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Abstract— In the world of real audio systems, it is extremely
important to model and identify their nonlinear behavior, espe-
cially in the case of professional audio devices. In this context, it is
useful to have a quantitative estimation of the nonlinearity degree
of the device, which can be obtained by exploiting an efficient
and rapid measurement methodology. In this article, we propose
an original estimation technique targeting the third-order inter-
modulation distortion (IMD) and based on a single detection.
The proposed technique can be implemented both on devices
operating in baseband and in bandpass. Starting from the same
single detection, the technique allows to give either an estimate
of the third-order IMD for the signal level actually used and to
extrapolate the estimate of the IMD to signal levels different from
the one actually used. Experimental verifications on real audio
devices have allowed to validate the procedure in operational
situations, thus confirming the validity of the proposed approach.

Index Terms— Audio system, Hammerstein system, intermod-
ulation distortion (IMD) measurement, nonlinear device, pulse
compression.

I. INTRODUCTION

IN THE world of nonlinear audio devices, an important
aspect is the system modeling. Knowledge of the system

model allows to compensate for the nonlinear behavior of the
device, such as a loudspeaker [1], [2] or Hi-Fi systems [3],
by developing an inverse filter of the nonlinear model, or to
emulate nonlinear audio devices with particular attention to
vacuum tube-based ones, such as amplifiers and guitar pedal
distortion effects [4]–[8]. Furthermore, increasingly accurate
models of these systems are made feasible by the enormous
computing power available nowadays. The availability of high
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computing power at low cost makes it possible to carry out
model identification procedures even using portable devices,
designed to operate outside traditional laboratories, which can
provide preliminary estimates of models and distortion levels
by measurements carried out directly in the operational context
in which the system under test is used. In this perspective,
it becomes a priority to have estimation methods that minimize
the duration of the testing phase.

During years, many approaches have been proposed for
nonlinear modeling, which can be grouped into three main cat-
egories, i.e., the white-box approaches, gray-box approaches,
and black-box approaches. The difference between these three
categories is related to the level of physical knowledge of the
real system, which is necessary to adopt a specific technique.
White-box approaches required a complete knowledge of the
nonlinear system. These techniques exploit wave digital filters
[9], [10] or differential equations [11] to obtain a complete
model of the real system. Even if the obtained model is
highly accurate, complete knowledge of the physical system is
not always possible. For this reason, the gray- and black-box
approaches have been developed, which, respectively, require
only partial knowledge of the system or only the knowledge
of input and output signals [12]–[14]. Gray-box approaches
use the input–output (I/O) relationship to identify the system,
and then, the model is improved using the block diagram of
the circuit. Two examples can be found in [15] and [16],
where a dynamic range compression system has been mod-
eled using a gray-box approach with an iterative parameter
optimization procedure. Speaking of black-box approaches,
these are the most widely adopted since they do not require
any previous knowledge of the system. Some of the most
well-known models, such as the Volterra filters [17], belong
to the category of black-box approaches. These filters are
derived from the Volterra series, to which truncation is applied,
because of the infinite number of terms. Moreover, even
with the reduced Volterra series, the number of coefficients
needed to define the model quickly becomes very large as the
degree of nonlinearity increases. This is a serious limitation
since it allows the identification of systems with only a
moderate degree of nonlinearity. Research studies have been
focused on simplified Volterra series expansion models [18].
Among them, the Hammerstein and Wiener models rely on
splitting the linear dynamic part from the static, nonlinear
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one. Although less general than Volterra or Wiener filters,
the Hammerstein and Wiener models provide accurate model-
ing of even strong nonlinearities, using a reduced number of
parameters [12], [14]. Several efforts have been made in the
literature to develop an algorithm for identifying such models,
mainly exploiting a suitable input swept-sine signal [19]–[22].
The main difference between the Wiener and the Hammerstein
models is how the nonlinear and the linear part are placed.
For the Hammerstein model, the nonlinear static part is placed
before the linear one [23]–[26], whereas for the Wiener model,
the opposite happens, i.e., the nonlinear part follows the linear
one [23], [25]. Finally, for the Wiener–Hammerstein model,
two linear parts are present and placed before and after the
nonlinear one [23], [27]. Other notable black-box approaches
use neural networks to obtain the nonlinear model of the real
system [28], [29]. The choice of the proper model is related
to the type of system that has to be modeled and to the
computational power that is available for the identification
and emulation process. The main purpose of these models is
to represent as completely as possible the operation of the
nonlinear system.

In parallel to this overall representation of the I/O behavior
of the system, it is also useful to have global parameters
that give a quantitative numerical measurement of the degree
of nonlinearity of the system [30]. The definition of these
parameters requires to specify the measurement conditions,
the type of excitation signal adopted, and the nonlinear struc-
ture model. In this context, total harmonic distortion (THD)
and the kth harmonic distortion (HDk) have been defined
using as excitation signal a pure tone in order to evaluate the
generation of higher order harmonics of the system. Despite
that these two parameters are good distortion indicators,
the simplicity of the adopted excitation signal led to some
limitations, e.g., it is not possible to estimate how the system
manages complex signals featuring more than one harmonic.
For this reason, it is important to introduce a more advanced
distortion parameter, i.e., the intermodulation distortion (IMD).
It is calculated exploiting an excitation signal of higher com-
plexity generated by overlapping two oscillating signals at dif-
ferent frequencies and considering one of the intermodulation
components generated by the simultaneous presence of these
two signals in the nonlinear system. In a previous work [31],
we have proposed a technique for estimating the second-order
IMD, particularly suitable in the case of baseband systems,
i.e., when extends down to frequencies close to the dc, such
as the audio field. Other intermodulation components can be
used to characterize the degree of nonlinearity: these choices,
which are applicable in any context, are particularly useful
when the band of the system is relatively narrow, so that
the second intermodulation component would fall below the
useful operating range of the system and would be greatly
attenuated, making its measurement impractical. An intermod-
ulation component widely used in these cases is the third
component (i.e., 2 f2 − f1), whose values fall in or close to
the useful band of the system, if the ratio between the two
frequency values f1 and f2 is close to the unit.

In this work, an innovative procedure for the estimation of
the third-order intermodulation component, which extends the

Fig. 1. Generalized polynomial Hammerstein model scheme, where the
symbol ⊗ indicates convolution and the symbol ⊕ indicates the sum operation.
The model is composed of NH parallel branches, each of them consisting of
a static nonlinearity followed by a linear filter.

technique already proposed in [31], is presented. In particular,
different from [31], we show that the availability of the
nonlinear structure model, besides allowing the estimation of
the IMD for one single amplitude of the input signal, also
allows to perform extrapolations of the estimate in the case of
excitation signals of amplitudes different from the one actually
used in the measurement. This is an important aspect since
the level of distortion is obviously related to the amplitude of
the input signal. This technique, which we call extrapolation
in this work, allows the estimation of the IMD parameter in
a wide dynamic range of amplitudes by performing a single
measurement, with a great advantage in terms of measurement
execution time.

This article is organized as follows. Section II explains the
theoretical aspects of the procedure. Section III shows the
experimental measurements carried out on real devices, and
the results are obtained. Finally, Section IV reports conclusions
and future work.

II. DERIVATION OF THE ESTIMATION PROCEDURE

Before presenting the derivation of the estimation procedure,
the reader is advised that vectors and matrices will be denoted
by square brackets.

We assume that the nonlinear system is validly represented
through its Hammerstein model of order NH , whose structure
is shown in Fig. 1. The corresponding I/O relationship is

yH (t) = h1(t)⊗ x(t)+h2(t)⊗ x2(t)+ · · · +hNH (t)⊗ x NH (t)

= [x j(t)]T ⊗ [h(t)] (1)

where the symbol ⊗ indicates convolution, h j (t), with j =
1 . . . NH , are the kernels that identify the model of the nonlin-
ear system considered, and the vector [h(t)] of dimension NH ,
according to the notation adopted here, contains the ordered
sequence of h j (t). Suppose that the input is an harmonic signal
whose peak amplitude is R

x(t) = Rcos(φ(t)) (2)

and whose instantaneous angular frequency ω(t) is variable in
time

ω(t) = dφ(t)

dt
. (3)
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Combining (1) and (2) and relying on the Chebyshev polyno-
mials [32], we can express the harmonics cos( j · φ(t)) as a
function of the powers (cos(φ(t))) j

[cos( j · φ(t))] = [AC][cos(φ(t))] j

= [AC][RC]−1[Rcos(φ(t))] j (4)

where the entries of matrix [AC] are the coefficients of the
Chebyshev polynomials of the first kind and [RC] is the
diagonal matrix in which the term of index {i, i} is the i th
power of the amplitude R. Using the inverse of (4), the output
of the Hammerstein model yH (t) can be expressed as follows:

yH (t) = [[Rcos(φ(t))] j ]T ⊗ [h(t)]
= [[RC ][AC]−1cos( j · φ(t))]T ⊗ [h(t)]
= [cos( j · φ(t))]T [[RC][AC]−1]T ⊗ [h(t)]
= [cos( j · φ(t))]T ⊗ ([[AC]−1]T [RC])[h(t)]
= [cos( j · φ(t))]T ⊗ [g(t)], (5)

where

[g(t)] = ([[AC]−1]T [RC ])[h(t)]. (6)

The g j(t) functions are contained in the vector [g(t)] in an
ordered fashion. Expression (5) shows that, when x(t) =
Rcos(φ(t)), (1) can be modified in order to formulate the
output signal yH (t) as a function of the harmonics of x(t)
rather than its powers. Then, (5) shows that the g j(t) functions
are linearly related to the functions h j (t) associated with
the powers of the same input signal as reported in (6).
On the basis of the above formulation, a procedure for the
identification of the Hammerstein model has been proposed;
it assumes that the harmonic excitation signals are of the
exponential swept-sine type and that they comply with specific
constraints on their instantaneous phase [19], [22], [33]. The
identification procedure involves the use of a filter, matched
to the function given in (2), whose impulse response ψ(t) is
such that its convolution with the exponential swept-sine signal
x(t) produces a band-limited approximation of Dirac’s delta
function δ(t). By filtering the output of Hammerstein model
yH (t) through ψ(t), we get the output signal u(t)

u(t) = yH (t)⊗ ψ(t)

= [cos( j · φ(t))]T ⊗ [g(t)] ⊗ ψ(t)

= [δ̂(t)]T ⊗ [g(t)] (7)

where each element in [δ̂(t)] is the band-limited approximation
of the Dirac δ(t) function delayed by a quantity �tk = L ln(k)
associated with the kth-order harmonic

[δ̂(t)] =

⎡
⎢⎢⎣

δ̂1(t +�t1)
δ̂2(t +�t2)

·
ˆδNH (t +�tNH )

⎤
⎥⎥⎦. (8)

The parameter L = ln( fMAX/ fMIN)/T defines the variation
rate over time of the instantaneous frequency of the exponen-
tial swept-sine signal, which sweeps between fMIN and fMAX

in a time T . In (7), it is shown that the signal u(t), output
of the matched filter, consists of the sequence of the g j(t)
functions, associated with delays �tk whose values differ only

as a consequence of the order of the harmonic to which they
are associated; the functions g j(t) have thus the meaning of
pulse responses associated with the harmonics of the input
signal. Moreover, if the parameter L is large enough to keep
g j(t) apart, each of the g j(t) functions can be taken directly
as a portion of u(t) starting at a time instant identified by �tk .

Starting from the Fourier transforms [G( f )] of the func-
tions g j(t), it is possible to estimate the THD( f ) associated
with the system model and the single harmonic distortions
HDk( f ) [22], [34]. Moreover, from the knowledge of the gα(t)
functions produced by an Rα amplitude harmonic signal, this
same formulation based on the Hammerstein model makes
it possible to obtain the functions gβ(t) associated with the
harmonics that would be produced at the output of the given
system, if it were excited by an Rβ amplitude harmonic signal.
In fact, based on the linear link between [h(t)] and [g(t)]
defined by (6), we can write

[h(t)] = [Rα]−1[Ac]T [gα(t)] (9)

and based on the knowledge of the kernels [h(t)] estimated
from the [gα(t)], we can obtain [gβ(t)]

[gβ(t)] = ([[Ac]−1]T [Rβ]) [h(t)]
= [[Ac]−1]T [Rβ] [Rα]−1[Ac]T [gα(t)]. (10)

This latter result allows to extrapolate the value of the har-
monic distortion (THD or HDk) associated with a (virtual) Rβ
amplitude input signals, starting from the [gα(t)] functions
obtained in correspondence to the input signal of amplitude
Rα actually used in the measurements.

All the considerations made above rely on the functional
connection between the harmonics of the input signal and
its integer powers. If the input signal is characterized, at any
given time instant, by a single instantaneous frequency (both
in the case of sinusoidal and swept-sine signal), this func-
tional connection is regulated by the matrix [Ac], whose
coefficients are those of Chebyshev’s polynomials of the first
kind, as in (4). If the input signal to the system is not
characterized by a single instantaneous frequency, such as the
swept-sine signal cos(φ(t)), but it is a more complex signal,
the link between its powers and the corresponding harmonic
components will be regulated by a relationship different from
the previous one; it will still be a linear relationship since the
Hammerstein model is linear in its parameters, but the matrix
that relates the signal powers and its harmonic components
will be different from [Ac]. The entries of the new matrix will
be directly related to the specific input signal chosen; in fact,
the harmonics generated as a consequence of a multifrequency
input signal depend on both the nonlinear system and the
complexity of the input signal, as all the possible intermodu-
lation combinations between the single harmonic components
of the input signal are generated. Our goal is to be able to use
the Hammerstein model of the nonlinear system to estimate
the IMD(2 f2− f1)( f ) that is generated at frequency 2 f2 − f1,
if the input multifrequency harmonic signal x(t) is of the
type

xω1,ω2(t) = R(cos(ω1t)+ cos(ω2t)). (11)
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We also want to show that, once identified the Hammer-
stein model of the nonlinear system, we can estimate the
IMD(2 f2− f1)( f ) that would be generated if the input signal had
an amplitude R = Rβ different from the amplitude R = Rα
of the signal xω1,ω2(t) actually used in the identification phase.
To obtain these results, we need to find the matrix that puts
in correspondence the harmonics of the input signal xω1,ω2(t)
with its integer powers [xω1,ω2(t)]k , in the case of the specific
signal of (11), used to estimate the IMD(2 f2− f1)( f ).

The signal we used in the present work, in analogy with
what we did in [31], is the superimposition of two exponential
swept-sine signals, both characterized by the same parameters
but translated in time by a delay �t . At any given time
instant, the signal input to the system will therefore contain
two harmonic components: the frequency of each of them
evolves exponentially and the ratio of the two frequencies is
constant throughout the duration of the double exponential
swept-sine signal. If the identified Hammerstein model is
of order NH , we will have as many kernels in the vector
[h(t)]; we must find the linear relationships that link the
elements of the vector [h(t)] that identifies the model to the
elements of the vector [g(t)] of dimension NH , in which each
kernel gm,n(t) is associated with the intermodulation frequency
m f1 + n f2, {m, n} ∈ Z. We are not interested in all the
intermodulation frequencies that can be generated; in our case,
we are interested in the IMD at frequency 2 f2 − f1, whose
estimation requires knowledge of the components g(2 f2− f1)(t),
g f1(t), and g f2(t). In fact, we can write

IMD(2 f2− f1)( f )% = G(2 f2− f1)( f )

G f1( f )+ G f2( f )
· 100 (12)

where the functions Gm,n( f ) are the Fourier transform of
the kernels gm,n(t). The overall vector must be of order
NH ; thus, if our objective is to estimate the IMD(2 f2− f1)( f ),
the three kernels g(2 f2− f1)(t), g f1(t), and g f2(t) must certainly
be included in the vector [gm,n(t)]. There is no rule to identify
the additional kernels to be included in the vector [gm,n(t)],
except that of verifying the linear independence of the result-
ing equations, in order to guarantee the compatibility of the
system of equations and the invertibility of the coefficient
matrix obtained. In this work, we have chosen to consider
intermodulation components of the lowest order possible,
which are usually those with relatively higher energy content.
We report below the matrix [AIMD] used in our experiments,
associated with a model of order NH = 9, with vector [gm,n(t)]
defined as follows:

[gm,n(t)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g f1(t)
g f2− f1(t)
g2 f 1

(t)
g2 f 2− f1(t)

g3 f 1
(t)

g2 f 2−2 f 1
(t)

g4 f 1
(t)

g3 f 2−2 f 1
(t)

g5 f 1
(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

that relates to the vector [h(t)] through

[gm,n(t)] = [AIMD][Rc][h(t)] (14)

in which [Rc] and [h(t)] have the meanings seen above and

[AIMD] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
9

4
0

25

4
0

1225

64
0

3969

64

0 1 0 3 0
75

8
0

245

8
0

0
1

2
0 2 0

225

32
0

49

2
0

0 0
3

4
0

25

8
0

735

64
0

1323

32

0 0
1

4
0

25

16
0

441

64
0

441

16

0 0 0
3

4
0

15

4
0

245

16
0

0 0 0
1

8
0

9

8
0

49

8
0

0 0 0 0
5

8
0

245

64
0

567

32

0 0 0 0
1

16
0

49

64
0

81

16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.(15)

The matrix [AIMD] has been obtained by developing the
function {R(cos(ω1t)+cos(ω2t))} j raised to power up to index
j = NH (in the case of the matrix [AIMD] shown above
up to NH = 9) and regrouping, for each intermodulation
harmonic present in the vector [gm,n(t)], the coefficients of
the development referring to the frequency of that harmonic.
It is useful to note that, having chosen as input a signal x(t)
for which the ω1 and ω2 angular frequency components have
the same amplitude R, their role will be interchangeable, and
the coefficients of the respective harmonics will be equal to
each other. Consequently, to avoid linear dependence between
equations of the system, the function g(t) related only to
one of the two angular frequencies has been inserted in the
vector (13). The matrix [AIMD] therefore plays, in the case
that the input signal is a double exponential swept-sine signal,
a role similar to that played by [[Ac]−1]T

in the case of the
single exponential swept-sine signal [22]. Using the [AIMD]
matrix, we can retrace the steps previously seen for that case.
By inverting (14), we obtain the expression of the vector
[h(t)] as a function of the kernels associated with the selected
intermodulation components

[h(t)] = [Rc]−1[AIMD]−1[gm,n(t)]. (16)

Of particular interest here is the possibility of estimating
the kernels [gm,n(t)| β] that would be produced if the double
exponential swept-sine input signal had an R = Rβ amplitude
different from R = Rα actually used in the model identi-
fication phase; the starting data are the kernels [gm,n(t)| α]
obtained in correspondence to an Rα amplitude. It is easily
obtained

[gm,n(t)| β] = [AIMD][Rβ][h(t)]
= [AIMD][Rβ]{[Rα]−1[AIMD]−1[gm,n(t)| α]}.

(17)

The experiments carried out in the following paragraph are
based on the technique of estimating IMD IMD(2 f2− f1)( f )
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based on swept-sine pulse compression for the identification
of the Hammerstein model of each of the physical systems
considered. The IMD IMD(2 f2− f1)( f ) was therefore estimated
both in correspondence to the actual Rα amplitude value of the
chirp signal used and referring to a hypothetical amplitude
Rβ based on the measurements made, in reality, with chirp
of amplitude Rα . All swept-sine pulse compression-based
estimates are compared with estimates from IMD(2 f2− f1)( f )
obtained from the measurements based on the international
norms.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

Several experiments were carried out to test the proposed
approach to measure IMD(2 f2− f1)( f ), analyzing different sce-
narios. In particular, two real-word audio devices were tested
to analyze the results obtained by means of the proposed
method. The results were compared to those obtained with
the National Instruments sound and vibration toolkit [35],
taken as the reference measurement system. The latter provides
the possibility of measuring IMD(2 f2− f1)( f ), according to the
international standard [36]. A National Instruments PXI chas-
sis (PXIe-1073) equipped with the PXI-4461 dynamic signal
acquisition module [37], and connected to a desktop PC, was
used for the signal’s generation and acquisition. A LabVIEW
script has been developed to manage the whole procedure.
All the measurements were performed by setting a sampling
frequency of 196 kHz and repeated at various frequencies in
order to obtain an estimation of the distortion parameters in the
frequency range from 1.5 to 15 kHz. For the IMD(2 f2− f1)( f )
measurement, the frequency range of interest was divided
into frequency intervals of 125 Hz width; for each of the
109 intervals identified, a signal was generated consisting of
the superposition of two sinusoidal tones of amplitude R and
frequencies f1 = f0 − (�ω/2) and f2 = f0 + (�ω/2),
adjacent to the nominal frequency f0, with �ω = 80 Hz as
suggested from the International Electrotechnical Commission
(IEC) standard. For the approach herein proposed, the same
frequency range has been considered using the following
parameters for the chirp generation:

1) fstart → 185 Hz;
2) fstop → 19 000 Hz;
3) Single chirp amplitude → 0.5 a.u.;
4) Measurement band → [1500, 15 000] Hz;
5) Chirp duration → 4.44 s;
6) Sample frequency → 196 000 Hz;

Fig. 4 shows the flowchart of the two measurement procedures
under comparison. Focusing on the IEC procedure shown
in the left side, it requires a single measurement for each
frequency and amplitude of input signal at which the distortion
has to be estimated. The parameter Step allows to modify
the number of measurement points between fstart and fstop.
On the right side, considering the proposed approach, a single
measurement is able to estimate the distortion within the whole
frequency range between fstart and fstop.

Several experiments on synthetic and real devices have been
performed. For the sake of brevity, Section III-B will report

Fig. 2. Hardware connection for the real experiment considering the PreSonus
TubePre preamplifier.

Fig. 3. Hardware connection for the real experiment considering the Fender
Hot Rod Deluxe III amplifier.

estimation measurement results focused on real audio devices,
while Section III-C will report results on robustness study
considering both a synthetic system and a real device.

B. Experiments on Real Devices

Two different devices under test (DUTs) were used in our
experiments: a tube preamplifier and a guitar amplifier. The
former, namely the PreSonus TubePre, is a microphone and
instruments preamplifier, equipped with a 12AX7 triode valve.
The device has been connected directly to the PXI-4461 acqui-
sition board, as reported in Fig. 2. For this experiment, the two
main controls of the preamplifier have been used, i.e., the
drive that acts on the valve saturation and the gain control that
acts on the overall gain. They have been set to 3 and 0 dB,
respectively, to obtain a low level of nonlinearity, as reported
in the experiments. The latter device, namely the Fender Hot
Rod Deluxe III guitar amplifier, is a 40-W AB Class tube
amplifier. The hardware connection is shown in Fig. 3. The
amplifier was connected to the PXI-4461 acquisition board for
the signal generation. For this experiment, the clean channel
of the amplifier has been used, which has a single control,
namely the volume, which acts on both the distortion and the
output level of the amplifier; for the experiments, the volume
has been set to a value of 2. The internal loudspeaker has
been disconnected and the power output of the amplifier has
been connected to a reactive load, in order to measure only
the amplifier distortion, without including the nonlinearity of
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Fig. 4. Sequence of operations in the measurement procedure according to
(a) IEC standard reference and (b) proposed approach.

Fig. 5. Noise added to measurements for the robustness study.

the loudspeaker. For the reactive load, a Two Notes Torpedo
Captor has been used, a 100-W reactive load, specific for use
with guitar amplifier having the same nominal impedance of
the loudspeaker, i.e., 8 	. The reactive load has an output line
that has been connected to the PXI-4461 input.

Figs. 8 and 9 show both the results for the first experiment
on real devices, i.e., the PreSonus TubePre, considering a
low level of nonlinearity and two amplitudes of input signal,
i.e., 0.62 Vpp (peak-to-peak) and 1.40 Vpp. Each panel of the
two figures compares the estimated (or extrapolated) trend,
on solid blue lines, with the trend obtained through the
technique indicated by the international standard, drawn with a
red dashed line. Taking into consideration the IMD(2 f2− f1)( f )
measurement, the proposed approach shows very good estima-
tion results in comparison to the standard IEC 60 268 method-
ology. As far as the extrapolation results are concerned,
we focus on the results obtained for the 0.62-Vpp input signal,
the first considered experiment is shown in Fig. 8(a), where
the green dotted curve shows the estimated distortion without

Fig. 6. Estimation results considering an input signal of 1.40 Vpp to synthetic
polynomial nonlinearity. Dashed lines show the confidence interval for each
measurement with a different SNR. In particular, (a) with a SNR of 10 dB,
(b) with a SNR of 20 dB, and (c) with a SNR of 30 dB.

extrapolation; in this case, the two estimations are almost
identical on the whole frequency band. Dealing with the
extrapolated estimations, the results are shown in Fig. 8(b)–(d)
on blue solid curves; in this case, the estimates show a
good accuracy in the range between 1 and 8 kHz, in the
upper range of frequencies (i.e., between 8 and 15 kHz),
the estimates differ to a greater extent, although at a level
still acceptable as an indication. Focusing on the results for
the estimation with the 1.40-Vpp input signal, Fig. 9(a) shows
the estimates behavior with no extrapolation in green dotted
lines: the two curves are almost identical. The estimation with
the extrapolated curves is shown in Fig. 9(b)–(d), where it
gives useful indications on which are the trends of the IMD
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Fig. 7. Estimation results considering an input signal of 1.40 Vpp to the tube
preamplifier. Dashed lines show the confidence interval for each measurement
with a different SNR. In particular, (a) with a SNR of 10 dB, (b) with a SNR
of 20 dB, and (c) with a SNR of 30 dB.

when the amplitude of the input signal is varied. Table I
shows the percent mean difference between the proposed
approach and the IEC 60 268 measurement method average on
the entire frequency range, for all the estimations presented
in Figs. 8 and 9. The results in both the estimation and
extrapolation cases are good and show a very small difference
between the proposed approach and the IEC measurements.

Focusing on the second experiment, i.e., with the Fender
Hot Rod Deluxe III guitar amplifier, results are shown in
Figs. 10 and 11, considering two amplitude values of the
input signal, again 0.62 and 1.40 Vpp. Focusing on the
experiments with 0.62-Vpp input signal, results are shown
in Fig. 10. Fig. 10(a) shows the estimation with no extrap-
olation, the green dotted curve, which is almost overlapped

TABLE I

MEAN PERCENT DIFFERENCE BETWEEN IMD(2 f2− f1) ESTIMATES AND THE
VALUES OBTAINED BY THE METHOD PRESCRIBED BY IEC 60 268:

PRESONUS TUBE PREAMPLIFIER EXPERIMENT. VALUES IN BOLD

INDICATE ESTIMATES WITH NO EXTRAPOLATION

TABLE II

MEAN PERCENT DIFFERENCE BETWEEN IMD(2 f2− f1) ESTIMATES AND THE

VALUES OBTAINED BY THE METHOD PRESCRIBED BY IEC 60 268:
FENDER HOT ROD DELUXE III AMPLIFIER EXPERIMENT. VALUES

IN BOLD INDICATE ESTIMATES WITH NO EXTRAPOLATION

to the one obtained with the IEC procedure, in blue solid
lines. Fig. 10(b)–(d) shows the extrapolated curves on blue
lines; in this case, the standard measurement shows some
oscillations that are not present in the extrapolated curves.
The curves couples relative to the same amplitude of the
input signal, however, have an extremely similar trend, both
globally considering the distortion values, more in detail,
if the frequency trend is considered. In Fig. 11, the results
for the 1.40-Vpp input signal are visible. Focusing on the
nonextrapolated estimation in Fig. 11(a), the curves couples
have an almost identical shape. Extrapolated estimations are
shown in Fig. 11(b)–(d); as for the estimation with 0.62-Vpp

signal, oscillations are present, but, again, the two curves are
comparable, with some difference only in Fig. 11(d), where the
proposed approach seems to overestimate the behavior of the
amplifier in the range between 4 and 12 kHz. Table II shows
the percent mean difference between the proposed approach
and the one defined in IEC 60 268, evaluated for all the
estimations presented in Figs. 10 and 11. As for the Tube Pre
case, the proposed approach gives an estimation of the IMD
parameter value very close to the one of the IEC procedure.
Comparing the two experiments, we can say that in both
cases, the estimation of the IMD frequency curve is excellent.
Slightly different are the results obtained for the extrapolation
of the estimate of the third-order IMD, in which the results
obtained with the first experiment are more adherent to the
IEC measurements than in the case of the Fender amplifier;
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Fig. 8. Estimation results considering an input signal of 0.62 Vpp to the tube
preamplifier. (a) Estimated curve, (b) with an extrapolation to 0.1 V, (c) with
an extrapolation to 0.18 V, and (d) with an extrapolation to 0.28 V.

this can be explained considering that the Fender amplifier
has a multistage structure, extremely more complex than the

Fig. 9. Estimation results considering an input signal of 1.40 Vpp to the
tube preamplifier. (a) Estimated curve, (b) with an extrapolation to 0.41 V,
(c) with an extrapolation to 0.62 V, and (d) with an extrapolation to 0.93 V.

tube preamplifier, so it is reasonable to expect a much more
difficult definition of its model.



BURRASCANO et al.: SWEPT-SINE-TYPE SINGLE MEASUREMENT 6503511

Fig. 10. Estimation results considering an input signal of 0.62 Vpp to
the guitar amplifier. (a) Estimated curve, (b) with an extrapolation to 0.1 V,
(c) with an extrapolation to 0.18 V, and (d) with an extrapolation to 0.28 V.

Regarding the complexity of the proposed approach,
an evaluation in terms of measurement execution time has
been considered in comparison with the IEC 60 268 procedure.

Fig. 11. Estimation results considering an input signal of 1.40 Vpp to the
guitar amplifier. (a) Estimated curve, (b) with an extrapolation to 0.41 V,
(c) with an extrapolation to 0.62 V, and (d) with an extrapolation to 0.93 V.

For both the procedures, the requested time has been measured
using the same approach based on the tick count (ms) function
available in Labview. Considering the estimation on the whole
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frequency band and for four different amplitudes, we obtain
that the IEC measurement took ∼1046.4 s, while the proposed
approach requires ∼20 s. This remarkable difference is due to
the fact that the IEC measurement requires ∼2.4 s for each
frequency value, and 109 measurements have to be performed
to cover the useful frequency band, each of them repeated
for the four amplitudes. We have to underline that such an
advantage of the proposed approach could be significant,
especially for some time-critical industrial processes where a
measure must be carried out in just a few seconds.
C. Robustness Study

Several tests have been done to evaluate the performance
of the algorithm in terms of estimation precision under noisy
conditions. For the experiments, the setup shown in Fig. 5
has been considered. A synthetic polynomial nonlinearity and
the tube preamplifier of Fig. 2 have been used, considering
different signal-to-noise ratios (SNRs).

Focusing on the polynomial, the following nonlinearity has
been considered:

y = Ax2 + x3 (18)

where the parameter A allows to vary the amount of quadratic
nonlinearity. Since the nonlinearity is defined in analytical
form, it is possible to calculate the theoretical third-order IMD,
according to the value assigned to the constant A. In this case,
its value was set to A = 0.1125 as in [31], with an input signal
of 1.4-V peak-to-peak amplitude (Vpp), leading to a theoretical
IMD of 16.7%. Fig. 6 shows the results for three SNR values
in terms of frequency behavior of the mean IMD values (blue
lines) and confidence intervals (red lines). The plot shows that
even in the worst case, the proposed approach is robust and
accurate.

For the tube preamplifier, the references are the results
shown in Fig. 9(a), which report the measurements without
noise addiction. Fig. 7 shows the obtained results with three
different SNR levels and with 20 repetitions of each mea-
surement. Also, in this case, the blue lines represent the mean
values, while the red dashed lines show the confidence interval
for each estimation. As expected, for an SNR of 20 or 30 dB,
the estimations are very accurate also with a limited confidence
interval, while, in the worst scenario, i.e., an SNR of 10 dB,
the measurements still remain good with an acceptable con-
fidence interval confirming the proposed approach robustness
against noise.

IV. CONCLUSION

In this article, we have proposed an original third-order IMD
estimation technique that allows to estimate the frequency
trend of the 2 f2 − f1 distortion from a single detection. In par-
ticular, it allows to obtain an estimate of the distortion not
only for the signal level actually used in the measurement but
also for signal amplitudes other than that, thus extrapolating
the estimate of IMD. Several experiments have been carried
out on real audio devices and synthetic systems, comparing
the results obtainable through the proposed technique with
the results deriving from the application of the techniques
prescribed by the international standards. The results obtained
in the tests carried out on real devices are good, confirming the

effectiveness of the proposed approach both in the estimation
phase and in the extrapolation of the estimates to a whole
range of input signal levels different from the one applied.
Finally, a robustness study on synthetic and real systems has
underlined the potentiality of the proposed approach in real
scenarios under noisy conditions since the methodology has
provided good results also in the presence of high noise levels.
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