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Abstract

Over the past 50 years Ogden model has been widely used in mate-
rial modelling due to its ability to match accurately the experimental
data on elastomers at large strain, as well as for its mathematical
properties, such as polyconvexity. In this paper these peculiarities are
exploited to formulate a three-dimensional finite strain model that in-
corporates, through a phase-field approach, a cohesive damage mecha-
nism which leads to the progressive degradation of the material stiffness
and to failure under tension. The model is calibrated by using data
on double-network elastomers which display a pseudo-ductile damage
behaviour at large strain. However the formulation is presented in a
general framework and it is shown that by properly tailoring the con-
stitutive parameters it is possible to encompass a wide range of effects
from brittle to pseudo-ductile failure processes. As such the proposed
model is applicable to describe fracture coalescence and propagation
in a wide range of materials.

Kyeywords: Large strain, phase-field fracture, hyperelasticity, elas-
tomer



1 Introduction

Over the past 50 years the phenomenological hyperelastic model proposed
by Ogden for compressibile [I] and incompressibile [2] elastomers has been
successfully adopted for a variety of materials including rubber [3], 4, 5] [6],
nematic elastomers [7, 8], foams [9, [10], biological tissues [11], 12], 13] and
even for carbon nanotubes [I4]. The main feature of the Ogden model
is that it postulates a form of the strain energy density in terms of the
principal stretches rather than the classical strain invariants as the majority
of hyperelastic models do. The principal stretches make the closed form
expression of the tangent moduli easily calculable [3] and so the model is
easily implementable in finite element algorithms. The model has also a
strong mathematical basis as it satisfies policonvexity.

The strain energy density of the Ogden model is written as the sum of
three separate functions of the principal stretches A1, Ay and Ag:

3
d(A1, do,A3) = > B(Aa),  with ¢ =Z Aem =1, (1)
a=1 n=1

making it adherent to the so-called Valanis—Landel split [15]. Each term
g?)()\a) in the series represents the elastic energy of a nonlinear spring
undergoing a stretch A,; the corresponding stiffness u,a, can be tailored to
describe all aspects of the rubber elastic response, starting from the initial
softening for moderate strains, to the stress hardening at large strains. For
most quasi-static experiments on rubber, three terms in the series give an
excellent correlation with stress-strain data [16].

All these remarkable properties are exploited to formulate a phenomeno-
logical theory for the cohesive failure of elastomeric materials at large strain.
The model incorporates, through a phase-field approach, the mechanisms
which lead to the softening behaviour and to the progressive degradation of
the material stiffness at large strain.

The phase-field approach that we follow relies on the variational theory
of fracture mechanics introduced in [I7], where the fracture problem for brit-
tle elastic bodies was formulated as a free-discontinuity minimum problem.
The variational formulation of fracture was approximated in [I§] by a regu-
larized problem that operates on a functional defined on continuous fields,
with fracture replaced by the so-called phase-field variable. Acting like a
damage variable, the phase-field assumes values between 0 and 1, with 0 for
sound material and 1 for the fractured material, and its evolution describes
the coalescence and propagation of cracks [19, 20, 2I]. As the phase-field



increases, the stiffness of the material reduces, vanishing when the dam-
age variable reaches 1. A non-local term, proportional to the gradient of
the phase-field, is also incorporated into the internal energy functional and
it plays the role of localization limiter by penalizing abrupt damage vari-
ations [22], and by promoting smooth transitions from 0 to 1 in regions
of finite width. The gradient contribution automatically introduces an in-
ternal length, that in the present formulation is a constitutive parameter,
to be calibrated through experimental data [23], and it makes the model
size dependent. Smoothness properties of phase-field approaches allow for
straightforward standard finite elements implementation, and no remeshing
or ad-hoc numerical strategies need to be used, making the solution of the
numerical problem robust and independent of the mesh used in the finite
element simulations.

Many contributions are available in the literature concerning phase-field
formulations for brittle materials undergoing large deformations. A first
model was proposed in [24], where phase-field fracture was incorporated
within the framework of finite elasticity in order to improve the description
of stretching near crack tips, where large strains usually develop. Following
a phase-field approach, a rate-independent model was formulated in [22] to
model the fracture in elastomers, and it was extended in [25] by including
viscous effects. A multiplicative splitting of the stretch into tensile and com-
pressive parts was proposed in [26] to describe fracture mechanisms induced
by tensile stress states. Cavitation processes in elastomers, with voids co-
alescing and developing into fractures, were reproduced in [27] by using a
specific nonlinear polyconvex strain energy. A phase-field model for the de-
scription of cavitation was also proposed in [28] and improved in [29], and is
based on three features, according to the experimental evidence of [30), B31]:
1. a criterion of fracture nucleation driven by hydrostatic stress, ii. the pos-
sibility of fracture healing, and . a dependence of the material resistance
on the cumulative history of fracture and healing. A bottom-up multi-scale
approach was followed in [32]. It was assumed that the internal energy at
the micro-scale is composed by an entropic contribution due to the polymer
chains configurational entropy, and an energetic contribution due to bond
deformation, such that the latter contribution drives crack nucleation, ini-
tiation and propagation. Then, bridging the microscopic assumptions to
the macro-scale, a continuum model was obtained where fracture was ap-
proximated by a phase field. A phase-field model was also proposed in [33]
based on the micro-mechanics of polydisperse elastomer networks, that is,
distributions of polymeric chains with different lengths.

Although elastomers are capable of sustaining large deformations, how-



ever their failure is brittle, and this may greatly limit their application in
the fields of automotive, structural, biomedical engineering, etc.. Nowadays,
great efforts are devoted to the development of new elastomeric composite
with enhanced mechanical properties, such as strength, ductility, and dura-
bility. Increased ductility is often combined with processes of progressive
material damaging that gradually leads to fracture, as in quasi-brittle or
cohesive fracture. These failure modes were observed in elastomeric com-
posites such as highly filled elastomers, in which the mechanism of cohesive
failure is activated at the filler-matrix interface [34], or double-network elas-
tomers, which have been recently synthesized in [35]. This rubber material,
compared to traditional elastomers, has a double network internal structure
constituted by a stretchy elastomeric matrix reinforced with a continuous
filler network, that confers to the composite unique mechanical properties.
Conventional single network elastomers are able to bear large deformations
thanks to their intertwined spaghetti-like internal structure. However an
important limitation is that a local defect, such as a chain rupture or a void,
quickly propagates and may lead to the catastrophic failure of the whole
specimen [36]. On the other hand, the presence of the additional filler net-
work leads to a strong localized softening, due to rupture of covalent bonds
and coalescence of defects, followed by a stable necking process. The mi-
cro defects propagate only when the energy release rate of defect cavitation
exceeds the intrinsic fracture toughness of the matrix. The resulting macro-
scopic behaviour shows a ductile-like curve at large strain obtained when
the load can be efficiently transferred from the filler network to the matrix
network [37].

Therefore we aim at introducing a phase-field model capable of describ-
ing a variety of different failure processes at large strains, from brittle to
pseudo-ductile. In doing so we use the framework introduced in [38], where
a phase-field theory incorporating constitutive functions for both brittle and
quasi-brittle fracture was formulated within the context of infinitesimal elas-
ticity. The advantages of this theory is that the softening laws frequently
adopted for quasi-brittle solids, e.g., linear, exponential and hyperbolic ones,
etc., are easily reproduced. In addition the constitutive functions of the
fracture energy converges to a cohesive zone model as the internal length
scale vanishes [38]. We therefore formulate our model in a general frame-
work, such that those popular phase-field models for brittle fracture, e.g.,
[20], [21], etc., can be recovered as the particular examples. The optimal
constitutive parameters of the model are calibrated by studying the one-
dimensional problem of a bar under traction, that allows us to solve the
problem in semi-analytical form.



The paper is organised as follows. Section 2 is devoted to the formulation
of the three-dimensional model in a consistent thermodynamic framework.
It addresses the theoretical aspect of the proposed phase-field theory. Sec-
tion 3 is devoted to the calibration of the model parameter by solving the
one-dimensional problem of a bar under traction. The numerical solutions
of some prototypical examples are presented and discussed in Section 4, in-
cluding a through comparison of the model prediction with the experimental
data in [35]. Concluding remarks are drawn in Section 5.

2 Model formulation

In this Section we aim at formulating the nonlinear elastic model with dam-
age in a general three-dimensional settings, before carrying out in Sec. [3| a
sensitivity analysis by considering the response of a bar under traction. The
approach adopted to equilibrium is based on a unilateral minimality prin-
ciple under the condition of irreversibility of the damage field. The same
approach has been widely adopted in plasticity [39, 24) 40], plasticity with
damage [41], 42] and cohesive damage [38] [43].

Throughout the paper we will assume that all fields are sufficiently
smooth so that all the calculations can be performed. For a precise defi-
nition of the functional spaces needed the reader is referred to [44].

A note on the notation. In the following small bold letters will be
used for points or vectors, whereas capital bold letters for tensors. The
inner product between two vectors or two tensors of the same order will be
indicated by a dot, such asa-b =, a;b; or A-B = E” A;jB;j. An overdot
will indicate the material time derivative, whereas a prime will indicate the
derivative with respect to the independent variable, e.g., the position = or
the variable d.

2.1 State variables

We identify a body with a region €y of the three-dimensional Fuclidean
space &, that occupies at some time instant ¢ = 0, which we denote as the
reference configuration. The external boundary 0§ is divided into a subset
0Q¥ in which displacement is applied, and a complementary boundary 9
in which surface forces are present. The deformation of the body is the
bijective orientation-preserving map p : Qg x [0,¢] — £ which assigns at each
point x € y a point y = p(x,t) in the deformed configuration; accordingly
we set 2 = p(Qo,t) as the deformed configuration of the body.



At each material point x, the state of the continuum is identified by
the displacement field u(x,¢) and by an additional scalar field d(x,t), that
represents the damage variable, such that d = 0 for the virgin material and
d = 1 for the fully damaged one; in this formulation, d is a Lagrangean
parameter defined on the reference configuration €)g. We further denote by
% the space of kinematically admissible displacement field

u(x,t) € % :={u:u(x,t) =u" Vx € 0Qy},
and with Z the set of the admissible damage field
d(x,t) € 2 :={d:d(x,t) € [0,1]}.

We denote the deformation gradient by F = I + Vu, where V.- = g—)'( is the
gradient operator defined with respect to the reference coordinates x and I
is the unit tensor.

The variations @ and d will be used in the application of the minimality
principle to derive the governing equations of the problem. These have
to satisfy homogeneous boundary conditions, and as such belongs to the
following sets

a(x,t) € % = {u(x,t) = 0 Vx € I},
d(x,t) € 7 :={d: d(x,t) >0 for almost all x € Qy},

the latter set being the convex cone of positive damage rate. As it will be
apparent in the following sections, in the present formulation the damage
variable can only increase (no—healing).

For the sake of conciseness the explicit dependence on the position x and
time ¢ will be omitted from all variables, except when needed.

2.2 Energy functional

The behaviour of the continuum is characterized at each material point x
and at each time instant ¢ by two state variables {u,d} in % x 2, and by
a state function ¢, which gives the energy density at each material point.
As such, ¢ depends on the local strain F(x), on the value of the damage
variable d(x) and on the local value of damage gradient Vd(x), with the
following functional form

Elastic energy Fracture energy

G. G.
©(Vu,d, Vd) = (I + Vu,d) + En(d) +b7]Vd|2, (2)

Dissipated energy  Regularization




composed by three terms:
e (I + Vu,d) is the elastic energy density in the damage state d;

e G.n(d)/(cb) is the density of the energy dissipated during a homoge-
neous damage process with Vd = 0;

e bG.|Vd|?/cis the nonlocal term which limits the possibility of damage
localization without any energetic cost (see for instance [21]); such a
term introduces an intrinsic length scale which controls the size of the
damage localization zone.

The second and third terms in Eq. constitute the non-local fracture
energy density, in which the constitutive parameter G, is the critical elastic
energy release rate, b represents an internal length that regularizes the sharp
crack and ¢ := 4f01 v/1(d) dd is a scaling parameter [45].

We further assume that the elastic strain energy density ¢ can be mul-
tiplicative decomposed as

(I + Vu,d) = w(d) Yo(I+ Vu), (3)

in which ¢o(I + Vu) is the elastic energy density of the neat material, and
w(d) is a monotonically decreasing energetic degradation function describing
the degradation of the stored energy with evolving damage. The bulk strain
energy density v is a continuous isotropic function such that ¢y(-) is frame
indifferent. Such a requirement implies that, for any given deformation F,
one has ¥(QTFQ) = vo(F) (isotropic response) and ¢(QTF) = vo(F)
(frame indifference) for every rotation matrix Q.

The energetic degradation function w(d) plays an important role in de-
termining the properties of the material, and, consistently with the experi-
mental observation, we assume

W(d)<0 and w(0)=1, w(l)=0, «'(1)=0,

where the latter constraint ensures that the energetic fracture converges
to a finite value, if the damage converges to the fully broken state (see
[22])[| Motivated by the analysis presented in [38], the following form for
the degradation function w is considered

(1—a)?
(1—d)?+a;d(1+ agd+ agazd?)’

w(d) := (4)

In the numerical examples carried out in Sec. [4] a small positive value of the degrada-
tion function is assumed when the material is fully broken. This is a standard technique
to guarantee that the numerical problem remains well-posed for broken specimen.



where a1, as and ag are constitutive parameters, whose calibration allows
the description of different fracture modes from brittle to pseudo-ductile. In
Sec. [3| the constitutive coefficients of the fracture energy will be calibrated
through uniaxial tests. As shown later, the chosen form of w heavily affect
the softening behaviour once crack is initiated.

The dissipated energy density plays a significant role in the evolution
of the damage as well. We assume 7(d) to have the following quadratic
expression

n(d) =2d — &, (5)

in a way that 7(0) = 0 and (1) = 1. With this assumption, the scaling
parameter ¢ becomes ¢ = 4 fol V2d — d? dd = 7. We point out that different
choices can be made for the function 7(d); the interested reader is referred
to [38] for a full account of the different possibilities.

With the definition of the state variable ¢, we are in the position
of defining the total energy stored in the material during the deformation
process. For each admissible pair (u,d) € % x 2, the total energy of the
continuum is

I(u,d):/Q go(Vu,d,Vd)—/Q bo-u—/(mt to - u, (6)
0 0 0

bg and ty being the forces per unit of reference volume and area respectively,
the latter applied on the part of the boundary 9. These latter terms
represent (minus) the work expended by the external forces.

Ogden-like strain energy Considering the incompressibility of rubbery
polymers, the elastic strain energy density that appears in can be de-
composed into isochoric and volumetric parts,

Yo(F) = ¢5°(F) + U(J),

where F = J~Y/3F and J = det(F). In this contribution, however, we only
consider plane stress cases meaning that the unknown pressure field associ-
ated to the incompressibility constraint J = 1 can always be determined via
substitution in the out-of-plane deformation [46].

In the spirit of Ogden’s phenomenological model, we formulate the strain
energy density in terms of principal stretches A1, Ao and A3 of F. In doing
so, we set J = 1, and A3 = (A A2)~! and we follow [2] on assuming the



following formE| of iy
> Hn,
o = p(A1, Ag) = Z— AT + 25" + (M) ™ = 3), (7)

where we have called ¢ the elastic energy density expressed in terms of the
two independent principal stretches A1 and Ao, from which we have omitted
the dependence on F. It is noted that the formulation (7)) satisfies both
frame invariance and isotropy.

In Eq. N is a positive constant, usually N = 3 for most experiments
on rubber, and u, and ., are material constants such that u,a, > 0 and
Ziv:l Uy = 24, 1 being the shear modulus of the material.

As a reference for the calculations in the next sections, we compute
the Piola stress tensor, that is the dual quantity to Vu in the energetic
formulation . With the definition of the Ogden’s energy , and the
hypothesis that A3 = (A1 A2) !, we obtain

31/1

S= Z ¢,in; @ Ny, Han = HNZH =1, (8)
and
N
8¢ an—1 —Qun—
G := W ;Mn()\l — (A1 h2) "X2)

9 &
b= By = ;W(Agn—l — (AAg) ")

are the derivatives of the strain energy density ¢(A1, A2) with respect to
the principal stretches obtained by using the relationships reported in [3].
The directions {ni,ny, es} are the eigenvectors of the left stretch tensor
V (V2 = FF1), and {N{, N»,e3} are the ones of the right stretch tensor
U (U2 = FTF), whereas e3 is assumed to be the direction of plane stress
perpendicular either to {n;,ns} and to {IN1,Na}.

2Such an assumption is equivalent on assuming that the elastomer deforms in a perfectly
incompressible way even after damage has occurred. This simplification could indeed be
removed by coupling compressibility and damage growth, which however is not addressed
in the present work.



2.3 Governing equations

The derivation of the governing equations of the problem, including the
damage evolution, is carried out following the classical variational approach
to fracture mechanics (see for instance [21] or [23]) which consists of:

1. the damage irreversibility condition d(x,t) > 0 and d(x,0) = 0,

2. a stability criterion, which is indeed a necessary condition for the uni-
lateral minimality condition on the functional @,

3. the energy balance principle, that states that the total energy at time
t is equal to the work of the external forces up to time t.

A posteriori it is shown that, under the imposed constitutive assumptions,
the dissipation inequality, that is the second principle of thermodynamics,
is also satisfied.

Stability condition. Starting from an undamaged state at ¢ = 0, we say
that the process evolves through stable equilibrium configurations if and
only if at each time instant the system attains a local minimum of the total
energy @ This leads us on introducing the following stability condition:

For each t > 0 ,{u,d} € Z x Z is stable iff

T - (9
V{a,d} €% x 2,3h>0: Yhe [0,h], Z(u,d)<Z(u+hi,d+ hd), ®)

with the initial condition d(x,0) = 0.

The variational inequality @ is satisfied if the Gateaux derivative of the
functional Z at {u,d} is positive for each set of test functions, in particular
d being in the convex cone defined by 2. Formally we write

DI(u,d)[a,d >0, V{a,de¥ x 9, (10)

with
Dz(u,d)[ﬁ,d]:/ (s-va-zd+q-vci>—/ bo-ﬁ+/ to-u, (11)
Qo Qo Qf

where the dual quantities S, ¥ and q are obtained from the energy density

10



as
(WJ

S = Z o,in; @ N; (Piola stress tensor) (12)
Oy .
Y= 5 W — — (Energy release rate density) (13)
2
8av¢d = (jr de (Damage flux vector) (14)

the Piola stress S being given by the constitutive equation in terms of
the principal stretches Ay, As.

Upon substitution of (12 . . into ( and integration by parts,
the variational inequality ((10)) gives

/(DivS+b0)-ﬁ+/ (to—Sn) -1 =0, (15)
Qo o0

_/ (Divq+2)d+/ (q-n)d >0, (16)
Qo Qo

where latter is evaluated as inequality since d belongs to the convex cone 9.
By the classical localization argument, we obtain from the standard
macroscopic balance equation with boundary conditions

DivS +by =0, on ,

17
Sn =t, on 9, (17
and from the damage threshold condition
Divg + X <0, Qo,
ivq < on g (18)

q-n>0, on 9,

with the corresponding flux condition on the boundary.
On using the definition of the energy release rate and of the damage
flux vector , we can rewrite the damage threshold condition 1 as
G 1
f(Vu,d,Ad) == —=(2bAd — gn’(d)) — W' (d)o(I+ Vu) <0, (19)
0
where we have defined the so-called damage yield function f. In the interior
region where damage has yet to occur one has w’(0)yo(I+ Vu) > —%77’(0)
and since w'(d) < 0 the elastic energy density v is bounded.
We should remark once more that the damage threshold condition is

11



indeed a necessary condition for the state {u,d} to be stable. Indeed if
is satisfied everywhere in the domain as a strict inequality, then the
derivative is strictly positive, and {u,d} is a stable state; on the other
hand, if there are points in which the damage yield function is zero, then the
stability of the state is given by the second derivative of the functional Z.
This latter case will be discussed in Sec. [3| for the one-dimensional problem
of a bar under traction.

Energy balance. On assuming that the evolution is smooth in time, the
energy balance principle requires that the rate of the internal energy equals
the working of external forces at each time instant, that is

»(Vu,d,Vd) = /

b0u+/ to - 1, (20)
Qo Q

t
0

dt Jo,

which, upon using the macroscopic balance (17)), gives

/QO(DivquE)d+/ (q-mn)d=0.

o190

Since each integrand is non negative by the balance equation , and
the damage irreversibility condition requires that d > 0, the above energy
balance equation is satisfied if its integrands vanish. These requests give the
Kuhn-Tucker conditions for the threshold function :

f(Vu,d,Ad) =0, ifd>0,
. (21)
f(Vu,d,Ad) <0, ifd=0,

supplemented by Neumann-type boundary condition Vd - n = 0 on 0€.

Remark 1 (Evolution problem). The evolution problem arising from
stability condition and energy balance is usually solved numerically in an
incremental form. The problem is discretized in time, and at each time step
the rates {u, d} are computed through a staggered minimization scheme
obtained by alternating the minimization between u and d, keeping the other
variable constant. This numerical procedure is indeed a standard approach
to solve variational problems like the present one (see for instance [47]).

Remark 2 (Energy dissipation). In the framework introduced above,
the free energy is the sum of the elastic energy and of the non—local fracture

12



energy, that is
1
F= / (wo + =Gcb|Vd|?).
Qo Q

The second principle of thermodynamics requires that, for each admissible
state {u, d}, the internal working be equal to or larger than the rate of the
free energy, i.e.,
d
d= S-Va—- —F >0. (22)
Q% dt
On using the definition of the Piola stress tensor , the Neumann boundary
condition Vd - n = 0, and on integrating by parts, Eq. simplifies to

™

6= / (chbAd —w'p) d >0,
Qo

which is zero when d = 0, whereas when damage evolves one obtains

that is positive since n/ = 2(1 — d) > 0 from the definition in Eq. (f)).

Remark 3 (Internal length). The internal length b in Eq. can be
related to the damage bandwidth ¢; at complete fracture, that is the sup-
port of the damage function when max {d} = 1, by solving the equilibrium
problem of a fractured bar with a passing-through transversal crack. In
this case, strains vanish because the bar is broken into two parts, and the
strain energy density ¢ nullifies. Thus the balance equation 1 reduces
to 2bAd — %n/(d) = 0. On integrating it over a line orthogonal to the crack
surface (see [21I] or [38] for details on the calculation), it gives

i

ey —h
0 \/n(d)

that, by assuming the quadratic expression of 7(d) in , reduces to

13



2.4 Recap of all modelling equations

By following the classical approach to variational fracture mechanics enun-
ciated in the three principles([I], 2l and[3] of Sec.[2.3| we have arrived at the
following equations governing the macroscopic balance

Macroscopic balance: DivS+bg =0 on

(23)
Sn =ty on 9

together with Kuhn-Tucker conditions for the damage evolution problem

Damage irreversibility:  d(x,t) > 0

Damage threshold: f(Vu,d,Ad) <0 (24)

Energy balance: f(Vu,d,Ad)d =0

with initial condition d(x,0) = 0. The Piola stress tensor S and the damage
threshold function f are

2
S=w) ¢;n@N;,

i=1

2 1
f=Gel gty Ad= ) =/,

with n; and N; eigenvectors of the left and right Cauchy—Green strain ten-

sors, and
N

IU’TL (67 (67 —Q
=N BB LA 4 (M Ag) O — 3
¢ ;;%}1 +A5" + (A1 Ag) )5
B (1—d)? (25)
YT —d? tard(l + azd + asaz )’
n=2d—d*.

The constitutive parameters included into the formulation are the elastic
moduli u, and exponents ¢, of the strain energy density ¢, the fracture
energy release rate G, the internal length /¢, and the polynomial coefficients
a1, as and ag of the degradation function w. In the next Sect. strategies
to calibrate the constitutive parameters are discussed.

14



3 1D tension test

In order to fully exploit the capabilities of the proposed model, we now
study the problem of a bar under tension. Such a simplified example will
allows us to solve the governing equations in semi-analytical form, and assess
thoroughly the role of the different constitutive coefficients that appears in
the model.

3.1 Problem definition

We consider a bar of length ¢ and cross-section area Ag. The reference
configuration is described through a triad of orthonormal vector {e;, ez, es},
with e; being the main axis of the bar and es the thickness direction, i.e.,

Qp = {X X =x1€1 +T2€y +x3€3, L1 € (0,5), (xz,wg) € .A()}
To solve the equilibrium problem, we make the following ansdtze on the
deformation gradient

F(:L’l) = )\(azl) e ®¥e; + (62 Xex+e3® 63), (26)

1
VA(z1)

such that the principal stretches are Ay = A(z1), Ao = A3 = (A(z1))~ /3,
J =1, and all fields depend only on the longitudinal coordinate x1, which,
from now on, we call x without the risk of confusion.

The displacement of the bar axis is u(z), and the longitudinal stretch
A(z) can be computed from the latter via

Az) =1+ u'(z), (27)
with the boundary conditions
u(0) =0, wu(f)=el,

with € > 0 a control parameter, that represents the dimensionless displace-
ment applied at the right end side of the bar. In we have indicated with
a prime / the derivative with respect to the variable x.

We assume the damage field to be constant within the bar cross-section,
so that it depends only on the abscissa x, i.e., d = d(x) and satisfies homo-
geneous boundary conditions at both ends, i.e.,



meaning that no crack can appear at the extremities. Indeed, cracks near
the clamping are avoided in the experiments by using dog-bone shaped spec-
imen.

In this 1D-setting, the energy density of the bar takes the following form

PN d d') = w(d)(N) + Ge(n(d) + =5 d'?),

where we have indicated by qg()\) = ¢(\, A"1/2) the reduced strain energy
density of the bulk solid defined in Eq. as a function of the only variable
A. For the sake or readability the hat will be dropped in the following.

The stress field corresponding to the deformation gradient can be
computed from on substituting A\; = A and Ay = A™'/2 and on noting
that the right- and left- eigenvectors coincide, i.e., n1 = N1 = e, ng = Ny =
es. The only non zero component of the Piola stress is the one directed along
the bar main axis, i.e., S = Sej - e1, with

S =wd, (28)
that, by applying the definition of the Ogden’s strain energy density, gives

N
Hn _M
S = — )\O‘” — 2 ).
DI )
n=1
The macroscopic balance equation can be rewritten as
§'(x) =0, (29)

meaning that the stress is constant along the bar. The reduced damage
threshold condition 2 with the deformation yields the following
form of the one-dimensional threshold function

2€f

FAd,d") = Ge(—5 d" - *n’(d)) —w'(d)p(A) <0. (30)

Uy

3.2 Incremental Evolution

Following the analysis in [48], we now solve the incremental evolution prob-
lem for both displacement and damage variables starting from a known
solution {u, d} achieved at a certain time instant ¢. In doing so, we assume
a uniform discretization of the time axis, we call 7 the time step, and we
expand both displacement and damage fields at the first order in 7:

w(z, t+7) = ulz, t) + ralz,t), dzt+71)=dxt)+7dzt), (31)
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such that

w(0,t) =0, a(l,t)=¢l, d(0,t)=0, d((t)=0. (32)

with € the rate of the applied displacement at the right end of the bar.

At each time instant the solution of the incremental problem requires the
evaluation of the unknown rates {u,d} obtained by imposing the stability
condition. and the energy balance condition for the solution {u +
T, d + 7d}.

The total energy functional @, with null volume forces, is expanded at
the second order as

T(utri, d+rd) ~ Z(u,d)+1 I(u, d, 1, d)+572 I(u,d,0,d) = Z(u,d)+7 T (,d),

(33)
in which we have defined the following functional of the displacement and
damage rates

l
. e 2 .
J(4,d) = .AO/ [we'd + (W'e+ %n’)d + —2Gcffd'd'] dz
0 f Q

1 ¢ G . .9 )
+ 574 / [we" i + ("o + E—Cn”)dQ + 2/ ¢ d + =5 Gelpd?] da.
0 f ™
(34)
Stability and energy balance, expressed by relations and in the
three-dimensional formulation of Sec. [2] are rewritten in the following form

DJ (4, d)[w, d] > 0, for any {, cz} such that & = d =0 at z = 0, [, and d >0,
d . : d o\
—T(u+ri,d+7d) = — (T J (@, d)) —0.

By performing calculations analogous to those followed in Sect. [2.3]to deduce
the governing equations and from the stability condition , and
the evolution relations from the energy balance , we obtain the
following macroscopic evolution equation

S+ 78 = %( we') + Td%(wqﬁ”u’ +u'¢ld) =0, (35)

together with the set of Kuhn-Tucker conditions that govern the evolution
of the damage field

d>0, f+71f<0, (f+7f)d=0, (36)
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with f computed from as

. . G . 2 .
f — _W/(Z)/)\ _ (7077// +w//¢>d+ 72Gc‘€fd” .

Ly s
These conditions state that, at each point, the damage can increase only if
the yield function f + 7f is equal to zero.

3.3 Damage onset

At the beginning of the loading process the damage is zero, and the bar
is stretched elastically. The balance equation shows that the stress
and the corresponding deformation are homogeneous along the bar. In this
initial phase the damage yield condition is not satisfied, i.e., f < 0.

The elastic stage terminates when damage appears, meaning that f = 0
somewhere along the bar. The stretch A\, corresponding to the damage onset
is evaluated from as

¢(Ao) = T . (37)

At this time instant, say t,, one can solve the incremental evolution
problem of Sec. by assuming the following form of the series expansion

(31) .
u(z,to +7) = e(to)r + 7o (), d(z,to + 7) = Tdo(x),

since the stretch at the onset is homogeneous, A\, = 1+¢(t,), and the damage
is null, d(z, t,) = 0; in addition, w, and d, satisfy the boundary conditions
(32). At the step to + 7, the stretch becomes A(z,to +7) = 14+, + 7 Ao(2),
such that A\, (x) = @/ (x), which is a function of z due to the varying damage
profile. A subscript ”0” is used to indicate, here and henceforth, that the
corresponding variable is evaluated at time ¢,.

The incremental stress in the bar is approximated at the first order in 7
from the definition of the one-dimensional Piola stress (28]

S = W(Tdo) ¢/(>\O + 7—)\.0) =~ SO +7 507

with
So=¢., and S, =wod) do+ P! No- (38)
Since the zero order stress S, is constant along the bar, the macroscopic

balance yields (S,)’ = 0, meaning that also S, is homogeneous. The
damage threshold condition f = 0 is verified both at ¢t = ¢, and t = t, + 7,
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thus the incremental threshold is zero at both zero-th and first orders;
the latter gives

ety dw) = (o To)iole) = S dofe) (39

which is, indeed, a second order differential equation for the damage rates
{M\o,do}. The rhs of can be transformed by using the definition of S, in
; after some manipulations we arrive at differential equation of the only
variable do:

zG 14 d"(x) —jd (x) = O%S with  j = w/¢o — wo Do cn”
a2 ¢ I o o ¢// 0y o¥o (ng gf o-
(40)

where the rhs is now independent of x. Equation is a second order
differential equation in the variable x of the unknown rate d, to be solved
with the boundary conditions dy(0) = 0 and d,(£) = 0

An equation similar to was already studied in [48] for a small strain
model (see equation (31) in [48]). The solution strategy exploited there can
be equally applied to the large strain analysis carried out in this paper.
In particular, the following steps allows us to calculate the unknown rates
{1o, do}: (i) first d, is determined in terms of S, by solving ; thereafter
(ii) S, is determined by evaluating the mean value, i.e., < - >= %foe -dz, of
both the sides of Eq. (3§ 2, that gives

So = wh ¢y <do> +¢1 Eo, (41)

where we made use of the fact that SO is constant along the bar and <
Xo >= 3 by the boundary condition ﬁnally, (iii) w is determined by
integration of .2 expressed in terms of AO =,

To distinguish the different evolution regimes, we introduce the internal

lengths ¢; and /s defined by
2G,. ff 0. — wfgzﬁf ‘.
. 9 s . (2]
14 @617l
which allow us to rewrite Eq. in the following form

. 2m\2 . 2m\2 [ty S,
dw—sin‘(—)dx:<—>\/—s >,
o ( ) g (.]) ez 0( ) gz gl \/m
Fracture initiation is full-size, when the support of d, is the entire bar,
or localized in a subregion, if £; < {. The evolution of the damage is stress-

hardening when Sy > 0 or stress-softening when S, < 0. In particular, the
evolution problem was solved in the following sub-cases:

;=2
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a. For j > 0, the solution obtained by applying the procedure (i), (ii)
and (iii) is

| o, ' -
do(x) - _j(1+ <g> fs/gi)go g($)7 and SO - mgm
with
cosh (7(¢ — 2x)/¢;) b i
o) oo (n /0 , an <g> 7 tan (& )

Damage evolution is full-size in a regime of stress-hardening.

b. For j < 0 and ¢; > ¢, the solution is

. w’¢/ . wo!
o) = — - d 5= — %
o@) =~y gy 9@, and S =T rc
42)
with
cos (m(¢ — 2x)/4;) l; ml
=1- d =1——tan(— ).
9(z) cos(ml/t;) and  <g-> oe (Ei )

Solution d, is full-size and two evolution regimes are obtained:

b.1. if £; > 2¢, the regime is stress-hardening, since <g> < 0;

b.2. if £ < ¢; < 24, the regime is stress-softening, being <g> > 0. In
this case, the condition

<g> >4 )l (43)
must be satisfied to have d, > 0 everywhere.
¢. For j < 0 and ¢; < ¢, the solution has the expression , with

1 —cos(2mx/¢;), if 0 < x < 45,
g(fv)—{ 2re/t)

0.if x> 0, and <g>=/;/(.

and so is localized in a portion of length ¢; (localized solution), and the
evolution regime is stress-softening. Even in this case, the inequality

t< (s (44)

has to be fulfilled to have d, > 0.
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It can be proved that inequalities and (44) are necessary condi-
tions for stability of the evolution problem (see [48]); indeed they guarantee
non-negativeness of the second variation of the functional . If stability
conditions are not satisfied, the bar fails catastrophically at the time instant
to, experiencing brittle fracture.

In case c., the bar must be longer than ¢; to have damage localization in
a sub-region of length ¢;, and smaller than ¢, to avoid brittle failure. These
requirements express the size sensitivity of the model: as the size of the bar
increases, the response moves from ductile to brittle. If we suppose damage
localization at t,, the slope ko of the curve S = S(e) is obtained from the
solution in Eq. ([{2)),, with <g>=¢;/¢,

ds S, Wo !
= — = — = —— 4
de |, éo  1—0/0 (45)

ko
that has a negative value and decreases as £ increases; in particular k, — —oo
for ¢ — /.
On integrating over (0, /) and rearranging the terms, we obtain the
displacement rate at the end-section
Uo(l) = by = Vo + W  With v, =/

and W, =

S w/ / .
—, —éﬁ <dy>,
(e}

¢ oA
which is the sum of two contributions: v, is the displacement rate due to
elastic stretching, and w0, is the displacement rate induced by the fracture
opening. In case of localized do (case c., with ¢; < £ < /), the fracture
opening rate is

4
Tl

Let w = w(t) be the displacement accounting for fracture opening in a frac-
ture evolution process. Using 2 and , we can evaluate the derivative
of S with respect to w at fracture initiation as

(46)

Wo

Q 17
po_ds| S

(47)

o — 4 - N -
dw o Wo £

The coeflicient IA-co represents the initial slope of the so-called cohesive curve
S = S(w), which describes the specific failure mode of the material. Since
the cohesive law S = S(w) is an intrinsic property of the material, ko does
not depend on the length ¢, differently from .
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3.4 Cohesive fracture

In this section we define a strategy to estimate the cohesive curve S = S(w),
that characterizes the fracture opening process. The function S(w) is usually
assigned a-priori in standard formulations of cohesive fracture mechanics
[49, 50]), whereas in the proposed variational approach is obtained from the
peculiar form of the fracture energy.

We suppose that, at a certain time instant of the evolution process, dam-
age is localized in a sub-region (0,2z*), with z* < ¢/2 the half-bandwidth
length, and that it has attained the maximum value d* at x = z*. The
proposed procedure allows us to determine the length x*, the stress S, the
functions d and A, the fracture opening w, as well as the corresponding
strain ¢ in terms of d* by integrating the balance equations and .

We suppose that, at each material point, the stretch A is the superposi-
tion of an elastic A\ and fracture A¢ stretches

A= Af Ae,

where A, would be the homogeneous stretch obtained from S if d were zero;
as such, it can be evaluated from the constitutive equation of the undamaged
material by

®'(Ne) = S.
The fracture opening w, that is the displacement at z = ¢ produced by the
damage occurrence is

Ael ¢
w = / (At(ze) — 1)dze = / A=Xe)dz = (1 + )l — Al (48)
0 0

Within the damage region (0, 2z*), the damage threshold condition
is evaluated as an equality and

1 20
w'e+ G <77' - gd”) =0
ly T
On multiplying all terms by d’ and on integrating over (0, z), with = < z*,
previous equation gives

1 2€f T dw
G, | —n—=La? / dz = 0. 49
(gf” 2 )+ oz (49)

where the latter term is rewritten by integration by parts as

| edi—wo— o) - [ wor T s =wo - 600) - (A= A8,
0 0

dz z
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since S = w¢’ is constant along the bar. Equation becomes
1 205 o
Gel 7 n——5d” | +wd—d(Ae) = (A= Ae)S =0. (50)
Uy m
At z = x*, where the maximum damage is attained, d’(z*) = 0 and previous
equation further simplifies into
Ge
0"
where quantities evaluated at x = x* are labelled by an asterisk. In , the
stretches A* and )\, are worked out by inversion of the constitutive equations

w(d)F(N) = S* =0, ¢'(\)—S*=0. (52)

For any assigned value of d* € [0, 1], the triplet {\*, Ao, S*} solves the set of
equations and . Once S* is determined, the profiles of d and A at
points x € [0, 2*] can be evaluated from , here rewritten in the following
form

(d") +w(d)d(A") = d(Ae) = (A" = Ae)S™ =0, (51)

d = élfh(d’ d*), with h(d,d"):= W\/éf [w(d)d(A) — d(Ae) — f¥*( XN = Xe)] + 1,
(53)
where A is the solution of the equation
w(d)g'(\) — S* = 0. (54)

Upon inversion of Eq. , one obtains the expression of x in terms of the
damage profile and of the maximum damage d*,

o [P s
x(d,d)_/o ] ad, (55)

and the stretch A at x is the solution of . The half-bandwidth length is
obtained from the above relation by assigning d = d*

d* Y] ~
ot = / 4 ad,
o h(d,d*)

and the fracture opening w is determined from , once A, \e and z* are
known. Upon inversion of the equation, also the assigned stretch can be
computed

w
=X+ —— 1.
€ /\+£

To conclude, the above procedure can be implemented numerically through
the following steps:
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i. Assign the value d* of the maximum damage.
1. Solve equations and to determine S*, \* and Ae.

i11. Discretize the damage range [0, d*], and, for any d; of the discretized
set, determine the position z; from . The discrete profile of d =
d(x) is given by the pairs (z;,d;).

w. Determine \; at point z; from (54)). The discrete profile of A = A(z) is
drawn by points (z;, A;). At points x > 2z* the stretch is equal to Ae.

v. Determine w from .

With previous algorithm, the cohesive curve S = S(w) is evaluated
at discrete points, by iterating the previous scheme for different values of
d* € [0,1]. The damage evolution determined through this procedure is
based on the balance equations and . It is pointed out that the
numerical simulations of Sec. [4] are indeed obtained by solving the full evo-
lution problem of Sec. by finite elements. Although the approaches are
different, the estimate of the cohesive curve obtained through steps (i) — (v)
gave accurate enough results to catch the qualitative behaviour of the model.
As such, the proposed numerical scheme represents an useful tool to explore
the variety of damage mechanisms that can be captured. In the next section,
these results are used to assess the effects of the different constitutive param-
eters on the damage evolution modes. Criteria for parameters calibration
will be also discussed.

3.5 Physical interpretation of the cohesive parameters

The constitutive coefficients a1, as and a3 that appear in the energy degra-
dation function w, as defined in , are put in relation to specific properties
of cohesive fracture evolution, to give them a clear physical meanings and to
allow their robust evaluation from the experimental data. In the following
calculations, the elastic coefficients u, and ., the fracture energy release
rate G, and the internal length ¢; are supposed to be known.

The coefficients a1, as in can be tailored from the model response at
the damage onset. At this time instant A\ = 1, A\e = A\, and the stress S, is
known. Since d, = 0, the functions w and 7 at t, are

n(0) =w(0) =0, 7'(0)=2, '(0)=—a;, 71”(0)=-2, &"(0)=2a1(a1—az—2).
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1. The coefficient a; is determined by the limit elastic stretch A, through
relation , which, once inverted, gives

G
QSOEf.

a)p = 2 (56)

2. The coefficient ag, that appears in w”(0), is made dependent on the
slope ko of the cohesive curve at the damage onset, i.e.,

; o5’ Wi L a?S2 26,
k - — o th = 2 — — 2 — o _
° 22252\ 2G 0,0 T Y a1(a1 = a2 =2)do o Ay

(57)
where j is negative, as the formula is evaluated for the localized dam-
age case (case c. in Sec. . From , as has the following expres-

sion
1 2a3 52 L\ aiS; , 2Ge
= Db [<_ e \/mk(’) 2 = 2)go = =g+ lf
(58)

3. The coeflicient az multiplies the third-order term in the polynomial
, thus it mainly influences states where damage is large. In [3§],
indeed, ag was related to the displacement jump w at complete fracture
of the specimen through the formula

1 {1 [ @S,)\>

= [2 (gc) ~{+a)
Since this relation was derived within the context of linear elasticity,
it cannot be straightforwardly extended to the finite strain case. Ac-
cordingly, it is just used to obtain an estimate of the parameter as.
For damage occurring at small strains, formula provides the ex-
act value to assign to as in order for the fracture jump to be w. On
the contrary, for damage onset at large strains it gives only an ap-

proximate value. Further indications are given by the drawing of the
cohesive curve, as discussed in the following.

(59)

To better highlight the role of the different cohesive parameters we now
consider two different forms of the Ogden elastic strain energy density with
different elastic parameters: one with N = 1 in the series 3 and pu; =
2.2 MPa, a1 = 2, that we call quadratic energy ¢,, the other with N = 2
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and {p1, 2} = {4.8,0.01} Mpa and {a1, a0} = {1.2,5.1}, say ¢,. As shown
in Fig. [1} such a choice of the elastic coefficients represents two plausible
elastic response of a rubbery material, the former has a linear Piola stress
at large stretches, whereas the latter shows the stress hardening at large
stretches typical of elastomers.

— b4
. b
ot S
< g
[a W)
=
D5 Se
0 1
1 2 Ao 3 4 5

Figure 1: Piola stress S versus (elastic) stretch A for the two strain energies
¢, and ¢ .

The cohesive curves S = S(w) corresponding to these elastic energies are
shown in Fig. for ly =5 mm and different values of the parameters G, ko
and a3. For a given G, the values of ko and W are assigned by supposing
that the cohesive law is linear with the fracture opening S = —%w + S,,
an expression which is the simplest triangular cohesive curve. Accordingly,
I%O = —% and W = QSGO ¢, The coefficients a1, as and ag are derived from ,
and . For low values of GG, the cohesive curves recover the linear
law when the energy density ¢, is used, whereas they deviate from linearity
as G, is increased. When the two terms energy density ¢, is considered,
linearity is lost, as shown by the dashed curves of Fig. (a). In this case, the
curves exhibit snap-back branches that are more pronounced for increasing
values of G.. The presence of a snap-back tail, indicated with a star in
the figure, depends on the specific shape of ¢,, that has a convex branch
where stiffness grows as stretches increase (see Fig. . This determines the
fracture properties of the material. Indeed the softening process of fracture
interrupts when the snap-back branch is encountered, and the catastrophic
fracture leads to the final rupture of the specimen. As a consequence the
recovery in the elastic stiffness for large stretches induces a brittle response
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in the final stage of the fracture evolution.

A way to reduce the snap-back tails in the cohesive curves is to increase
the initial slope ko. This is shown in Fig. (b) Starting from the solid-line
curve obtained by considering the strain energy density ¢,, and assigning
G. = 60 MPa mm, ko, = —0.2058 MPa/mm and a3 = —0.6851, i.e., the
dashed curve G, = 60 MPa mm of Fig. [2fa), the other curves are drawn by
magnifying the initial slope by a factor of 2.5 and 10 (dashed-lines).

The influence of as is also investigated. The dotted-line curves, are
obtained by just varying the coefficient az < 0, but keeping fixed G, = 60
MPa mm and the initial slope of 10]2:0. The coefficient ag influences the
final part of the cohesive curves. Large negative values of ag raise the curve
tail, thus reduce the snap-back up to completely eliminate it. It turns out
that the final catastrophic fracture is replaced by a recovery of stiffness that
allows the material to further bear stresses.

(b)

{2~5ifo» az}
{10k,, 1.7a3}

L ’<
N\,
1y /e </ (
R -4 10ko, 1.6a3}
}

N ”~ .
{10ko, 1.5a5 " =~ {10ko, az}

0 10 20 30 40
w [mm)] w [mm)]

Figure 2: Cohesive curves for different values of the parameters G, ko
and ag. (a) curves for different values of G, [MPa mm)] in case of energy
densities ¢, (solid-line) and ¢, (dashed-line); (b) starting from the solid-line
curve, whose parameters are G, = 60 MPa mm, I%O = —0.2058 MPa/mm,
a3 = —0.6851, other curves are drawn for different values of k, (dashed-line)
and asz (dotted-line) with the elastic energy ¢,,.
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4 Numerical Examples

The variational model — was implemented in the finite element open-
source framework FEniCS®)[51].

The displacement and damage fields were projected over a piecewise
affine finite element space (Lagrange elements) by using the same mesh
domain. As the energy functional Z defined in @ for the general formulation
and in for the simple tension incremental problem is separately convex
in each variable, an alternate minimization algorithm in the variables u
and d was implemented. At a given time step, the solution of the iterative
evolution of Sec. was achieved iterating on the following subproblems
until convergence:

1. The minimization of Z with respect to u at fixed d is an unconstrained
optimization problem solved as a nonlinear elastic problem with the
prescribed boundary conditions through the Newton-Raphson method;

2. The minimization of Z with respect to d at fixed u is a unilateral
constrained quadratic optimization problem, which was solved through
TAO (Tool-kit for Advanced Optimization).

Further details on the numerical implementation can be found in [47]. Sim-
ulations on both 1D or 2D geometries were carried out, although the results
shown in the paper refer to the latter.

Two numerical examples are discussed in the following. As a first bench-
mark problem, we consider a rectangular test specimen subjected to tensile
loadings. This example has twofold purpose: assessing the sensitivity of
the model with respect to the different constitutive parameters and demon-
strating the ability of the proposed modelling framework of capturing the
large-strain behaviour of double network elastomers. Afterwards, we use a
double edge notched specimen in tension to validate the model prediction
up to the specimen rupture.

The rectangular specimen used to carry out the sensitivity analysis is
shown in Fig. 3] together with the boundary conditions and the mesh. This
latter was made up of 12.000 Lagrange triangular elements. The height
of the specimen was kept fixed at 4 mm, whereas three different lengths
were considered ¢ = {6,13,20} mm as discussed in the following. In all
simulations two different sets of elastic parameters were used to assess the
effects of the particular form of the Ogden energy on the fracture properties
of the material, that correspond to the energies ¢, and ¢, in Fig. [1} the
other constitutive parameters are the ones in Tab. [I| except where stated.
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Figure 3: Geometry of the rectangular specimen with details of the mesh
made of about 12.000 Lagrange triangular elements. The height of the
specimen was kept fixed in all numerical tests, whereas different lengths
¢ ={6,13,20} mm were considered.

Table 1: Constitutive parameters used in the numerical examples.

Elastic
¢, p1=22MPa o1 =2
o5 {pi,p2} ={4.8,0.01} MPa {ai,a2} ={1.2,5.1}
Fracture
lf =5 mm, G.=60MPamm, M\, =24, I;O = —0.21 MPa/mm, @ = 24.15 mm

We point out that the coefficients a1, as and ag were obtained from G, l%o
and w by using the formulas , and .

The Piola stress S in terms of overall strain € as well as the damage
profiles along the mean axis of the bar are plotted in Figs. [4] and [f for the
two energy densities ¢, and ¢, and different values of the energy release
rate Ge.

By increasing values of G., the maximum strain attained at rupture
grows with a larger region in which a pseudo-ductile response is achieved.
With the energy ¢ ,, the response with G. = 20 MPa mm (green curve in
Fig.|4)) shows a sudden drop in the stress caused by an abrupt damage growth
at the end of the elastic stage, that almost immediately reaches values close
to 1 as shown by the green damage profiles in the figure. The resulting
overall behaviour is brittle. For larger values of G, the drop in the stress is
smoothed out with cohesive-like softening curves; in terms of damage this
behaviour is produced by the phase field variable progressively growing and
enlarging.
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Figure 4: Influence of the energy release rate G in the case of elastic energy
¢,. Piola stress S versus overall strain e for G, = {20,40,60} MPa mm.
The insets show the damage profiles d evaluated on the mean axis of the bar
at the different stretch levels indicated on each curve.

For the elastic coefficients in the energy ¢, brittle and cohesive re-
sponses are obtained for G, = 20 and 40 MPa mm, respectively. For G, = 60
MPa mm, the specimen exhibits a pseudo-ductile behaviour in which two
response stages are clearly observed: a softening branch with a low slope,
followed by a sudden drop in the stress. As the damage profiles show, in
the first stage of moderate softening, the damage grows slowly whilst ex-
panding trough the bar. At the end of this phase, the damage has covered
the entire domain and has reached its maximum value of 0.3. Thereafter
damage immediately increases producing the rupture of the specimen with
the resulting stress rapidly decreasing to zero.

Since the gradient term in the fracture energy make the model size
dependent, the effect of specimen length is analysed in Fig. [] for ¢ =
{6,13,20} mm. The results indicates that when ¢ is comparable with the
internal length ¢ = 5 mm the response is cohesive, whereas sufficiently
long bars displays a brittle or quasi-brittle failure for both the energies ¢,
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Figure 5: Influence of the energy release rate G. in the case of elastic energy
¢,. Piola stress S versus overall strain ¢ for G, = {20,40,60} MPa mm.
The insets show the damage profiles d evaluated on the mean axis of the bar
at the different stretch levels indicated on each curve.

(Fig. [6p) and ¢, (Fig.[6b).

In Fig. [6] the dependency of the material response on the slope of the
cohesive curve ke is investigated. This constitutive parameter is directly
related through Eq. to ao. As shown by the results, ko controls the
stress decrease at the damage onset, and it regulates the softening branch
with moderate slope, that is associated to a process of damage propagation
all over the domain and it may induce a snap-back of the softening curve,
for sufficiently large value, resulting in a discontinuous stress drop. The
simulations start with the value of ko in Tab. [1| (blue curve in the figure),
with a cohesive-like behaviour for both the energies ¢, (Fig. [7p) and ¢,
(Fig. [Tb).

Finally, the influence of coefficient as is analysed in Fig. We start
from the green curve in Fig. @(b), that corresponds to ko, = —2 MPa/mm
and we increase the value of ag by a factor of 2 and 4, respectively, such
that ag = {—0.68,—1.36,—2.72}. As pointed out in Sec. increasing
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values of a3 lead to a recovery of the material stiffness, with a consequent
transition from a softening (green curve) to a hardening response (orange
and blue curves). In all cases, it is seen a significant stress drop at the
end of the elastic phase, that corresponds to the sudden occurrence of a
localized damage in the central part of the specimen, with the phase field
variable reaching 0.2. Thereafter different damage evolution regimes are
seen: for the blue curve (a3 = —0.68) the damage increases sharply in the
central part of the specimen until it reaches the value of 1 meaning that
the specimen is completely broken; on the contrary, the blue curve shows
a rather limited increase in the damage intensity, that stays below 0.4, but
the support of the phase field variable enlarges, up to the point where it
occupies the entire bar. This type of evolution resembles a sort of ”plastic-
wave” that propagates inside the bar (damage-wave in this case) and has
indeed been observed in double-network elastomers.

As a general remark for the model behaviour, in all simulations it was
observed that the rate of damage growth is proportional to the slope of the
softening branch. Furthermore, a broadening of the damage localization
zone is observed when the softening branch is convex, whereas a concave
softening branch produces damage localization is narrow regions.

b (a) — (=6 mm t (b) — (=6 mm

sk 4 sk
r / ¢ =13 mm r (=13 mm
[ / ¢ =20 mm [ ¢ =20 mm

4 / B - / B
3 3 8

S [MPal
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e [%]

Figure 6: Size dependency of the model. Piola stress vs. strain curves for
different bar lengths ¢ = {6,13,20} mm and elastic energies ¢, (a) and ¢,

(b).

Having shown the main features of the proposed model, we are now in
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Figure 7: Influence of the cohesive parameters ko. Piola stress vs. strain for
different values of the cohesive curve slope k, = {—0.2, —0.5, =2} MPa/mm
and elastic energies ¢, (a) and ¢, (b).

the position of comparing the model prediction against the experimental
data on double network elastomers. The experiments used to calibrate the
model are the ones reported in [35], where a cross-linked elastomer was first
swollen in monomer and subsequently polymerized to create the so-called
double network. This novel class of elastomers displays unique mechanical
features due to the combined use of a stretchy elastomeric matrix with a
stiff filler network, that make the failure of the elastomer pseudo-ductile at
large strain.

The peculiarities of the experimental response are readily seen from the
data in Fig. [9] where the Piola stress, S, is plotted against the normalized
displacement at bar’s end, €. The initial part of the curve resembles the
typical response of an elastomeric material with a pronounced nonlinear
elastic behaviour. The elastic phase terminates at about € = 1.4 where a
sharp decrease in the stress appears. Microscopically this drop corresponds
to the emergence of a very localized damage region. By continuing loading,
the applied force remains constant and the stress-strain plot shows a plateau
for a wide range of stretches. The formation of a neck and its propagation
along the specimen is observed in this region. When necking has expanded
all over the sample, at about € = 4.2, the damage start increasing uniformly,
yet the overall stiffness of the sample grows. This behaviour is a competition
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Figure 8: Influence of the fracture parameter az. Piola stress vs. strain for
a3 = {—0.68,—1.36,—2.72} with the elastic parameters in ¢,. The insets
show the damage profile at the different strain levels indicated in the figure.

between the stress softening induced by the damage and the stiffening caused
by the intact polymer chains being almost completely stretched. Such a
peculiar behaviour for an elastomer was reported for the first time in [35].
Remarkably the proposed model is able to capture the main features
seen in the experimental data as the fitting in Fig. [0] proves. The stress-
strain plot displays three different curves along with the experimental points
represented by open orange circles: the continuous orange curve, is the
output of the model and has all the main characteristics of the experimental
response, including the initial nonlinear elastic regime, the stress peak with
the subsequent stress plateau and the stiffness increase at large strain. The
green and orange dashed curves are indeed the elastic stresses of each of
the two terms in the Ogden model with the parameters {1, aq, u2, as}
in Tab. at each material point, the elastic stress is the superposition of
the response of two nonlinear springs, one with {u1,a;} = {4.6 MPa, 1.2},
that controls the response at low strains (dashed orange curve), and the
other with {u2, s} = {0.012 MPa,5.5} is activated at high strain and is
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Table 2: Constitutive parameters used for the fitting of the experimental
data in Fig. [0

Elastic
{p1,p2} = {4.6,0.012} MPa  {a1,a2} ={1.2,5.5}
Fracture

ff =5 mm, G.=100 MPa mm, M, =24, ko= —-0.37 MPa/mm, a3 = —4.73

responsible for the strain hardening seen in the experiments (dashed green
curve). In this sense the model resembles the microscopical model proposed
in [52] where a two-phase material model was considered. The insets in Fig. [9]
shows the damage field obtained from the numerical simulations at different
level of strains. At the position designated with (a) in Fig. [9] the sudden
appearance of a localized damage produces the drop in the stress seen in the
experiments, that corresponds to the occurrence of a necked region in the
central part of the specimen, as shown in Fig. The corresponding strain
level € = 1.4 is used to calibrate the value of the parameter \,. At increasing
level of strains, the necking enlarges with constant maximum value up to the
stretch at which it has filled the whole specimen (region (b) in the figure).
Thereafter (region (c)) the damage value starts increasing and at ¢ = 4.55
was d = 0.33. The hardening behaviour is achieved in the model by taking
the absolute value of a3 to be large enough (a3 = —4.73 in this case).

The final benchmark corresponds to the deformation of a double notch
tension specimen that is normally used to estimate the critical fracture en-
ergy (see for instance [25] [45]). The dimensions of the specimen, boundary
conditions and mesh for this configuration are displayed in Fig. [[Th. The
constitutive parameters used in the simulation are those in Tab. [1| with the
elastic energy ¢,, except for the fracture parameters a; = 5.49, ap = —1.58
and ag = —0.54. Figure[IIpb shows the stress-strain curves that displays typ-
ical brittle response expected from elastomers in this type of tests (see for
instance the experiments in [53]). The numerical results show a very narrow
cohesive region in which the damage rapidly propagates between the notches
up to the point at which it occupies the entire width and immediately jumps
to 1, leading to the catastrophic failure of the specimen. The corresponding
deformed configurations are shown in Fig. [12| at different levels of the overall
strain. At ¢ = 0.6186 the specimen is completely broken and, in fact, the
central part of the specimen has reached d = 1, with the lateral parts being
almost unloaded.
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Figure 9: Piola stress S versus overall strain € for a double network elas-
tomers: open circles - experimental data from [35], orange continuous curve
- model prediction, dashed curve - response of purely elastic model. The
fitting is achieved with the model parameters in Tab. The insets show
the damage profile along the specimen middle axis at the strain levels (a),
(b) and (c) indicated in the plot.
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Figure 10: Deformed configuration of the rectangular specimen used for fit-
ting the data in Fig.[0] The plateau in the stress-strain curves corresponds to
the propagation of a necking region along the bar. The colormap represents
the damage intensity, red being the damage with higher damage.
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Figure 11: Geometry, mesh and boundary conditions of the double notch
tensions specimen (left). Stress-strain curve for the constitutive parameters
in Tab{ll
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Figure 12: Deformed configuration of the double notch tension specimen
used for the numerical experiment in Fig. The colormap displays the
intensity of the damage field.



5 Conclusions

We have presented a novel phase-field model for the cohesive failure of
elastomers at large strain. The elastic response of the model is described
through an Ogden-like strain energy density, which has the advantage of
accurately matching the quasi-static response of many materials up to sig-
nificant strains. Fracture was incorporated by complementing the Ogden
formulation with a phase-field variable, whose evolution was derived in a
consistent thermodynamic framework by invoking the three principles of
damage irreversibility, stability conditions and energy balance.

The fracture energy is defined in terms of 5 constitutive parameters: the
energy release rate G, the internal length /;, that naturally arises from the
gradient term in the energy, and 3 coefficients a1, as and az that defines the
energetic degradation function responsible of the stiffness decrease induced
by damage. The solution of a one-dimensional problem of a bar under
tension is used to calibrate the cohesive parameters and give them a clear
physical meaning: a; is related to the stretch at the damage onset in the
one-dimensional test, as depends on the slope of the cohesive curve, which is
normally considered a material property, and, finally, as is put in relation to
the displacement jump at complete specimen fracture. By properly tuning
these constitutive parameters, the model is capable of describing a variety of
fracture modes including brittle and pseudo-ductile failures, whereas most
of the phase field models at large strain currently available in the literature
can only describe brittle fracture. As such, the model is applicable to a
broad class of materials, not only rubber or elastomeric composites, but also
biological tissues. In this work, it was applied to double-network elastomers,
by reproducing the pseudo-ductile failure that they experience in simple
tension tests. The model has accurately captured the peculiar features of
the fracture process, such as the necking propagation, and the hardening
stage at large strains.

The derivation of the modelling equations was carried out by the perfect
incompressibility of the matrix, as usually assumed for rubber. However,
experimental evidence shows that fracture may occur due to the coalescence
of voids and the subsequent propagation of the defects, that may lead to a
reduction of the apparent bulk modulus. Therefore, further development of
the model include the possibility of degrading with the phase-field variable
both volumetric and isochoric parts of the energy. In addition, since viscous
effects may become significant during the propagation of fractures, the incor-
poration of viscoelastic effects appears of paramount importance to correctly
describe the dynamic evolution of fracture in elastomeric compounds.
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