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A B S T R A C T

We consider a banking duopoly model with a macroprudential policy in Indonesia called
loan-to-deposit ratio-based reserve requirement (LDR-RR). The objective of the policy is to
control the banking loans growth using a LDR-based penalty scheme that requires banks to
save more money in the central bank to maintain their liquidity ratio. Following recent studies
on banking models, we analyze a piecewise discrete-time model with two banks. We assume
that the dynamics of the deposits follows the discrete logistic growth. Moreover, our model
has two borders, hence we examine the resulting border-collision bifurcations. From the local
stability analysis we find that, according to the parameter values, only the border-collision
bifurcation or the flip bifurcation occurs. Finally, we perform several numerical simulations to
confirm the stability analysis’ results. Our discrete dynamical system offers various possibilities
of development for future research perspectives.

1. Introduction

Stability in banking industry is a key point. Many authors faced the problem focusing on different aspects. In particular, Fanti
[1] develops a banking model investigating the role of an exogenous capital regulation parameter to the demand of loans; [2,3]
extend the model of [1] considering the peculiarity of the Italian banking system. [4] focus on the role of non-performing loans in
the stability of the banking system. Finally, Ansori et al. [5] build a monopoly model of banking loan with procyclicality behavior
and apply it to monthly data of Indonesian commercial banks before and during the COVID-19 pandemic, to assess the role of the
LDR-RR instrument.

Banking systems are different across countries and the policies adopted to stabilize system vary consistently. To this purpose,
the role of a model consists in taking into account this heterogeneity through the appropriate modeling scheme. Following the
line of the previously cited works, we make use of the theory of Discrete Dynamical Systems to build our model, focusing on the
Indonesian banking system. We also stress that the stability of the banking industry can be analyzed by alternative solutions. For
example, Claessens et al. [6] focus on the effectiveness and efficacy of macroprudential policies relying on a Generalized Method of
Moments panel regression. Belkhir et al. [7] assess the impact of macroprudential policies on banking crises using logit model and
bivariate vector autoregressive model. Differently, we make use of Dynamical Systems, in view of the analysis of banking stability.
While the formers focus on the effect of the macroprudential policies on different economic variables by using dataset of banks
located in several countries, we approach the analysis of stability. Starting from the stylized facts of the macroprudential policy
adopted in Indonesia, we attempt to replicate its dynamics with a closed model, that enables us to analyze the consequences of the
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decisions of regulators. It is important to note that one choice does not exclude the other, but they are different approaches which
can be combined to get an overall view of the problem.

The focus of this paper is an Indonesian macroprudential instrument known as loan-to-deposit ratio-based reserve requirement
LDR-RR). We take into account a banking model that investigates the stability of the Indonesian banking system considering the
ffects LDR-RR. This instrument can be used to apply counter-cyclical measures in banking industry by providing disincentive
echanism, when a bank operates outside the preferred operational corridor. At the lower limit of LDR, a requirement of higher
R can push banks to extent more loans, in order to support economic development in a period of economic bust (see [5,8]).

As a result, we build the banking duopoly model on the Indonesian banking balance sheet structure. The balance sheet is
implified here to include only deposits, equity, reserve requirements, liquid assets and loans. Reserve requirements include the
DR-RR instrument implicitly. There are three types of reserve requirements in Indonesia: primary RR, secondary RR, and LDR-
R. The primary RR is a monetary policy instrument for controlling the money supply, whereas the secondary RR is a liquidity

nstrument.
The LDR-RR policy is outlined in Bank Indonesia Regulation no.12/19/PBI/2010. In particular, the LDR-RR instrument has five

arameters: lower bound of LDR, upper bound of LDR, lower disincentive parameter, upper disincentive parameter, and incentive
apital adequacy ratio (CAR). It aims at controlling the growth of banking loans in Indonesia. The macroprudential aspects of
his regulation has been studied by [8]. In this paper, we concentrate the analysis on the effects of regulation in our banking
uopoly model. In particular, we focus on two main parameters of the regulation, namely the lower disincentive parameter and the
ower bound of LDR parameter. We find that these two parameters affect the banking loan’s stability via flip and border-collision
ifurcations. The LDR-RR calculation is performed as follows:

(a) If the bank’s LDR is within the target LDR range (i.e. between the lower and upper bounds), the bank’s LDR-RR is 0% (zero
percent) of rupiah deposits.

(b) If the bank’s LDR is less than the lower bound, the bank’s LDR-RR is calculated by multiplying the lower disincentive, the
difference between the lower bound and the bank’s LDR, and deposits in rupiah.

(c) If the bank’s LDR exceeds the upper bound and its CAR is less than the incentive CAR, the bank’s LDR-RR is calculated by
multiplying the upper disincentive, the difference between the bank’s LDR and the upper bound, and deposits in rupiah.

(d) If the bank’s LDR exceeds the upper bound and its CAR is equal to or greater than the incentive CAR, the bank’s LDR-RR is
0% (zero percent) of rupiah deposits.

In other words, the LDR-RR instrument works as a penalty for banks having an LDR that does not meet the regulatory target for a
safe measure.

The model results in a two-dimensional discontinuous map with the phase space divided into four different regions. The paper
ontributes to the existing literature in several ways. First, we conduct a rigorous analysis of all the equilibria of the map and study
he local stability of fixed points when they lie in the proper region of definition. Moreover, due to the discontinuous structure of the
ap, we are able to find conditions on the parameters that cause the emergence of the so called border-collision bifurcations (see [9]

or a review of these kind of bifurcations). This enables us to examine further economic scenarios that motivate the usefulness of the
DR-RR instrument. For this purpose, we study possible bifurcation structures of the model and, thereby, establish that it may yield
ndogenous loan dynamics. Some of the bifurcation structures that we have investigated (in particular, the so called border-collision
ifurcations) have received little attention in Economics so far. Second, we concentrate our analysis on two main parameters of the
DR-RR instrument: the lower disincentive parameter (𝛾𝑙𝑏) and the lower bound of the LDR (𝛿𝑙𝑏). The reason relies on the fact that

these parameters play a key role in periods of economic bust, where the lending activity is more intense than in periods of stability.
Third, we find an important economic result which is in line with the analysis of banks in different countries. Indeed, we are able to
exclude the case where the market is served by a unique bank, as in [2,3]. Finally, we find several notable economic consequences
due to the LDR-RR instrument. In particular, our results indicate that larger values of 𝛾𝑙𝑏 and 𝛿𝑙𝑏 can improve the intermediation
ctivity of banks and the growth of the whole economy. However, policy-maker should not abuse of these instruments because
urther increases of these parameters could lead to period of instability in the economic system.

The remainder of the paper is organized as follows. In Section 2 we introduce the main ingredients of the model and we provide
he final map. Section 3 is devoted to the study of the fixed points and to the detailed bifurcation analysis. Section 4 outlines the
ain economic scenarios arising from our analysis through bifurcation diagrams and the structure of the attractors of the model.

ection 5 concludes our paper and provides useful suggestions for future developments of the model.

. The discrete-time dynamical model

In this paper, we consider two banks indexed by 𝑘 = 1, 2. Each bank 𝑘 at time 𝑡 has a balance sheet that consists of deposits
(𝐷𝑘,𝑡), equity (𝐸𝑘,𝑡), reserve requirements ‘RR’ (𝑅𝑘,𝑡), loans (𝐿𝑘,𝑡) and liquid assets (𝐴𝑘,𝑡). The identity of the balance sheet yields
otal funding (deposits + equity) equals to total financing (RR + liquid assets + loans):

𝐿𝑘,𝑡 + 𝐴𝑘,𝑡 + 𝑅𝑘,𝑡 = 𝐷𝑘,𝑡 + 𝐸𝑘,𝑡.

Following [10,11], we assume that the dynamics of deposits follows the discrete logistic growth:

𝐷𝑘,𝑡+1 = 𝐷𝑘,𝑡 + 𝛽𝑘𝐷𝑘,𝑡

(

1 −
𝐷𝑘,𝑡

)

, 𝛽𝑘, 𝐾𝑘 > 0. (1)
2

𝐾𝑘
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[5] argued that in Indonesia deposits displayed an upward trend every month from March 2015 to May 2021. On the one hand,
his fact may be interpreted as a linear or an exponential growth of deposits, although such hypotheses are unrealistic. On the other
and, the logistic growth is suitable to model deposits, due to the limitation in the demand of deposits that banks display (this
epends on several factors, such as the number of branch offices, the regional coverage of a bank and, the growth of the economy
round the regional banks). Thus, there should be a threshold on the growth of the deposits (also known as carrying capacity)
hat can be accommodated by the logistic model. In fact, it is known that the logistic model exhibits a stable equilibrium which
orresponds to the carrying capacity. In this line of reasoning, our duopoly model assumes that deposits converge to the carrying
apacity before loans converge to their equilibrium values. This ensures the tractability of the model, since border results in a
onstant. If this assumption is neglected, borders would depend on the deposits, complicating the analysis of the model.

Each bank must adhere to the capital adequacy ratio (CAR) policy, which requires that its equity to risk weighted asset ratio is
reater than a certain percentage set by the regulator. Because RR is a deposit in the central bank, it is risk-free. We say that RR
as a risk profile of 0%. We assume that liquid assets have a 0% risk profile, whereas loans have a 100% risk profile. Therefore, we
ave:

𝐸𝑘,𝑡

𝐿𝑘,𝑡
≥ 𝜅𝑐𝑎𝑟, 0 < 𝜅𝑐𝑎𝑟 < 1,

here 𝜅𝑐𝑎𝑟 is the minimum percentage in CAR policy set by the regulator. According to Indonesian banking data (see [5]), the ratio
𝑘,𝑡∕𝐿𝑘,𝑡 can be assumed to be constant. Thus,

𝐸𝑘,𝑡 = 𝜅𝑘𝐿𝑘,𝑡, 𝜅𝑐𝑎𝑟 ≤ 𝜅𝑘 < 1. (2)

Reserve requirements are sum of primary RR (𝑅𝑃
𝑘,𝑡), secondary RR (𝑅𝑆

𝑘,𝑡), and LDR-RR (𝑅𝐿𝐷𝑅
𝑘,𝑡 ), with:

𝑅𝑃
𝑘,𝑡 = 𝜌𝑝𝐷𝑘,𝑡, 0 < 𝜌𝑝 < 1, (3)

𝑅𝑆
𝑘,𝑡 = 𝜌𝑠𝐷𝑘,𝑡, 0 < 𝜌𝑠 < 1, (4)

𝑅𝐿𝐷𝑅
𝑘,𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if 𝛿𝑙𝑏 ≤ 𝐿𝑘,𝑡∕𝐷𝑘,𝑡 ≤ 𝛿𝑢𝑏
𝛾𝑙𝑏

(

𝛿𝑙𝑏 −
𝐿𝑘,𝑡
𝐷𝑘,𝑡

)

𝐷𝑘,𝑡, if 𝐿𝑘,𝑡∕𝐷𝑘,𝑡 < 𝛿𝑙𝑏

𝛾𝑢𝑏
( 𝐿𝑘,𝑡
𝐷𝑘,𝑡

− 𝛿𝑢𝑏
)

𝐷𝑘,𝑡, if 𝐿𝑘,𝑡∕𝐷𝑘,𝑡 ≥ 𝛿𝑢𝑏 and 𝐸𝑘,𝑡∕𝐿𝑘,𝑡 < 𝜅𝑙𝑑𝑟
0, if 𝐿𝑘,𝑡∕𝐷𝑘,𝑡 ≥ 𝛿𝑢𝑏 and 𝐸𝑘,𝑡∕𝐿𝑘,𝑡 ≥ 𝜅𝑙𝑑𝑟,

(5)

where 𝛿𝑙𝑏 and 𝛿𝑢𝑏 are lower and upper bound of LDR, respectively; 𝛾𝑙𝑏 and 𝛾𝑢𝑏 are lower and upper disincentive, respectively; and
𝜅𝑙𝑑𝑟 is the incentive CAR.

Based on the Indonesian banking data in [5], the banks’ CAR is above the value of incentive CAR (𝜅𝑙𝑑𝑟). Following that work,
the third and fourth cases in (5) can be omitted,1 and therefore:

𝑅𝐿𝐷𝑅
𝑘,𝑡 =

{

0, if 𝐿𝑘,𝑡∕𝐷𝑘,𝑡 ≥ 𝛿𝑙𝑏
𝛾𝑙𝑏𝛿𝑙𝑏𝐷𝑘,𝑡 − 𝛾𝑙𝑏𝐿𝑘,𝑡, if 𝐿𝑘,𝑡∕𝐷𝑘,𝑡 < 𝛿𝑙𝑏

(6)

Next, the loan dynamics are assumed to follow the gradient adjustment process as in [1,12], whose distribution for the following
period is determined by the current loans’ marginal profit:

𝐿𝑘,𝑡+1 = 𝐿𝑘,𝑡 + 𝛼𝑘𝐿𝑘,𝑡
𝜕𝜋𝑘,𝑡
𝜕𝐿𝑘,𝑡

, 𝛼𝑘 > 0 (7)

where 𝛼𝑘 is the speed of adjustment.
The profit 𝜋𝑘,𝑡 is calculated by subtracting financing income from funding and operating expenses:

𝜋𝑘,𝑡 = 𝑟𝐿𝑘,𝑡𝐿𝑘,𝑡 + 𝑟𝐴,𝑘𝐴𝑘,𝑡 − 𝑟𝐷𝑘,𝑡𝐷𝑘,𝑡 − 𝑟𝐸,𝑘𝐸𝑘,𝑡 − 𝐶𝑘,𝑡, (8)

with 𝑟𝐿𝑘,𝑡 = 𝑎𝑘 − 𝑏𝑘𝐿𝑡 (where 𝑎𝑘, 𝑏𝑘 > 0 and 𝐿𝑡 = 𝐿1,𝑡 + 𝐿2,𝑡) is the inverse demand function for loans, 𝑟𝐴,𝑘 is the constant rate
of return of liquid assets, 𝑟𝐷𝑘,𝑡 is the deposit interest rate, 𝑟𝐸,𝑘 is the constant cost of equity, and 𝐶𝑘,𝑡 = 𝑐𝐷,𝑘𝐷𝑘,𝑡 + 𝑐𝐿,𝑘𝐿𝑘,𝑡 (where
0 < 𝑐𝐷,𝑘, 𝑐𝐿,𝑘 < 1).

Finally, we assume that liquid assets act as the balancing variable. Thus:

𝐴𝑘,𝑡 = 𝐷𝑘,𝑡 + 𝐸𝑘,𝑡 − 𝐿𝑘,𝑡 − 𝑅𝑘,𝑡

=

{

(1 − [𝜌𝑝 + 𝜌𝑠])𝐷𝑘,𝑡 − (1 − 𝜅𝑘)𝐿𝑘,𝑡, if 𝐿𝑘,𝑡∕𝐷𝑘,𝑡 ≥ 𝛿𝑙𝑏
(1 − [𝜌𝑝 + 𝜌𝑠])𝐷𝑘,𝑡 − (1 − 𝜅𝑘)𝐿𝑘,𝑡 − 𝛾𝑙𝑏𝛿𝑙𝑏𝐷𝑘,𝑡 + 𝛾𝑙𝑏𝐿𝑘,𝑡, if 𝐿𝑘,𝑡∕𝐷𝑘,𝑡 < 𝛿𝑙𝑏

(9)

The marginal profit of loans becomes:

𝜕𝜋𝑘,𝑡
𝜕𝐿𝑘,𝑡

=

{

𝑎𝑘 − 𝛬𝑘 − 𝑏𝑘𝐿−𝑘,𝑡 − 2𝑏𝑘𝐿𝑘,𝑡, if 𝐿𝑘,𝑡∕𝐷𝑘,𝑡 ≥ 𝛿𝑙𝑏
𝑎𝑘 − 𝛬𝑘 + 𝑟𝐴,𝑘𝛾𝑙𝑏 − 𝑏𝑘𝐿−𝑘,𝑡 − 2𝑏𝑘𝐿𝑘,𝑡, if 𝐿𝑘,𝑡∕𝐷𝑘,𝑡 < 𝛿𝑙𝑏

where −𝑘 ∈ {1, 2}∖{𝑘}, 𝛬𝑘 = 𝑟𝐴,𝑘(1 − 𝜅𝑘) + 𝜅𝑘𝑟𝐸,𝑘 + 𝑐𝐿,𝑘. It is clear that 𝛬𝑘 > 0.

1

3

Please see [5] for more details
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Therefore, we have the final form of loans model as follows:

𝐿𝑘,𝑡+1 =

{

𝐿𝑘,𝑡 + 𝛼𝑘𝐿𝑘,𝑡
(

𝑎𝑘 − 𝛬𝑘 − 𝑏𝑘𝐿−𝑘,𝑡 − 2𝑏𝑘𝐿𝑘,𝑡
)

, if 𝐿𝑘,𝑡∕𝐷𝑘,𝑡 ≥ 𝛿𝑙𝑏
𝐿𝑘,𝑡 + 𝛼𝑘𝐿𝑘,𝑡

(

𝑎𝑘 − 𝛬𝑘 + 𝑟𝐴,𝑘𝛾𝑙𝑏 − 𝑏𝑘𝐿−𝑘,𝑡 − 2𝑏𝑘𝐿𝑘,𝑡
)

, if 𝐿𝑘,𝑡∕𝐷𝑘,𝑡 < 𝛿𝑙𝑏
(10)

Based on the above model, we derive the final duopoly model as a system of two difference equations with loans as state variables:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐿1,𝑡+1 =

{

𝐿1,𝑡 + 𝛼1𝐿1,𝑡
(

𝑎1 − 𝛬1 − 𝑏1𝐿2,𝑡 − 2𝑏1𝐿1,𝑡
)

, if 𝐿1,𝑡∕𝐷1,𝑡 ≥ 𝛿𝑙𝑏
𝐿1,𝑡 + 𝛼1𝐿1,𝑡

(

𝑎1 − 𝛬1 + 𝑟𝐴,1𝛾𝑙𝑏 − 𝑏1𝐿2,𝑡 − 2𝑏1𝐿1,𝑡
)

, if 𝐿1,𝑡∕𝐷1,𝑡 < 𝛿𝑙𝑏

𝐿2,𝑡+1 =

{

𝐿2,𝑡 + 𝛼2𝐿2,𝑡
(

𝑎2 − 𝛬2 − 𝑏2𝐿1,𝑡 − 2𝑏2𝐿2,𝑡
)

, if 𝐿2,𝑡∕𝐷2,𝑡 ≥ 𝛿𝑙𝑏
𝐿2,𝑡 + 𝛼2𝐿2,𝑡

(

𝑎2 − 𝛬2 + 𝑟𝐴,2𝛾𝑙𝑏 − 𝑏2𝐿1,𝑡 − 2𝑏2𝐿2,𝑡
)

, if 𝐿2,𝑡∕𝐷2,𝑡 < 𝛿𝑙𝑏

(11)

In order to simplify the analysis, in this paper we assume:

𝛼1 = 𝛼2 = 𝛼, 𝑎1 = 𝑎2 = 𝑎, 𝑏1 = 𝑏2 = 𝑏, 𝑟𝐴,1 = 𝑟𝐴,2 = 𝑟𝐴, 𝑟𝐸,1 = 𝑟𝐸,2 = 𝑟𝐸 ,

𝜅1 = 𝜅2 = 𝜅, 𝑐𝐿,1 = 𝑐𝐿,2 = 𝑐, 𝛬1 = 𝛬2 = 𝛬 = 𝑟𝐴(1 − 𝜅) + 𝜅𝑟𝐸 + 𝑐,

𝛽1 = 𝛽2 = 𝛽, 𝐾1 = 𝐾2 = 𝐾.

Hence, we have the simplified model as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐿1,𝑡+1 =

{

𝐿1,𝑡 + 𝛼𝐿1,𝑡
(

𝑎 − 𝛬 − 𝑏𝐿2,𝑡 − 2𝑏𝐿1,𝑡
)

, if 𝐿1,𝑡∕𝐷1,𝑡 ≥ 𝛿𝑙𝑏
𝐿1,𝑡 + 𝛼𝐿1,𝑡

(

𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏 − 𝑏𝐿2,𝑡 − 2𝑏𝐿1,𝑡
)

, if 𝐿1,𝑡∕𝐷1,𝑡 < 𝛿𝑙𝑏

𝐿2,𝑡+1 =

{

𝐿2,𝑡 + 𝛼𝐿2,𝑡
(

𝑎 − 𝛬 − 𝑏𝐿1,𝑡 − 2𝑏𝐿2,𝑡
)

, if 𝐿2,𝑡∕𝐷2,𝑡 ≥ 𝛿𝑙𝑏
𝐿2,𝑡 + 𝛼𝐿2,𝑡

(

𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏 − 𝑏𝐿1,𝑡 − 2𝑏𝐿2,𝑡
)

, if 𝐿2,𝑡∕𝐷2,𝑡 < 𝛿𝑙𝑏

(12)

The deposit model in (1) admits two equilibria 0 and 𝐾, the former is unstable while the latter is stable for any set of the
parameter values. Hence, we can restrict the analysis to the case in which deposit 𝐷𝑖,𝑡 converges to its carrying capacity 𝐾𝑖 and,
remembering that 𝐾1 = 𝐾2 = 𝐾, we immediately obtain the following 2−dimensional map:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐿1,𝑡+1 =

{

𝐿1,𝑡 + 𝛼𝐿1,𝑡
(

𝑎 − 𝛬 − 𝑏𝐿2,𝑡 − 2𝑏𝐿1,𝑡
)

, if 𝐿1,𝑡 ≥ 𝛿𝑙𝑏𝐾
𝐿1,𝑡 + 𝛼𝐿1,𝑡

(

𝑎 − 𝛬 − 𝑏𝐿2,𝑡 − 2𝑏𝐿1,𝑡 + 𝑟𝐴𝛾𝑙𝑏
)

, if 𝐿1,𝑡 < 𝛿𝑙𝑏𝐾

𝐿2,𝑡+1 =

{

𝐿2,𝑡 + 𝛼𝐿2,𝑡
(

𝑎 − 𝛬 − 𝑏𝐿1,𝑡 − 2𝑏𝐿2,𝑡
)

, if 𝐿2,𝑡 ≥ 𝛿𝑙𝑏𝐾
𝐿2,𝑡 + 𝛼𝐿2,𝑡

(

𝑎 − 𝛬 − 𝑏𝐿1,𝑡 − 2𝑏𝐿2,𝑡 + 𝑟𝐴𝛾𝑙𝑏
)

, if 𝐿2,𝑡 < 𝛿𝑙𝑏𝐾

(13)

The phase space is divided into four different regions:

𝑅1 =
{

(𝐿1, 𝐿2) ∈ R2
+ ∶ 𝐿1 ≥ 𝛿𝑙𝑏𝐾,𝐿2 ≥ 𝛿𝑙𝑏𝐾

}

, 𝑅2 =
{

(𝐿1, 𝐿2) ∈ R2
+ ∶ 𝐿1 < 𝛿𝑙𝑏𝐾,𝐿2 ≥ 𝛿𝑙𝑏𝐾

}

𝑅3 =
{

(𝐿1, 𝐿2) ∈ R2
+ ∶ 𝐿1 < 𝛿𝑙𝑏𝐾,𝐿2 < 𝛿𝑙𝑏𝐾

}

, 𝑅4 =
{

(𝐿1, 𝐿2) ∈ R2
+ ∶ 𝐿1 ≥ 𝛿𝑙𝑏𝐾,𝐿2 < 𝛿𝑙𝑏𝐾

}

which are separated by the set 𝑅 ∶=
{

(𝐿1, 𝐿2) ∈ R2
+ ∶ 𝐿1 = 𝛿𝑙𝑏𝐾

}

∪
{

(𝐿1, 𝐿2) ∈ R2
+ ∶ 𝐿2 = 𝛿𝑙𝑏𝐾

}

, hence the border is defined by the
vertical line 𝐿1 = 𝛿𝑙𝑏𝐾 and the horizontal line 𝐿2 = 𝛿𝑙𝑏𝐾.

At the interior of each region of the phase space smooth maps apply. Every map is different from the other along the set 𝑅, in
other terms System (13) defines a piecewise-smooth discontinuous map, i.e. it is discontinuous across the boundary.

Summing up, System (13) is composed by the following maps:

1. System 1, ∀(𝐿1, 𝐿2) ∈ 𝑅1

𝑆1 =

{

𝐿1,𝑡+1 = 𝐿1,𝑡 + 𝛼𝐿1,𝑡
(

𝑎 − 𝛬 − 𝑏𝐿2,𝑡 − 2𝑏𝐿1,𝑡
)

𝐿2,𝑡+1 = 𝐿2,𝑡 + 𝛼𝐿2,𝑡
(

𝑎 − 𝛬 − 𝑏𝐿1,𝑡 − 2𝑏𝐿2,𝑡
) (14)

2. System 2, ∀(𝐿1, 𝐿2) ∈ 𝑅2

𝑆2 =

{

𝐿1,𝑡+1 = 𝐿1,𝑡 + 𝛼𝐿1,𝑡
(

𝑎 − 𝛬 − 𝑏𝐿2,𝑡 − 2𝑏𝐿1,𝑡 + 𝑟𝐴𝛾𝑙𝑏
)

𝐿2,𝑡+1 = 𝐿2,𝑡 + 𝛼𝐿2,𝑡
(

𝑎 − 𝛬 − 𝑏𝐿1,𝑡 − 2𝑏𝐿2,𝑡
) (15)

3. System 3, ∀(𝐿1, 𝐿2) ∈ 𝑅3

𝑆3 =

{

𝐿1,𝑡+1 = 𝐿1,𝑡 + 𝛼𝐿1,𝑡
(

𝑎 − 𝛬 − 𝑏𝐿2,𝑡 − 2𝑏𝐿1,𝑡 + 𝑟𝐴𝛾𝑙𝑏
)

𝐿2,𝑡+1 = 𝐿2,𝑡 + 𝛼𝐿2,𝑡
(

𝑎 − 𝛬 − 𝑏𝐿1,𝑡 − 2𝑏𝐿2,𝑡 + 𝑟𝐴𝛾𝑙𝑏
) (16)

4. System 4, ∀(𝐿1, 𝐿2) ∈ 𝑅4

𝑆4 =

{

𝐿1,𝑡+1 = 𝐿1,𝑡 + 𝛼𝐿1,𝑡
(

𝑎 − 𝛬 − 𝑏𝐿2,𝑡 − 2𝑏𝐿1,𝑡
)

( ) (17)
4

𝐿2,𝑡+1 = 𝐿2,𝑡 + 𝛼𝐿2,𝑡 𝑎 − 𝛬 − 𝑏𝐿1,𝑡 − 2𝑏𝐿2,𝑡 + 𝑟𝐴𝛾𝑙𝑏
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In the following section, we analyze the final map, taking into account that inside the single region 𝑅𝑖 smooth bifurcation theory
in discrete-time applies but, being our system piecewise-smooth discontinuous, also intersections between invariant sets and the
discontinuity boundary may arise. These type of bifurcations involves the qualitative theory of non-smooth dynamical system.

3. Stability and bifurcations

We start the local analysis by considering the interior of each region 𝑅𝑖 (𝑖 = 1, 2, 3, 4), where the standard theory of smooth maps
applies.

3.1. Equilibrium points and Jacobian matrices

Equilibria of our map are calculated by setting 𝐿𝑘,𝑡+1 = 𝐿𝑘,𝑡 for 𝑘 = 1, 2 and ∀𝑡.
In the following we analyze equilibria of Systems (14)–(17) and we remember that a fixed point is real or actual if it is inside the

corresponding region of definition, it is virtual if it lies inside another region, while we have a boundary fixed point when it belongs
to the border 𝑅 (see [13] for all generalities of piecewise-smooth systems and [14] for a detailed analysis of virtual fixed points).

As a preliminary result, we note that the trivial economic equilibrium (0, 0) is a fixed point for all the Systems 1–4 but it is a
real fixed point only for System 3 defined by (16), otherwise (for Systems 1,2 and 4) the origin is a virtual fixed point.

In what follows we denote by E𝑖𝑗 = (𝐿∗
1 , 𝐿

∗
2) the real equilibria of System 𝑖 (𝑖 = 1, 2, 3, 4), where the index 𝑗 numbers them, in

other words the first index (𝑖) refers to the region 𝑅𝑖 of definition, while the second index (𝑗) numbers the fixed points in each
region.

System 1. There is a unique equilibrium given by:

E11 =
(𝑎 − 𝛬

3𝑏
, 𝑎 − 𝛬

3𝑏

)

which is a real fixed point iff 𝑎−𝛬
3𝑏 > 𝐾𝛿𝑙𝑏 (it is instead a virtual fixed point iff 𝑎−𝛬

3𝑏 < 𝐾𝛿𝑙𝑏 and a boundary fixed point iff 𝑎−𝛬
3𝑏 = 𝐾𝛿𝑙𝑏).

The Jacobian matrix for the real fixed point E = (𝐿∗
1 , 𝐿

∗
2) is:

𝐽 =
[

1 + 𝛼(𝑎 − 𝛬) − 𝛼𝑏𝐿∗
2 − 4𝛼𝑏𝐿∗

1 −𝛼𝑏𝐿∗
1

−𝛼𝑏𝐿∗
2 1 + 𝛼(𝑎 − 𝛬) − 𝛼𝑏𝐿∗

1 − 4𝛼𝑏𝐿∗
2

]

. (18)

System 2. We get the following equilibria:

E21 =
(

0, 𝑎 − 𝛬
2𝑏

)

and E22 =
(

𝑎 − 𝛬 + 2𝑟𝐴𝛾𝑙𝑏
3𝑏

,
𝑎 − 𝛬 − 𝑟𝐴𝛾𝑙𝑏

3𝑏

)

.

he equilibrium point E22 cannot be real since 𝐿⋆
1 > 𝐿⋆

2 and it cannot belong to the sub-region 𝑅2. Differently, E21 is a real fixed
point iff 𝑎−𝛬

2𝑏 > 𝐾𝛿𝑙𝑏. The Jacobian matrix is:

𝐽 =
[

1 + 𝛼(𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏) − 𝛼𝑏𝐿∗
2 − 4𝛼𝑏𝐿∗

1 −𝛼𝑏𝐿∗
1

−𝛼𝑏𝐿∗
2 1 + 𝛼(𝑎 − 𝛬) − 𝛼𝑏𝐿∗

1 − 4𝛼𝑏𝐿∗
2

]

. (19)

System 3. We get the following equilibria:

E31 = (0, 0), E32 =
(

𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏
2𝑏

, 0
)

, E33 =
(

0,
𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏

2𝑏

)

,

E34 =
(

𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏
3𝑏

,
𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏

3𝑏

)

,

hey are real fixed points if 𝐿∗
1 < 𝐾𝛿𝑙𝑏 and 𝐿∗

2 < 𝐾𝛿𝑙𝑏 and the Jacobian matrix is:

𝐽 =
[

1 + 𝛼(𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏) − 𝛼𝑏𝐿∗
2 − 4𝛼𝑏𝐿∗

1 −𝛼𝑏𝐿∗
1

−𝛼𝑏𝐿∗
2 1 + 𝛼(𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏) − 𝛼𝑏𝐿∗

1 − 4𝛼𝑏𝐿∗
2

]

. (20)

System 4. The equilibria are:

E41 =
(𝑎 − 𝛬

2𝑏
, 0
)

and E42 =
(

𝑎 − 𝛬 − 𝑟𝐴𝛾𝑙𝑏
3𝑏

,
𝑎 − 𝛬 + 2𝑟𝐴𝛾𝑙𝑏

3𝑏

)

.

he equilibrium point E42 cannot be real since 𝐿⋆
1 < 𝐿⋆

2 and it cannot belong to the sub-region 𝑅4. Differently, E41 is a real fixed
point iff 𝑎−𝛬

2𝑏 > 𝐾𝛿𝑙𝑏.
The Jacobian matrix is:

𝐽 =
[

1 + 𝛼(𝑎 − 𝛬) − 𝛼𝑏𝐿∗
2 − 4𝛼𝑏𝐿∗

1 −𝛼𝑏𝐿∗
1

−𝛼𝑏𝐿∗
2 1 + 𝛼(𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏) − 𝛼𝑏𝐿∗

1 − 4𝛼𝑏𝐿∗
2

]

. (21)

Notice that in all the previous cases the economic meaning of equilibria is needed, in other words we have to ensure their
positiveness. To this end, we underline that condition

𝑎 > 𝛬 + 𝑟𝐴𝛾𝑙𝑏 (22)

guarantees E > (0, 0) for every fixed point E ≠ (0, 0).
5
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It is important to underline that systems composing our Map (13) have the same set-up and then, the same functional form as
n [2]. In that work, authors proved the existence of the compact global attractor contained in a positively invariant interval of R2

+.
Additionally, as it is usual in this kind of models, the study of the long-run behavior herewith carried out enables us to rely on
conditions on parameter sets such that dynamics are bounded in R2

+.
Let us go to move to the local stability analysis of all the real equilibria, for which the theory of smooth systems applies.

3.2. Local stability of real fixed points

The local stability of every interior equilibrium point can be analyzed using Jury’s conditions as follows. The Jacobian matrices
𝐽 at equilibrium points are evaluated as in the previous subsection. Then the characteristic polynomial is given by:

𝑃 (𝜆) = 𝜆2 + tr(𝐽 )𝜆 + det(𝐽 ). (23)

The equilibrium is locally stable if the following stability conditions hold:

⎧

⎪

⎨

⎪

⎩

𝐹 ∶= 1 + tr(𝐽 ) + det(𝐽 ) > 0

𝑇 ∶= 1 − tr(𝐽 ) + det(𝐽 ) > 0

𝑁𝑆 ∶= 1 − det(𝐽 ) > 0

, (24)

where tr(𝐽 ) and det(𝐽 ) denote trace and determinant of 𝐽 , respectively.
In this paper we study the LDR-RR in (6), or in other words, we study its dynamics when the most interesting parameters

𝛾𝑙𝑏, 𝛿𝑙𝑏, 𝜅𝑙𝑑𝑟) vary. The following theorems state the local stability of each equilibrium, and the stability conditions are written in
rder to focus on the LDR-RR’s parameters, if it is possible.

heorem 1 (System 1). Let 𝑎−𝛬
3𝑏 > 𝐾𝛿𝑙𝑏, then equilibrium E11 =

(

𝑎−𝛬
3𝑏 , 𝑎−𝛬3𝑏

)

is locally asymptotically stable if 𝛼 < 2
𝑎−𝛬 .

Proof. Conditions on the parameters guarantee that E11 lies inside the region 𝑅1, i.e. it is actual. Consequently. we can consider
the Jacobian matrix (18) evaluated at E11:

𝐽11 =

[

1 − 2
3𝛼(𝑎 − 𝛬) − 1

3𝛼(𝑎 − 𝛬)
− 1

3𝛼(𝑎 − 𝛬) 1 − 2
3𝛼(𝑎 − 𝛬)

]

,

and tr(𝐽11) = − 4
3𝛼(𝑎 − 𝛬) + 2, and det(𝐽11) =

1
3𝛼

2(𝑎 − 𝛬)2 − 4
3𝛼(𝑎 − 𝛬) + 1.

Then,

𝐹 = 1
3
𝛼2(𝑎 − 𝛬)2 − 8

3
𝛼(𝑎 − 𝛬) + 4 > 0 if 𝛼 < 2

𝑎 − 𝛬
or 𝛼 > 6

𝑎 − 𝛬
,

𝑇 = 1
3
𝛼2(𝑎 − 𝛬)2 > 0,

𝑁𝑆 = −1
3
𝛼2(𝑎 − 𝛬)2 + 4

3
𝛼(𝑎 − 𝛬) > 0 if 𝛼 < 4

𝑎 − 𝛬
.

Therefore, E11 is locally stable if 𝛼 < 2
𝑎−𝛬 . □

Theorem 2 (System 2). Let 𝑎−𝛬
2𝑏 > 𝐾𝛿𝑙𝑏, then equilibrium E21 =

(

0, 𝑎−𝛬2𝑏
)

is unstable.

Proof. Again, conditions on the parameters are needed for the admissibility of equilibria. Since the proof is similar to the next
Theorem 4 (System 4), we remind to it. □

Theorem 3 (System 3). E31 = (0, 0) is always a real equilibrium and it is a locally unstable node for any set of the parameter values.
For 𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏

2𝑏 < 𝐾𝛿𝑙𝑏, E32 =
(

𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏
2𝑏 , 0

)

and E33 =
(

0, 𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏2𝑏

)

are locally unstable. Meanwhile, for 𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏
3𝑏 < 𝐾𝛿𝑙𝑏 equilibrium

E34 =
(

𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏
3𝑏 , 𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏3𝑏

)

is locally asymptotically stable if 𝛾𝑙𝑏 <
1

𝛼𝑟𝐴
[2 − 𝛼(𝑎 − 𝛬)].

Proof. In order to make the reading easier, pose 𝑞 = 𝛼(𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏). From (22), we have 𝑞 > 0. For the case of E31, we have the
Jacobian matrix

𝐽31 =
[

1 + 𝑞 0
0 1 + 𝑞

]

.

ince 𝑁𝑆 = 1 − det(𝐽31) = −𝑞 [𝑞 + 2] < 0, then E31 is unstable when it is real, for the parameter values defined in the theorem. The
igenvalues are: 𝑘1 = 𝑘2 = 1 + 𝑞 = 1 + 𝛼(𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏) > 1 and the fixed point is a local unstable node.

Analogously, for the given parameter values E32 is real and the Jacobian matrix is:

𝐽32 =

[

1 − 𝑞 − 1
2 𝑞
1

]

.

6

0 1 + 2 𝑞
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Since 𝑇 = 1 − tr(𝐽32) + det(𝐽32) = − 1
2 𝑞

2 < 0, then E32 is unstable. The eigenvalues are: 𝑘1 = 1 − 𝑞 and 𝑘2 = 1 + 1
2 𝑞 > 1, hence it is a

ocally unstable node for 𝑞 > 2 or a saddle node for 𝑞 < 2.2
The case of E33 is similar to E32. Thus, E33 is also locally unstable.
Now, for the case of E34, we have the Jacobian matrix when it is a real fixed point for the defined parameter values:

𝐽34 =

[

1 − 2
3 𝑞 − 1

3 𝑞
− 1

3 𝑞 1 − 2
3 𝑞

]

,

ith tr(𝐽34) = 2 − 4
3 𝑞 and det(𝐽34) = 1 − 4

3 𝑞 +
1
3 𝑞

2.
Then, we have

𝐹 = 4 − 8
3
𝑞 + 1

3
𝑞2 > 0 if 𝛾𝑙𝑏 <

1
𝛼𝑟𝐴

[2 − 𝛼(𝑎 − 𝛬)] or 𝛾𝑙𝑏 >
1

𝛼𝑟𝐴
[6 − 𝛼(𝑎 − 𝛬)],

𝑇 = 1
3
𝑞2 > 0,

𝑁𝑆 = 4
3
𝑞 − 1

3
𝑞2 > 0 if 𝛾𝑙𝑏 <

1
𝛼𝑟𝐴

[4 − 𝛼(𝑎 − 𝛬)].

Therefore, E34 is locally stable if 𝛾𝑙𝑏 <
1

𝛼𝑟𝐴
[2 − 𝛼(𝑎 − 𝛬)]. □

Theorem 4 (System 4). Let 𝑎−𝛬
2𝑏 > 𝐾𝛿𝑙𝑏, then equilibrium E41 =

(

𝑎−𝛬
2𝑏 , 0

)

is locally unstable.

Proof. The Jacobian matrix (18) evaluated at E41 becomes:

𝐽41 =

[

1 − 𝛼(𝑎 − 𝛬) − 1
2𝛼(𝑎 − 𝛬)

0 1 + 1
2𝛼(𝑎 − 𝛬) + 𝛼𝑟𝐴𝛾𝑙𝑏

]

,

and tr(𝐽41) = − 1
2𝛼(𝑎 − 𝛬) + 𝛼𝑟𝐴𝛾𝑙𝑏 + 2, and det(𝐽41) = − 1

2𝛼
2(𝑎 − 𝛬)2 − 1

2𝛼(𝑎 − 𝛬) − [𝛼(𝑎 − 𝛬) − 1]𝛼𝑟𝐴𝛾𝑙𝑏 + 1.
Notice that

𝑇 = −
[ 1
2
𝛼2(𝑎 − 𝛬)2 + 𝛼2(𝑎 − 𝛬)𝑟𝐴𝛾𝑙𝑏

]

< 0.

Thus, E41 is locally unstable. The eigenvalues are: 𝑘1 = 1−𝛼(𝑎−𝛬) and 𝑘2 = 1+ 1
2𝛼(𝑎−𝛬)+𝛼𝑟𝐴𝛾𝑙𝑏, hence it can be an unstable node

r an unstable saddle node, according to parameter values. □

Starting from the local stability analysis of steady states, in the following subsection we investigate the bifurcations owned by
he system. More precisely, previous theorems enable us to study the standard local bifurcations, for which we can make use of the
mooth bifurcation theory. But our model is able to exhibit also another type of bifurcations, belonging to the class of discontinuity-
nduced bifurcations. In particular, we will investigate border-collision bifurcations, which are related to the contact of an invariant
et with the border separating the regions of different definition of the map. We will see that some fixed points collide with the
order separating the different regions 𝑅𝑖 (𝑖 = 1, 2, 3, 4), at some critical parameter values.

.3. Bifurcation analysis

We start the analysis by investigating qualitative changes causing the loss of stability of the real locally stable fixed points,
.e. ‘smooth bifurcations’.

We recall that in (24) the necessary conditions are: 𝐹 = 0 (and 𝑇 ,𝑁𝑆 > 0) for the flip bifurcation, 𝑇 = 0 (and 𝐹 ,𝑁𝑆 > 0) for
he fold bifurcation and 𝑁𝑆 = 0 (with 𝐹 , 𝑇 > 0) for the Neimark–Sacker bifurcation.

According to Theorems 1–4, the real locally stable steady states are E11, E34 and 𝑇 is positive for all of them. Hence, a preliminary
esult is found: the fold bifurcation never happens.

Moreover, based on the analysis performed in proofs, we find that a second result does hold: the flip bifurcation occurs first
efore the possible Neimark–Sacker bifurcation. The following corollary details these results.

orollary 1. Consider the locally stable real equilibria as in Theorems 1–4 for which stability conditions 𝐹 ,𝑁𝑆, 𝑇 > 0 hold, where 𝐹 ,𝑁𝑆, 𝑇
re defined by (24). Hence, 𝑇 is always positive while the sign of 𝐹 becomes negative first before 𝑁𝑆 when the corresponding parameter
alues vary, meaning that real fixed points lose stability via period-doubling bifurcation. More precisely:

• Equilibrium E11 undergoes to the flip bifurcation at 𝛼 = 2
𝑎−𝛬 ,

• Equilibrium E34 undergoes to the flip bifurcation at 𝛾𝑙𝑏 = 𝛾𝐹𝑙𝑏 (where 𝛾𝐹𝑙𝑏 = 1
𝛼𝑟𝐴

[2 − 𝛼(𝑎 − 𝛬)]).

roof. The proof directly comes from the analysis of the signs of 𝐹 ,𝑁𝑆, 𝑇 made in the proofs of Theorems 1–4. □

2 Mathematically speaking, a saddle point is unstable.
7
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As it is well-documented before, our duopoly model in (12) has borders, namely 𝐿1 = 𝐾𝛿𝑙𝑏 and 𝐿2 = 𝐾𝛿𝑙𝑏, which separate
the state phase into four regions. When we let some key parameters to vary, equilibrium loans may collide with the border. If
this happens, i.e. 𝐿∗ = 𝐾𝛿𝑙𝑏, it is called border-collision bifurcation. Generally speaking, border-collision bifurcations occur when
a trajectory collides with the boundary separating different regions of definition for the system. These phenomena are well-known
for piecewise-smooth maps which are continuous (see, among others, [13,15,16]), while they are not completely understood for
maps which are discontinuous on the border. Nevertheless, piecewise-smooth and discontinuous maps find large applicability in
explaining bifurcations in Economics and Finance and, for this reason, they became more popular in last years (e.g. [17–20]). From
this non-canonical bifurcations very rich dynamics arise.

Now, we would like to study the LDR-RR’s parameters associated to this phenomenon.
To this end, let us go to consider the locally stable steady state E11 =

(

𝑎−𝛬
3𝑏 , 𝑎−𝛬3𝑏

)

. The equilibrium is interior to its region of
definition (i.e. it is a real fixed point) if 𝐿∗

1 > 𝐾𝛿𝑙𝑏 and 𝐿∗
2 > 𝐾𝛿𝑙𝑏. In other words, the lower bound of LDR has to satisfy:

𝛿𝑙𝑏 <
𝑎 − 𝛬
3𝑏𝐾

.

he border-collision bifurcation of E11 happens when 𝛿𝑙𝑏 = 𝛿𝐵𝑙𝑏, where

𝛿𝐵𝑙𝑏 =
𝑎 − 𝛬
3𝑏𝐾

.

The fixed point E34 =
(

𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏
3𝑏 , 𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏3𝑏

)

has to satisfy 𝐿∗
1 < 𝐾𝛿𝑙𝑏 and 𝐿∗

2 < 𝐾𝛿𝑙𝑏, that is

𝛾𝑙𝑏 <
1
𝑟𝐴

(3𝑏𝐾𝛿𝑙𝑏 − (𝑎 − 𝛬)).

The border-collision bifurcation of E34 happens when 𝛾𝑙𝑏 = 𝛾𝐵𝑙𝑏 , in this case:

𝛾𝐵𝑙𝑏 = 1
𝑟𝐴

(3𝑏𝐾𝛿𝑙𝑏 − (𝑎 − 𝛬)).

In terms of the lower bound of LDR parameter:

𝛿𝑙𝑏 >
𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏

3𝑏𝐾
.

The border-collision bifurcation happens when 𝛿𝑙𝑏 = 𝛿𝐵𝑙𝑏, where:

𝛿𝐵𝑙𝑏 =
𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏

3𝑏𝐾
.

From the analysis of bifurcations of the real locally stable steady states, we obtain an expected result for the lower disincentive
parameter 𝛾𝑙𝑏, as resumed in the following remark.

Remark 1. There are two possibilities for the loss of stability of the real equilibria, which take place at the critical parameter values
as above:

1. if 𝛾𝐵𝑙𝑏 < 𝛾𝐹𝑙𝑏 then the border-collision bifurcation occurs, due to their collision with the border of definition of the map,
2. if 𝛾𝐵𝑙𝑏 > 𝛾𝐹𝑙𝑏 then they lose stability via period doubling bifurcation.

Thanks to our analysis we also know the critical parameter values, corresponding to these bifurcations for real fixed points.

3.4. Complex dynamics

In order to analyze thoroughly the possibility of complex dynamics arising, we consider the invariant sets of system. In particular,
we observe that the diagonal is a positively invariant set, since 𝑆1(𝐿,𝐿) = (𝐿′, 𝐿′) and 𝑆3(𝐿,𝐿) = (𝐿′, 𝐿′). In other terms, system
cts from the main diagonal into itself. Thanks to this fact, we can focus on the dynamics embedded by system on the diagonal,
hich can be studied through the following restriction:

𝐿𝑡+1 =

{

𝐿𝑡 + 𝛼𝐿𝑡
(

𝑎 − 𝛬 − 3𝑏𝐿𝑡
)

, 𝑖𝑓 𝐿𝑡 ≥ 𝛿𝑙𝑏𝐾
𝐿𝑡 + 𝛼𝐿𝑡

(

𝑎 − 𝛬 − 3𝑏𝐿𝑡 + 𝑟𝐴𝛾𝑙𝑏
)

, 𝑖𝑓 𝐿𝑡 < 𝛿𝑙𝑏𝐾
(25)

hich can be rewritten as:

𝐿𝑡+1 = 𝑓 (𝐿𝑡) = 𝐴𝐿2
𝑡 + 𝐵𝐿𝑡, 𝐴 = −3𝛼𝑏 < 0, 𝐵 =

{

𝐵1 = 1 + 𝛼
(

𝑎 − 𝛬 + 𝑟𝐴𝛾𝑙𝑏
)

, 𝑖𝑓 𝐿𝑡 < 𝛿𝑙𝑏𝐾
𝐵2 = 1 + 𝛼 (𝑎 − 𝛬) , 𝑖𝑓 𝐿𝑡 ≥ 𝛿𝑙𝑏𝐾

. (26)

As a consequence, the dynamics on the main diagonal are governed by a discontinuous one-dimensional map. Functions in (26)
are topologically conjugate to the logistic map 𝑧′ = 𝜇𝑧(1 − 𝑧), then the dynamics generated by each map in (26) are completely
known and can be obtained from those of the logistic map.

Let us go to study the dynamics of map taking into account the economic meaning of parameters.
We start the analysis by proving the existence of a closed and positively invariant interval, as described in the following.
8
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Fig. 1. Graph of the map 𝑓 when the conditions (𝑖) 𝛿𝑙𝑏𝐾 > 𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏
3𝑏

and (𝑖𝑖) 𝑓 ′(E34) = 2 − 𝐵1 < 0 hold.

Proposition 1. Let 𝛿𝑙𝑏𝐾 ≤ 𝑚𝑖𝑛
{

−𝐵2
𝐴 ,− 𝐵1

2𝐴

}

, hence the closed interval 𝐽 =
[

0,−𝐵2
𝐴

]

is positively invariant.

Proof. In order to prove the statement, we show that 𝐿𝑡 ∈
[

0,−𝐵2
𝐴

]

implies 𝐿𝑡+1 ∈
[

0,−𝐵2
𝐴

]

for all 𝑡. To this end, we consider:

𝑓 (𝐿) =

{

𝑓1(𝐿) = 𝐴𝐿2 + 𝐵1𝐿, 𝑖𝑓 𝐿 < 𝛿𝑙𝑏𝐾
𝑓2(𝐿) = 𝐴𝐿2 + 𝐵2𝐿, 𝑖𝑓 𝐿 ≥ 𝛿𝑙𝑏𝐾

.

Being 𝐵2 < 𝐵1, then 𝑓 (𝐿) ≥ 0 ∀𝐿 ∈ 𝐽 . Moreover, ∀𝐿 ∈ 𝐽 , 𝑓2(𝐿) ≤ 𝑓1(𝐿) and 𝑓1(𝐿) ≤ 𝑓1(𝐾𝛿𝑙𝑏) under the assumption 𝛿𝑙𝑏𝐾 ≤ − 𝐵1
2𝐴

since − 𝐵1
2𝐴 is the maximum point of 𝑓1. □

According to the previous proposition, every initial condition belonging to 𝐽 generates bounded trajectories converging to an
attractor included into the interval.

Now, we observe that the fixed points are: E11 = 𝑎−𝛬
2𝑏 , E31 = 0 and E34 = 𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏

3𝑏 , which do exist being 𝑓 ′(0) > 1 for both the
cases 𝐵 = 𝐵1 and 𝐵 = 𝐵2. Nevertheless, E31 and E34 cannot be admissible simultaneously, being 𝐵2 < 𝐵1.

Let us go to explore the case: (𝑖) 𝛿𝑙𝑏𝐾 > 𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏
3𝑏 (so that E34 is a real fixed point) and (𝑖𝑖) 𝑓 ′(E34) = 2 −𝐵1 < 0. For making the

reading easier, in Fig. 1 we represent the graph of the map 𝑓 when these assumptions hold.
Observe that, in this case, for given values of the parameter 𝐴 = −3𝛼𝑏 such that −𝐵1−1

𝐴 < 𝛿𝑙𝑏𝐾, dynamics are increasingly
complex if the parameter 𝐵1 =

𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏
3𝑏 is big enough. In fact, the real fixed point E34 is locally stable for 𝐵1 < 3. As 𝐵1 increases,

the steady state loses stability at 𝐵1 = 3 and a stable two-cycle appears, if 𝐵1 still increases other period doubling bifurcations
occur. This scenario is depicted in Fig. 2, where we let the parameter 𝛾𝑙𝑏 to vary. We observe the typical cascade of period-doubling
bifurcations when the parameter in our interest increases.

Observe that, when −𝐵1−1
𝐴 = 𝛿𝑙𝑏𝐾 the fixed point collides with the border and, consequently the border-collision bifurcation

of the fixed point happens. In Fig. 3 is shown the 1−dimensional bifurcation diagram when we let the lower bound of LDR 𝛿𝑙𝑏 to
vary. Unlike Fig. 2, now it is clear a sharp transition from stability to complex dynamics when 𝛿𝑙𝑏 increases, which characterizes
border-collision bifurcations. Moreover, Fig. 4 shows the 2−dimensional bifurcation diagram in the plane (𝛿𝑙𝑏, 𝛾𝑙𝑏) that highlights
the complex structure of the border-collision bifurcation. From an economic point of view, an excessive increase of the lower bound
of the LDR can force the instability of the banking system, this is independent of 𝛾𝑙𝑏.

Notice that, when the real fixed point is E11 (i.e. −𝐵2−1
𝐴 < 𝛿𝑙𝑏𝐾), similar results hold. In fact, for increasing values of 𝐵2, the

equilibrium loses stability via period doubling bifurcation and dynamics become more and more complex. Moreover, as well as E34,
the fixed point E11 undergoes a border-collision bifurcation at 𝑎−𝛬

2𝑏 = 𝛿𝑙𝑏𝐾.

4. Analysis of economic scenarios

The aim of this section is to stress the obtained analytical results. Indeed, given the discontinuous nature of the Dynamical System
(13), we will show that our model enables us to explore a large set of economic scenarios due to the occurrence of border-collision
bifurcations in addition to the bifurcations emerging in smooth systems. We complement our analysis emphasizing differences and
similarities with respect to the results outlined in the Italian banking system by [2,3].

A first feature of our model is that it has many fixed points depending on the region under consideration. In Table 1, we sum-up
the real equilibria E𝑖𝑗 = (𝐿∗

1 , 𝐿
∗
2) of System 𝑖 (𝑖 = 1, 2, 3, 4), where the index 𝑗 numbers them.

As we can observe, depending on the region of definition, the number of fixed points varies from one to four. Thanks to
Condition (22), we are able to exclude the case where the market is served by a unique bank. This result on Indonesian banks
9
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Fig. 2. 1−dimensional bifurcation diagram w.r.t. 𝛾𝑙𝑏 for 𝑎 = 0.1331, 𝑏 = 0.028, 𝑟𝐸 = 0.09, 𝑟𝐴 = 0.0802, 𝜅 = 0.13, 𝑐 = 0.047, 𝛼 = 400, 𝛽 = 0.1, 𝐾 = 0.105, 𝛿𝑙𝑏 = 0.78.

Fig. 3. 1−dimensional bifurcation diagram w.r.t. 𝛿𝑙𝑏 for 𝑎 = 0.1331, 𝑏 = 0.03, 𝑟𝐸 = 0.09, 𝑟𝐴 = 0.0802, 𝜅 = 0.13, 𝑐 = 0.047, 𝛼 = 30, 𝛽 = 0.1, 𝐾 = 0.09, 𝛾𝑙𝑏 = 0.02.

Fig. 4. On the left it is depicted the attractor for 𝑎 = 0.1331, 𝑏 = 0.03, 𝑟𝐸 = 0.09, 𝑟𝐴 = 0.0802, 𝜅 = 0.13, 𝑐 = 0.047, 𝛼 = 30, 𝛽 = 0.1, 𝐾 = 0.09, 𝛾𝑙𝑏 = 0.02, 𝛿𝑙𝑏 = 0.5.
On the right, the corresponding 2−dimensional bifurcation diagram in the plane (𝛿𝑙𝑏 , 𝛾𝑙𝑏).
10
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Table 1
Real fixed points belonging to different regions.

E𝑖1 E𝑖2 E𝑖3 E𝑖4

E1𝑗

(

𝑎−𝛬
3𝑏

, 𝑎−𝛬
3𝑏

)

E2𝑗

(

0, 𝑎−𝛬
2𝑏

)

E3𝑗 (0, 0)
(

𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏
2𝑏

, 0
) (

0, 𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏
2𝑏

) (

𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏
3𝑏

, 𝑎−𝛬+𝑟𝐴𝛾𝑙𝑏
3𝑏

)

E4𝑗

(

𝑎−𝛬
2𝑏

, 0
)

Fig. 5. Bifurcation diagram of the lower disincentive parameter 𝛾𝑙𝑏 of (a) 𝐿1,𝑡, (b) 𝐿2,𝑡, and (c) 𝐿𝑡 = 𝐿1,𝑡 +𝐿2,𝑡. Parameter values: 𝑎 = 0.1331, 𝑏 = 0.0755, 𝑟𝐸 = 0.09,
𝑟𝐴 = 0.0802, 𝜅 = 0.13, 𝑐 = 0.047, 𝛼 = 500, 𝛽 = 0.1, 𝐾 = 0.09, 𝛿𝑙𝑏 = 0.78, 𝛬 = 0.1285 and 𝛾𝑙𝑏 ∈ [0; 0.05].

Fig. 6. Attractor of the map in the plane (𝐿1,𝑡 , 𝐿2,𝑡) when 𝑎 = 0.1331, 𝑏 = 0.0755, 𝑟𝐸 = 0.09, 𝑟𝐴 = 0.0802, 𝜅 = 0.13, 𝑐 = 0.047, 𝛼 = 500, 𝛽 = 0.1, 𝐾 = 0.09, 𝛿𝑙𝑏 = 0.78,
𝛬 = 0.1285 and 𝛾𝑙𝑏 = 0.002 in (a), 𝛾𝑙𝑏 = 0.0067 in (b), and 𝛾𝑙𝑏 = 0.007 in (c).

is in line with the Italian banks. Although in [2,3] banks are divided into large and small depending on their beliefs and cost
functions, the market reaches a better equilibrium if all banks participate in the intermediation process even if all banks are equal.

Based on the outcomes of Corollary 1, in Fig. 5 we report the bifurcation diagrams of the model when we let the lower disincentive
parameter to vary in the range 𝛾𝑙𝑏 ∈ [0; 0.05]. Note that the set of parameter values used in this scenario permits the model to exhibit
bifurcations occurring in smooth systems. In line with Remark 1, the equilibrium of the model loses stability via flip bifurcation.
From an economic point of view, the situation described in Fig. 5 is useful for three main reasons. First, increasing values of the
disincentive parameter mean that the level of intermediation of banks is not appropriate and it needs to foster the lending activity
of banks. Second, this scenario is helpful for policy-makers to understand the level of disincentive that banks can tolerate in period
of firms’ financial distress (where the lending activity is more intense). Third, we are taking into account that banks have a large
sensitivity with respect to the environment information (typical when banks are facing a period of financial bust). To this regard,
Fig. 5 shows that small increments of the lower disincentive parameter lead to more complicated dynamics. Moreover, the behavior
of the banks in the model is symmetric and the loss of stability can amplify the consequences in the whole economy. Fig. 6 confirms
the previous facts, indeed, we observe that increasing the value of the lower disincentive parameter the attractor of the system
changes its structure from a 2−cycle (Fig. 6(a)) to a four-pieces chaotic attractor (Fig. 6(b)) and to a two-pieces chaotic attractor
(Fig. 6(c)). In all these cases, the dynamics of the system is trapped into complex attractors and the path of the loans supplied in
the economy is unpredictable.

From these facts, we can draw an important conclusion. If banks are more sensitive to the economic environment, and they
have homogeneous expectations, in period of financial distress the choice of the policy-maker to increase the lower disincentive
11
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Fig. 7. Bifurcation diagram of the lower disincentive parameter 𝛾𝑙𝑏 of (a) 𝐿1,𝑡, (b) 𝐿2,𝑡, and (c) 𝐿𝑡 = 𝐿1,𝑡 + 𝐿2,𝑡. The simulation makes use of 𝛼 = 30.

Table 2
Parameter values for simulations of Figs. 7–9.

Parameter Value

𝑎 0.133
𝑏 0.07
𝑟𝐸 0.09
𝑟𝐴 0.08
𝜅 0.14
𝑐 0.047
𝛼 Given in each figure’s caption
𝛽 0.1
𝐾 0.09
𝛾𝑙𝑏 0.1 or given in each figure’s caption
𝛿𝑙𝑏 0.78 or given in each figure’s caption

parameter could amplify the negative consequences of a contraction of the lending activity in the whole economy. In this regard,
it is important the action of the policy-maker to persuade banks to not reduce the intermediation activity, even if it is costly and
they have found more profitable opportunity.

The discontinuity structure of our model allows us to study the economic scenario emerging via border-collision bifurcations.
The simulations shown in Figs. 7–9 use parameter values as in Table 2 and initial conditions 𝐷1,0 = 0.015, 𝐷2,0 = 0.013, 𝐿1,0 = 0.012,
and 𝐿2,0 = 0.01. In all these cases, the first condition of Remark 1 holds. The rationale of this second group of simulations concerns
the possibility for the policy-maker to act not only on the lower disincentive parameter (𝛾𝑙𝑏), but also on the lower bound of LDR
parameter (𝛿𝑙𝑏).

Fig. 7 tells us a different story with respect to what happens in Fig. 5, indeed now the speed of adjustment parameter 𝛼 is
lower than the previous case. As a result, the policy-maker could foster the intermediation activity of banks increasing the lower
disincentive parameter. However, when the resistance level of the lower disincentive parameter is violated, we observe a sudden
transition from stability to instability.

In Fig. 8 we perform simulations considering larger values of both the speed of adjustment parameter and the lower bound
of LDR. In this case, we see that not only the supply of loans increases, but also the possibility for the policy-maker to consider
larger value of the lower bound of LDR parameter. These results help us to understand the best choice for sustaining the traditional
intermediation activity of banks.

In Fig. 9, we highlight the consequences of a wrong management of the LDR-RR instruments. Indeed, an excessive increase of
the lower bound of LDR alters the stability of the economic system, amplifying the period of financial bust. A further failure of the
LDR-RR instruments is represented in Fig. 10 and in Fig. 11. In both the simulations, we depict the attractor of system on the left and
the corresponding 2−dimensional bifurcation diagram in the plane (𝛿𝑙𝑏, 𝛾𝑙𝑏), on the right. We can observe the change in the complex
attractor from a four-pieces to one-piece and the related bifurcation structures. These graphs give evidence that persisting with the
incorrect use of macroprudential tools can increase the level of instability of the banking system. The key point concerns the role of
the policy-maker, who has to tune correctly the level of the parameters of the LDR-RR, in order to sustain the intermediation activity
of banks and the well-being of the whole economy. Finally, taking into account our results on the LDR-RR instruments, we would
propose a specific program that the regulator could apply in order to better control the activity of banks and, as a consequence, the
stability of the financial system. In particular, we saw that an excessive increase of the lower disincentive parameter or of the lower
bound of LDR could be detrimental, not only for the stability of the system but also for the survivor of banks. In this respect, the
regulator could distinguish between banks of different size according to some specific criteria (for example, relying on the number of
branches of a bank) and tune the appropriate parameter. In detail, in order to foster the lending activity, the regulator could increase
the value of the lower disincentive parameter for the small banks and, on the other hand, extend the level of reserve requirement
for large banks. Indeed, it is true that raising the value of the lower disincentive parameter penalizes small banks more than large
12
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Fig. 8. Bifurcation diagram of the lower bound of LDR parameter 𝛿𝑙𝑏 of (a) 𝐿1,𝑡, (b) 𝐿2,𝑡, and (c) 𝐿𝑡 = 𝐿1,𝑡 + 𝐿2,𝑡. The simulation makes use of 𝛼 = 110.

Fig. 9. Chaotic attractor in the (𝐿1,𝑡 , 𝐿2,𝑡)−plane when 𝛼 = 110, 𝛿𝑙𝑏 = 0.64. The simulation is run on the time interval [501, 5500].

Fig. 10. On the left it is depicted the attractor for 𝑎 = 0.1331, 𝑏 = 0.0755, 𝑟𝐸 = 0.09, 𝑟𝐴 = 0.0802, 𝜅 = 0.13, 𝑐 = 0.047, 𝛼 = 560, 𝛽 = 0.1, 𝐾 = 0.09, 𝛾𝑙𝑏 = 0.008,
𝛿𝑙𝑏 = 0.78. On the right, the corresponding 2−dimensional bifurcation diagram in the plane (𝛿𝑙𝑏 , 𝛾𝑙𝑏).

ones, due to their size. Thus, a common strategy that does not take into account the size of banks could penalize one category more
than the other, or it could not have effects.

5. Conclusions and further developments

The dynamics of our model is driven by a two-dimensional discontinuous dynamical model, defined on four different regions,
developed in order to analyze the role of the macroprudential policy instrument, the LDR-RR, on the stability of the economic system.
13
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Fig. 11. On the left it is depicted the attractor for 𝑎 = 0.1331, 𝑏 = 0.0755, 𝑟𝐸 = 0.09, 𝑟𝐴 = 0.0802, 𝜅 = 0.13, 𝑐 = 0.047, 𝛼 = 580, 𝛽 = 0.1, 𝐾 = 0.09, 𝛾𝑙𝑏 = 0.002,
𝛿𝑙𝑏 = 0.78. On the right, the corresponding 2−dimensional bifurcation diagram in the plane (𝛿𝑙𝑏 , 𝛾𝑙𝑏).

In particular, the final map has been studied analytically, demonstrating that it is able to exhibit border-collision bifurcations, beyond
the standard bifurcations of smooth maps. Conditions on the parameters allow us to study the main economic scenarios emerging via
bifurcation analysis. Several notable economic results have been obtained. In particular, the role of the lower disincentive parameter
and the lower bound of the LDR play a key role in the lending activity of banks. However, an excessive increase of these parameters
leads to period of instability of the economic system, emerging via border-collision bifurcations. In this regard, the role of the policy
maker is crucial because she must tune correctly these parameters in order to guarantee the stability and the growth of the whole
economy.

This model is also suitable for further extensions. In particular, we intend to study in depth the virtual fixed points owned by
our model, following e.g. the contribute of [14]). Anyway, our system is characterized by a rich variety of dynamic scenarios and
a unique study cannot investigate all of them in detail. For this reason, our framework opens interesting developments.

Finally, in this paper we focus on the role of two important parameters: the lower disincentive parameter and the lower bound
of the LDR. In the future, we will also consider the contribute of the upper bound and incentive CAR.
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