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ABSTRACT  
Semantic segmentation of point clouds plays a critical role in various 
applications, such as urban planning, infrastructure management, 
environmental analyses and autonomous navigation. Understanding the 
behaviour of deep neural networks (DNNs) in analysing point cloud 
data is essential for improving segmentation accuracy and developing 
effective network architectures and acquisition strategies. In this paper, 
we investigate the traits of some state-of-the-art neural networks using 
indoor and urban outdoor point cloud datasets. We compare PointNet, 
DGCNN, and BAAF-Net on specifically selected datasets, including 
synthetic and real-world environments. The chosen datasets are S3DIS, 
SynthCity, Semantic3D, and KITTI. We analyse the impact of different 
factors such as dataset type (synthetic vs. real), scene type (indoor vs. 
outdoor), and acquisition system (static vs. mobile sensors). Through 
detailed analyses and comparisons, we provide insights into the 
strengths and limitations not only of different network architectures in 
handling urban point clouds but also of their data structure. This study 
contributes to going beyond the mere and unconditional use of AI 
algorithms, trying to explain DNNs behaviour in point cloud analysis 
and paving the way for future research to enhance segmentation 
accuracy and develop possible guidelines both for network design and 
data acquisition in the geomatics field.
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1. Introduction

Point clouds data have emerged as a fundamental source of information for describing the environ
ment due to their ability to provide rich geometric and spatial information (Balado et al. 2023). 
Urban and indoor environments present unique challenges and complexities, making the interpret
ability and explainability of AI models crucial for effective decision-making, urban planning, and 
infrastructure management. Urban point clouds, obtained from various sensors such as LiDAR 
(Light Detection and Ranging) or MMSs (Mobile Mapping Systems), provide a wealth of spatial 
information about cities, including buildings, roads, vegetation, and other urban features. Analyz
ing and understanding urban point cloud data is essential for tasks such as building reconstruction, 
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road network analysis, urban design, environmental assessments and autonomous navigation. In 
recent years, Deep learning (DL) models, and in particular Deep neural networks (DNNs), have 
demonstrated exceptional performance in understanding and extracting meaningful insights 
from complex datasets, including point clouds (Pierdicca et al. 2020; Zhang et al. 2019; Zhou 
et al. 2023). By leveraging deep architectures composed of multiple layers of interconnected artifi
cial neurons, DNNs have the capacity to learn hierarchical representations of data, capturing both 
local and global patterns (Döllner 2020). When applied to point cloud data, DNNs have the poten
tial to uncover semantic information (e.g. object recognition, segmentation, and scene understand
ing). They can learn to recognize objects, infer their shapes, classify different parts of a scene, and 
even predict physical properties or behaviours. The strength of DNNs lies in their ability to auto
matically learn features from raw input data, eliminating the need for explicit feature engineering. 
This makes DNNs well-suited for processing point cloud data, which can be highly complex and 
require intricate geometric representations, facilitating tasks such as object detection, semantic seg
mentation, and scene reconstruction (Lin, Kong, and Lucey 2018). However, especially in the 
GeoAI, they are often regarded as black boxes, making users blindly trust the outputs and, therefore, 
challenging to understand how they achieve their predictions or decisions. This lack of transpar
ency raises concerns about the reliability, trustworthiness, and ethical implications of these models, 
particularly in safety-critical domains such as autonomous vehicles or healthcare (Goodman and 
Flaxman 2016; Heuillet, Couthouis, and Díaz-Rodríguez 2021). Explainable Artificial Intelligence 
(XAI) has emerged as a vital field of research, aiming to provide transparency and comprehensibil
ity in the decision-making processes of AI systems. XAI focuses on developing techniques and 
methodologies that enable humans to understand, interpret, and trust the outputs generated by 
AI models. Several methods have been proposed to visualize and interpret the features learned 
by DNN models for images (Ahsan et al. 2020; Young et al. 2019). Techniques such as occlusion 
analysis (Ieracitano et al. 2021), saliency maps (Hsu and Li 2023), and class activation maps 
(CAM) (Poppi et al. 2021) have been extensively used to highlight the regions of the input 
image that contribute most significantly to the model’s prediction. These approaches help research
ers, practitioners, and end-users comprehend how the model focuses on relevant image regions and 
which visual cues influence its decisions. However, XAI for 3D data remains relatively unexplored, 
especially for the semantic segmentation task. The lack of explainability in DNNs poses a totally 
new perspective and challenge, as it hinders researchers from gaining insights and engenders scep
ticism due to their non-self-explanatory nature. While XAI approaches have been extensively 
studied for 2D data, only a few studies have attempted to investigate explainability for 3D DNNs.

In our previous work (Matrone et al. 2022), we introduced BubblEX, a multimodal fusion frame
work specifically designed to learn 3D point features and address the challenge of explainability in 
the context of point cloud data. BubblEX was developed with the aim of unravelling the black-box 
nature of 3D point cloud feature learning, enabling users to gain insights into the decision-making 
processes of deep neural networks. The framework was applied and evaluated on the classification 
task. Through comprehensive experimentation, BubblEX demonstrated promising results, show
casing its effectiveness in learning discriminative features from 3D point clouds, thus allowing 
users to understand the underlying relationships and interactions between points, leading to a bet
ter understanding of the decision-making processes employed by the model.

Given the significance and potential of BubblEX in the context of explainable 3D point cloud 
feature learning, we have continued our investigation by expanding its application to the task of 
semantic segmentation, which plays a pivotal role in understanding the fine-grained structure of 
point cloud data (Landrieu and Simonovsky 2018). By extending the capabilities of BubblEX to 
incorporate semantic segmentation, we aim to further enhance the interpretability and explainabil
ity of DNNs in the context of 3D point cloud analysis. This extension allows us to explore and 
understand how the geometric structure of the input data and the learned features contribute to 
the segmentation process, providing valuable insights into the model’s decision-making mechan
isms. In our experiments, we trained DNNs on four state-of-the-art datasets: S3DIS (Armeni 
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et al. 2016), SynthCity (Griffiths and Boehm 2019), Semantic3D (Hackel et al. 2017), and KITTI 
(Behley et al. 2019). Besides, we perform a comparative analysis of three different networks: 
PointNet (Qi, Su et al. 2017), DGCNN (Dynamic Graph Convolutional Neural Network) 
(Wang et al. 2019), and BAAF-Net (Qiu, Anwar, and Barnes 2021). These networks, purposely 
selected, represent distinct architectures for processing point cloud data and have demonstrated 
their efficacy in various 3D tasks, including semantic segmentation.

By addressing the explainability of AI models specifically in the context of indoor and urban 
point cloud analysis, our work could directly support the development of new data acquisition strat
egies in the field of geomatics, promote intelligent urban systems, and empower stakeholders and 
companies to make informed decisions that benefit both the environment and the communities 
residing in urban areas. In addition, this paper aims to investigate two fundamental aspects in 
the analysis of DNNs: the influence of different datasets and the importance of network architec
ture. Specifically, we want to understand if DNNs behave differently when trained on real or syn
thetic datasets, or when presented with outdoor or indoor datasets acquired through static or 
mobile systems. Additionally, we aim to evaluate whether the obtained results significantly depend 
on the chosen network architecture or if it is a negligible factor. Analyzing and discussing these 
findings, we will try to understand if it is possible to provide valuable insights and possible guide
lines for the initial workflow phases, namely the data acquisition.

The main contributions of this paper, compared to state-of-the-art approaches, can be summar
ized as follows: 

. extension of the BubblEX framework, which was previously proposed for 3D point feature learn
ing, from classification to the task of semantic segmentation. By incorporating semantic segmen
tation within the framework, our study enhances the explainability of DNNs for this specific task, 
which is a novel contribution to the field;

. a comprehensive comparative analysis of three different networks (PointNet, DGCNN, and 
BAAF-Net) and their behaviours. This analysis thus provides valuable insights into these net
works’ performance, strengths, and weaknesses in the context of semantic segmentation for 
3D point cloud data. Comparing these networks helps identify the most suitable architecture 
for the task at hand, which can guide future research and practical applications;

. comparison of four different benchmark datasets widely used in the field of 3D point cloud 
analysis, including S3DIS, SynthCity, Semantic3D, and KITTI. By evaluating the networks on 
these datasets, the study ensures a rigorous and standardized evaluation, allowing for meaningful 
comparisons with state-of-the-art approaches;

. visual explanations and highlights of the regions of interest within the point clouds, influencing 
the segmentation results. This analysis contributes to the understanding of the key factors and 
features that drive the networks’ decision-making processes;

. the extensive analysis contributes to the establishment of possible guidelines for data acquisition 
and network configuration, enabling more effective decision-making in neural network-based 
applications;

. the first visual demonstration and explanation of well-known features influencing the DNNs per
formances and classification results.

The paper is structured as follows: in Section 2, we provide an overview of existing approaches 
adopted for explainability in 3D point cloud data. Section 3 presents the extension of BubblEX 
framework specifically designed for XAI in 3D point clouds. To evaluate the effectiveness of our 
approach, Section 5 presents a comparative evaluation using S3DIS, SynthCity, Semantic3D, and 
KITTI datasets. We compare our results against state-of-the-art techniques, and provide a detailed 
analysis of each component of our framework, highlighting its strengths and limitations. Sub
sequently, in Section 5, we engage in discussions based on the obtained results. We delve into 
the implications, insights, and potential applications of our findings. Finally, in Section 6, we 
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conclude the paper by summarizing the contributions and impact of our work and outline future 
research directions to further advance the field of explainability in 3D point cloud analysis.

2. Related works

This section provides an overview of the current state of XAI approaches, discusses classical DNNs 
for point cloud data, presents existing methods for XAI on point cloud DNNs, and highlights the 
options available for verifying the effectiveness of XAI approaches.

2.1. Explainability approaches

Most research on explainability primarily focuses on image classification tasks. Popular methods for 
explaining DNNs include gradient-based approaches and local surrogate model-based approaches.

Gradient-based approaches Analyze the gradient descent process during forward passes and are 
specifically applicable to differentiable models such as neural networks. Saliency Maps was the pio
neering method that attempted to explain DNNs by computing the partial derivatives of each pixel, 
attributing importance accordingly (Simonyan, Vedaldi, and Zisserman 2013). However, standard 
gradients encounter issues of saturation (Sundararajan, Taly, and Yan 2016) and discontinuity 
(Smilkov et al. 2017). Integrated Gradient (Sundararajan, Taly, and Yan 2017), Layer-wise Rel
evance Propagation (LRP) (Bach et al. 2015), and DeepLIFT (Shrikumar, Greenside, and Kundaje 
2017) address the saturation problem by estimating the overall importance of each pixel (Kim et al. 
2019). SmoothGrad (Smilkov et al. 2017) tackles the discontinuity issue by smoothing the gradient 
using a Gaussian kernel that randomly samples neighbouring inputs and computes their average 
gradients. Guided Backpropagation (Springenberg et al. 2014) produces sharper gradient maps 
by removing negative attributions from the prediction.

Another set of approaches that utilize gradients is activation maximization, which aims to dis
cover the ideal input distribution for a given class (global explanation) by optimizing input gradi
ents while keeping all network parameters fixed, instead of explaining individual instances (local 
explanation) (Nguyen, Yosinski, and Clune 2019).

Local surrogate model-based methods, such as LIME (Ribeiro, Singh, and Guestrin 2016) and 
KernelSHAP (Lundberg and Lee 2017), aim to trace the decision boundary around a specific 
instance by perturbing input instances and utilizing surrogate linear models that approximate 
the performance of the original model but are more interpretable due to their simplicity.

2.2. 3D convolutional neural networks

Recent advancements in robotics and autonomous driving have sparked interest in 3D deep learn
ing. Efficient processing of raw point cloud data is crucial for designing systems with low energy 
consumption and real-time behaviour, as point clouds are the primary data format obtained 
directly from most 3D sensors. Point clouds possess higher structural complexity compared to 
2D image data due to their unordered nature, leading to a lack of neighbourhood consistency 
between data structures and spatial coordinates. This inconsistency results in not reproducible out
comes when applying convolution kernels directly to raw point clouds without pre-processing.

To address this, previous works have proposed approaches that transform and reorganize point 
clouds into voxels, extracting features using 3D convolution kernels (Maturana and Scherer 2015; 
Qi et al. 2016; Wu et al. 2015). Alternatively, some studies feed neural networks with polygonal 
meshed spatial information as a substitute for raw point clouds (Bruna et al. 2013; Masci et al. 
2015). However, these pre-processing approaches are unsuitable for real-time scenarios and may 
not be advantageous for semantic segmentation tasks. In contrast, other studies propose point 
cloud-applicable convolutional networks that concatenate local features extracted by point-wise con
volutional kernels with a global feature obtained through max-pooling layers (Qi, Su et al. 2017; Qi, Yi 
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et al. 2017). These approaches achieve state-of-the-art accuracies on the widely used ModelNet40 
dataset (Wu et al. 2015), which is currently one of the most popular point cloud classification datasets.

2.3. Explaining 3D deep neural networks for 3D data

Limited research has explored the explainability of 3D DNNs for 3D data. While a study by Zhang 
et al. (2020) addresses explainable point cloud classification, their approach focuses on adapting 
point clouds to classical classifiers through pre-processing using PointHop Units. This does not 
provide post-hoc explanations. The authors in Zheng et al. (2019) obtain point saliency maps by 
simply dropping points, which is unrelated to explainability approaches. The pioneering study 
by Gupta, Watson, and Yin (2020) investigates the use of explainability methods for point clouds, 
shedding light on the sparsity of features in 3D models. However, their work only presents sparse 
explanations that emphasize points at edges and corners, lacking semantic information and an 
evaluation criterion. Furthermore, gradient-based methods are not suitable for models without gra
dients, such as tree-based models. In contrast, Tan and Kotthaus (2022) use a local surrogate model- 
based explainability approach, stating that they are completely model-agnostic and offer a more ver
satile solution; however, they test it on the classification task through ModelNet40, a dataset that lies 
completely outside of urban geospatial applications. Another similar and recent work (Arnold, 
Angelov, and Atkinson 2022) proposes a new classification method, the XPCC, which incorporates 
several layers of human-interpretable explainability, identifying object regions that mostly contrib
ute to the classification. Nevertheless, also in this case, the selected dataset is ModelNet40, and the 
authors cite as a limitation of the work that the classification relies on point clouds containing only 
one object, highlighting the need to focus on real-world data and other point cloud-specific objec
tives, exactly what our contribution is aimed at. On the other side, Verburg (2022) takes a further 
step and starts to move from classification to semantic segmentation. The author tests PointNet++ 
for segmenting point clouds of catenary arches and demonstrates that this model mainly relies on 
the location of the objects in order to segment them, understanding that the change of the shape of 
an object does not have a significant impact on the performance of the model. This approach intro
duces relevant insights into how the network is taking a decision, though the proposed method is 
not generalizable and fully applicable to the state-of-the-art DNNs since it relies on specific part 
substitution experiments. The recent work of Atik, Duran, and Seker (2024) is one of the first 
that evaluates the proposed methodology on urban photogrammetric points clouds; however, the 
tested models are ML classifiers as Random Forest, or XGBoost, and other types of point clouds, 
as those acquired by Mobile Mapping Systems or LiDAR are not taken into account yet. These latest 
contributions further demonstrate the novelty of our work, which, to the best of our knowledge, is 
the first to combine the semantic segmentation tasks, applied both to real-world and synthetic data, 
making an extensive comparison, drawing guidelines and ensuring an extensive applicability and 
generalization capability.

2.4. Explanation plausibility verification

While there is a plethora of studies on explainability methods (for 2D data), there is a lack of 
acknowledged quantitative assessment for these approaches (Burkart and Huber 2021), primarily 
due to the subjective nature of explanations as perceived by humans. The authors in Adebayo 
et al. (2018) argue that a feasible explanation should be sensitive to model weights and the data gen
eration process. They propose an alternative evaluation approach by randomizing network weights 
and labels to examine the sensitivity of saliency maps. However, this approach tends to favour gra
dient-based explainability methods and validates invalidity rather than feasibility. In Cian, van 
Gemert, and Lengyel. (2020), the authors aimed to observe the improvement in the core perform
ance of the network and the confidence generated by system users when processing image data. An 
intuitive and efficient pattern to verify explanations by flipping pixels that contribute positively, 
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negatively, or approximately zero to a specific class, recording the verified prediction scores has 
been proposed in Bach et al. (2015), Montavon (2019) and Samek et al. (2016). Nevertheless, the 
flipping operation in this method could be optimized when processing point cloud data.

Considering the state-of-the-art in this field, in a previous paper, we proposed a BubblEX frame
work specifically designed for learning 3-D point features. In fact, it adopts a multimodal fusion 
approach, which combines information from multiple modalities within the point cloud data to 
facilitate feature learning. By incorporating explainability modules within the framework, BubblEX 
enables to gain insights into how neighboring points contribute to the feature extraction process.

The BubblEX framework comprises two stages: the ‘Visualization Module’, which visualizes fea
tures learned from the network in its hidden layers, and the ‘Interpretability Module’, which aims to 
describe how neighbouring points contribute to the feature extraction process (Matrone et al. 2022). 
The framework was applied and evaluated on two benchmark datasets, namely Modelnet40 (Wu 
et al. 2015) and ScanObjectNN (Uy et al. 2019), known for their importance in 3D object classifi
cation tasks. Through comprehensive experimentation, BubblEX demonstrated promising results, 
showcasing its effectiveness in learning discriminative features from 3D point clouds.

In our following paper (Matrone et al. 2023), we extended the application of the BubblEX frame
work to a publicly available Digital Cultural Heritage Dataset (DCH) known as the ArCH (Archi
tectural Cultural Heritage) Dataset (Matrone et al. 2020). This dataset presents a more challenging 
domain, characterized by the complexity inherent in architectural cultural heritage. By applying 
BubblEX to the ArCH dataset, we aimed to tackle the intricacies and nuances of the built heritage 
domain, which often involves intricate structures, intricate designs, and diverse architectural styles. 
This dataset provided an ideal testbed to evaluate the robustness and effectiveness of the BubblEX 
framework in capturing and explaining the features relevant to architectural DCH; however, since it 
has been tested on only one dataset, it did not allow a proper generalization.

Building upon our previous works, this paper focuses on the application of the BubblEX framework 
to the task of semantic segmentation, aiming to enhance the interpretability and explainability of DNNs 
in the context of 3D point cloud analysis. Semantic segmentation is of utmost importance as it enables a 
detailed understanding of the fine-grained structure and meaning within point cloud data. By extending 
the capabilities of BubblEX to incorporate semantic segmentation, we unlock the ability to explore and 
comprehend how the learned features contribute to the segmentation process. This extension provides 
valuable insights into the decision-making mechanisms of the DNN models, facilitating a deeper under
standing of their inner workings and promoting transparency in their predictions.

3. Methods

This section outlines the methodology employed in our study to evaluate the performance and suit
ability of different networks for to develop an approach for XAI in the context of urban point cloud 
analysis.

Through this methodology (Figure 1), we aim to provide a comprehensive analysis of the 
selected networks and their suitability for urban point cloud analysis, enabling informed 
decision-making and recommendations for real-world applications. By following a structured 
approach and considering multiple aspects, we ensure a robust and reliable framework that pro
vides transparent insights into the features and patterns learned by the networks.

The following subsections provide further details regarding the experimental setup, dataset 
selection, network architectures, and evaluation metrics.

3.1. Urban and indoor point cloud datasets

The selected datasets for testing in this study are S3DIS (Armeni et al. 2016), SynthCity (Griffiths 
and Boehm 2019), Semantic3D (Hackel et al. 2017), and KITTI (Behley et al. 2019). S3DIS contains 
272 scenes of university rooms, grouped by areas or buildings, annotated with 14 classes and the 
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same features as Semantic3D. Test Area 5, consisting of 3 rooms, was used for evaluation. SynthCity 
consists of 9 scenes of synthetic urban environments with 9 classes. The features used include ‘x’, ‘y’, 
‘z’, ‘x_noise’, ‘y_noise’, ‘z_noise’, ‘R’, ‘G’, ‘B’, ‘time’, ‘eol’ (end of line), and ‘label’, with Test Area 3 
chosen for evaluation. Semantic3D comprises 9 scenes of real urban environments with 8 classes 
and features such as ‘x’, ‘y’, ‘z’, ‘I’, ‘R’, ‘G’, ‘B’, and ‘label’. Test Area 3 was also selected for evaluation 
in this dataset. The KITTI dataset, which provides Velodyne point cloud data, was processed using 
features ‘x’, ‘y’, ‘z’, ‘R’, ‘G’, and ‘B’.

The selection of these four datasets enabled comparisons across different aspects (Figure 2): 

. synthetic datasets (SynthCity) vs. real datasets (S3DIS and Semantic3D) in order to investigate if 
features such as the noisiness or the density of the point cloud data somehow affect the output of 
the DNNs;

Figure 1. Overall workflow for the developed methodology.

Figure 2. Dataset comparison strategies.
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. indoor datasets (S3DIS) vs. outdoor datasets (Semantic3D and SynthCity), to examine whether 
the extension of the analysed elements and the proximity to the acquiring sensors, with impli
cations for density, could impact the predictions;

. datasets acquired through static systems (Semantic3D) vs. dynamic systems (KITTI) to investi
gate the possible generalization of the method to other datasets generated with diverse sensors 
and with different characteristics.

To facilitate a proper comparison among the datasets, the different categories were matched and, 
in some cases, grouped based on the similarity of geometries, as shown in Figure 3 and in Table 1.

3.2. Deep neural networks for urban point cloud

In order to assess the performance and effectiveness of our approach, we selected three state-of-the- 
art networks: PointNet (Qi, Su et al. 2017), DGCNN (Wang et al. 2019), and BAAF-Net (Qiu, 
Anwar, and Barnes 2021). Each network was chosen for specific reasons based on their architectural 
characteristics and their performance. PointNet was chosen as it is a pioneering network in the 
semantic segmentation of point clouds. DGCNN, on the other hand, was selected due to its 
graph-based architecture, which differs from the previous network. To choose the third network, 
a comparison was made between the benchmarks of various datasets, particularly Semantic3D 
and S3DIS, as an extensive comparison for SynthCity was not yet available. A common and recent 
network that demonstrated the best results with both datasets (with code 2023b, 2023a) was thus 
selected, which in this case resulted in the BAAF-Net. All the DNNs employed cascade convolu
tional layers to extract deep features from the data. However, they differ in how the data is processed 
in the early layers immediately after the input, in the grouping of points to extract local and/or glo
bal features, and in the recombination of point-wise, local, and global features. PointNet aggregates 
point features using max pooling to obtain global features. The segmentation network concatenates 

Figure 3. Number of points, divided by class, within the selected datasets. The classes with asterisks constitute the union of two 
Synthcity classes to allow the aggregation of as many Semantic3D classes (see Table 1). In addition, in the above classes, the 
number of S3DIS points was repeated as they were analysed in both Road and Pavement.
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the global and local features before the final (point-wise) classification. PointNet applies rigid and/ 
or affine transformations to canonicalize the input data. These spatial operations independently 
transform the input points. DGCNN implements a dynamic graph-based neural network using 
edge convolution to learn point neighbourhood features. It uses the k-nearest neighbours to select 
the neighbouring points. This module captures local geometric structure while maintaining permu
tation invariance. It also generates neighbourhood features that describe the relationship between a 
point and its neighbours rather than purely point-wise features. BAAF-Net is based on RandLA- 
Net (Hu et al. 2020) and utilizes random sampling. BAAF-Net integrates a bilateral upsampling struc
ture to process the point cloud at different resolution levels and uses an adaptive fusion method to 
represent complete point-wise, local, and global features. In addition, the choice of these DNNs is 
also reflected in other recent works that tested PointNet and/or the DGCNN as a benchmark for 
XAI techniques evaluation (Arnold, Angelov, and Atkinson 2022; Feng et al. 2024; Levi and Gilboa 
2024) on object classification. For example, in their latest paper, Levi et Gilboa compare both PointNet 
and the DGCNN, along with Robust Point-Cloud Classifier (Xu et al. 2021) and the Geometry-Dis
entangled Network (Ren, Pan, and Liu 2022) still for classification purposes on the ModelNet40 
dataset.

4. XAI approach for urban and indoor point cloud analysis

The tests were conducted by combining the three DNNs and the four datasets. In each test, a model 
was trained on a point cloud dataset to solve the semantic segmentation task. Subsequently, acti
vations and resulting gradients were extracted from the trained model for an input scene. The 

Table 1. Comparison and matching between the various classes in the datasets.

Synthcity Semantic3D S3DIS KITTI

Building (0) Building (5) Wall (11) Buildings (0)
Other buildings (9 / 10)

Car (1) Cars (8) Cars (parked 2)
(moving 17)

Natural ground (2) Natural terrain (2) Terrain (13)
Ground (3) Man-made terrain (1)
Pole-like (4) Poles (14)

Traffic sign (15)
Road (5) Man-made terrain (1) Floor (7) Road (5)

Parking (6)
Sidewalk (7)
Other ground (8)

Street furniture (6) Hardscape (6)
Tree (7) High vegetation (3) Vegetation (11)

Low vegetation (4) Trunk (12)
Pavement (9) Hardscape (6) Floor (7)

Scanning artefacts (7)
Beam (0)
Board+bookcase (1)
Ceiling (2)
Chair (3)
Clutter (4)
Column (5)
Door+Window (6)
Sofa (8)
Stairs (9)
Table (10)

Truck/Bus (3)
Other Object (16)

Notes: The numbers in parentheses represent the corresponding class numbers. The classes from different datasets have been 
compared and matched based on their semantic similarities and geometries. The table provides an overview of the correspond
ing classes across the datasets, facilitating a comprehensive analysis and comparison of the class distributions and semantic 
labels within the urban point cloud datasets.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 9



results were then visualized using the implemented BubblEX method based on Grad-CAM (Gradi
ent-weighted Class Activation Mapping) (Selvaraju et al. 2017).

For each dataset, a predefined training and test set were assigned. Specifically, the scenes used for 
training the model were assigned to the training set, while the scenes used for model validation and 
the extraction of activations and gradients were assigned to the test set. Once an architecture and 
dataset are selected, the model is trained. The structure of the model is based on the dataset charac
teristics. The input size for all datasets and models is set to 4096 points with 6 features, including 3 
geometric features (representing the x, y, z coordinates) and 3 colour features (representing the R, 
G, B values, respectively). The output layer size is set based on the number of classes, equivalent to 
4096 points for n classes. Since scenes of arbitrary length (number of points) need to be processed, a 
block-wise sampling (sliding windows) approach is employed. Each block is selected from a prism 
of a square area lying on the xy plane, unlimited in height, which slides across the entire plane. The 
block’s metric dimensions (size) are fixed for each dataset, as well as the stride parameters along the 
x and y axes. Subsequently, the selected block is down-sampled to 4096 points: if the original block 
contains more than 4096 points, random decimation is performed to select 4096 points; if it con
tains fewer than 4096 points, the original points are randomly repeated to form a block of 4096 
points. Blocks with less than 100 points are discarded. The obtained down-sampled blocks contain
ing both input data ( x, y, z, R, G, B, features) and ground truth labels constitute the training set and 
test set. The training process was initiated after setting the training hyperparameters: batch size of 8, 
Adam optimization algorithm with an initial learning rate of 0.001 and momentum of 0.9, minimiz
ing the cross-entropy loss function, and 100 epochs of training.

After that, the adapted principles of Grad-CAM have been applied. In particular, Grad-CAM 
allows the highlighting of the regions of an input image that are most influential in the model’s pre
dictions. Grad-CAM computes the gradients of the predicted class score (output) with respect to the 
feature maps of the last convolutional layer. These gradients represent how much the output score 
would change with respect to small changes in each feature map. Then, the gradients obtained in the 
previous step are globally averaged across each feature map. Grad-CAM calculates a weighted sum 
of the feature maps, where the weights are determined by the global average-pooled gradients. This 
step highlights the regions of the input image that had the most significant impact on the model’s 
decision. Finally, it generates a heatmap by applying a ReLU (Rectified Linear Unit) activation func
tion to the weighted sum of feature maps.

Activations and gradients are, therefore, extracted from the trained model. For each architecture, 
the layer for analysis is selected. The deeper layers (closer to the output) were chosen as they learn 
more discriminative features with higher semantic content. For all three considered architectures, 
the last convolutional layer before the output layer was chosen as the extraction layer. To extract the 
activation of a model, a test scene is selected and processed (block-wise) by the model. The acti
vation extracted from the selected activation layer for each block of the scene has dimensions of 
4096 points for m extraction layer features (Figure 4). In particular, the feature dimensions are 
128 for PointNet, 256 for DGCNN, and 32 for BAAF-Net. The blocks are subsequently recombined 
to reconstruct the overall scene.

The activation can be visualized using a point cloud where points are coloured using a JET col
ourmap representing the intensity of the activation. In particular, the JET colourmap, used to rep
resent in colour a symmetrical, normalized, and bipolar range of values (from − 1 to 1), associates 
blue with values close to − 1, green with values around 0, and red with values close to 1. For this 
purpose, the activation itself (a matrix of 4096 points for m feature maps) is flattened along the fea
ture dimension using the median function, resulting in a vector of dimension 4096 points, with 
values representing the activation intensities at each point. Analyses have been conducted to choose 
the median function as the flattening method for the features.

The obtained values are then normalized using a linear mapping between − 1 and 1 based on the 
highest value among the absolute minimum and maximum values. Consequently, at least one point 
is mapped to either 1 or − 1. To make the system more robust to outliers, points with values below 
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the 0.001 quantiles and above the 0.999 quantiles were removed. It is important to perform normal
ization only after scene recombination and not vice versa. Recombining the scene before normal
ization creates significant colour gradient discontinuity between blocks. However, the effects of 
gradient discontinuity between adjacent blocks remain visible even after global normalization 
across the entire scene. This is inherently due to the block-wise analysis of the point cloud. To miti
gate this effect, experiments have been conducted on partially overlapping non-adjacent blocks (half 
overlap). This strategy improves visualization by making the colour gradients more continuous 
between adjacent blocks. Unlike activation, the gradient evaluated on a test scene is class-specific. 
To extract the gradient, a one-hot encoding signal identifying the target class is multiplied by the 
output vector and backpropagated to the extraction layer, similar to the error backpropagation 
during network training. This yields the gradient of the output associated with the target class 
with respect to the activation. Like the activation, the gradient is a matrix of 4096 points for m fea
ture maps. The implemented Grad-CAM is obtained by taking the element-wise product between 
the activation matrix and the gradient (Figure 5, which is then flattened, normalized, and colour- 
coded as described for the activation.

Analyses have been conducted to choose whether to multiply the activation and gradient and 
then flatten or flatten the activation and gradient and then multiply. In BubblEX a statistical analysis 

Figure 4. Workflow for the feature extraction with respect layers used for the activation and the target.

Figure 5. Generation of the final result with the salient points.
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was conducted to choose the best function to flatten the size of the features. The ensemble functions 
tested are those frequently used in networks (pooling layers) to flatten the dimensions: minimum, 
maximum, mean (equivalent to the normalized sum), and median. Some samples were selected, and 
for these, the activation and gradient at the ‘conv5’ layer were extracted. For activation (matrix 1024 
features x 1024 points), the distribution of values between the features for each point was evaluated. 
Among the functions to flatten the size of the features, the median seemed to give better results than 
the others, at least visually, especially in the Grad-CAM representation. It has been verified that the 
gradient between the features at each point has a very sparse distribution, and for this reason, the 
average value is very susceptible to outliers, which move it away from the centre of the distribution. 
While the median value is more robust. Using the median to flatten both activation and gradient 
before multiplication does not add enough emphasis; the nuances obtained are almost identical 
to those of activation alone. Differently, the use of the median to flatten the multiplication of acti
vation and gradient creates a significant variation in nuances compared to those of activation alone.

Unlike (Matrone et al. 2022), which focused on classification tasks, the ‘visualization module’ 
was not one of the cores of this study. There was no search for misclassified objects in the 2D feature 
space by assessing their proximity to cluster centroids and identifying ‘intruders’. Since semantic 
segmentation is based on point-wise classification, this analysis visualizes individual points in the 
scene rather than entire objects and only a few clusters have been evaluated when investing the mis
classified elements. The activation is independent of the target class, while Grad-CAM modulates 
the activation with the target class-conditioned gradient. The intensity of the activation, regardless 
of its sign (positive or negative), indicates which points (local geometry) the network focuses its 
attention on for making the final decision. Grad-CAM also indicates how much the variation in 
local geometry influences the decision towards a target class, and its insights have been used for 
BubblEX.

Moreover, in classification networks, global-level features are learned in the final layers, resulting 
in the loss of spatial information. In segmentation networks, however, spatial information (x, y, z 
coordinates of the points) is preserved from the beginning to the end. In this approach, the features 
learned in the layers immediately before the final (point-wise) classification are utilized.

In the segmentation task, the spatial/geometric information of the point cloud is preserved (it is 
equivalent to a point-by-point classification). In the classification task, however, the information is 
lost in the model, which flattens and compresses the information in the deeper layers to make an 
overall estimate. However, in both cases, we can conduct explainability analyses with our method by 
selecting a layer from the model that maintains the geometric information of the point cloud till the 
output.

In a segmentation problem, analyzing activation alone may not be sufficient to evaluate the net
work’s attention towards discriminative geometries, as done in a classification problem, where the 
network focuses on individual objects. For example, to distinguish between a tree and a car, the net
work’s attention may be directed towards the trunk or the wheels, respectively. In the segmentation 
problem, there are no separate objects but rather scenes, and it is the network’s task to infer the 
objects. Although an area with higher activation may indicate that the network is observing that 
particular feature, Grad-CAM analysis is necessary to verify if the network indeed focuses its atten
tion on trees when the target is a tree and on cars when the target is a car. Additionally, it allows for 
further analysis of which parts of each class are more attended to, such as wheels, body, and win
dows for cars, and trunk and canopy for trees.

The extraction of activations and gradients does not affect the model’s prediction, but their 
evaluations can explain the reasons why points in an input scene are predicted correctly or incor
rectly. Therefore, the proposed visualization approaches can be used to intervene in the network’s 
structure to make it more efficient. Pooling operations are necessary for flattening matrices (points 
by features) into point vectors during activation and gradient analysis. These operations, performed 
after the extraction of activations and gradients, do not affect the network’s structure. All these ana
lyses can be performed at any layer as long as the geometric information of the scene (x, y, z 
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coordinates) is preserved. The proposed approach can be extended to any other architecture, as it is 
independent of the specific type of chosen DNN. The overall accuracy in some tests (depending on 
the dataset and architecture) does not exceed 75%. Therefore, in the Grad-CAM plots of the scenes 
in the test set, the colourization may appear rather random. However, the purpose of this work is 
not to achieve maximum accuracy but to evaluate the model’s performance using the proposed 
visualization methods.

5. Results and discussions

In the following section, we present the results of our analysis, organized according to the different 
classes under study. Additionally, we examine the performance of the DNNs chosen for the evalu
ation. However, it is important to note that the focus of this study is not on improving the DNN 
architectures but rather on understanding their behaviour, learning patterns, and how they analyze 
point clouds to make class predictions. Consequently, the aim is to gain insights into the decision- 
making process of the networks and the factors influencing their classification outcomes. Both the 
DGCNN and BAAF-Net architectures have shown promising results, with their performance alter
nating depending on the specific tests conducted, particularly in cases involving overlap or no over
lap of the analysing blocks. By examining these results, we can draw meaningful conclusions and 
engage in insightful discussions about the findings.

5.1. Classes comparison

For the comparison between classes, the test scenes were plotted and divided according to their 
labels for each target class based on the ground truth points. The total number of point clouds 
so obtained has been 3336, divided into 1410 for the tests without overlap and 1926 for those 
with the overlap. They could be further categorized based on the DNN, resulting in 1344 for Point
Net, 1320 for the DGCNN and 672 for the BAAF-Net, including both the overlap and no overlap 
settings. These numbers provide a comprehensive understanding of the scope and scale of the 
analysis conducted. This information is essential for assessing the data coverage and ensuring a 
comprehensive evaluation of the DNN performance.

From the comparison of the tested scene with and without overlap (Figure 6), the stripes caused 
by the analysis blocks are evident. It can be observed that the overlap averaging makes the result 
more homogeneous while still maintaining the overall trend of the Grad-CAM. For this reason, 
the analyses were mainly carried out with overlap.

In this contribution, only the scenes whose implemented Grad-CAM corresponds to the ground 
truth class are shown. However, an equal number of scenes were plotted based on the predictions as 
well. This allowed for further investigation in cases where the class was mostly misclassified, to 
determine which category it was confused with and potentially identify the reasons behind the 
misclassification.

5.1.1. Buildings
In this category, the points belonging to the Building class of Synthcity and Semantic3D, the Wall 
class of S3DIS, and the Building class of KITTI were selected and evaluated.

Considering the synthetic dataset (Figure 7), where the behaviour of the networks is more simi
lar, the results show that the analysis of this class is mainly based on the vertical component of the 
scenes, with a greater emphasis on the higher points.

This trend is also observed in Semantic3D, especially with PointNet, but less so in DGCNN and 
BAAF-Net (Figures 8 and 9). The latter behaviour is more similar to that of the indoor environ
ments in S3DIS (Figure 10), where the Z component is less pronounced. However, even in this 
case, PointNet exhibits a stronger development of saliency points upwards.
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In the KITTI dataset (Figure 11), despite the less dense point clouds and the greater influence of 
endless blocks analysis on the variation of values, the same tendency is observed in some parts. On 
the other side, when comparing the behaviour between outdoor and indoor datasets, it can be noted 
that the results are quite similar. In fact, Figures 9 and 10 show a correlation depending on the ana
lyzed network: PointNet highlights a greater gradient between the lower and higher parts of the 
walls, which is less pronounced and almost ‘blurred’ in DGCNN and BAAF-Net. The KITTI data
set, being more noisy, has different results depending on the analyzed areas (Figure 11).

5.1.2. Floor – pavement
This category includes the classes ‘Floor’ for S3DIS, ‘Ground’ and ‘Road’ for Synthcity, ‘Man-made 
terrain’ for Semantic3D, and ‘Terrain’, ‘Road’, and ‘Sidewalk’ for the KITTI dataset.

Figure 6. Comparison between the no overlap and the overlap setting for a scene of the Semantic3D dataset.

Figure 7. Synthcity: (a) PointNet (b) DGCNN (c) BAAF-Net. No Overlap.
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From Figure 12, it can be observed that in the case of indoor environments (S3DIS), the behav
iour is similar across scenes regardless of the network. However, in outdoor environments, the 
results vary depending on the type of acquisition. In fact, in Semantic3D, a clear and defined pattern 
is not evident. However, in the KITTI dataset, where the point density varies greatly depending on 
the distance from the sensor, the most salient points are those with higher density. This allows to 
understand that density is a crucial factor in scene analysis, enabling the DNN to better and more 
comprehensively analyze the neighbors. However, density does not have an impact when it is made 
homogeneous through the sub-sampling performed by the DNN during the scene analysis.

If we compare the real datasets (Figure 12) with the synthetic ones (Figure 13), it can be noticed 
that the absence of noise, scene regularity, and a well-defined and unambiguous radiometric 

Figure 8. Semantic3D: bildstein_station3 and domfountain_station3 scenes. No overlap, PointNet.

Figure 9. Semantic3D: domfountain_station3 scenes. Overlap.
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component description are factors that help the network better discriminate between classes. 
Despite some differences in the results among the networks, the salient points are clearly identified, 
and urban elements such as horizontal road markings or sidewalks can be easily read. This confirms 
the findings of previous studies (Pierdicca et al. 2020) that highlighted the high importance of the 
radiometric component and emphasizes how the noise in the point cloud is a fundamental factor 
for accurate class recognition.

Figure 10. S3DIS. Comparison of overlap and no overlap for different networks.
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5.1.3. Tree – vegetation
The tree and vegetation classes fall into this category. If we analyze Semantic3D (Figure 14), we can 
see that the pattern of salient points is almost the same for both PointNet and DGCNN, although 
with some slight differences. The gradient, in fact, proceeds from bottom to top in both cases and 
seems more pronounced where the tree canopy is larger in size. This pattern is also found in the 
Synthcity dataset when processed with PointNet; however, when processed with DGCNN, it is 
much less visible and more homogeneous. Different discourse, however, for BAAF-Net, in which 
the tree trunks clearly emerge, while the canopy is more regular and has no saliency peaks. For 
the KITTI dataset, instead, the noise and density of the point cloud did not allow the definition 
of a readable pattern.

5.1.4. Car
As in the previous case, the results show that the radiometric component and the definition of the 
point cloud play a key role. In Figure 15, it can be seen that the wheels and the car roof, when ana
lyzed with DGCNN, are the points of greatest interest for the network.

The developed methodology, however, makes it also possible to investigate, where there is an 
error in the prediction, what it is due to, whether it is due to the geometry, the features that describe 
it, or an incorrect annotation of the dataset. Figure 16 shows the visualization in a 2D space of the 
learned features and allows to hypothesize the reason for the error. In this case, the learned and 
descriptive features of the misclassified car, are correct, as they are positioned close to the other 
points in the cluster. This indicates that the features are close in feature space and, therefore, similar 
to each other. Thus, the error in the network could lie in the final classifier, in the incompleteness of 
the point cloud, or even in the geometrical proximity to other classes.

Figure 16 also shows how the salient points of the two misclassified cars do not correspond, or 
are at least similar, to those correctly classified.

If we then consider Figure 17, we can clearly notice that the salient points are highly net and 
density-dependent. In fact, analyzing only Synthcity, the car windows, rather than the car body, 
seem to be the parts of most attention with PointNet, while with BAAF-Net, the car roof and 
the back side, and with DGCNN, the roof and the wheels (Figure 15). If, on the other hand, Seman
tic3D is considered, the shortcomings on the point cloud make it more obvious how the pattern 
distinctly identified in Synthcity is no longer present here. It remains, on the other hand, constant 
with DGCNN, and this may be due to the inherent architecture of the network. A separate discus
sion should be made for the KITTI dataset, where it is possible to glimpse some patterns only where 
the density of points acquired allows it.

5.1.5. Hard scape
In this class, as in the previous one, the dependence of the results on network architecture and geo
metry is even more noticeable, since the behaviours are the opposite according to the DNN. In Figures 

Figure 11. KITTI dataset: output of the ground truth (left) and predicted scene (right) with the DGCNN.
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Figure 12. Comparison between the real datasets, both indoor and outdoor.
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18 and 19, it can be observed that for both lighting and traffic lights poles, PointNet and DGCNN pay 
more attention to the height dimension, starting from the ground level. At the same time, the hanging 
elements are ignored by the PointNet. This is due to the discontinuity of the point cloud in these par
ticular elements. Conversely, DGCNN keeps attention on these elements.

This result indicates that the KNN edge-conv module of the network allows more robust aggre
gation within the neighbours of the aforementioned elements. BAAF-Net, on the contrary, pays 
more attention to the hanging elements, ignoring the poles. The main reason is the network’s ran
dom sampling, which emphasizes elements with a higher density, ignoring the overall geometry.

5.2. Discussions

The comparison between classes has provided insights into network dependency and how different 
classes exhibit distinct behaviours. The performance of the networks varies depending on the class 
being analyzed, indicating that certain classes may be more challenging to classify accurately than 
others. This outcome highlights the need for careful consideration of network architectures and 
training strategies to achieve optimal results across different classes. In order to better evaluate 
the influence of the various features and to try to investigate the likely presence of common pat
terns, the Pearson correlation coefficient (r) was computed for each test scene of each dataset 
with respect to each analysed network architecture. In particular, the roughness and density have 
been computed with two radii (0.5 m and 1 m) on CloudCompare for each scene with the different 
classes as targets (e.g. dataset S3DIS-PointNet, class 0 – class 1 – class 2 …; S3DIS-DGCNN, class 0 
– class 1 – class 2 …; S3DIS-BAAF-Net, class 0 – class 1 – class 2 and so on), and then correlated 
with the values obtained from the Explainable framework.

The measures of the two radii have been selected according to the dimension of the stride and 
half of it. Tests have also been carried out with lower radii, such as 0.1 and 0.2 m, but due to the 
structure of the point clouds, the obtained values were contained in a too narrow range, making 
all the values too similar. For this reason, larger radii were preferred.

Figure 13. Comparison between the results obtained with the different DNNs within the same dataset.
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Figure 14. Results of the tree/vegetation categories and the analysed datasets.

Figure 15. Highlighting of some of the correctly predicted cars in the Synthcity dataset analysed with the DGCNN. The car top 
and the wheels are the most relevant elements.
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Figure 16. Highlighting of some of the misclassified cars in the Synthcity dataset and relative visualization in UMAP.

Figure 17. Comparison of the ‘car’ category among the various datasets.

Figure 18. Example of poles and traffic lights for the Synthcity dataset.
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These tests have been divided into two groups: on one hand, the points taken into account for the 
r computation have been those of the whole scene, explored according to the target class; on the 
other hand, only the points belonging to the specific class were considered for the computation 
of the r coefficient, and not the whole scene.

Considering the first group of tests, an example of part of the results is reported in Tables A3, A4, 
A5, A6, A7, and A8 in the Appendix section). When comparing real and synthetic datasets, it 
becomes evident that the radiometric component and the noise level in point clouds play crucial 
roles in class discrimination. Synthetic datasets, with their absence of noise/roughness and well- 
defined radiometric descriptions, tend to yield more accurate and easily interpretable results. On 
the other hand, real datasets exhibit more variability, also in terms of point cloud density. However, 
the density factor is less relevant for most datasets since they undergo a further sub-sampling during 
the analysis of the DNNs themselves, except for the S3DIS dataset analysed with the DGCNN, 
where the point cloud density correlation is remarkably higher with respect to the other tests 
(see Table A4 in the Appendix. This result could be due to the initial higher density of the dataset, 
acquired in smaller indoor environments such as offices, combined with the DGCNN architecture 
that strictly relates a point with its surroundings. It is important to note that the density factor influ
ences the network’s ability to examine neighbours more comprehensively.

When comparing indoor and outdoor datasets, we observe similar behaviours among scenes 
regardless of the network architecture in indoor environments (e.g. S3DIS). However, in outdoor 
environments (e.g. Semantic3D), the results vary depending on the type of acquisition. The archi
tectural design of the network plays a more significant role in outdoor scenarios, where the net
works exhibit varying sensitivities to different scene characteristics. For example, the analysis of 
the floor class shows more pronounced differences in saliency patterns across networks in outdoor 
environments, while indoor environments exhibit more consistent patterns. The size of objects 
within the point cloud has a significant impact on the network’s behaviour and saliency. For 
instance, trees exhibit distinctive characteristics that influence the network’s attention and saliency 
patterns. The network’s ability to recognize and differentiate objects depends on their size and geo
metric properties.

Considering the second group of tests, focused on the single classes (see Tables A9, A10, A11, 
A12, A13 in the Appendix section), it has been possible to highlight how low correlation results 
(in a range of ±0.3 values) are generally spread across the different classes and DNNs. This output 
further confirms how, as mentioned above, the density and the roughness are not effective features 

Figure 19. Example of poles in the Semantic3D and the KITTI dataset.
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in the learning process for most of the categories. However, some higher values (medium correlation 
– between ±0.31 and ±0.7) have been noticed for specific classes. An example is the relatively high 
correlation, if compared with the other classes, between the roughness and the natural ground, 
ground and pavement classes for the Synthcity dataset. As regards the vegetation of the Semantic3D 
dataset, the density seems to play a relevant role in the DGCNN, not confirmed with the BAAF-Net. 
Higher values, around 0.6, are reported for the scanning artefacts in the DGCNN, reflecting the 

Figure 20. Examples of the scatter plots obtained for the Z-value across three different classes of the Synthcity dataset, with a 
comparison between PointNet and the BAAF-Net.
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behaviour of the vegetation with the BAAF-Net. Medium correlation, in this case, has also emerged 
for the roughness.

Since density and roughness have not led to additional insights, the z-value has been included as 
a further feature to be investigated, considering the visual outputs of the Explainable framework. 
Other 3D features, such as the verticality and planarity (computed with a radius of 0.4, 0.6 and 
1 m), were also analysed, but all the coefficients resulted in a low correlation, so they have not 
been inserted in the overall tables. Scatter plots have also been generated to check the values visu
ally. Figure 20 depicts an example of the scatter plots obtained for the  Z-value across three different 
classes of the Synthcity dataset and with a comparison between PointNet and the BAAF-Net; while 
Figure 21 shows an example of the scatter plots obtained from PointNet for the different features 
and radii. Similar behaviour was obtained for the other architectures. From these figures, it is 

Figure 21. Example of the scatter plots from PointNet for the different features and radii.
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possible to understand how the z-value is fundamental for the building class, and, at the same time, 
the other features do not have a relevant influence.

The results thus obtained were divided into 3 ranges (Table 2 and 3): ±0.3 values have been con
sidered as a low correlation, between ±0.31 and ±0.7 a medium correlation, major of ±0.71 a high 
correlation. ‘Completeness’ and ‘radiometric component’ were instead assessed qualitatively and, 
therefore, moved to the end of the table.

Tables 2 and 3 provides a summary of the discussions and highlights that emerged from the con
ducted analyses.

Regarding the second research question, it is still challenging to define general guidelines at this 
stage. In fact, the results and salient points or elements are highly dependent on numerous factors, 
as discussed above. The interplay between network architecture, dataset characteristics (real or syn
thetic), noisiness, density variations, object sizes, and the distinction between static and mobile 
acquisition systems contribute to the complex behaviour observed in the results. Further research 
and analysis are thus necessary to establish more comprehensive guidelines and recommendations 
for effective point cloud analysis and interpretation.

6. Conclusions and future works

The burgeoning volume of 3D data necessitates the geomatics community’s development of models 
that are more accurate, less uncertain, and physically consistent in interpreting this complex data. 
While neural networks for point cloud processing have garnered significant attention, there 
remains a lack of focus on explainability. The aim of this paper was to highlight the performance 
of existing frameworks by elucidating the outputs of deep learning ‘black box’ methods on the chal
lenging task of semantic segmentation that, to the best of our knowledge, was never tried on 3D 
data. For this reason, in this study, we investigated the behaviour of DNNs in analyzing 3D 
point cloud data for semantic segmentation. By examining various datasets and network architec
tures, we aimed to understand how networks operate, learn, and analyze point clouds to classify 
different classes. Our analysis and discussions have provided valuable insights into the performance 
and characteristics of the networks. The comparison between different classes revealed that net
works’ behaviour could vary significantly depending on the class being considered. Some classes 
may exhibit more distinctive features that are easier for the networks to recognize, while others 
may pose more challenges in terms of classification accuracy. This consideration brings out the 
importance of carefully selecting network architectures and considering class-specific character
istics when designing and training networks for point cloud analysis tasks. Furthermore, the 

Table 2. Comparative overview table with the relevance of the features according to the datasets. From low (*) to high (***).

Dataset/Feature Overall

Typology of 
dataset Scenes Data acquisition sensor

Real Synthetic Indoor Outdoor Static Mobile

Density * ** * ** * ** *
Roughness ** ** ** * ** * **
Completeness ** ** * ** *** ** ***
Radiometric component ** ** *** * ** ** **

Table 3. Comparative overview table with the relevance of the features according to the classes. From low (*) to high (***).

Class/Feature Building Floor/pavement Tree/Vegetation Car Hard-scape

Density * * ** * **
Roughness * ** * * **
Completeness * * ** *** **
Radiometric component * * * * *
Z-component *** * ** * **
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comparison between real and synthetic datasets highlighted the impact of the radiometric com
ponent and noise level on class discrimination. Synthetic datasets, with their controlled and 
noise-free nature, often yield more accurate and interpretable results. On the other hand, real data
sets exhibit more variability, and the noise level can influence the network’s ability to accurately 
classify different classes. We also observed that the behaviour of networks could vary between 
indoor and outdoor environments. While there are similarities in behaviour within indoor environ
ments, outdoor scenes exhibit more sensitivity to different scene characteristics, making the archi
tectural design of the network more crucial in achieving accurate segmentation results. The size of 
objects within the point cloud was found to be an important factor influencing the network’s traits. 
Larger objects, such as trees, have distinct features that influence the network’s attention and sal
iency patterns.

This paper opens up several avenues for future research. First, further investigations can explore 
additional datasets and network architectures to gain a more comprehensive understanding of 
neural networks’ behaviour in point cloud analysis. This can help identify trends, patterns, and gen
eral guidelines for network design and training in different scenarios. Generally speaking, in fact, 
the applicability of the proposed methodology is guaranteed provided that from the feature extrac
tion layer, it is possible to reconstruct the geometry of the input point cloud, i.e. it is possible to 
visualize the intensity of the features or a combination of them, at each point of the cloud. If, for 
example, we consider the latest Transformer models, encoder-decoder architecture that redefined 
machine learning, even if particularly used in natural language processing and not in the geospatial 
data domain yet, the attention unit consists of 3 trained, fully connected neural network layers, so 
our method would be anyway applicable.

Additionally, the analysis of point cloud density and its impact on network performance war
rants further exploration. Investigating the optimal sub-sampling strategies and their effects on 
classification accuracy and saliency patterns can provide valuable insights for improving point 
cloud analysis methods. Furthermore, the examination of mobile acquisition systems and their 
impact on network performance can offer insights into the robustness and generalizability of 
trained models in real-world scenarios. It would also be valuable to investigate the generalizability 
of network architectures across different datasets and domains. Comparing the behaviour of net
works trained on specific datasets to their performance on unseen datasets can shed light on trans
fer learning capabilities and identify potential limitations. Therefore, we think that quantitative 
assessments, currently underdeveloped, will be increasingly crucial in the field of explainable 
deep learning, and they could cover and constitute one of the missions of the geomatics community.
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Appendix

In this section, have been inserted: the results of the performances of the tests with the different datasets (Tables A1
and A2), and some examples of the r coefficient obtained both for the whole scene analyses and the single classes. In 
particular, Tables A3, A4, and A5 show an example of the obtained r coefficients for the S3DIS dataset. Tables A6, A7, 
and A8 show an example of the obtained r coefficients for the Synthcity, Semantic3D and KITTI datasets analysed 
according to the deep neural network that ensured the best performances. In this case, the points taken into account 
have been those of the whole scene, explored according to the target class. Tables A9, A10, A11, A12, and A13 provide 
an example of the r coefficients for the Synthcity and Semantic3D datasets, computed according to the points belong
ing only to the analysed classes. The features have been computed with different radii (0.5 m and 1 m).

Table A1. Results with no overlap setting.

Class DGCNN PointNet BAAF-NET Support
Prec Rec F1 Prec Rec F1 Prec Rec F1

Synthcity
building 0.987 0.974 0.980 0.974 0.909 0.940 0.888 0.979 0.932 1700481
car 0.900 0.804 0.850 0.936 0.654 0.770 0.883 0.627 0.733 120936
naturalGround 0.947 0.952 0.949 0.919 0.954 0.937 0.933 0.964 0.949 250431
ground 0.947 0.940 0.944 0.745 0.919 0.823 0.944 0.831 0.884 2574331
poleLike 0.980 0.873 0.924 0.912 0.884 0.898 0.553 0.010 0.019 72102
road 0.995 0.950 0.972 0.988 0.897 0.940 0.973 0.991 0.982 2933319
streetFurniture 0.743 0.847 0.791 0.401 0.730 0.518 0.773 0.299 0.431 123848
tree 0.988 0.972 0.980 0.994 0.957 0.975 0.917 0.967 0.941 314339
pavement 0.833 0.925 0.877 0.673 0.560 0.611 0.776 0.887 0.828 1642309
accuracy 0.944 0.846 0.907 9732096
S3DIS
beam 0.000 0.000 0.000 0.000 0.008 0.001 3306
board+bookcase 0.585 0.491 0.534 0.601 0.268 0.371 951950
ceiling 0.877 0.960 0.917 0.786 0.936 0.854 2186782
chair 0.663 0.467 0.548 0.418 0.388 0.402 209680
clutter 0.400 0.320 0.356 0.293 0.213 0.247 866772
column 0.074 0.009 0.015 0.000 0.000 0.000 158603
door+window 0.550 0.221 0.316 0.421 0.215 0.285 738748
floor 0.971 0.985 0.978 0.854 0.993 0.918 910090
sofa 0.263 0.071 0.112 0.000 0.000 0.000 26187
stairs 0.000 0.000 0.000 0.000 0.000 0.000 0
table 0.624 0.621 0.622 0.633 0.306 0.413 343564
wall 0.686 0.869 0.767 0.582 0.723 0.645 2762398

(Continued ) 

30 F. MATRONE ET AL.

https://doi.org/10.1109/Access.6287639
https://doi.org/10.1109/TMM.6046
https://doi.org/10.1109/TMM.6046
https://doi.org/10.1016/j.engappai.2022.105554


Table A2. Results with overlap setting.

Class DGCNN PointNet BAAF-NET Support
Prec Rec F1 Prec Rec F1 Prec Rec F1

S3DIS
beam 0.002 0.015 0.004 0.000 0.011 0.001 0.020 0.219 0.037 10586
board+bookcase 0.737 0.405 0.522 0.607 0.242 0.347 0.738 0.546 0.627 3865735
ceiling 0.907 0.955 0.931 0.818 0.919 0.865 0.913 0.935 0.924 8801531
chair 0.712 0.529 0.607 0.336 0.326 0.331 0.693 0.752 0.721 805135
clutter 0.466 0.348 0.398 0.235 0.232 0.234 0.515 0.480 0.497 3404530
column 0.109 0.019 0.033 0.009 0.001 0.001 0.157 0.012 0.023 675757
door+window 0.503 0.444 0.472 0.471 0.171 0.251 0.658 0.257 0.370 3140483
floor 0.983 0.976 0.979 0.892 0.992 0.939 0.956 0.979 0.967 7661597
sofa 0.399 0.230 0.292 0.001 0.000 0.000 0.529 0.246 0.336 111357
stairs 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
table 0.718 0.616 0.663 0.617 0.425 0.503 0.753 0.699 0.725 1395706
wall 0.697 0.914 0.791 0.587 0.740 0.654 0.714 0.927 0.806 11218655
accuracy 0.769 0.660 0.786 41091072
Semantic3D
manMadeTerrain 0.858 0.929 0.892 0.803 0.888 0.843 0.888 0.900 0.894 5555801
naturalTerrain 0.582 0.811 0.678 0.529 0.733 0.615 0.565 0.747 0.644 1159238
highVegetation 0.820 0.724 0.769 0.636 0.311 0.418 0.762 0.458 0.572 4699083
lowVegetation 0.727 0.314 0.439 0.314 0.221 0.260 0.372 0.375 0.374 1051331
buildings 0.830 0.900 0.864 0.690 0.841 0.758 0.718 0.912 0.803 9343245
hardScape 0.452 0.403 0.426 0.283 0.309 0.296 0.379 0.191 0.254 1573484
scanningArtefacts 0.583 0.179 0.274 0.347 0.154 0.214 0.349 0.274 0.307 407001
cars 0.467 0.377 0.418 0.789 0.349 0.484 0.734 0.402 0.520 524673
accuracy 0.787 0.661 0.722 24313856
KITTI
building 0.732 0.668 0.698 147945
car 0.566 0.121 0.199 16600
truck 0.789 0.227 0.353 10726
road 0.789 0.973 0.871 832988
parking 0.346 0.032 0.059 12519
sidewalk 0.612 0.263 0.368 144670
otherGround 0.718 0.150 0.248 57880
otherBuilding 0.766 0.429 0.550 74967
fence 0.823 0.811 0.817 253472
vegetation 0.815 0.868 0.841 1052648
trunk 0.000 0.000 0.000 14010
terrain 0.613 0.517 0.561 268420
pool 0.663 0.321 0.432 21463
trafficSign 0.711 0.118 0.203 4269
otherObject 0.613 0.387 0.474 42193
movingCar 0.498 0.772 0.605 58955
accuracy 0.770 3013725

Table A1. Continued.

Class DGCNN PointNet BAAF-NET Support
Prec Rec F1 Prec Rec F1 Prec Rec F1

accuracy 0.749 0.662 10158080
Semantic3D
manMadeTerrain 0.699 0.947 0.804 0.654 0.862 0.744 820011
naturalTerrain 0.746 0.581 0.653 0.620 0.523 0.568 178791
highVegetation 0.722 0.687 0.704 0.510 0.341 0.409 816849
lowVegetation 0.586 0.266 0.366 0.326 0.100 0.153 162239
buildings 0.814 0.866 0.839 0.678 0.816 0.741 1679174
hardScape 0.372 0.261 0.307 0.258 0.166 0.202 290925
scanningArtefacts 0.337 0.035 0.064 0.036 0.003 0.005 58124
cars 0.755 0.004 0.008 0.623 0.372 0.466 89887
accuracy 0.736 0.622 4096000

INTERNATIONAL JOURNAL OF DIGITAL EARTH 31



Table A4. Example of the r coefficients for the S3DIS dataset obtained with the DGCNN.

S3DIS roughness 0.5 density 0.5 roughness 1 density 1

beam −0.07 0.394 −0.153 0.194
board+bookcase −0.022 0.347 −0.053 −0.328
ceiling −0.117 0.454 −0.215 0.277
chair −0.045 −0.028 0.25 0.382
clutter −0.02 −0.386 −0.103 −0.436
column 0.041 −0.35 −0.058 −0.468
door+window 0.062 −0.487 −0.039 −0.535
floor −0.023 0.09 0.245 0.315
sofa 0.101 −0.021 0.279 0.287
stairs −0.006 0.113 0.152 0.354
table 0.294 −0.099 0.303 0.239
wall 0.033 −0.357 −0.063 −0.493

Table A3. Example of the r coefficients for the S3DIS dataset obtained with PointNet.

S3DIS roughness 0.5 density 0.5 roughness 1 density 1

beam −0.123 0.32 −0.229 0.099
board+bookcase −0.155 0.141 −0.237 0.052
ceiling −0.066 0.404 −0.155 0.196
chair −0.028 0.025 0.052 0.312
clutter −0.178 0.034 −0.263 −0.095
column −0.136 0.246 −0.272 −0.042
door+window −0.084 −0.044 −0.233 −0.15
floor 0.1 0.036 0.223 0.091
sofa 0.092 −0.111 0.276 0.265
stairs 0.115 0.002 0.196 0.165
table −0.059 0.001 0.087 0.303
wall −0.059 0.001 0.087 0.303

Table A5. Example of the r coefficients for the S3DIS dataset obtained with the BAAF-Net.

S3DIS roughness 0.5 density 0.5 roughness 1 density 1

beam −0.124 0.225 −0.213 0.02
board+bookcase −0.013 −0.36 −0.0125 −0.39
ceiling −0.166 0.346 −0.29 0.133
chair 0.084 0.07 0.252 0.4
clutter −0.294 0.108 −0.42 −0.03
column 0.07 −0.31 0.067 −0.35
door+window −0.042 −0.366 −0.06 −0.405
floor −0.026 0.125 0.192 0.349
sofa 0.119 −0.04 0.151 0.138
stairs −0.044 0.196 −0.004 0.242
table 0.076 0.016 0.293 0.222
wall −0.088 −0.036 −0.245 0.29

Table A6. Example of the r coefficients for the Synthcity dataset obtained with the DGCNN.

Synthcity roughness 0.5 density 0.5 roughness 1 density 1

building 0.263 −0.217 0.185 −0.422
car 0.226 −0.135 0.184 −0.273
naturalGround −0.139 0.008 −0.064 0.021
ground −0.293 0.127 −0.286 0.227
polelike 0.344 −0.044 0.22 −0.156
road −0.226 0.062 −0.207 0.24
street furniture 0.377 −0.161 0.27 −0.289
pavement 0.29 −0.198 0.262 −0.334
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Table A8. Example of the r coefficients for the KITTI dataset obtained with the DGCNN.

KITTI roughness 0.5 density 0.5 roughness 1 density 1

Buildings 0.044 −0.171 0.234 −0.172
Cars (parked) 0.146 0.002 0.139 −0.001
Truck/Bus 0.152 −0.141 0.196 −0.116
People 0.077 0.007 0.098 0.053
Road −0.393 0.04 −0.445 −0.007
Parking −0.315 0.058 −0.351 −0.022
Sidewalk −0.383 −0.052 0.438 −0.087
Other ground −0.363 0.134 −0.404 0.028
Other buildings 0.226 −0.05 0.289 0.001
Other buildings 0.243 −0.046 0.222 0.031
Vegetation 0.385 −0.179 0.47 −0.094
Trunk 0.334 −0.148 0.413 −0.065
Terrain −0.373 −0.003 −0.445 −0.062
Poles 0.13 −0.136 0.141 −0.139
Traffic sign 0.18 −0.042 0.249 −0.027
Other street objects 0.153 0.002 0.129 0.001
Cars (moving) 0.057 0.132 0.026 0.106

Table A7. Example of the r coefficients for the Semantic3D dataset obtained with the DGCNN.

Semantic3D roughness 0.5* density 0.5*

manMadeTerrain −0.355 0.003
naturalTerrain −0.167 0.012
highVegetation 0.321 −0.298
lowVegetation 0.249 0.016
buildings 0.084 −0.206
hardScape −0.041 0.271
scanningArtefacts −0.132 0.059
cars −0.066 0.292

Note: *Only 0.5 m has been analysed since with 1 m CloudCompare repeatedly aborted the computation.

Table A9. Example of the r coefficients for the Synthcity dataset obtained with PointNet.

Synthcity roughness 0.5 density 0.5 roughness 1 density 1

building 0.051 0.243 −0.01 0.238
car −0.01 −0.078 0.023 0.009
naturalGround −0.365 0.088 −0.372 0.192
ground −0.029 0.175 0.027 0.191
polelike −0.072 −0.195 −0.064 −0.145
road −0.101 −0.011 −0.101 0.077
street furniture −0.166 0.07 −0.142 0.165
pavement 0.06 −0.11 0.117 0.001

Note: Only the points belonging to the analysed classes have been selected.

Table A10. Example of the r coefficients for the Synthcity dataset obtained with the DGCNN.

Synthcity roughness 0.5 density 0.5 roughness 1 density 1

building −0.028 0.007 −0.086 0.021
car 0.079 −0.229 0.122 −0.189
naturalGround −0.434 −0.223 −0.439 −0.118
ground 0.041 0.02 0.049 0.131
polelike −0.059 −0.188 0.019 −0.184
road −0.164 −0.078 −0.162 0.033
street furniture −0.212 0.149 −0.22 0.241
pavement 0.08 −0.373 0.114 −0.216

Note: Only the points belonging to the analysed classes have been selected.
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Table A12. Example of the r coefficients for the Semantic3D dataset obtained with the DGCNN.

Semantic3D roughness 0.5 density 0.5 roughness 1 density 1

manMadeTerrain −0.107 0.091 −0.114 0.198
naturalTerrain −0.06 −0.065 −0.116 0.099
highVegetation −0.044 −0.452 −0.079 −0.481
lowVegetation 0.121 −0.098 0.128 0.064
buildings −0.005 −0.206 −0.058 −0.231
hardScape −0.046 0.136 −0.057 0.178
scanningArtefacts −0.388 −0.594 −0.374 −0.672
cars 0.15 −0.054 0.236 0.066

Note: Only the points belonging to the analysed classes have been selected.

Table A13. Example of the r coefficients for the Semantic3D dataset obtained with the BAAF-Net.

Semantic3D roughness 0.5 density 0.5 roughness 1 density 1

manMadeTerrain −0.034 0.156 −0.064 0.235
naturalTerrain −0.138 0.09 −0.221 0.207
highVegetation 0.008 −0.241 −0.0238 −0.215
lowVegetation 0.107 −0.065 0.124 −0.014
buildings −0.022 −0.103 −0.085 −0.142
hardScape −0.05 −0.216 −0.083 −0.251
scanningArtefacts −0.379 −0.165 −0.364 −0.302
cars 0.182 −0.078 0.264 0.043

Note: Only the points belonging to the analysed classes have been selected.

Table A11. Example of the r coefficients for the Synthcity dataset obtained with the BAAF-Net.

Synthcity roughness 0.5 density 0.5 roughness 1 density 1

building 0.049 0.167 0.008 0.207
car 0.147 −0.202 0.16 −0.179
naturalGround −0.241 −0.019 −0.257 0.041
ground 0.27 0.184 0.344 0.155
polelike −0.002 −0.155 0.028 −0.127
road −0.03 0.079 −0.034 0.22
pavement 0.079 −0.396 0.117 −0.249

Note: Only the points belonging to the analysed classes have been selected.
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