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Abstract
Aim To assess the correlation of quantitative data of pulmonary Perfused Blood Volume (PBV) on Dual-Energy CT (DECT) 
datasets in patients with moderate – severe Pulmonary Emphysema (PE) with Lung Perfusion Scintigraphy (LPS) as the 
reference standard. The secondary endpoints are the correlation between the CT densitometric analysis and the visual assess-
ment of parenchymal destruction with PBV.
Materials and Methods Patients with moderate – severe PE candidate to Lung Volumetric Reduction (LVR), with available 
a pre-procedural LS and a contrast-enhanced DECT were retrospectively included. DECT studies were performed with a 3rd 
generation Dual-Source CT and the PBV was obtained with a 3-material decomposition algorithm. The CT densitometric 
analysis was performed with a dedicated commercial software (Pulmo3D). The Goddard Score was used for visual assess-
ment. The perfusion LS were performed after the administration of albumin macroaggregates labeled with 99mTechnetium. 
The image revision was performed by two radiologists or nuclear medicine physicians blinded, respectively, to LS and DECT 
data. The statistical analysis was performed with nonparametric tests.
Results Thirty-one patients (18 males, median age 69 y.o., interquartile range 62–71 y.o.) with moderate – severe PE (Median 
Goddard Score 14/20 and 31% of emphysematous parenchyma at quantitative CT) candidate to LVR were retrospectively 
included. The median enhancement on PBV was 17 HU. Significant correlation coefficients were demonstrated between lung 
PBV and LS, poor in apical regions (Rho = 0.1–0.2) and fair (Rho = 0.3–0.5) in middle and lower regions. No significant 
correlations were recorded between the CT densitometric analysis, the visual score, and the PBV.
Conclusions Lung perfusion with PBV on DECT is feasible in patients with moderate – severe PE candidate to LVR, and 
has a poor to fair agreement with LPS.

Keywords Dual energy CT · Spectral imaging · Lung · COPD · Emphysema · Scintigraphy

Introduction

Pulmonary emphysema (PE) is defined as the abnormal 
permanent enlargement of airways distal to the terminal 
bronchiole with alveolar destruction, without any fibrosis, 
and it is included in chronic obstructive pulmonary disease 
(COPD) [1, 2]. PE is characterized by obstructive ventila-
tory defects, reduced diffusion capacity, and parenchymal 
destruction is also often associated with altered alveolar 
ventilation/perfusion ratio (V/Q) [3, 4]. Ventilatory and 
Perfusion functional parameters assessed at scintigraphy 
are altered when at least one-third of the lung parenchyma 
is involved, making them poorly sensitive [4, 5]. Moreover, 
alveolar destruction and hypoxic vasoconstriction reduce 
regional perfusion in the emphysematous lung [4]. However, 
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the distribution of perfusion damage does not necessarily 
correlate with the area of parenchymal destruction [4, 6–9].

Patients with advanced PE, poorly controlled with 
medical treatment, may take benefit from endoscopic or 
surgical Lung Volume Reduction (LVR) [10, 11]. These 
procedures aim to reduce the size disproportion between 
the hyperinflate pulmonary parenchyma and the volume 
of the chest cavity, thus restoring the forces acting on the 
elastic recoil of the bronchiolar walls [12]. As consequences, 
these procedures lead to an improved bronchiolar airflow 
with a global beneficial effect on the cardiothoracic function 
and on physical exercise [12–14]. The early diagnosis, 
classification, and assessment of disease extension strongly 
relies on High-Resolution Computed Tomography (HRCT) 
[15–17]. However, the management of candidates for 
LVR must include the assessment of lung perfusion, since 
perfused parenchyma should be preserved, while the 
pulmonary portions with impaired perfusion need to be 
treated [6, 7, 18, 19].

The assessment of PE on HRCT may be performed with 
visual, semiquantitative scores (Visual Score, VS), or with 
automatic or semiautomatic software that quantifies the 
percentage of pathological parenchyma in each volume using 
densitometric thresholds and morphological changes [18, 
20–25]. On the one side, VS usually has an easy application 
but is time-consuming and has a low intra- and inter-rater 
agreement [18, 20–23]. Conversely, semi-automatic software 
has the potential for a more objective quantification with 
lower variability [18, 24].

Several methods are available for the assessment of lung 
perfusion; among them, the Lung Perfusion Scintigraphy 
(LPS) is one of the most widely used [25]. LPS provides a 
two-dimensional compression of a volumetric distribution 
of a radiotracer and does not provide morphological 
information [6, 26]. Dual-Energy CT (DECT) with material 
decomposition allows for effective iodine quantification [27]. 
The application of a specific three-material decomposition 
algorithm for the lung parenchyma provides the Perfused 
Blood Volume (PBV), namely the perfused blood volume 
into a unit mass of lung tissue, which is translated to a 
whole-lung map to assess the parenchymal perfusion [28, 
29]. The agreement of PBV and nuclear medicine studies, 
mostly with qualitative methods, has been more extensively 
evaluated in pulmonary embolism [29–32], while little 
evidence is available for PE [33].

This study aims to correlate the quantitative PBV with 
LPS parameters in patients with moderate to severe PE 
candidate to endoscopic LVR. Secondary endpoints are the 
correlation between the lung PBV and the densitometric 
analysis with the semiautomatic software, and the correlation 
between perfusion abnormalities at PBV with parenchymal 
destruction at VS.

Materials and methods

Patient selection

This study was conducted in accordance with the Declaration 
of Helsinki. In agreement with our local IRB, due to the data 
being registered anonymously and the study’s retrospective 
design, formal ethical approval by the IRB was not required.

Patients with moderate-severe PE, in evaluation for 
endoscopic LVR, with pulmonary angio-DECT imaging 
between February 2018 and March 2022, who underwent 
planar LPS within 15 days of the DECT at our Institution 
(Azienda Ospedaliero Universitaria delle Marche) were 
included. Patients with imaging of inadequate quality (i.e., 
pulmonary artery enhancement < 200 HU, motion artifacts, 
underlying pulmonary diseases such as consolidations or 
pulmonary embolism), or with incomplete imaging data 
(DECT or LPS data not available) were not included.

DECT acquisition protocol

CT examinations were performed using 3rd generation Dual 
Source DECT (Somatom Force, Siemens Healthineers). 
The basal acquisition was performed in deep inspiration 
and reconstructed with a medium and sharp kernel (120 kV, 
modulated mA, model-based iterative reconstruction, 
ADMIRE, strength 3, kernels Br40 and Bl64) with a slice 
thickness and spacing of 1  mm/0.7  mm [34, 35]. The 
study was completed with a DECT acquisition (90/150Sn, 
modulated mA, ADMIRE 3, reconstruction kernels Br40, 
BL64, and Qr40, thickness/spacing: 1/0.7 mm) after the 
administration of intravenous contrast material (Iopamidol 
370 mgI/mL, Iopamiro 370, Bracco; 1 mL/kg, 3,5 – 5 ml/s); 
the acquisition time was optimized with bolus tracking 
technique (Threshold: 100 HU in pulmonary trunk; 
acquisition delay: 6 s).

CT visual analysis

Visual quantification of emphysema was performed with 
Goddard VS on HRCT basal images by two readers in con-
sensus and blinded to LS (AA, AB, with 15 and 10 years of 
experience in thoracic imaging), after the quality control of 
the DECT study (i.e., adequate enhancement of the pulmo-
nary artery) and exclusion of concomitant pulmonary dis-
eases [20]. Both lungs were evaluated at three levels: upper, 
middle, and lower. The apical zone was examined at an axial 
scan passing 1 cm above the upper margin of the aortic arch; 
the middle lung was examined at an axial scan passing 1 cm 
below the tracheal carina; the basal lung was examined 
3 cm above the diaphragmatic dome. A percentage score of 
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emphysematous parenchyma was assigned at these zones, 
bilaterally. In particular, no evidence of emphysema: score 0; 
emphysematous areas less than 25%: score 1; between 26 and 
50%: score 2; between 51 and 75%: score 3; greater than 75%: 
score 4. These scores were summed, and the total value was 
the severity score of PE. Conventionally, the three regions of 
the lung considered for the visual analysis, and for the further 
segmentation (see below), were labeled as left (L1, L2, L3) 
and right (R1, R2, R3) in cranio-caudal direction.

Densitometric analysis with semi‑automatic 
software

Basal images reconstructed with medium kernel (Br40) were 
processed with semiautomatic software for densitometric 
analysis (Pulmo3D on Syngo.via, Siemens Healthineers) by 
the same radiologists blinded to LS [34, 35]. The software 
quantifies the percentage of voxels with attenuation values 
lower than the threshold of -950 HU for the entire pulmonary 
parenchyma, the right and left lungs separately and the 
lower, middle and upper zones of equal volume (Volume 
Based, VB) of each lung separately (R1-3; L1-3). The Mean 
Lung Densities (MLD) were also recorded for each patient.

Calculation of PBV

The two radiologists in consensus and blinded to LS 
processed the post-contrast DECT datasets with dedicated 
three-material decomposition on DE Lung Analysis (Syngo.
via, Siemens Healthineers) to calculate the lung PBV. Iodine 

distribution and PBV maps were rendered on axial, sagittal, 
and coronal planes and in 3D Volume Rendering (VR). 
The measurements were performed after normalization of 
iodine distribution on the Pulmonary artery enhancement: 
a standardized region of interest (ROI) sized 0.5 cm2 was 
placed in the pulmonary trunk on axial images. Lung 
partitioning was performed automatically using the Distance 
Based (DB) mode. The lungs were divided by two horizontal 
lines into three fields of equivalent cranio-caudal length: 
upper, middle, and lower (R1-3; L1-3). DB is a mode of 
lung segmentation more similar to that used in scintigraphy 
than the technique of VB segmentation used in densitometric 
analysis.

LPS acquisition, post‑processing, and assessment

Perfusion Scintigraphy examinations were performed 
with γ-chamber Infinia (GE Healthcare). Eight standard 
planar projections (anterior, posterior, right lateral, left 
lateral, right posterior oblique, left posterior oblique, right 
anterior oblique, left anterior oblique) were acquired after 
intravenous administration of albumin macroaggregates 
labeled with 99mTechnetium (99mTc-MAA) [4]. The post-
processing and image revision was performed with dedicated 
software by two nuclear medicine physicians in consensus 
and blinded to the DECT datasets (LB, AP, 30 and 10 years 
of experience respectively): each anterior and posterior 
digital planar scintigraphy projection of each lung was 
manually demarcated within a rectangular ROI which is 
semi-manually subdivided into three regions (upper, middle, 
lower) of approximately equivalent areas by two horizontal 
lines (R1-3; L1-3). The anteroposterior geometric mean of 
the detected counts was automatically calculated for all areas 
corresponding to anterior and posterior projections of each 
lung. The estimated lung perfusion was obtained in absolute 
k-count value for each lung field examined [26].

Statistical analysis

Statistical analysis of the data was performed on MedCalc 
Statistic Software (v20.211, MedCalc Software). All the 
quantitative variables were tested for normality (D’Agostino-
Pearson test), and after the rejection of normal distribution, 
the variables were expressed as median values and interquar-
tile ranges, and nonparametric tests were used. In particular, 
Wilcoxon or Friedman Tests were used when appropriate to 
assess differences among related samples, and correlation 
between DECT and LPS was evaluated with Rank Correla-
tion (Spearman’s Rho), the values were interpreted, in abso-
lute values, as perfect (1), very strong (0.8–0.9), moderate 
(0.6–0.7), fair (0.3–0.5), poor (0.1–0.2), and none (0) [36]. 
P values < 0.05 were considered significant.

Table 1  Patient population and main findings

VS Visual score, IQR interquartile range, MLD mean lung density, 
PBV perfused blood volume, kct kilo-counts.

Study population

Patients 31
Age (y.o.) 69
Median, IQR (62–71)
Sex (M/F) 18/13
Goddard VS
Median, IQR

14
(8–20)

Percentage of emphysematous parenchyma
(%, Densitometric analysis, semi-automatic 

software)
Median, IQR

31%
(27%–33%)

MLD
(HU, densitometric analysis, semi-automatic 

software)
Median, IQR

−903
(−909 to –896)

PBV value (HU, both lungs)
Median, IQR

17
(13–19)

Lung Perfusion Scintigraphy (kct)
Median, IQR

689
(83–701)
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Results

Fifty-five patients underwent to contrast-enhanced DECT 
study as treatment planning of LVR. Out of them, 5 had 
DECT studies of inadequate quality (3 patients with motion 
artifacts; 2 patients with inadequate enhancement of the 
pulmonary artery), and 19 had incomplete or inadequate 
imaging data (scintigraphy data not available). The final 
population included 31 patients with moderate-to-severe 
PE candidate to LVS. The median age was 69 years and 18 
candidates were male, with a median Goddard VS of 14/24 
(interquartile range 8–20).

Quantification of PE evaluated by Pulmo3D application 
of Syngo.via software had a median value of 31%, with a 
median value of mean lung density (MLD) of -903 HU. The 
median PBV value was obtained as an absolute value of 16.5 
HU (Table 1).

Table 2 reports the semi—quantitative and quantitative 
findings for each lung region. Significant differences 
were recorded among median Goddard visual scores, CT 
densitometric parameters, and LS of the different regions 
(Friedman p < 0.05). No significant differences were 
recorded for PBV parameters across the different lung 
regions.

Regional PBV in absolute value (HU) in DB mode and 
perfusion values obtained by LPS in k-counts were corre-
lated (Figs.1, 2). More in detail, a significant correlation 
was found between PBV values and k-count for each region 
of the right and left lungs (Spearman Rho ranging between 
0.106 and 0.478).

Figure 3 reports the rank correlation (Spearman Rho) 
between the densitometric analysis with semi-automatic 
software (Pulmo 3D on Syngo.via) and lung PBV. In this 

case, a negative correlation trend was found between the 
extension of parenchymal destruction and perfusion; how-
ever, significant values were found only in the upper right 
region and lower left region.

This statistical trend was confirmed by the correlation 
analysis between the Goddard VS and lung PBV (Fig. 4), 
where a significant, negative correlation was found only in 
the upper region of the right lung.

Discussion

This study aims to compare the quantitative assessment if 
lung perfusion on DECT (the lung PBV) with quantitative 
data of LPS: we found statistically significant, poor to fair 
correlation between the two techniques, with slightly higher 
correlation coefficients in middle and basal regions of right 
and left lungs (Fig. 2). Regarding the secondary endpoint, 
the correlation between pulmonary perfusion assessed with 
lung PBV and parenchymal destruction by PE, assessed with 
the Goddard semiquantitative score and with a dedicated, 
semi-automatic software, were not significant with few 
exceptions in upper or lower pulmonary regions (Figs. 3, 4).

These results deserve some considerations. In our study, 
both the software for the post-processing of DECT and 
scintigraphy data divided the lungs in three regions: fair, 
significant concordance was demonstrated for the mid-
dle and lower regions, while only a poor concordance was 
recorded in the apical regions. This finding can be explained 
by accounting several aspects. First, while the Lung PBV 
for DECT analysis uses an automatic method for the divi-
sion in cranio-caudal equally distant regions (DB mode), 
the same method is semi-automatic for LPS, introducing 

Fig. 1  Correlation between LPS (a) and PBV (b). Visually, there is a positive correlation in each lung zone (apical, middle and lower regions)
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a variability source. Second, the calculation of PBV use a 
three-material decomposition, where the spectral curves of 
air and lung are included for the calculation of the distribu-
tion of iodine. It has been demonstrated that the accuracy of 
iodine quantification can be influenced by variation of the 
effective atomic number and electron density given by path-
ological conditions (i.e., pulmonary consolidations) [28]. It 

could be hypothesized that different grades of parenchymal 
destruction in PE may slightly but significantly affect the 
estimation of PBV in PE. Moreover, the post processing of 
DECT datasets is prone to beam-hardening artifacts, which 
can be more significant in regions close to the superior vena 
cava and in paracardiac parenchyma [37].

Fig. 2  Rank correlation (Spearman Rho) between PBV (HU) and 
lung Scintigraphy (kilo-count, kct). The figure reports the Spearman’s 
Rho coefficients, the relative 95% confidence intervals (95%CI) and 

the p-values. Significant correlations were found for the two methods 
for each region of the right (R1, R2, R3) and left lung (L1, L2, L3) 
regions. Significant p-values are underlined
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While the radionuclide perfusion and ventilation exam-
inations have an established role in the management of 
COPD and PE, the iodine spectral analysis on DECT is 
still under investigation [26, 33, 38]. On the one side, per-
fusion scintigraphy is based on the intravenous administra-
tion of 99mTechnetium—labeled albumin macroaggregates 
(99mTcMAA) which causes a microembolization of the 

pulmonary circulation resolving in 6–8 h, and the γ-rays 
emitted are detected by the γ-chamber [26]. On the other 
side, the assessment of pulmonary perfusion with DECT 
is derived from the iodine density map during the first 
pass of the contrast material in the pulmonary microcir-
culation [28]. The specific software for PBV is based on 
three-material decomposition to produce material-specific 

Fig. 3  Rank correlation (Spearman Rho) between PBV on DECT 
(HU) and densitometric analysis with semi-automatic software (pul-
monary emphysema, PE, % value). The figure reports the Spear-
man’s Rho coefficients, the relative 95% confidence intervals (95%CI) 

and the p-values for each pulmonary region (L1, L2, L3, R1, R2, 
R3). A negative trend for correlation between the PBV and PE% 
was recorded, though significant only for right apical and left lower 
regions. Significant p-values are underlined
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images from air, soft tissue, and iodine. After threshold-
ing for the selection of the pulmonary parenchyma, the 
iodine density is superimposed to the virtual non-contrast 
images [39, 40]. Several studies assessed the diagnostic 
performance of Lung perfusion with DECT, particularly in 

patients with pulmonary thromboembolism (PTE). Suey-
oshi et al. demonstrated significant different lung perfu-
sion in patients with and without PTE [41]. These results 
were confirmed by Sakamoto et al. in patients with acute 
PTE of different grades of severity [39]. Dournes et al. 

Fig. 4  Rank correlation (Spearman Rho) between PBV on DECT 
(HU) and Goddard visual score (VS). The figure reports the Spear-
man’s Rho coefficients, the relative 95% confidence intervals (95%CI) 

and the p-values for each pulmonary region (L1, L2, L3, R1, R2, R3). 
Significant correlations were found only for the apical region of the 
right lung. Significant p-values are underlined
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compared the diagnostic performance of DECT with lung 
scintigraphy in patients with chronic thromboembolic 
pulmonary hypertension demonstrating a fair agreement 
(k = 0.44) between the two methods [30]. Renapurkar et al. 
performed the comparison between DECT and SPECT on 
a similar population of patients with chronic pulmonary 
hypertension, recording a lower inter-method agreement 
of k = 0.22–0.25 [42]. Regarding pulmonary emphysema, 
Gietema et al. compared the lung perfusion from DECT 
with scintigraphy, finding a good correlation between the 
two techniques [33]. These results were confirmed by Si-
Mohamed et al. comparing the lung perfusion on DCT 
and SPECT/CT in PE [43]. However, the assessment of 
parenchymal involvement at HRCT nor the correlation 
with PBV were not performed in both studies [33, 43].

Even though the treatment planning of LVR mainly relies 
on the HRCT assessment of emphysema, the LPS still have a 
pivotal role by highlighting eventual mismatch of ventilation 
and perfusion in PE. It must be highlighted that lung PBV 
is a volumetric technique, while scintigraphy provides 
planar information [26]. This aspect is of clinical relevance, 
since the PBV on DECT provides more detailed spatial 
information than LPS. Moreover, the perfusion data of PBV 
can be superimposed, pixel by pixel, to the morphological 
information provided by the HRCT, thus giving the potential 
to DECT of being a one-stop-shop examination for the 
treatment planning of LVR in PE [26, 33].

Our data show a lack of concordance between the 
degree of parenchymal destruction and the hypoperfusion 
of the relative areas, confirming the previous studies [21]. 
However, it must be highlighted that also in this case 
the different segmentation techniques (volume-based 
for densitometric analysis and DB for the PBV) can be a 
source of variability of results. This trend was confirmed 
when the parenchyma destruction with VS was compared 
with the regional, PBV data, confirming the additional 
information provided by the perfusion assessment in 
addition to parenchymal destruction [6–8, 18, 19, 21].

The present study has several limitations. It is a 
retrospective, single-center study on a small cohort of 
patients with moderate-severe PE assessed with one DECT 
platform: the reproducibility of results should be assessed 
on different DECT platforms and in patients with different 
disease severity.

In conclusion, the calculation of PBV demonstrated 
a moderate correlation with scintigraphy data, with no 
significant correlation with the degree of parenchymal 
destruction assessed with semiautomatic software and VS 
in patients with moderate – severe PE candidate do LVR.
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