction of costs is mentioned relatively 
infrequently as a driver, although it is likely often implicit and not 
explicitly stated. 

Fig. 12 illustrates the relationship between the identified drivers and 
the utilized KETs, considering the possibility that papers may address 
multiple drivers and multiple KETs simultaneously. The use of XR 
technologies can significantly enhance cognitive and performance out-
comes in operational settings by reducing cognitive load, eliminating 
the split-attention effect, and thereby reducing errors [68,114]. In 
comparison to traditional instructions, which are often complex, 
redundant, and physically distant, digital instructions provided by XR 
devices enable a decrease in demands on working memory [72]. 
Moreover, AR-based assistance systems can support spatially dispersed 
teams, optimizing their temporal coordination and consequently overall 
company performance [115]. In complex environments, accidents are a 
recurring problem, and the use of XR technologies for maintenance tasks 
can enhance safety, maintain availability, reduce errors, and decrease 
the time needed for scheduled or ad hoc interventions [73,116]. XR can 
rapidly provide relevant information to help resolve specific tasks, thus 
improving occupational safety measures [65]. Additionally, VR presents 
significant advantages for training operators in safety-critical environ-
ments and during collaboration with robots [94]. The work change and 
the increasing pace of innovation can be addressed by employing XR 
devices to transfer knowledge to employees in a faster and more efficient 
way [76]. Finally, the implementation of XR technology can have a 
positive impact on social sustainability by reducing the time spent on 
operations, enhancing worker health, improving well-being and moti-
vation, developing user skills, and increasing overall job satisfaction 
[105]. 

The implementation of HRC is primarily driven by the aim to 
improve physical ergonomics, with a focus on reducing biomechanical 
overload [86], muscle efforts [99], manual handling of bulky objects 
[117], and awkward postures [118]. HRC can also be employed to 
alleviate the mental strain experienced by operators during complex 
assembly tasks [119]. As HRC involves a shared workplace, safety 

Fig. 11. Drivers.  
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considerations are always paramount [56]. One approach to ensure 
safety is by designing trajectories that balance both safe and psycho-
logically less stressful movements, without excessively limiting robot 
performance [120]. The realization of HRC workstations also requires 
the definition of an efficient, intuitive, and satisfying collaboration and 
interaction between the two co-workers [121]. For instance, this can be 
achieved through dynamic task allocation based on human monitoring 
[88,122] or task complexity [89], or by providing the operator with an 
AR device [55]. 

IoT sensors are typically used with other technologies, such as HRC, 
XR, and CPS, to collect and transmit a large amount of real-time data. 
Wearable sensors are mainly employed to evaluate the operator’s 
mental and cognitive load [123,124] as well as physical ergonomics [61, 
125], even during HRC [99,101]. Similarly, IoT can be used to create a 
specific infrastructure for capturing human-related parameters from the 
shop floor and assessing and enhancing workers’ well-being [106]. 
Additionally, CPS and IoT can be leveraged to support the operator and 
intelligently respond to their cognitive needs [78]. In the same way, IoT 
can be employed to dynamically adapt AR user interfaces based on ac-
quired contextual data about the activity, operator, and environment 
[126]. 

The increasing complexity of products and processes necessitates the 
enhancement of operators’ capabilities, competencies, and flexibility. 
The adoption of CPS and CPPS can support operators in value-added 
activities, including decision-making, problem-solving, and creative 
actions [50,85]. Moreover, CPS can facilitate the establishment of a 
human-cyber-physical symbiosis enabling real-time, trustworthy, and 
dynamic interaction among operators, machines, and production sys-
tems by integrating IoT systems and AI algorithms [54,80]. 

Computer-based simulation and the creation of a DT are employed to 
assess physical ergonomic risks and identify potential hazards during the 
workstation design phase [83,113,125]. Additionally, IoT and DT can be 
used to monitor and evaluate physical ergonomics even during 
manufacturing production [97,127]. 

In the following paragraphs, the technologies chosen as research 
keywords (XR, HRC, CPS, and IoT) will be discussed in detail. Addi-
tionally, considering that AI has emerged as a prominent component 
integrated with these technologies, it will also be included in the in- 
depth analysis. 

5.1. Extended reality 

XR technologies have predominantly been deployed to assist and 

support the operator in various manual activities, such as assembly [68, 
71,74,128], repair and maintenance [129,130], quality control and vi-
sual inspection [69,105,131], and training [76,111]. To cope with the 
increasing amount of information and the complexity of products and 
production processes, it is essential to enhance the capabilities and skills 
of operators by empowering them with smart technologies [42,112]. 
Most research studies have focused on determining the benefits of XR 
systems in terms of competition times, error rates, and mental workload 
[72]. However, it is also crucial to evaluate user acceptance, perceived 
complexity, physical efforts, and frustration associated with the use of 
XR technology to ensure its ease of use in daily work [68,132]. Different 
XR devices have been tested and compared based on users, tasks, and 
contexts [129]: head-mounted display (HDM) (e.g., HoloLens 2), 
hand-held device (e.g., tablet), projection-based AR system, and Spatial 
Augmented Reality (SAR). The results indicated that the use of XR sys-
tems improved worker performance, reduced workload, and increased 
user awareness compared to paper-based instructions. However, there 
are differences among the devices used. While projection-based tech-
nology may yield inferior results compared to HDMs [68], some users 
preferred projectors due to the technical limitations of HMDs in real 
industrial scenarios (e.g. high weight, low battery, poor ergonomic 
design) [56]. Hand-held systems have proved to reduce errors and 
completion time, but they can have a negative impact on skill and 
memory preservation, and prolonged use can lead to physical exhaus-
tion for operators [114]. The use of SAR can help reduce errors, espe-
cially for challenging tasks, but it does not allow displaying virtual 
objects in mid-air [133]. Simões et al. [134] investigated the combina-
tion of different devices, such as Microsoft HoloLens, projectors, and 
mobile tablets. This approach allows skilled workers to ignore digital 
instructions while receiving alerts about potential errors from the sys-
tems. In contrast, novice workers can utilize all the systems for 
comprehensive assistance. Overall, XR applications can be particularly 
helpful and convenient in specific use cases, potentially in unclear and 
demanding scenarios [135]. However, the application of XR in the in-
dustrial field remains in the exploration and prototype stages, due to 
technological limitations of devices, ergonomics issues, limited user 
acceptance, and cognitive aspects [135,136]. Therefore, attention 
should be given to the compatibility and optimization of user cognition 
and technology-integrated systems [103]. Moreover, objective measures 
to evaluate operators’ stress levels during interaction with XR devices 
should be investigated [68]. It is essential to gain a better understanding 
of how humans interact with virtual objects in an XR environment in 
terms of cognitive demand, to design and develop systems that 

Fig. 12. Correlation between technologies and solutions’ drivers.  
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effectively enhance human performance by addressing cognitive needs 
rather than relying solely on user-driven behaviors. 

5.2. Human-robot collaboration 

Collaborative robots are implemented in a shared space to work 
“shoulder-to-shoulder” with humans [75], helping with repetitive and 
strenuous tasks and reducing their workload. Most of the research works 
investigated new methods to enhance collaboration and interaction 
between two co-workers. Authors have addressed several significant 
topics, including human safety [87], task allocation strategies consid-
ering task characteristics and the skills of humans and robots [60,121], 
and robot adaptation based on human behavior during collaboration 
[82,110]. Most studies revealed that HRC successfully improved task 
efficiency and accuracy, resulting in higher performance and reduced 
effort, although it may require increased temporal demand [137]. 
However, it is worth noting that many of these studies have been con-
ducted in laboratory settings under controlled conditions and may not 
fully comply with safety regulations. There are still several open issues 
that need to be addressed to ensure a safe and effective HRC. Physical 
ergonomics is consistently considered in the HRC and HRI design, while 
cognitive aspects are often overlooked or receive less attention. Few 
works analyzed the physiological risks that could emerge during 
collaboration and the operators’ acceptance of working alongside robots 
without barriers [120]. Pollak et al. [101] examined the levels of 
physiological stress of operators in different collaboration modalities. 
The results indicate that the autonomous modality generated more stress 
appraisal than the manual one. Establishing effective communication 
between humans and robots is crucial for ensuring safe collaboration, 
and the potential of brain-robot interactions to enhance HRC in indus-
trial settings lies in their ability to directly convey intentions and com-
mands from the human operator’s brain to the robot, leading to 
improved efficiency, assistance in complex tasks, and a reduced cogni-
tive load on the human operator. Overall, HRC can involve improve-
ments in productivity, ergonomics, and safety in manufacturing 
environments, but only if HF issues are adequately considered [94]. 

5.3. Cyber-physical system 

The term CPS is often used to contextualize rather than describe a 
specific innovation; it is typically supported by other technologies 
enabling Industry 4.0. In this new factory of the future, the concept of 
HCPS is emerging to develop symbiotic relationships between humans 
and AI within CPS environments [50]. The main goal of HCPS is to 
leverage the unique capabilities of humans and AI to create systems that 
are more intelligent, adaptable, and reliable. By integrating humans into 
the loop, HCPS aims at addressing the limitations of fully autonomous 
systems and benefit from human cognitive abilities, creativity, intuition, 
and ethical considerations. Many of the analyzed works highlighted the 
low consideration of HF in CPS. They mainly focused on methods or 
frameworks for human-oriented design to successfully integrate workers 
into CPPS [85,138], the evolution of interactions between humans and 
non-human agents [43,80] also enabling the human-in-the-loop 
approach [49,139], and models to enhance the decision-making pro-
cess [50,140]. Kumar and Kumar [141] also suggested reconsidering 
industrial efficiency measures to include human cognitive efficiency. In 
this context, the highest expression of the CPS can be found in the design 
and development of an adaptive work environment. The system must be 
context-aware and able to change its behavior according to process 
parameters, events, and operators’ needs. The importance of considering 
human-related data in the definition of adaptive algorithms is empha-
sized due to the aging workforce [142]. Currently, adaptivity is mostly 
limited to the user interface [138], but it should be extended to the HCPS 
as a whole. Healthy operator 4.0 should be supported by HCPS to 
intelligently respond to his/her cognitive and physiological state [78, 
143]. 

5.4. Internet of things 

IoT systems provide an opportunity to collect and manage data that 
can be used to evaluate variables that define a specific environment, 
process, or system in which a person lives, works, or is physically pre-
sent. This data can be utilized to gain insights and improve the overall 
efficiency and effectiveness of the system [106]. Many research works 
proposed frameworks and systems for ergonomic assessment using 
wearable sensors. Some studies focused on the detection of physical 
fatigue [77], while others developed tools for real-time calculation of 
the ergonomic risk index [61]. Wearables can measure and collect 
physiological data, thus they have the potential to support occupational 
health and safety for factory workers [70]. Several papers proposed IoT 
frameworks to evaluate cognitive or mental workload by collecting 
physiological parameters, such as Heart Rate (HR), Heart Rate Vari-
ability (HRV), Respiratory Rate (RR), Electrodermal Activity (EDA), 
electroencephalography (EEG), and pupillometry [96,107,123,124]. 
However, experimentations were mainly conducted in controlled labo-
ratory environments, as measuring cognitive workload in real 
manufacturing contexts can be challenging [96]. Some works presented 
IoT frameworks to design and re-design manufacturing processes, 
plants, workstations, and tools to promote social sustainability and 
workers’ well-being [83,84]. The aim is the creation of a 
human-centered connected factory using an IoT framework that enables 
data acquisition and analysis. 

5.5. Artificial Intelligence 

AI has revolutionized the field of smart manufacturing, empowering 
advanced automation, predictive analytics, optimization, and decision- 
making capabilities throughout the manufacturing processes [50,131]. 
By leveraging AI technologies, such as machine learning (ML) and 
computer vision, smart manufacturing systems can enhance productiv-
ity, quality control, and operational efficiency, leading to improved 
production outcomes and reduced costs [144]. In the context of smart 
factories, the integration of IoT, HCPS, and AI is transforming various 
aspects of manufacturing. Thanks to this strong synergy, communication 
and collaboration between humans and machines are more effective. 
Moreover, AI-based systems can learn and adapt to human preferences, 
making interactions more intuitive and personalized [80]. Additionally, 
AI can enhance machine capabilities to understand human emotions, 
needs, and intent, leading to more effective and seamless 
human-machine interactions [142]. Furthermore, the integration of AI 
with XR systems holds immense potential for enhancing productivity, 
reducing errors, and unlocking new possibilities. AI, particularly ML and 
deep learning, has revolutionized XR by enabling advanced data anal-
ysis from sensors and cameras. This integration empowers AI algorithms 
to optimize worker and factory performance, detect anomalies, and 
provide real-time insights to operators [128]. Additionally, AI enhances 
XR systems through object recognition, scene understanding, and nat-
ural language processing, expanding their capabilities and potential 
applications. 

6. Discussion and conclusions 

The literature reflects a growing interest in Operator 4.0 and his/her 
evolving role within the manufacturing context. An in-depth analysis of 
these papers has provided several key findings and insights. 

The Operator 4.0 paradigm represents a shift towards leveraging and 
enhancing human competencies and skills to handle complexity, rather 
than replacing human workers [5]. Research predominantly focuses on 
human cognitive aspects and capabilities augmentation. When innova-
tive technologies are integrated properly into the work environment, 
they have the potential to improve the physical and mental health of 
workers [145,146]. 

A value-oriented approach is essential to shift the perspective from a 
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technological one to a human-centric one [147]. This shift aligns with 
the principles driving Industry 5.0. Inclusion and interaction are key 
topics within the new socio-technical systems. It is increasingly impor-
tant to empower and support operators with disabilities and address the 
needs of an aging workforce to promote an inclusive work environment. 
In the factory of the future, a synergic human-machine symbiosis should 
be enabled, making humans, cyber systems, and physical systems work 
together in perfect harmony, leveraging the strengths of all resources 
[50]. Nagy et al. [148] proposed the utilization of hypergraphs to 
analyze and design an intelligent collaborative manufacturing space 
with sensors, aiming to enhance collaboration by providing valuable 
performance and system state information and identifying critical ele-
ments and interactions. The symbiosis must be reached even from an 
ergonomic perspective considering both physical and cognitive domains 
[81]. Traditional techniques for ergonomic assessments are beginning to 
be complemented by objective assessments exploiting sensor-based or 
vision-based systems. 

The successful adoption of technological advancements requires in-
dividuals to unlearn old technologies and practices and embrace new 
ones [149]. However, many manufacturing industries, especially small 
and medium-sized enterprises, often lack the necessary knowledge and 
resources to practically implement Industry 4.0 solutions. In such situ-
ations, smart retrofitting can be a fast and cost-effective way to enhance 
productivity and competitiveness, yet the limited technical knowledge 
of employees often hinders its implementation. Ruppert et al. [150] 
argued that addressing this knowledge gap should start with students’ 
education, and they propose a demonstration laboratory to support skill 
development aligned with the goals of Industry 5.0. 

Moreover, innovative technologies offer effective tools for learning 
and adapting to the rapidly changing demand for skills. For example, 
Longo et al. [151] proposed investigating whether it is possible to train 
industrial workers specifically for upcoming scenarios rather than pre-
paring them for a broad range of unlikely situations. They suggest a 
structured on-the-job training strategy for non-routine tasks, where a 
prescriptive analytics module schedules training sessions shortly before 
they are needed. Since technological progress is constantly evolving, a 
continuous learning approach is essential for the establishment of a 
learning society. 

Even if technological capabilities represent the basis for making the 
implementation, the organizational changes result have a greater impact 
[90]. Clear leadership and a well-defined vision of top management are 
essential in promoting innovation. The existing organizational culture 
may need to evolve to embrace the changes brought by Industry 4.0. 
This includes fostering a culture of innovation, adaptability, and 
cross-functional collaboration. Effective change management practices 
should be employed to minimize resistance, address concerns, and 
ensure a smooth transition. Awareness and acceptance of the imple-
mented changes are crucial [152]. Human awareness and context 
awareness enhanced the interaction with new systems (e.g., robots, 
machines, and devices) [110,126]. Humans need to be aware of systems’ 
conditions and activities and at the same time systems should be able to 
perceive and understand the surrounding environment allowing for 
adaptation, personalization, and proactivity. However, frameworks and 
methods for adapting robots and machines based on human states are 
mostly tested in the laboratory. Moreover, robust data governance 
practices need to be established to ensure data integrity and security. 

6.1. Emerging risks 

Although the growing, rapid, and global spread of the Industry 4.0 
paradigm supports workers with advanced digital systems and practical 
solutions, it also gives rise to new emerging risks that need to be 
analyzed and addressed. 

Deploying XR solutions in a manufacturing environment pursues the 
concept of the augmented operator; however, it can give rise to safety 
risks due to the user being largely isolated from its near surroundings 

[153]. MR may be less problematic due to the partial view of the real 
environment but also requires care if used in industrial scenarios [48]. 
XR technologies have proven to have a positive influence on perfor-
mance and do not seem to negatively impact cognitive load [154]; 
however, it is essential to conduct further research to examine their 
potential psychosocial risks and their influence on mental well-being. 

Particular attention must be paid to the acceptance and cooperation 
of workers with advanced production systems; for example, by investi-
gating the impact of collaborative robot movements and modalities on 
human stress [101]. Some preliminary experimentations of mental 
strain assessment during HRC by objective physiological measurement 
demonstrated that high speed, lower predictability, and robot proximity 
increase demands on the operator. These increased demands may lead to 
higher risk perception, anxiety, and workload, and potentially have 
detrimental effects on the operator’s mental well-being. Additionally, 
these factors may also contribute to a decrease in task performance [94, 
100]. A way to consider cognitive stress during the trajectory design is 
proposed by Rojas et al. [120]. They defined a multicriteria approach to 
planning robot trajectory considering a trade-off between two con-
straints: smoothness and speed. The former is related to human cogni-
tive stress, while the latter is related to safety requirements. In this way, 
the planned trajectory is safe, ergonomic, and efficient. 

These new types of multi-agent collaborations, between human 
agents, organizational agents, software agents, hardware agents, and 
artificial (machine), will generate new systems integration and inter-
operability problems to face [155]. The deployment of indoor localiza-
tion and tracking, which are vital for human-centric technologies, can 
encounter significant challenges in industrial complexes due to elec-
tromagnetic interference that directly impacts production or commu-
nication devices [156]. Sufficient and robust telecommunication 
technologies are essential to support the practical implementation of 
technological innovations in smart manufacturing environments. 

6.2. Research directions and future challenges 

This section provides insights into the future research directions to 
enhance Operator 4.0 well-being and performance while using new 
technologies. HF should be considered to enable predictive and proac-
tive approaches, rather than exclusively preventive or even worse 
reactive. 

(i) Physical ergonomics evaluation. 
Even if physical ergonomics has been deeply addressed over the 

years and several standard methods have been developed for its 
assessment, there are still some challenges to face:  

• Inertial sensors and magnetometers can suffer from drawbacks such 
as magnetic disturbances that hinder data collection for objective 
ergonomics assessments. These limitations could be overcome by 
using additional video signals [61]. However, also these systems 
have some drawbacks related to the human-tracking system, more 
specifically to the use of a depth camera-based tracking method [60]. 
Combining cameras placed at different locations around the human 
could improve the human-tracking system and reduce occlusion 
issues.  

• To leverage the potential of the DT and enable a real-time analysis 
the motion capture system must be able to process and transfer data 
in real-time [97]. 

• Real-time feedback about the risk index, considering all the ergo-
nomic domains, should be provided to the operator [84]. Moreover, 
the suggestion of corrective actions could be automated and specif-
ically designed by using AI and ML. 

(ii) Psychosocial risks evaluation 
There are still significant research gaps for operator mental 

workload (also known as stress or cognitive load) evaluation during 
working activities. Although the use of wearable devices could be 
extremely simple, the collection, elaboration, and analysis of 
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measured health-related parameters and personal data require a 
significant effort in terms of research and study. The main issues are 
the following:  

• Identification of the labels for AI techniques such as supervised ML 
models to be used in real industrial environments [67].  

• Investigation of universally valid methods to determine mental 
workload that can be applied to any operational scenario.  

• Definition of ground truth for field data.  
• Use of multiple sensors to increase the consistency of measurements 

and reliability of the system.  
• Elimination of inaccurate readings caused by the wearable device’s 

poor placement or the user’s rapid movements. Even vision-based 
systems, such as facial thermography, present multiple challenges 
related to the depth of field, the accuracy of tracking, and in-
terferences [124].  

• Study of different data fusion techniques and weighting strategies to 
calibrate the model for each subject. 

• Investigation of the emotional response based on human psycho-
physical response monitoring [125]. 

(iii) Industrial human needs. 
A human-centric approach must meet industrial human needs, 

ranging from the basic ones (safety) to personal growth. The introduc-
tion of new technologies raises security, ethical, and privacy concerns 
that require careful attention to ensure industry acceptance [139]. It is 
crucial to ensure that confidential information regarding the operator’s 
personal, mental, and physical state remains inaccessible to unautho-
rized individuals, and the operator should have control over and 
monitoring capabilities of their own data [78]. 

Engaging workers in the implementation of new digital technologies 
plays a vital role in how they perceive upcoming changes. Workers need 
to be informed about the benefits and opportunities that technology 
usage can bring. Kadir et al. [157] confirmed that during the initial 
implementation of advanced solutions, both operator well-being and 
system performance may be negatively affected. However, after suc-
cessful implementation, both aspects tend to improve. Additionally, 
further investigation into participatory ergonomics approaches for suc-
cessful workstation and process design and redesign is necessary. 

Future efforts should focus on designing and developing new 
instrumental prototypes of active-power assistive equipment to support 
aging workers. New training methods should be explored to effectively 
train robots starting from workers’ experience to guarantee ergonomic 
movements [32]. One of the main challenges lies in capturing and 
modeling workers’ knowledge and expertise. Job design, with a focus on 
health, safety, satisfaction, and performance, needs to be reevaluated 
considering the complexities arising from individuals’ aspirations, 
hopes, and personal backgrounds [158]. 

(iv) Operator augmentation. 
Although XR technology is mainly focused on system development 

(Fig. 10), the practical implementation of XR in the manufacturing in-
dustry remains in the exploration and prototype stages. Wearable XR 
devices require still more technical maturity, in design, safety, comfort, 
and software aspects, to be considered suitable for industrial environ-
ments [54,66]. Improvements in tracking accuracy in manufacturing 
environments should be obtained, by examining and exploring 
marker-less recognition techniques [69]. Moreover, XR turns out to be 
more beneficial to novice learners, since the advantages of using this 
technology reduce as more assembly attempts are performed, and the 
operator begins to master the activity [68]. Experienced workers usually 
tend to ignore digital instructions, but they considered the system useful 
for its alerts about potential errors. Finally, the greatest potential of this 
technology currently is for teaching and learning activities [76]. 

(v) Human-machine symbiosis. 
Dynamic adaptation of production systems to human states and 

process performances is the basis for a symbiotic collaboration and 
needs to be deeply investigated [142]. Online adaptation and dynamic 

task allocation are crucial in flexible and reconfigurable production 
processes involving HRC and smart machines [63]. A task allocation 
based on the individual human being with their capabilities, comparing 
them with the specific requirements of a given task will allow for 
designing an inclusive workplace, which is ergonomically adjustable 
and accessible to disabled people [159]. Moreover, Cimini et al. [160] 
proposed a job profile design tool aimed at comprehending the changes 
in certain jobs and the need for their redesign, particularly in terms of 
task allocation, following the adoption of new smart and digital tech-
nologies and associated tools. To successfully implement dynamic 
adaptation during HRC in industrial environments, some practical 
implementation challenges need to be further investigated. Firstly, the 
system needs to be compliant with the current international regulations 
on safety [82]. Other technical challenges should be addressed, such as 
the choice of practical, low-cost, but reliable sensors to record human 
states, and the training of detection algorithms, which can be 
time-consuming and not in real-time. 

6.3. Limitations 

There are some limitations of this paper that need to be addressed. 
The review provides a present overview of the current state of scientific 
research, despite being continually updated. 

(i) Lag times. 
A systematic literature review often fails to capture the latest 

research on a specific topic due to the time delay between the final 
systematic search and the submission/publication of articles. This delay 
has led to the omission of emerging concepts and terms that have ac-
quired significance since the start of the search. For instance, one such 
concept is Operator 5.0, which was not widely recognized at the 
beginning of the research, resulting in the exclusion of keywords asso-
ciated with this term from the study. However, given the impending shift 
towards the Industry 5.0 paradigm, it becomes crucial to enrich the 
analysis by incorporating the concept of Operator 5.0, which introduces 
the notion of a Resilient Operator [161,162]. It involves two aspects: 
addressing workforce vulnerability through enhancing "self-resilience" 
and enhancing the "system resiliency" of human-machine systems. It 
empowers individuals to adapt and cope with challenges while opti-
mizing collaborative human-machine systems to withstand disruptions, 
adapt to change, and recover efficiently. 

The context is shifting towards what is known as HCPS [163], aiming 
to establish security-engineered systems that actively involve humans in 
decision-making. These systems leverage advanced communications, 
adaptive control technologies, and context-aware approaches to ensure 
fault tolerance and seamless interactions. 

(ii) Keywords selection. 
The selection of research keywords has affected the results, even if 

the identification of search terms was very careful and aware. For 
example, the KETs included in the search words have been limited to 
those by which humans can be supported during working activities, 
neglecting others. The criteria employed might have potentially 
excluded pertinent studies from the review, particularly those related to 
big data and analytics, and simulation. In addition to the existing key-
words, it is recommended to consider incorporating new keywords 
related to the emerging paradigm. These could include terms such as 
resilience, social sustainability, adaptability, workforce agility, and 
more. 

(iii) Quality of included studies. 
The focus of this systematic literature review was to incorporate 

high-quality studies by exclusively selecting journal articles. However, 
this approach inadvertently overlooks valuable papers published in 
conference proceedings, leading to the omission of significant studies 
and introducing a potential source of bias. Therefore, it is recommended 
to include papers presented at relevant conferences in further analysis to 
provide additional insights into recent research. For instance, Romero 
et al. [164] present a vision for the future of work in smart resilient 
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manufacturing systems within the emerging Industry 5.0 paradigm. 
Their work proposes achieving optimal resilience in smart 
manufacturing systems from a human-centric perspective, employing 
the Operator 4.0 typology and its associated technical solutions. Incor-
porating such conference papers can enhance the comprehensiveness 
and timeliness of the analysis, ensuring that recent advancements and 
perspectives are considered. 
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