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Abstract— Machine-learning techniques are suitably
employed for gait-event prediction from only surface elec-
tromyographic (sEMG) signals in control subjects during
walking. Nevertheless, a reference approach is not available
in cerebral-palsy hemiplegic children, likely due to the large
variability of foot-floor contacts. This study is designed
to investigate a machine-learning-based approach, specifi-
cally developed to binary classify gait events and to predict
heel-strike (HS) and toe-off (TO) timing from sEMG signals
in hemiplegic-child walking. To this objective, sEMG signals
are acquired from five hemiplegic-leg muscles in nearly
2500 strides from 20 hemiplegic children, acknowledged as
Winters’ group 1 and 2. sEMG signals, segmented in over-
lapping windows of 600 samples (pace = 5 samples), are
used to train a multi-layer perceptron model. Intra-subject
and inter-subject experimental settings are tested. The
best-performing intra-subject approach is able to provide in
the hemiplegic population a mean classification accuracy
(±SD) of 0.97±0.01 and a suitable prediction of HS and
TO events, in terms of average mean absolute error (MAE,
14.8±3.2 ms for HS and 17.6±4.2 ms for TO) and F1-score
(0.95±0.03 for HS and 0.92±0.07 for TO). These results out-
perform previous sEMG-based attempts in cerebral-palsy
populations and are comparable with outcomes achieved by
reference approaches in control populations. In conclusion,
the findings of the study prove the feasibility of neural net-
works in predicting the two main gait events using surface
EMG signals, also in condition of high variability of the
signal to predict as in hemiplegic cerebral palsy.

Index Terms— Cerebral palsy, children, gait-phase classi-
fication, machine learning, neural networks, surface EMG.

I. INTRODUCTION

CEREBRAL palsy is the most common motor disability in
childhood [1]. Pediatric hemiplegia is a form of unilateral
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cerebral palsy. It may cause altered selective motor control,
weakness, stiffness of the limbs, and consequent balance and
walking difficulties [2]. Clinical gait analysis (CGA) is the
main tool to supply different indexes and parameters, suitable
to quantitatively characterize human locomotion and to stress
possible impairments of motor function. CGA is used to play a
relevant part in clinical decision-making when managing child
hemiplegia. Typically, CGA is able to provide four types of
different data: spatial-temporal parameters, kinematics data,
kinetics data, and electromyographic (EMG) signals. Many
recent CGA studies focused particularly on the acquisition of
surface electromyographic (sEMG) signals in cerebral-palsy
children [3]–[8], probably due to the increasing availability
of solutions based on it. The assessment of muscular recruit-
ment by means myoelectric-signal analysis is, indeed, strongly
advised in hemiplegic cerebral palsy, due to the neuromuscular
involvement of this disorder [6].

During walking, sEMG signal needs to be synchronized
with at least one other gait signal, in order to temporally
characterize the muscular recruitment. The identification of the
time when stride begins (heel strike, HS) and/or the transition
time between stance and swing phases (toe-off, TO) is usually
achieved by means of additional systems or sensors, such
as cameras, foot-switch sensors, pressure sensing mats, and
inertial measurement units (IMU). In order to prevent this,
attempts were proposed to assess gait events by an artificial-
intelligence-based interpretation of only sEMG signals. The
adoption of sEMG-based approaches seems to be particu-
larly suitable for studies focusing on exoskeletons. It was
observed, indeed, that exoskeletons could benefit from the use
of sEMG for gait-event detection in various ways, including
the simultaneous control of assistance timing and intensity [9].
EMG signals are directly related to motion intention, thus
being less sensitive than force sensors to ambiguity derived
from contact with the environment, and potentially allowing
to detect movement in advance, possibly reducing delays in
control. EMG potentials in movement intent detection is also
confirmed in [10], where EMG-based approach is reported
to be able to detect gait initiation in transfemoral amputees
earlier (63 - 138 ms) than inertial sensors. In [11], two groups
of patients adopted the same powered ankle-foot orthosis, but
relied on different control schemes: myoelectric controlled and
footswitch controlled ones. Results showed that the first one
leads to better gait patterns and lower muscle activation levels.
Same findings are confirmed by more recent studies [12].
Finally, in [13] it was observed that EMG-based techniques
are more robust to gait-event detection errors, showing better
error recovery ability.
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Nevertheless, literature reports just a few studies [14]–[19],
trying to face the problem of gait-event detection by means
of machine-learning-based methods (see Section II, Related
Works, for details). To our knowledge, a recent intra-subject
approach, introduced by the present group of researchers,
is still reporting the best performance among the EMG-based
ones proposed in literature, showing a mean absolute error
(MAE) of 14.4±4.7 ms and 23.7±11.3 ms in predicting
HS and TO timing, respectively [19]. These encouraging
performances were achieved considering data acquired during
able-bodied-subject walking, where the clear majority of the
strides (around 90%) follows the typical foot-floor-contact
sequence, known as HFPS [20]: heel contact (0-6% of gait
cycle, H), flat foot contact (6-38%, F), push-off (38-60%, P),
and swing (60-100%, S). The possibility of extending the
generality of these findings beyond control walking would be
truly valuable, developing novel approaches able to detect and
classify gait events from sEMG signal also in pathological
condition, as pediatric hemiplegia.

Atypical stride, caused by drop foot or equinus deformity
of the foot, is a frequent issue in ambulant children with
spastic hemiplegia. The main atypical sequences are 1) PFPS:
the first contact is with forefoot (P), then the heel landed
on the ground (F), and standard P and swing (S) phases
followed; and 2) PS: the first contact is again with forefoot
(P), but it is followed immediately by swing phase (S), with
the heel never getting to the floor. Recent studies showed that
atypical cycles (PFPS and PS sequences) could characterize up
to 85% of total strides in mild-hemiplegic children [3], [5].
In detail, it was reported that the initial contact with the
ground of the hemiplegic foot is with the forefoot (PFPS
and PS sequences) in 58% of total strides in mild-hemiplegic
children [5], acknowledged as group 1 in the classification
of spastic hemiplegia introduced by Winters et al. [21].
In Winters’ group 2, PFPS cycles and PS cycles characterized
43% and 40% of total strides, respectively [3]. Predicting
this large variability of foot-floor-contact sequences could be
very challenging for automatic classifiers and the application
of techniques developed specifically for walking of control
subjects may not be enough. Thus, the goal of the present study
is to investigate a machine-learning-based approach specifi-
cally developed to binary classify gait events and to predict
HS and TO timing from sEMG signals in mild-hemiplegic-
children walking. Depending on the application field, two main
experimental settings are proposed: the intra-subject approach
and the inter-subject approach [19]. In the first setting, sEMG
data collected during walking of a single subject are used to
train a neural network (NN) to recognize different gaits from
the same individual. In the latter, gaits from a new individual
are analyzed by a neural network trained on gaits from other
individuals. In the present study, both approaches are tested.
Numerous strides per subject (about 150, including only the
hemiplegic-limb strides) are considered, in order to involve as
much variability as possible.

II. RELATED WORKS

Gait partitioning and gait event detection are achieved in lit-
erature using different kind of sensors and resulting data [21].

While non-wearable sensors, as opto-electronic systems and
force platforms, provide the best accuracy in indoor environ-
ments, wearable sensors are widely investigated as they are
generally cheaper and enable a wide range of applications,
e.g., prosthesis and exoskeleton control. Footswitches and
foot-pressure insoles are considered as gold standard and often
used as reference to evaluate the performances of proposed
methods, based on other kind of sensors. In this section,
the state of the art is reviewed, by first covering gait event
detection approaches based on kinetic and kinematic data
in section II-A, and then focusing on existing EMG-based
approaches in section II-B.

A. Kinetic and Kinematic Based Approaches

1) Control Subjects: Several studies addressed gait event
detection in healthy subjects by means of gyroscopes,
accelerometers, and other kinematic sensors. In [22], sev-
enteen different IMU-based algorithms are evaluated on a
population of thirty-five healthy subjects and respective results,
in terms of median time error (MED) and 25th–75th percentile
error range (DMED), are compared. Reported results show
a value of MED ranging from 60 to 65 ms and DMED
from 40 to 111 ms for HS detection, while a MED from -
25 to 6 ms and a DMED from 68 to 120 ms are observed
for TO detection. The accelerometer-based method proposed
in [23] has been evaluated on the MAREA dataset [24], includ-
ing eleven healthy individuals walking on flat and inclined
treadmill and on indoor flat ground. In this case, evaluation
is measured by F1-score and Mean Absolute Error (MAE).
F1-score is typically adopted to quantify the accuracy of
model prediction on a dataset, based on the evaluation of
true positives (correctly identify as positive), false positive
(wrongly identified as positive), and false negatives (wrongly
identified as negative). High F1-score values (> 0.90) indicate
a good accuracy in prediction. Event predictions are accounted
as correct (true positives) if they fall in a 61 ms interval
from the ground truth event, and MAE is calculated on true
positives only. Reported performances on treadmill walking
are 0.99 F1-score and 16.4 ms MAE for HS detection, and
0.96 F1-score and 39.8 ms MAE for TO detection, while for
indoor flat walking an F1-score of 0.99 and MAE of 17.8 ms
are measured for HS detection and F1-score of 0.96, MAE
of 27.0 ms for TO detection. In [25], a continuous-wavelet-
transform-based feature extraction is performed for signals
from tri-axial accelerometers and HS and TO instants are
predicted. The algorithms were tested on eight healthy subjects
walking on flat line and a ramp, a tolerance of 50 ms was
used to individuate correctly matched event predictions (true
positives), and a F1 score of 0.92 is obtained with the best
system configuration (accelerometer positioned on the foot).

2) Patients Affected by Gait Disorders: Several recent works
applied a neural network, called Long Short Time Memory
(LSTM), to kinematic time series data for predicting gait
events in children with gait disorders [26], [27]. In [26],
a dataset composed of 9092 trials of children with different
pathologies including cerebral palsy (the number of subjects
is not specified) is used to train and evaluate an LSTM
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neural network. Inter-subject evaluation is performed. MAE
is computed only for those trials where the number of pre-
dicted gait events equals the number of ground-truth events
(99% of the trials form HS and 95% for TO). The average
MAE reported is 18.3 ms for HS and 12.5 ms for TO. The
study addresses real-time prediction, even if a peak detection
algorithm, which makes use of potentially all the trial samples
predictions, is applied to the output of LSTM network to
identify gait-event timing. The granularity of the prediction is
around 8.3 ms. In [27], data collected from 226 children with
gait disorders are used to train and evaluate the performances
of a bidirectional LSTM-based neural architecture. Inter-trial,
but not inter-subject, evaluation is performed and the obtained
MAE is 5.5 ms for HS and 10.7 ms for TO. In [28], a single
IMU is adopted to train a thresholding algorithm with the
aim of predicting HS and TO timing. The method is tested
on five transfemoral amputee, resulting in an average error
of around 2% of stride duration (computed from HS and TO
estimates). In [29], two gyroscopes are used to detect seven
gait sub-phases in children with cerebral palsy, reporting mean
time error of 12.3 ms for HS and of 18.5 ms for TO.

B. EMG-Based Approaches

As discussed above, developing techniques to assess main
gait events from only sEMG signals is of growing interest.
Despite the potential advantages of EMG-based approaches,
few efforts have been done in this direction, especially when
subjects affected by neuro-motor disorders are concerned.
In the following sections, the related state of the art is
reviewed, focusing on control subjects and cerebral-palsy
patients.

1) Control Subjects: Few works in literature address
Machine-Learning-based classification of gait phases from
only EMG signal. In [14], time-domain features have been
extracted from EMG signal in order to classify stance and
swing phases. Evaluation on treadmill walking of a single
subject reported a maximum accuracy of 91.1%. Bilateral
EMG features were used in [15] to train a support vector clas-
sifier. Intra-subject evaluation was performed on two subjects
during walking on a treadmill at different speeds, reporting
best accuracy of 96%. In [16], a control system for a foot-
knee exoskeleton was proposed, based on the processing of
eight EMG signals. Four time-domain features were extracted,
and Bayesian Information Criteria (BIC) was used to predict
eight gait events. Evaluation on one single healthy subject
revealed low repeatability of the method, with a 30% drop
in accuracy testing on different gait cycles. In [17], a set of
temporal features were fed to a single-layer neural network
to identify TO and HS timing on a population of eight
healthy adults. The study targets inter-subject prediction by
testing the network on one single unlearned subject (not used
in training), however no cross validation is performed, and
the test is performed on a 5-second trial only. No indica-
tion is provided regarding accuracy of prediction; a mean
average error of 35 ms and 49 ms is reported for HS and
TO prediction, respectively. The neural network used in this
work is a simple single-layer network with 10 units and the

Levenberg Marquardt algorithm was used to train the network.
These methods are based on hand-crafted features; otherwise,
previous studies by authors of the present paper adopted a
featureless approach, employing Multi-Layer Perceptrons to
process the envelope of sEMG signals [18], [19]. One further
difference is the optimization algorithm: Leven berg Marquardt
in [17], Adam in [18], [19]. Inter-subject evaluation on a pop-
ulation of twenty-three healthy adults reported overall mean
classification accuracy (stance vs. swing) of 93.4%. A mean
F1-score of 99.0% and a MAE of 21.6 ms were detected for
the prediction of HS events and a mean F1-score of 98.4% and
a MAE of 38.1 ms were identified for the prediction of TO
events [18]. This approach has been numerically outperformed
by a subsequent study of the same group of researchers based
on intra-subjects experiments in the same population [19].
Average classification accuracy of 96.1±1.9% and mean MAE
of 14.4±4.7 ms (associated to an F1-score of 99.3%) and
23.7±11.3 ms (associated to an F1-score of 98.5%) in pre-
dicting HS and TO timing were provided. To our knowledge,
intra-subject approach is still reporting the best performance
among EMG-based ones proposed in literature.

2) Patients Affected by Cerebral Palsy: As far as we know,
only one research attempted to address machine-learning-
based detection of gait events on cerebral-palsy children [30].
The algorithm presented in this study is based on ANFIS
(Adaptive Neuro-Fuzzy Inference System), using percutaneous
and sEMG signal and its first derivative as input and needs to
be calibrated on each subject and re-calibrating each time it
is used. Evaluation was made on eight subjects (8-18 years
old) with diplegia and hemiplegia, ambulating with various
degrees of assistance ranging from no assistance to walking
with using an assistive device. Only the intra-subject prediction
was assessed. The stereo-photogrammetric system (VICON
motion analysis system) was used to assess foot-floor-contact
signal, adopted as reference. The system was impossible to
calibrate for one out of eight subjects and results are reported
for the remaining seven subjects. Accuracy, simply computed
as ratio between the number of predicted events and reference
events, was around 0.97 and the reported mean prediction
error was 30 ms. Large values of standard deviation were
measured, confirming that the characterization of pathological
gait is challenging.

III. MATERIALS AND METHODS

A. Subjects

Foot-floor-contact and sEMG data during hemiplegic walk-
ing are taken from retrospective studies performed at Labora-
tory of Gait Analysis, Ospedale Santa Croce, Moncalieri (TO),
Italy [3]. Two raters analyzed independently kinematic data
and video-recordings from Lab database and pick up twenty
school-age children with hemiplegic cerebral palsy. Ten chil-
dren are acknowledged as Winters’ group 1 and ten children
as Winters’ group 2. This classification of spastic hemiplegia
was introduced by Winters et al. [21], based on sagittal
joint kinematics. It considers four different classes (type 1,
2, 3, and 4), with a progressive distal-proximal involvement
of the paretic lower limb. Types 1 and 2 are the mildest
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Fig. 1. Experimental set-up. GL is gastrocnemius lateralis, TA is tibialis
anterior, VM is vastus medialis, RF is rectus femoris, and H is hamstring.
Heel, 1st MH, and 5th MH mean that the footswitch is applied on the
heel, 1st and 5th metatarsal head, respectively.

forms and the most observed in cerebral palsy. Type 1 is
characterized by the occurrence of drop foot in swing, while
type 2 by the equinism persistence all through the gait cycle,
with a possible knee hyperextension during stance. These
patient characteristics were stressed to further highlight the
high variability of foot-floor-contact signal, expected among
patients. Mean (±SD) children characteristics are: range:
5-15 years; 11 males/9 females; 10 right/10 left hemiplegia;
mean age = 9.3±3.2 years; height = 131±18 cm; mass =
32.4±13.0 kg; Gross Motor Function Classification System
level is between I and II. Children who underwent lower
limb orthopedic surgery or botulinum toxin injections in six
months preceding gait examination are kept out from the
study. Informed consent is received from all subjects. The
present research was undertaken following ethical principles of
Helsinki Declaration and approved by local ethical committee.

B. Signal Acquisition

Foot-switch and sEMG signals are captured (sampling rate:
2 kHz; resolution: 12 bit) by the multichannel recording sys-
tem Step32 (Medical Technology, Italy). 16 amplifier chains
(one for each sensor) constitute the detection unit that collects
signals coming from up to 16 different sensors. Each amplifier
chain has its own sample-and-hold. The sample-and-hold
circuits sample the 16 signals contemporarily, and then a single
ADC converts the output of each S/H in sequence. Thus,
digitally converted data correspond to analog signals collected
at the same time instant.

sEMG signals are acquired by single differential probes
placed in the hemiplegic limb over the five muscles mainly
involved in walking task (Fig. 1): gastrocnemius lateralis
(GL), tibialis anterior (TA), vastus medialis (VM), rectus
femoris (RF), and hamstring (H). Winter’s guidelines for
sensor positioning were respected [31]. Sensor characteristics
are: manufacture Ag-disks; diameter 4 mm; inter-electrode
distance 12 mm; gain 1000; high-pass filter 10Hz, 2 poles.
Foot-floor-contact signals are measured by three foot-switches
affixed under: 1) the heel; 2) the first metatarsal head of the

foot; and 3) the fifth metatarsal head of the foot (Fig. 1).
Foot-switches characteristics are: activation force 3 N; dimen-
sion 10 × 10 mm; thickness 0.5 mm.

Each child walked barefoot, without using any assistive
device, back and forth over a 10-m straight walkway for
around 180 seconds. Cadence and speed were self-selected
by each child. Possible crosstalk from surrounding muscles
is inspected by visual inspection. Crosstalk is hypothesized
when two muscles of the same anatomical region displayed
concomitant activity with comparable amplitude modulation.
To handle this issue, the procedure for reducing the possibility
of crosstalk contamination with the use of Double Differential
(DD) probes, instead of Single Differential (SD) ones, has
been followed [32]. Specifically, double-differential sEMG
sensors are adopted to further improve spatial selectivity. Sen-
sor characteristics of these three-bar probes are: bar diameter
1 mm; bar length 10 mm; interelectrode distance 10 mm. Gain
and filtering properties remain the same of single-differential
ones. Single-differential and double-differential signals are
then compared. When the amplitude of the double-differential
signal is significantly lower, crosstalk is confirmed and the
signal is rejected. In the present work, this happened in a
very limited number of cases, not significantly undermining
the numerosity of population.

C. Signal Pre-Processing

Foot-switch signals are processed for providing the segmen-
tation of the foot-floor signal in the single gait cycles and
then for identifying gait phases, following the acknowledged
procedure introduced in [33]. Briefly, H-phase is identified
when only the switch under the heel is closed. F-phase
corresponds to the condition when the heel switch is closed,
and at least one of the switches under the forefoot is closed
too. P-phase is characterized by the condition when the switch
under the heel is open, and at least one of the switches under
the forefoot is closed. When all the switches are open, S-phase
is acknowledged. HS is the first sample when only the switch
under the heel is closed. TO is the first sample when both
switches under the forefoot are simultaneously open. sEMG
signals are band-pass filtered (linear-phase FIR filter, cut-off
frequency: 20 - 450 Hz) for removing high-frequency noise
and motion artefacts. The full-wave rectification of the filtered
signal is performed. Afterward, linear envelope is computed
by low-pass filtering the rectified signal (2nd-order Butterworth
filter, cut-off frequency 5 Hz).

D. Data Preparation

Data from the pathological leg only are included in the
experiments. Signals are segmented in overlapping sliding
windows (Fig. 2), where each window is shifted of a number
of samples (pace) with respect to the preceding window.
Each EMG-signal window is then labelled as stance (0) or
swing (1) according to the value of the basographic signal
corresponding to the samples in the detection window, in cases
where these values are homogeneous (all values are 0 or
all values are 1). In cases where basographic signal assumes
different values within the detection window, the most frequent
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Fig. 2. Signal segmentation and labelling. Signals are segmented into
overlapping sliding windows. Each window is then labelled according to
the basographic signal corresponding to the last samples (the detection
window). As shown in the case of Tm, each instant and the corresponding
signal sample are included in multiple windows, thus providing multiple
predictions for the same sample.

value is used to label the window. This could happen when the
window covers a transition between stance and swing or vice
versa. Illustrations of raw sEMG data from the five muscles
and phase-transition timings from the basographic signal are
reported in Fig. 3. The underlying idea is that the current state
(gait phase), can be better predicted by looking at past segment
of the signal, reflecting muscle activations that lead to that
specific state. Foot-switch signal is used as ground-truth since
force-based event detection is still considered as the reference
method for assessing the accuracy of gait-event detection
in different systems [34]. Moreover, foot-switches directly
attached to the barefoot sole provide a direct measurement of
foot-floor contact events and allow overcoming the limitation
of collecting only a few gait cycles, typical of force plate and
motion capture systems.

E. Tuning the Classifier

To choose a suitable gait phase classifier, preliminary exper-
iments are performed, evaluating four different well-known
Machine-Learning methods: Support Vector Machine (SVM),
Random Forest (RF), K-Nearest Neighbors (KNN), and Multi-
Layer Perceptron (MLP). Dataset for such experiments is
created, by adopting a pace of 100 samples and a detection
window of 20 samples (10 ms). Different windows lengths
are considered. A 5-fold evaluation is performed. In each
fold, the training set is composed of the signal windows from
sixteen patients, while the remaining four patients are used
for testing. For each classifier, different parameters settings
are tested. The resulting best settings are: SVM with linear
kernel and C parameter set to 1, RF using 50 classifiers and
maximum depth set to 10, KNN with K parameter set to 3.
About MLP, the five models adopted in [18] are tested. They
provided very comparable results, but the best ones are the
single-layer model with 32 units (MLP1) and the three-layer
model with 128, 64 and 32 units (MLP2). The average clas-
sification accuracy corresponding to different window lengths
is reported in Fig. 4. The best results, almost identical, are
achieved by MLP1 and MLP2, for all the tested window
lengths. In particular, the higher accuracy corresponds to
600-sample (300 ms) window. Thus, this setting is adopted in

the rest of the experiments. Apart from classification accuracy,
MLPs are used in the full experiments as they provide faster
predictions. Time to process a single 600-sample window
under our experimental conditions is 0.25 ms for MLP1 and
0.55 ms for MLP2. Such a time rises up to 0.90 ms for RF
and more than 1 s for SVM and KNN, making the latter
two not suitable for real-time applications. Processing time is
further debated in Discussion (Section C). In full experiments,
described in detail in the following sections, window length is
set to 600 samples, detection window is 20-sample long, and
pace is set to 5 samples. In other words, the classifier is trained
to predict the gait phase corresponding to a 20-sample interval
(10 ms), based on EMG signals recorded during the previous
580 samples. The system uses sliding windows and outputs
a prediction for each 2.5-ms segment, thus the prediction
tolerance is 1.25 ms.

F. Training the Classifier

Two different experimental settings are addressed in the
present study: the intra-subject (Fig. 5) and the inter-subject
approach (Fig. 6). In the intra-subject setting, the gait signals
for each subject are split into a training set (90%) and a
testing set (10%). The process is then repeated, each time
changing the testing set to cover the entire signal, follow-
ing a 10-fold cross validation strategy. Thus, 20 different
classifiers are trained, each one to learn the gait patterns
of a single individual (i.e., 20 subjects = 20 classifiers).
In the inter-subject setting, the training set is composed by
gait signals of 19 subjects. The gait signal of the remaining
subject is used as testing set. The process is repeated changing,
at each time, the subject included in the testing set, following
a 20-fold cross validation strategy. The goal of this experiment
is to assess the capability of a neural classifier to predict the
gait phases of an unseen subject based on the learned gait
patterns from other previously-recorded subjects. As done in
the preliminary experiments (Section III-E), different MLPs
are evaluated, varying the number of layers and the units in
each layer, as in [18]. In the intra-subject experiment, the
best-performing model is MLP1 (single layer - 32 units), while
in the inter-subject experiment the best-performing model
results MLP2 (three layers - 128, 64, 32 units). To train
the networks, the Adam optimization algorithm is adopted
with a learning rate of 0.001 and a batch size of 32 data
items. To decide the number of training epochs, we use an
early stop technique, stopping the training if accuracy on the
validation set (10% of the training set) does not increase for
10 consecutive epochs.

G. Gait-Event Identification

Once a trained model is available, the next step consists in
employing it to detect the gait-event timing, that is to assess
the instant when the transition between swing and stance,
HS, (and vice versa, TO) occurs. To do so, for each fold,
the EMG signals included in the testing set and segmented
into sliding windows as described earlier are provided as
input to the model previously trained on the corresponding
training set. The model output was used to form the predicted
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Fig. 3. Basographic signal (upper panel), raw sEMG data from the five muscles, and phase-transition timings from the basographic signals (HS
and TO) from four strides of a representative hemiplegic children.

Fig. 4. Results of the preliminary experiments with different classifiers
and different windows length.

Fig. 5. Illustration of the experimental setting for the intra-subject
approach.

basographic signal. As illustrated in Fig. 2 for the instant Tm ,
the model may produce multiple predictions for a single data
sample, depending on window length, pace, and detection
window setting. In this case, the predicted signal is built
simply taking the more frequent predicted label. Following
this procedure, the predicted basographic signal is achieved,
made up of sequences of 0 (stance phase) alternating with
sequences of 1 (swing phase). This signal is chronologically
scanned to identify the transitions between gait phases: the
transition from 0 to 1 identifies TO event and the following
transition from 1 to 0 detects HS event.

Fig. 6. Illustration of the experimental setting for the inter-subject
approach.

Additionally, a post-processing procedure is performed to
remove possible erroneously-predicted samples in the pre-
dicted basographic signal. It consists in cleaning the signal by
identifying and then discarding those sequences of samples
that are too brief to be physiologically plausible. Those
sequences of samples are likely to be ascribed to classification
errors and need to be removed. To do so, the following
approach is adopted. Starting from the first HS, the next
300 samples (150 ms) are scanned to detect and remove
those samples with a value = 1. Then, the next HS is
identified, the procedure is performed again, and so on until
the last HS event. Likewise, the first TO is identified and the
next 300 samples are scanned to discard the samples with
a value = 0. Then, successive TO is detected, procedure is
run again, and so on until the last TO event. Finally, cleaned
signal is scanned again in chronological order to identify the
definitive HS and TO events.

H. Evaluation Strategy

To assess system performances, the following evaluation
strategy is adopted. First, the signal-window classification
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task is evaluated measuring the overall classification accu-
racy. Next, the procedure used in the related literature is
adopted [24], in order to evaluate the capability of predicting
gait-event timing. Specifically, the first stage consists in setting
a time tolerance T. Then, each predicted gait event (HS or
TO) occurring at time tp has been marked as true positive
when an event of the same type (HS or TO) occurs in the
ground-truth signal at time tg, so that |tg − tp| < T. Otherwise,
the predicted event is identified as false positive. Prediction
accuracy is quantified by means of precision, recall and
F1-score. Eventually, prediction error is quantified by means
of mean average error (MAE) and time delay (TD). TD is
computed as the relative value (with sign) of the same time
distance. Signs “–” and “+” are adopted to indicate that the
predicted event occurs earlier and later than the corresponding
value in the ground-truth signal, respectively.

I. Validation

First of all, the performances of intra and inter-subject
approaches are compared. The best-performing approach (the
intra-subject one, as reported in “Results”) is then validated by
a direct comparison in the present population with a reference
approach A recent machine-learning approach [19], introduced
by the present group of researchers, is chosen as the reference,
since it is still reporting the best performance in predicting gait
events in control subjects, among the EMG-based approaches
proposed in literature.

J. Statistics

Statistical difference of data distributions (accuracy, preci-
sion, recall, F1-score, and MAE) is evaluated. Firstly, Shapiro-
Wilk test is adopted to appraise the normality of each data
distribution. Next, two-tailed, non-paired Student’s t-test is
applied to verify the significance of the difference between
normally-distributed samples. Likewise, Kruskal-Wallis test is
applied to verify the significance of the difference between
non-normally-distributed samples. Pearson’s product-moment
correlation coefficient and Spearman’s rank correlation coef-
ficient are adopted for computing correlation in normally and
not normally distributed populations, respectively. Statistical
significance is established at 5%.

IV. RESULTS

Percentage of strides characterized by the different
foot-floor-contact sequences is reported in Table I for each
hemiplegic child, together with the total number of strides
measured in the hemiplegic limb. Winters’ group each subject
belongs to is also indicated. Mean classification accuracies
(± standard deviation, SD) achieved by the present approach
over 20 folds in the testing set are 0.97±0.01 for intra-subject
and 0.91±0.03 for inter-subject approach. A significant (p =
0.70 × 10−7) higher mean classification accuracy is detected
in intra-subject approach. Average performances in identifying
HS and TO timing in testing set are expressed in Table II by
MAE, TD, precision, recall, and F1-score. No post-processing
error correction was adopted in the computation of these

TABLE I
PERCENTAGE OF FOOT-FLOOR-CONTACT SEQUENCES

TABLE II
MEAN PREDICTION PERFORMANCES

performances. A 20% smaller mean MAE value is supplied
by the intra-subject assessment of HS (p = 0.01), compared
with inter-subject one. Likewise, a 22% smaller mean MAE
is detected in TO prediction ( p = 0.004). TD was computed
to quantify the distribution of the assessment error between
positive e negative values. Thus, statistical analysis was not
performed on TD. Significantly higher values of F1-score
are provided by the intra-subject approach for both HS
(p = 0.049) and TO (p = 0.015). Detailed prediction errors
for HS and TO are depicted in terms of MAE (Fig. 7)
and TD (Fig. 8). Detailed prediction accuracy for HS and
TO detection is reported in terms of precision, recall, and
F1-score in supplementary material. An example of predic-
tions of foot-floor-contact signal provided by intra-subject
approach in a representative subject is shown in Fig. 9,
considering strides with HFPS, PFPS, and PS sequences.
As reported in Section III-I, the present intra-subject approach
is validated by a comparison with a reference method [19].
Direct comparison of performances achieved with the two
methods is shown in Table III. 40% reduction of mean
MAE is reached by the intra-subject assessment of HS
(p = 5×10−5), compared with reference approach (Table III).
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Fig. 7. Mean MAE computed in each subject for the intra-subject (upper
panel) and inter-subject approaches (lower panel). Data are reported for
HS with blue bars for W1 patients and red bars for W2 patients and for
TO with yellow bars for W1 patients and orange bars for W2 patients.

Fig. 8. Mean time delay (TD) computed in each subject for intra-
subject (upper panel) and inter-subject approach (lower panel). Data
are reported for HS with blue bars for W1 patients and red bars for
W2 patients and for TO with yellow bars for W1vpatients and orange
bars for W2 patients.

Analogously, a 41% decrease of mean MAE is provided in
TO prediction (p = 3 × 10−5). F1-score values are also sig-
nificantly improved with the introduction of the intra-subject
approach, for both HS (p = 2×10−9) and TO (p = 4×10−4).
Correlation between prediction performances (MAE, preci-
sion, recall, and F1-score for both HS and TO) and the number
of strides characterized by each foot-floor-contact (HFPS,
PFPS, PS, and others, Table I) is also computed. For all
tested data, correlation is not significant (p > 0.05). Effect of
tolerance chosen to detect true positives on the quantification
of the evaluation measures is shown in Tables IV-V. Results

Fig. 9. Predictions of foot-floor-contact signal in the same six strides of a
representative subject, provided by intra- and inter-subject experiments
(two lower panels). Ground truth is depicted in blue. The five upper panels
show the correspondent normalized full-wave rectified and enveloped
signal in the five muscles of the hemiplegic leg, used as input to the
neural network.

TABLE III
COMPARISON OF MEAN PREDICTION PERFORMANCES BETWEEN THE

PRESENT AND THE REFERENCE APPROACHES

achieved using post-processing error correction (threshold
150 ms) are reported in Tables VI-VII.

V. DISCUSSION

The present work aims to provide a machine-learning-based
detection of the two main gait events during hemiplegic-
children walking, from only sEMG signals. sEMG-based pre-
diction of HS and TO appears to be particularly significant
and useful in walking condition where assistive devices are
needed. It has been observed, indeed, that exoskeletons could
benefit from adopting sEMG for gait-event assessment in
different ways, including the simultaneous control of the
timing and intensity of the assistance [9]. Main outcomes of
the study lie in the fact that, despite the large variability of the
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TABLE IV
AVERAGE PREDICTION PERFORMANCES ACHIEVED BY THE

INTRA-SUBJECT APPROACH WITH DIFFERENT

TOLERANCE VALUES (TOL)

TABLE V
AVERAGE PREDICTION PERFORMANCES ACHIEVED BY THE

INTER-SUBJECT APPROACH WITH DIFFERENT

TOLERANCE VALUES (TOL)

TABLE VI
EFFECT OF POST-PROCESSING ERROR CORRECTION: MEAN

PREDICTION PERFORMANCES FOR INTRA-SUBJECT

APPROACH AFTER CORRECTION∗

TABLE VII
EFFECT OF POST-PROCESSING ERROR CORRECTION: MEAN

PREDICTION PERFORMANCES FOR INTER-SUBJECT

APPROACH AFTER CORRECTION∗

signal to predict, the proposed approach is able to provide a
suitable prediction of HS and TO which improves preceding
sEMG-based attempts in cerebral-palsy populations [30] and

is quantitatively comparable with outcomes achieved by ref-
erence approaches in control populations [19].

According with previous findings [3], three main foot-
floor-contact sequences are detected in the present population
of mild hemiplegic children: on average, HFPS sequence
is found in 20.1±32.9% of total strides, PFPS sequence
in 46.2±33.1%, and PS sequence in 18.8±31.9% (Table I).
These percentages express a large variability of foot-floor
contact across the population, associated to a just as big
within-subject variability quantified by SDs. Each one of these
foot-floor-contact sequences would correspond to a different
sEMG pattern [3]. Thus, variability is expected not only in
contact sequences but also in the associated sEMG signal. This
variability is also enhanced by the fact that the walking task
fulfilled by children involves deceleration, reversing, curves
and acceleration, since they walked back and forth over a 10-m
straight walkway for around 3 minutes. The large variability
in both signals, compared to a healthy subject population,
is expected to make the classification task more challenging.
As a matter of fact, it is reasonable foreseeing reduced per-
formances when both the input to the neural network (sEMG
signal) and the signal to be predicted (foot-floor contact) are
more variable, as in hemiplegic children.

A. Neural-Network Performances in
Hemiplegic Population

Since a reference approach in hemiplegic-child walking
is not available, the first stage of the present study is
to test, on the present population of hemiplegic children,
the EMG-based approach which is still reporting the best
performance in predicting the two main gait events (HS
and TO) in control subjects [19]. As aforementioned, this
is an intra-subject approach based on a MLP interpreta-
tion of sEMG signals, proposed by the present group of
researchers. In a population of 23 control adults, it achieves
a MAE of 14.4±4.7 ms and 23.7±11.3 ms and a F1-score
of 0.99±0.01 and 0.99±0.02 in predicting HS and TO timing,
respectively [19]. Performances of this approach deteriorate
when applied to the present hemiplegic-children population,
in terms of both MAE (24.5±8.1 ms for HS and 30.0±12.7 ms
for TO, Table III, reference line) and F1-score (0.83±0.07 for
HS and 0.82±0.09 ms for TO, Table III, reference line).
Deterioration was expected, but the size of this worsening is
surprising (mean 48% increase in MAE and mean reduction
of 0.17 in F1-score). This suggests that the approach which
best performs in control subjects, could be not reliable in a
different population.

Thus, the present study proposes an alternative approach,
specifically developed to handle the large signal variability
met in the hemiplegic population. The idea behind the set-
ting described in Section III.D is that predicting the correct
gait phase basing on a consistent number of previous signal
samples could mitigate such a variability issue. This would
allow the neural network to learn not only from local samples
values (as in [19]), but also by analyzing the muscle-activation
patterns that lead to a specific state. Beside that, the use of
sliding overlapping windows increases the data used during the
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training phase. Mean classification accuracies and prediction
performance are shown in Table II. Detailed prediction perfor-
mances provided by this novel approach in each single subject
are reported in Figures 7-8 and in supplementary material.
Mean prediction performances over the hemiplegic population
are compared with corresponding performances provided by
the reference approach in the same population in Table III.
The present approach clearly outperforms the reference one
in terms of mean MAE, providing a 40% improvement for
HS (14.8±3.2 ms vs. 24.5±8.1 ms, p < 0.05) and a 41%
enhancement for TO (17.6±4.2 ms vs. 30.0±12.7 ms, p <
0.05). The same goes for F1-score in HS (0.95±0.03 vs.
0.83±0.07 p < 0.05) and TO (0.92±0.07 vs. 0.82±0.09,
p < 0.05) assessment. The present approach seems to out-
perform also the performances of the only one other EMG
study reported in literature, trying to address the issue of
machine-learning-based assessment of gait events directly in
child affected by cerebral palsy [30]. This ANFIS-based study
reports the detailed prediction error for each gait event only in
terms of TD: a mean TD of 4 ms (SD = 40 ms) for HS and
–5 ms (SD = 31 ms) for TO prediction. The present approach
can provide a mean TD of -1.5 ms (SD = 15.8 ms) for HS and
–2.4 ms (SD = 18.4 ms) for TO prediction, showing a relevant
reduction in both mean error values and SDs. Moreover, a
mean MAE value over all predictions of less than 30 ms
was achieved in [30] (detailed values are not reported) vs.
the value of 14.8 ms and 17.6 ms produced by the present
study for HS and TO, respectively. In [30], the reported mean
prediction accuracy over gait events is around 0.97, simply
calculated as the ratio between the number of predicted events
and the number of reference events. In the present study,
the prediction accuracy is evaluated by F1-score and, for the
configuration with a 60-ms tolerance, is 0.95 for HS and 0.92
for TO prediction Considering the evaluation strategy (detailed
in Section III.H), the quantification of the evaluation measures
clearly depends on the tolerance chosen to detect the true
positives: a bigger tolerance is related to a higher precision
and recall and a lower MAE and TD. A tolerance of 60 ms is
used in the present study, based on recent evaluation studies
where such value is indicated as the maximum acceptable
prediction error [22], [23]. Table IV shows as MAE and
TD deteriorate when the tolerance increases from 60 ms to
150 ms, and further to 300 ms, while the prediction accuracy
(precision, recall, and F1-score) improves. Nevertheless, MAE
and TD values remain lower than those reported in [30] for
every tolerance value in Table IV and F1-score values exceed
0.97 for tolerances > 60 ms. A further difference consists in
the fact that in the present study foot-switch signal is adopted
as the ground truth, since it represents the gold standard in gait
segmentation [21], [32], [35], ANFIS study adopted the stereo-
photogrammetry, introducing an uncertainty of 17 ms due
to the video-frame resolution [30]. Otherwise, foot-switches
fixed under the barefoot sole are placed in correspondence
of precise easy-to-identify anatomical landmarks. This makes
sensor positioning not particularly critical and provides a
direct measurement of foot-floor contacts, supporting the use
of foot-switches as a valid reference, ground-truth method.
It needs to be mentioned that ANFIS study used only one

sEMG sensor on each lower limb vs. the five sEMG sensors
involved here. The use of a minimal set-up like that would help
reducing the costs and simplifying the challenges associated
with sEMG data acquisition in hemiplegic children. Besides
these quantitative differences, it is worth to notice that the
perspective is very different between ANFIS-based study and
the present one. The present approach is designed for a general
environment-independent prediction of gait events and could
be suitable for different applications, as for example clinical
gait analysis, smart prostheses, and EMG-driven assistive
devices. Otherwise, ANFIS approach was developed for the
specific long-term goal of assessing gait events to make up
a controller for the application of functional electrical stim-
ulation to leg muscles, to enhance walking capability. Thus,
the need of calibrating the system for each subject to generate
the ANFIS model (and re-calibrating each time it is used)
could be acceptable for this specific aim, since the prediction
of gait events occurs in real time, after model calibration.
However, it is not suitable for the timing of everyday clinical
application. In our intra-subject approach, the neural network
should be trained with sEMG and basographic data for each
new subject. The very good performances provided by this
approach indicate that prediction of gait events of a single
patient could be accurately achieved by processing data from
only that specific patient. This outcome leads to argue that in
the intra-subject approach, training could be performed only
once for each patient. For all the successive tests, no further
training and time consumption would be required. Although
this seems to be a reasonable conclusion, sEMG data across
separate sessions would be needed to support it. Thus, further
studies will be designed to address this issue.

B. Intra-Subject Vs. Inter-Subject Approach

To try and overcome the aforementioned limitation, a so-
called inter-subject approach was also tested on the same
20-hemiplegic-childred population. The inter-subject approach
consists in training the neural network with sEMG signals
measured during walking of a large population of patients and
then testing the network on a population of brand-new patients
affected by the same disorder. Thus, to run the inter-subject
approach, a standardized dataset as larger as possible of foot-
floor-contact and EMG signals from many different patients
is needed to train the neural network [18], [19]. When such a
dataset is available, prediction of gait events in new patients
requires no further training and is no further time-consuming.
Mean prediction performances provided by the inter-subject
approach are displayed in Table II. A significant mean dete-
rioration ( p < 0.05) of 3.5 ms for HS-MAE and 4.9 ms
for TO-MAE, respectively, associated to a significant mean
worsening (p < 0.05) of F1-score (0.05 and 0.10 points),
is observed for the inter-subject approach with respect to the
intra-subject one. Although on average also the inter-subject
approach appears to work adequately in terms of prediction
error, a not negligible deterioration of prediction accuracy is
the price to pay in adopting this approach. Ultimately, the
present study proposes two different experimental approaches
to the aim of predicting the two main gait events during
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hemiplegic-children walking: the intra-subject and the inter-
subject approaches. As discussed, the intra-subject approach
reports better quantitative performances for the present specific
task, in terms of both prediction error (MAE and TD) and
prediction accuracy (precision, recall, and F1-score). However,
the adoption of the more appropriate approach should not be
guided only by prediction performances but also by patient
convenience and clinical requirement. In particular, the intra-
subject approach seems to be more suitable for those situations
where hemiplegic patients should undergo periodical tests and
when high precision of the prediction is essential to correctly
identify the small improvements of patient performances in
temporal parameters during rehabilitation. In these cases,
indeed, after a first session where basographic and sEMG
must be acquired and the model trained, all the subsequent
tests would not need neither to acquire basographic signal nor
to train the model, but only to measure the sEMG signals
of the single patient under examination. Conversely, the inter-
subject approach is preferable when a large dataset from many
subjects is available and when limiting time consumption is
the priority.

To be noticed that most of the studies focusing on this
topic involve data acquisition in the controlled conditions
of treadmill walking [14]–[17]. The present study considers
only walking on the ground without using any assistive
device, in order to avoid mobility problems (i.e. fall risk) and
gait-performance modification associated to treadmill walk-
ing [36]. Possible correlation between numerosity of each foot-
floor-contact sequence and prediction performances is also
tested. No significant correlation is detected (p > 0.05). This
seems to suggest that the fact that hemiplegic walking affects
the neural-network performances does not depend on the type
of the single foot-floor-contact sequence, but on the large
variability of sequences observed in this disorder.

C. Post-Processing and Computational Time

Experiments are performed on a machine equipped with
a 2,6 GHz Intel Core i7 processor. The neural-network-
processing time ranges from approximately 0.25 ms (for
the one-layer network used in intra-subject setting) to
approximately 0.55 ms (for the three-layer network used in
inter-subject setting) for each EMG-signal window (composed
of 600 samples for each muscle). As in our experimental
setting, window-segmentation pace is 2.5 ms and four pre-
liminary predictions are made for each data sample before
a final prediction is produced. Temporal delay is between
10.25 and 10.55 ms. Although this paper does not explicitly
target real-time applications, such a delay between the signal
recording and the actual event detection could be acceptable
under real-time constraints [26]. EMG-signal pre-processing
does not further increase this delay, since envelope can be
computed in real time [37]. Event-detection performances
could be improved, by applying an error correction post-
processing, at the cost of a longer delay of about 150 ms.
As highlighted by the comparison between Tables VI and IV
and between Tables VII and V, the effect of post-processing
on mean MAE is negligible, in both intra and inter-subject

approaches. Slight improvements are detected in terms of
prediction-accuracy performances, mainly for the inter-subject
approach (≈ 0.02 mean increase of F1-score).

VI. CONCLUSION

The outcomes of the present study prove the feasibility of
neural networks in predicting the two main gait events using
surface EMG signals, also in condition of high variability
of the signal to predict as in mild cerebral-palsy hemiplegic
children. Recurrent neural networks (RNN) are successfully
used to interpret gait data (not sEMG), to detect gait event in
healthy subjects. Future developments could test if involving
RNNs may improve performances of the present approach. To
the same aim, more advanced signal-processing techniques in
frequency or time/frequency domain, such as wavelet trans-
form, could be involved to provide further information to train
the neural networks. From the clinical point of view, future
efforts could be focused to generalize the present findings,
including also more severe types of hemiplegia, such as
Winters’ type 3 and 4, or patients using assistive devices.

REFERENCES

[1] Children’s Hemiplegia and Stroke Association (CHASA).
Accessed: Oct. 2, 2020. [Online]. Available: https://chasa.org/

[2] S. Østensjø, E. B. Carlberg, and N. K. Vøllestad, “Motor impairments in
young children with cerebral palsy: Relationship to gross motor function
and everyday activities,” Develop. Med. Child Neurol., vol. 46, no. 9,
pp. 580–589, Feb. 2007, doi: 10.1111/j.1469-8749.2004.tb01021.x.

[3] V. Agostini, A. Nascimbeni, A. Gaffuri, and M. Knaflitz, “Multiple
gait patterns within the same winters class in children with hemiplegic
cerebral palsy,” Clin. Biomech., vol. 30, no. 9, pp. 908–914, Nov. 2015,
doi: 10.1016/j.clinbiomech.2015.07.010.

[4] D. M. Bojanic, B. D. Petrovacki-Balj, N. D. Jorgovanovic, and V. R. Ilic,
“Quantification of dynamic EMG patterns during gait in children with
cerebral palsy,” J. Neurosci. Methods, vol. 198, no. 2, pp. 325–331,
Jun. 2011, doi: 10.1016/j.jneumeth.2011.04.030.

[5] F. Di Nardo et al., “EMG-based characterization of walking asymmetry
in children with mild hemiplegic cerebral palsy,” Biosensors, vol. 9,
no. 3, p. 82, Jun. 2019, doi: 10.3390/bios9030082.

[6] C. Frigo and P. Crenna, “Multichannel SEMG in clinical gait analy-
sis: A review and state-of-the-art,” Clin. Biomech., vol. 24, no. 3,
pp. 236–245, Mar. 2009, doi: 10.1016/j.clinbiomech.2008.07.012.

[7] M. Galli, V. Cimolin, C. Rigoldi, N. Tenore, and G. Albertini, “Gait
patterns in hemiplegic children with cerebral palsy: Comparison of
right and left hemiplegia,” Res. Develop. Disabilities, vol. 31, no. 6,
pp. 1340–1345, Nov. 2010, doi: 10.1016/j.ridd.2010.07.007.

[8] D. Patikas, S. Wolf, and L. Döderlein, “Electromyographic evaluation of
the sound and involved side during gait of spastic hemiplegic children
with cerebral palsy,” Eur. J. Neurol., vol. 12, pp. 9–691, Sep. 2005, doi:
10.1111/j.1468-1331.2005.01047.x.

[9] J. Taborri, E. Palermo, S. Rossi, and P. Cappa, “Gait partitioning
methods: A systematic review,” Sensors, vol. 16, no. 1, p. 66, Jan. 2016,
doi: 10.3390/s16010066.

[10] E. C. Wentink, V. G. H. Schut, E. C. Prinsen, J. S. Rietman, and
P. H. Veltink, “Detection of the onset of gait initiation using kinematic
sensors and EMG in transfemoral amputees,” Gait Posture, vol. 39, no. 1,
pp. 391–396, Jan. 2014, doi: 10.1016/j.gaitpost.2013.08.008.

[11] D. Ferris, G. Sawicki, and M. Daley, “A physiologist’s perspective on
robotic exoskeletons for human locomotion,” Int. J. Humanoid Robot.,
vol. 4, no. 3, pp. 507–528, 2007, doi: 10.1142/S0219843607001138.

[12] K. De Pauw, P. Cherelle, B. Roelands, D. Lefeber, and R. Meeusen, “The
efficacy of the ankle mimicking prosthetic foot prototype 4.0 during
walking: Physiological determinants,” Prosthetics Orthotics Int., vol. 42,
no. 5, pp. 504–510, Oct. 2018, doi: 10.1177/0309364618767141.

[13] R. T. Lauer, B. T. Smith, D. Coiro, R. R. Betz, and J. McCarthy, “Fea-
sibility of gait event detection using intramuscular electromyography
in the child with cerebral palsy,” Neuromodulation, Technol. Neural
Interface, vol. 7, no. 3, pp. 205–213, Jul. 2004, doi: 10.1111/j.1094-
7159.2004.04200.x.

http://dx.doi.org/10.1111/j.1469-8749.2004.tb01021.x
http://dx.doi.org/10.1016/j.clinbiomech.2015.07.010
http://dx.doi.org/10.1016/j.jneumeth.2011.04.030
http://dx.doi.org/10.3390/bios9030082
http://dx.doi.org/10.1016/j.clinbiomech.2008.07.012
http://dx.doi.org/10.1016/j.ridd.2010.07.007
http://dx.doi.org/10.1111/j.1468-1331.2005.01047.x
http://dx.doi.org/10.3390/s16010066
http://dx.doi.org/10.1016/j.gaitpost.2013.08.008
http://dx.doi.org/10.1142/S0219843607001138
http://dx.doi.org/10.1177/0309364618767141
http://dx.doi.org/10.1111/j.1094-7159.2004.04200.x
http://dx.doi.org/10.1111/j.1094-7159.2004.04200.x


830 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

[14] M. Meng, Q. She, Y. Gao, and Z. Luo, “EMG signals based gait phases
recognition using hidden Markov models,” in Proc. IEEE Int. Conf. Inf.
Autom., Harbin, China, Jun. 2010, pp. 852–856.

[15] J. Ziegler, H. Gattringer, and A. Mueller, “Classification of gait phases
based on bilateral EMG data using support vector machines,” in
Proc. 7th IEEE Int. Conf. Biomed. Robot. Biomechatronics (Biorob),
Enschede, The Netherlands, Aug. 2018, pp. 978–983.

[16] C. D. Joshi, U. Lahiri, and N. V. Thakor, “Classification of gait
phases from lower limb EMG: Application to exoskeleton orthosis,”
in Proc. IEEE Point Care Healthcare Technol. (PHT), Bengaluru, India,
Jan. 2013, pp. 228–231.

[17] N. Nazmi, M. A. A. Rahman, M. H. M. Ariff, and S. A. Ahmad,
“Generalization of ANN model in classifying stance and swing
phases of gait using EMG signals,” in Proc. IEEE-EMBS Conf. Bio-
med. Eng. Sci. (IECBES), Kuching Sarawak, Malaysia, Dec. 2018,
pp. 461–466.

[18] C. Morbidoni, A. Cucchiarelli, S. Fioretti, and F. Di Nardo, “A deep
learning approach to EMG-based classification of gait phases during
level ground walking,” Electronics, vol. 8, no. 8, p. 894, Aug. 2019,
doi: 10.3390/electronics8080894.

[19] F. Di Nardo, C. Morbidoni, G. Mascia, F. Verdini, and S. Fioretti,
“Intra-subject approach for gait-event prediction by neural network
interpretation of EMG signals,” Biomed. Eng. OnLine, vol. 19, no. 1,
p. 58, Dec. 2020, doi: 10.1186/s12938-020-00803-1.

[20] V. Agostini et al., “Normative EMG activation patterns of school-age
children during gait,” Gait Posture, vol. 32, no. 3, pp. 89–285, 2010,
doi: 10.1016/j.gaitpost.2010.06.024.

[21] T. F. Winters, J. R. Gage, and R. Hicks, “Gait patterns in spastic
hemiplegia in children and young adults,” J. Bone Joint Surg, vol. 69,
pp. 437–441, Mar. 1987, doi: 10.2106/00004623-198769030-00016.

[22] G. P. Panebianco, M. C. Bisi, R. Stagni, and S. Fantozzi, “Analy-
sis of the performance of 17 algorithms from a systematic review:
Influence of sensor position, analysed variable and computational
approach in gait timing estimation from IMU measurements,” Gait
Posture, vol. 66, pp. 76–82, Oct. 2018, doi: 10.1016/j.gaitpost.2018.
08.025.

[23] M. W. Flood, B. P. F. O’Callaghan, and M. M. Lowery, “Gait event
detection from accelerometry using the Teager–Kaiser energy operator,”
IEEE Trans. Biomed. Eng., vol. 67, no. 3, pp. 658–666, Mar. 2020, doi:
10.1109/TBME.2019.2919394.

[24] S. Khandelwal and N. Wickström, “Evaluation of the performance
of accelerometer-based gait event detection algorithms in different
real-world scenarios using the MAREA gait database,” Gait Pos-
ture, vol. 51, pp. 84–90, Jan. 2017, doi: 10.1016/j.gaitpost.2016.
09.023.

[25] M. S. H. Aung et al., “Automated detection of instantaneous gait events
using time frequency analysis and manifold embedding,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 21, no. 6, pp. 908–916, Nov. 2013, doi:
10.1109/TNSRE.2013.2239313.
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