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SUMMARY

This paper deals with the Model Predictive Control (MPC) of Linear, Time-Invariant Discrete-time Polytopic

(LTIDP) systems. The twofold aim is to simplify the treatment of complex issues like stability and feasibility

analysis of MPC in the presence of parametric uncertainty as well as to reduce the complexity of the relative

optimization procedure. The new approach is based on a two Degrees Of Freedom (2DOF) control scheme

where the output r(k) of the feedforward Input Estimator (IE) is used as input forcing the closed-loop system

Σf . Σf is the feedback connection of an LTIDP plant Σp with an LTI feedback controller Σg . Both cases of

plants with measurable and unmeasurable state are considered. The task of Σg is to guarantee the quadratic

stability of Σf , as well as the fulfillment of hard constraints on some physical variables for any input r(k)

satisfying an ”a priori” determined admissibility condition. The input r(k) is computed by the feedforward

IE through the on-line minimization of a worst case finite-horizon quadratic cost functional and is applied to

Σf according to the usual receding horizon strategy. The on line constrained optimization problem is here

simplified reducing the number of the involved constraints and decision variables. This is obtained modeling

r(k) as a B-spline function, which is known to admit a parsimonious parametric representation. This allows

us to reformulate the minimization of the worst case cost functional as a box-constrained Robust Least

Squares (RLS) estimation problem which can be efficiently solved using Second Order Cone Programming

(SOCP). Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the case of plants affected by parametric uncertainty and/or unknown bounded disturbances, a

common approach to robust MPC is its formulation in terms of a min-max constrained optimization

problem. The methods derived from this approach can be classified into two main categories: open

and closed-loop Min-Max MPC (MMMPC).

Open-loop MMMPC is based on the minimization of the ”worst-case” objective functional using

a single control sequence [1]-[5]. The inconvenience of this approach is the conservatism due to the

open-loop nature of the optimization problem: the optimum is searched as a single control sequence

for all possible uncertainties. An improvement is represented by the closed-loop min-max approach

where the ”worst-case” objective functional is minimized with respect to a sequence of feedback

control policies [6]-[8].

Both approaches inherit in a considerably increased way the major issues of MPC for exactly

known plants: more complicated stability and feasibility conditions and, especially, much more

computationally demanding procedures for the numerical solution of the on line optimization

problem. In fact the MMMPC requires minimizing the worst case of a cost functional which is

computed as the maximum with respect to all the possible uncertainties over the prediction horizon.

To reduce the computational burden, an approximate solution of the MMMPC is obtained in

[9] where an upper bound of the worst case cost functional is minimized using LMI techniques.

To further improve computational efficiency, different kinds of cheap upper bound of the worst

case with relative minimization procedures have been proposed in [10]-[14]. A different approach

exploits the results presented in [15]-[16] where it is shown that a piece-wise affine state-feedback

control law can be explicitly precomputed off-line through multi parametric programming. Such

results have been extended to MMMPC with `1 or `∞ norm functional in [17]-[18] and in [19]-[20]

with quadratic cost functional. However, explicit formulations of MMMPC require the partition of

∗Correspondence to: Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Ancona, Italy.
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the state space into polyhedral regions whose number is growing in a combinatorial explosion. To

reduce the corresponding searching time a search tree structure has been proposed in [16].

The twofold purpose of this paper is: 1) to propose a novel MMMPC strategy characterized

by greatly simplified stability and feasibility analysis, 2) to reduce the complexity of the on line

constrained optimization procedure.

The basic point of the alternative approach proposed here is the adoption of an MPC strategy

in a 2DOF control scheme to exploit the advantages of feedback prediction and of the degrees of

freedom introduced by the feedforward IE.

In practice, the present MMMPC works according to the following two-step procedure:

Step 1. Given an LTIDP plant Σp, a LTI feedback controller Σg is designed to guarantee the

quadratic stability of the closed-loop system Σf and the fulfillment of hard constraints on some

physical variables in correspondence of any admissible input ( i.e. ‖r(k)‖22 < γ, ∀k > 0, for a

suitably computed γ) forcing Σf .

Step 2. An admissible input sequence r(k) is applied to Σf according to a receding horizon control

strategy. This sequence is computed searching for the minimum of a ”worst case” quadratic cost

functional over each prediction interval in the linear space generated by B-spline functions of a

fixed degree. This second step is executed by the feedforward IE.

Decomposing the MMMPC problem in the above two distinct steps entails the following

remarkable advantages:

1) The internal stability of Σf and the admissibility condition on r(k) assure both the uniform

boundedness of any internal variable of the 2DOF control scheme and the fulfillment of all

constraints at any time instant. Hence, stability and recursive feasibility of the adopted MMMPC

strategy are guaranteed in advance without imposing terminal state constraints and/or using a

contraction approach for a suitable tuning of the parameters defining the cost functional.

2) If Σg also contains an internal model of the desired (and admissible) reference yd(k) to be

tracked, an exact asymptotic tracking can be directly achieved even in the case of plant-model

mismatch, [21].

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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This greatly simplifies the alternative solutions to the tracking problem where additional decision

variables relative to the dynamics of yd(k) are introduced in the optimization procedure. A drawback

of these methods is that they increase the number of decision variables involved in the optimization

problem (see e.g. [22] and references therein). The internal model also yields a Σf with a diagonal

static gain matrix, so that it guarantees the noticeable advantage of an exact static decoupling, [23].

3) Modeling r(k) as a B-spline decreases the number of decision variables because these functions

admit a parsimonious parametric representation and belong to the convex hull defined by the relative

control points, [24]. This property allows the transfer of any amplitude constraint defined on a B-

spline function to its control points. As a consequence (see Section 5), the constrained minimization

of the cost functional can be formulated as a box-constrained RLS estimation problem with only box

constraints on the unknowns (the control points defining the admissible B-spline function r(k)).

Approaching this problem by SOCP allows the application of numerically efficient primal-dual

interior-point methods ([25],[26]).

The paper is organized in the following way. Some mathematical preliminaries are recalled in

Section 2, the control problem is defined in Section 3. The design of the stabilizing controller Σg

is shown in Section 4 considering both cases of measurable and unmeasurable state; the on line

estimation of r(k), produced by the feedforward IE, is explained in Section 5. Some issues on the

tracking problem are discussed in Section 6; two numerical examples are reported in Section 7,

some concluding remarks are given in Section 8.

2. MATHEMATICAL BACKGROUND

2.1. B-spline functions [24]

Analytic scalar B-splines functions are defined in the following way:

s(v) =
∑̀
i=1

ciBi,d(v), v ∈ [v̂1, v̂`+d+1] ⊆ IR, (1)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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where the ci’s are real numbers representing the control points of s(v), the integer d is the degree of

the spline, the (v̂i)
`+d+1
i=1 are the non decreasing knot points and the Bi,d(v) are given by the Cox-de

Boor recursion formula

Bi,d(v) =
v − v̂i

v̂i+d − v̂i
Bi,d−1(v) +

v̂i+1+d − v
v̂i+1+d − v̂i+1

Bi+1,d−1(v), d ≥ 1, (2)

with Bi,0(v) = 1 if v̂i ≤ v < v̂i+1, otherwise 0.

In (2) possible division by zero are resolved by the convention that ”anything divided by zero is

zero”.

Convex Hull Property. Any value assumed by s(v), ∀v ∈ [v̂j , v̂j+1], j > d, lies in the convex

hull of its d+ 1 control points cj−d, · · · , cj . 4

Identifying the parameter v of (1) with the time instant t, the sampled B-spline s(k Tc) is obtained

by direct uniform sampling of the corresponding analytic B-spline.

The discrete B-spline s(k) (omitting the explicit dependence on Tc) can be used to represent a

scalar discrete time signal. Defining

c
4
= [c1 · · · c`]T , Bd(k)

4
= [B1,d(k) · · ·B`,d(k)] , (3)

where each Bi,d(k) is obtained by (2) setting v = k and v̂i = k̂i, i = 1, · · · , d+ `+ 1, the sampled

B-spline s(k) can be represented as

s(k) = Bd(k)c, k ∈ [k̂1, k̂`+d+1]. (4)

For a q-component vector s(k) = [s1(k), · · · , sq(k)]T , a compact B-splines representation can be

used

s(k) = B̄d(k)c̄, k ∈ [k̂1, k̂`+d+1], (5)

where

c̄
4
=
[
c1
T , · · · , cqT

]T
, B̄d(k)

4
= diag [Bd(k),Bd(k), · · · ,Bd(k)] . (6)

Each ci
4
= [ci,1, · · · , ci,`]T , i = 1, · · · , q, is defined as in (3). The dimensions of c̄ are (q`× 1). The

dimensions of the block diagonal matrix B̄d(k) are (q × q`).

Remark 1. From (4) it is apparent that, once the degree d and the knot points k̂i have been fixed, the

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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B-spline s(k), k ∈ [k̂1, k̂`+d+1], is completely determined by the corresponding vector c of ` control

points. As, in general, ` << kM , where kM is the number of sampled instants of [k̂1, k̂`+d+1], B-

splines are said to admit a parsimonious parametric representation.

2.2. SOCP formulation of the RLS problem [25],[26]

Given an overdetermined set of linear equations Df ≈ g, with D ∈ IRr×s, g ∈ IRr, subject to

unknown but bounded errors: ‖δD δg‖F ≤ ρ, (ρ > 0), the robust least squares estimate f̂ ∈ IRs

is the value of f minimizing

φ(D, g, ρ)
4
= min

f
max

‖δD δg‖F≤ρ
‖(D + δD)f − (g + δg)‖2, (7)

where ‖ · ‖F denotes the Frobenius norm.

Assuming ρ = 1, in [25] it is shown that problem (7) can be formulated as the following SOCP

minimize λ subject to ‖(Df − g)‖2 ≤ λ− τ, ‖[fT , 1]T ‖2 ≤ τ,

which can be efficiently solved using interior point methods. Possible constraints on f of the kind

fmin ≤ f ≤ fmax, can be taken into account by imposing all the scalar linear inequalities deriving

from the above vector constraint.

The solution of the above SOCP can be directly extended to the case ρ 6= 1, using the fact:

ρφ(D/ρ, g/ρ, 1) = φ(D, g, ρ).

2.3. System constraints and invariant sets for polytopic systems

Consider the LTIDP system Σ ≡ (C,A(α), B) given by

x(k + 1) = (

l∑
i=1

αiAi)x(k) +Br(k), (8)

y(k) = Cx(k) (9)

where x(k) ∈ IRn, r(k) ∈ IRq, y(k) ∈ IRq and the vector α = [α1, · · · , αl]T , belongs to the unit

simplex (denoted by Λl).

An invariant γ-feasible set of Σ is a convex compact set X containing the origin, such that, for every

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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input r(k), satisfying the following admissibility condition

rT (k)r(k)
4
= ‖r(k)‖22 ≤ γ, ∀k > 0, and for some γ > 0, (10)

one has x(k) ∈ X ⇒ A(α)x(k) +Br(k) ∈ X , ∀α ∈ Λl, and the following constraint is satisfied

|zi(k)| = ‖zi(k)‖2 ≤ z̄i, i = 1, · · · , h, (11)

where zi(k) is the i-th element of the h-vector z(k) = Czx(k), and z̄i is the corresponding

pre-specified hard constraint. Vector z(k) defines the constrained state variables corresponding

to some suitably chosen Cz . Here X is assumed to be an ellipsoid set defined as E(P, γ) =

{x(k) |x(k)TPx(k) ≤ γ}, where P 4= Q−1 is a symmetric positive definite matrix.

3. PROBLEM SETUP

𝐼𝐸
𝑟(k)𝑦d(k) u(k) y(k)

-

+ +

-

Σf

𝑥c(k)Σ𝑐

Σ𝑜

Σ𝑝

Σ2𝐷𝑂𝐹

𝑥3f(k)

K𝑐

K𝑝

𝑥3p(k)

Figure 1. The 2DOF control scheme.

The MMMPC strategy proposed in this paper is realized through the 2DOF control scheme shown

in Fig. 1 where: yd(k) is the piece-wise constant desired reference to be tracked and y(k) is the

controlled output. The output of the feedforward IE is the input r(k) ∈ IRq forcing Σf .

The block Σf is the feedback connection of an LTIDP plant Σp ≡ (Cp, Ap(α), Bp), α ∈ Λl, of the

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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same kind of (8),(9)

xp(k + 1) = (

l∑
i=1

αiApi)xp(k) +Bpu(k), xp ∈ IRnp , u ∈ IRm, α ∈ Λl, (12)

y(k) = Cpxp(k), y ∈ IRq, (13)

with a dynamic LTI controller Σg which includes the internal model of constant signals Σc and a

full state observer Σo (if xp(k) is not measurable).

The state vectors of Σc, Σp and Σf are denoted by xc(k), xp(k) and xf (k) respectively. The vectors

x̂p(k) and x̂f (k) are the estimates of xp(k) and xf (k). The control input forcing the LTIDP plant

Σp is denoted as u(k) ∈ IRm.

In view of an exact asymptotic tracking requirement for constant signals, the following assumptions

on Σp are made: A1) m ≥ q; A2) Σp has not a transmission zero at z = 1 of Z plane ∀α ∈ Λl. The

explicit expressions of Σc and Σo will be given in the next section. As Σg is LTI and independent

of α, also Σf ≡ (Cf , Af (α), Bf ) results to be an LTIDP system of the same kind of Σ given by

(8)-(9). The purpose of Σg is to guarantee the fulfillment of the following requirements:

r1) quadratic stability of Σf ;

r2) the existence of an invariant γ-feasible set X for Σf , such that xf (k) ∈ X ⇒ Af (α)xf (k) +

Bfr(k) ∈ X , ∀α ∈ Λl, and constraints like (11) are satisfied by each component of the vector

zf (k) = Czfxf (k), for any admissible input r(k) of Σf satisfying (10).

Vector zf (k) defines the constrained variables corresponding to some suitably defined Czf .

Asymptotic tracking of a fixed set point yd(k) = yd, can be obtained as a consequence of r1, of

assumptions A1) and A2) and of the introduction of Σc ([21]), provided that r(k) converge to yd. In

the case of a piece-wise constant yd(k), each set point is almost exactly achieved provided it is kept

over a sufficiently long time interval.

The inputs of IE are yd(k) and x̂f (k). This information is exploited by the IE to compute r(k)

solving the following Min-Max Constrained Optimization Problem (MMCOP) at each k = jNr,

for some Nr > 0, j = 0, 1, 2 · · · ,

MMCOP: min
[r(k),··· ,r(k+Ny−1)]

max
α∈Λl

Jα,

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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Jα
4
=

Ny∑
i=1

eTy (k + i|k)Qy(k)ey(k + i|k)

+λ1(k)

Ny−1∑
i=0

eTr (k + i|k)Qr(k)er(k + i|k)

+λ2(k)

Nu∑
i=1

eTu (k + i|k)Qu(k)eu(k + i|k), (14)

where Qy(k), Qr(k) and Qu(k) are positive definite matrices and

Ny ≥ Nu, Ny ≥ Nr, λ1(k) ≥ 0, λ2(k) ≥ 0, k ≥ 0 (15)

ey(k + i|k)
4
= yd(k)− y(k + i|k), (16)

er(k + i|k)
4
= yd(k)− r(k + i), (17)

eu(k + i|k)
4
= u(k + i|k)− ũ(k), (18)

subject to

rmin ≤ r(k + i) ≤ rmax, i = 0, · · · , Ny − 1. (19)

In the above equations ũ(k) is the steady-state value of u(k) corresponding to a suitably defined

nominal plant, y(k + i|k), u(k + i|k) and r(k + i) are the predicted output, control effort and B-

spline respectively, rmin and rmax are q-vectors computed so as to satisfy (10).

Note that in equations (16),(17), the reference trajectory is evaluated at time instant k to avoid

undesired anticipative effects on y(k) due to possible set point changes inside the prediction horizon

Ny.

The MMCOP is solved at each time instant k = jNr and only the first Nr samples of the whole

sequence [r(k), · · · , r(k +Ny − 1)] are applied to Σf according to the receding horizon control

policy.

Remark 2. The considerations developed in this section clearly show the idea underlying the present

approach and the relative advantages of the resulting MMMPC procedure. Designing Σg according

to r1 guarantees the uniform boundedness of xf (k) for any uniformly bounded r(k), independently

of Ny, Nr, Nu, λ1(·), λ2(·), Qu(·), Qr(·) and Qy(·). This releases the stability issue from the

prediction horizon and other tuning parameters. Requirement r2 allows us to transfer any constraint

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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on zf (k) of the kind (11) on a corresponding upper bound γ on ‖r(k)‖22. Namely, unlike the other

approaches, the constrained variables coincide with those ones with respect to the optimization

problem has to be solved. The bound γ is explicitly taken into account in the MMCOP through the

feasible constraints (19). As formally stated in Theorem 2 of Section 5, this implies that the proposed

two-step procedure yields an MMMPC strategy with guarantee of internal stability of Σ2DOF and

recursive feasibility.

Remark 3. The presence of the internal model Σc guarantees exact asymptotic tracking if

r(k) exactly converges to the desired set point value. The penalty term λ1(k)
∑Ny−1

i=0 eTr (k +

i|k)Qr(k)er(k + i|k) is useful to speed up such a convergence. This is particularly important in the

case of piecewise constant signals yd(k) which are not frozen on a fixed set point for a sufficiently

long time interval and tracking precision is the dominant criterion.

4. STEP 1: DESIGN OF Σg

The LTI feedback controller Σg is designed here using ellipsoidal robust invariant sets because

of their closed relation to quadratic Lyapunov functions leading to an LMI-based optimization

problem.

4.1. Unmeasurable state

The controller Σg includes the internal model of constant signals Σc, whose state-space

representation is xc(k + 1) = Acxc(k) +Bc(r(k)− y(k)), (Ac = Bc = Iq), xc ∈ IRnc=q and a full

state observer Σo of the form

x̂p(k + 1) = Āpx̂p(k) +Bpu(k) + L(y(k)− Cp x̂p(k)), x̂p ∈ IRnp (20)

where: Āp
4
= (
∑l

i=1Api)/l is the assumed nominal dynamical matrix of the plant.

According to Fig. 1, the output u(k) ∈ IRm of Σg forcing the polytopic plant Σp is given by

u(k) = −Kpx̂p(k) +Kcxc(k). (21)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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The state space representation (Cf , Af (α), Bf ) of the square closed loop system Σf with xf
4
=

[x̂Tp , x
T
c , x

T
p − x̂Tp ]T ∈ IRn and n 4= 2np + nc is

xf (k + 1) =


Āp −BpKp BpKc LCp

−BcCp Ac −BcCp

∆Ap(α) 0 Ap(α)− LCp

xf (k) +


0

Bc

0

 r(k) (22)

y(k) =

[
Cp 0 Cp

]
xf (k) (23)

where ∆Ap(α)
4
= Ap(α)− Āp and 0 denotes the null matrix.

The constrained state is

zf (k)
4
= [zTu (k), zTxf

(k)]T , zu(k) ∈ IRnu , zxf
(k) ∈ IRnxf (24)

where the respective components zu,r(k) and zxf ,w(k) ( r = 1, · · · , nu, w = 1, · · · , nxf
) have

to satisfy constraints like (11) for some given z̄u,r and z̄xf ,w respectively. Typically zu(k) =

Czuxf (k) = u(k), so that, by (21), nu = m and Czu =

[
−Kp Kc 0

]
4
= K̂ while zxf

(k) =

Czxf
xf (k) represents any vector of variables linearly depending on the state. For example if

zxf
(k) = y(k) then by (23), nxf

= q and Czxf
= Cf =

[
Cp 0 Cp

]
.

It is remarked that the above distinction between zu(k) and zxf
(k), is necessary because, unlike

zxf
(k), zu(k)

4
= u(k), depends on xf (k) through of a matrix which is a design parameter. Such a

matrix has to be determined imposing the fulfillment of the control specifications.

Once Σc has been designed according to the internal model principle, the controller gain matrices

are computed as specified beneath.

Design of the controller gains.

For any fixed matrix L of the observer (20) , the gain matrix
[
−Kp Kc 0

]
4
= K̂ can be computed

observing that by (22) the polytopic closed loop dynamical matrix Af (α) can be rewritten as

Af (α)
4
= Â(α) + B̂K̂, where

Â(α) =


Āp 0 LCp

−BcCp Ac −BcCp

∆Ap(α) 0 Ap(α)− LCp

 , B̂ =


Bp

0

0

 (25)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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Equations (25) are used to design Σg according to the following procedure, which can be devised

as a sort of separation principle working for sufficiently small parametric uncertainty:

i) The observer gain matrix L is chosen such that (Ap(α)− LCp) is quadratically stable ∀α ∈ Λl.

ii) Once the observer Σo has been designed, the gain matrix K̂ is computed as solution of the

following problem.

P1 Given the polytopic plant (Â(α), B̂) in (25), find a matrix K̂ and the maximum invariant γ-

feasible set X (where also γ is maximized), such that the following conditions are satisfied:

• Σf ≡ (Cf , Af (α), Bf ) ≡ (Cf , Â(α) + B̂K̂, Bf ) is quadratically stable ∀α ∈ Λl;

• constraints on zf (k) are fulfilled for every initial condition xf (0) ∈ X , ∀α ∈ Λl and every

admissible input r(k) satisfying (10).

Remark 4 Since in the augmented state xf only the plant state, xp, is of interest, instead of

maximizing the entire ellipsoid volume only the ellipsoid projection on xp subspace is maximized.

The projection of X onto xp is given by Xxp

4
= Exp

(P, γ) = {xp(k) |xp(k)T (Txp
QTTxp

)−1xp(k) ≤

γ} with Txp
defined by xp = Txp

xf .

Theorem 1 Consider the plant (Â(α), B̂) in (25) and define η as η 4= γ−1. Quadratic stability

and the invariant γ feasible set X (where both Xxp
and γ are maximized) for Σf ≡ (Cf , Â(α) +

B̂K̂, Bf ) subject to (11) and forced by any r(k) satisfying (10), are obtained by solving the

following semidefinite programming problem:

minimize (-log(det(Txp
QTTxp

) + η) subject to:

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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Q 0 βQ QÂTi + Y T B̂T

0 βI 0 BTf

βQ 0 βQ 0

ÂiQ+ B̂Y Bf 0 Q


≥ 0, i = 1, · · · , l (26)

 Q Y T ITr

IrY z̄2
u,rη

 ≥ 0, r = 1, · · · ,m (27)

 Q (QÂTi + Y T B̂T )CTzxf
ITw

IwCzxf
(ÂiQ+ B̂Y ) z̄2

xf ,w
η − IwCzxf

BfB
T
f C

T
zxf

ITw

 ≥ 0, i = 1, · · · , l, w = 1, · · · , nxf
(28)

in the variables η > 0, 0 < β < 1, Q = QT = diag[Q1, Q2] ∈ IRn×n, n = 2np + nc and Y =

[Y1 0] ∈ IRm×n, Y1 ∈ IRm×(np+nc) and in the vertices

Âi
4
=


Āp 0 LCp

−BcCp Ac −BcCp

Api − Āp 0 Api − LCp


and the row vector Ir (Iw) is composed of all null elements save the element 1 in the r-th (w-th)

position. 4

If the set of inequalities admits a solution then the quadratically stabilizing feedback gain K̂ =

Y Q−1 = [Y1Q
−1
1 0] is found. The maximum admissible value γ = η−1 is found for r(k) and the

invariant γ-feasible set X ≡ E(P, γ) with P = Q−1 for Σf is obtained.

Proof of Theorem 1. For the sake of brevity, the details of the proof are not reported. The theorem

can be proved along the lines provided in [27] (see Theorem 1) with some modifications due to: 1)

according to Remark 4, a projected ellipsoid is here used, 2) in [27] ‖r‖22 is overbounded by 1, here

‖r‖22 is overbounded by a scalar γ which is not fixed ”a priori” but is maximized including η = γ−1

in the functional to be minimized; 3) in [27] an euclidean norm bound is imposed to the constrained

state z(k), here component-wise bounds are more realistically considered. 4

Remark 5 The presence of β makes inequality (26) a BMI, which can be transformed into a

LMI through a gridding over the interval (0, 1) where β takes values. 4
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4.2. Measurable state

If the state is accessible for measure (namely Cp = Inp
), there is no need of an observer. As x̂p(k) =

y(k) = xp(k), the control input u(k) forcing Σp is given by u(k) = −Kpxp(k) +Kcxc(k) and the

state space representation (Cf , Af (α), Bf ) of Σf with xf
4
= [xTp , x

T
c ]T ∈ IRn and n 4= np + nc is

xf (k + 1) =

Ap(α)−BpKp BpKc

−BcCp Ac

xf (k) +

 0

Bc

 r(k) (29)

y(k) =

[
Cp 0

]
xf (k). (30)

The gain matrix
[
−Kp Kc

]
4
= K̂ is computed observing that the polytopic closed loop dynamical

matrix Af (α) can be rewritten as Af (α)
4
= Â(α) + B̂K̂, where

Â(α) =

 Ap(α) 0

−BcCp Ac

 , B̂ =

Bp
0

 . (31)

Analogously to the case of non-accessible state, the feedback matrix K̂ and the invariant γ

feasible set X are determined applying the procedure of Theorem 1 with the following variants:

Âi
4
=

 Api 0

−BcCp Ac

, Czu
4
=

[
−Kp Kc

]
= K̂, Czxf

4
=

[
Cp 0

]
(if zxf

≡ y(k)), Bf =

 0

Bc

,

Q
4
= Q1 ∈ IRn×n and Y 4= Y1 ∈ IRm×n, n = np + nc. 4

Once Σg and X are determined (according to 4.1 or 4.2), the idea underlying the preliminary

results can be summarized as follows. The stabilizing controller guarantees that, ∀xf (0) ∈ X ,

∀α ∈ Λl, the fulfillment of all hard constraints (11) is ensured ” a priori” provided the obtained

quadratically stable Σf is forced by an admissible input r(k), namely an r(k) satisfying (10) with

γ = η−1.

Next step will be determining the trajectory of the admissible input r(k) driving Σf . As detailed

in the next section, this step is performed modeling r(k) as a vector of sampled B-spline functions

whose control points are iteratively estimated, and then applying the computed r(k) according to

the receding horizon control strategy defined in Section 3.
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5. STEP 2: COMPUTATION OF r(k)

This section shows how the MMCOP stated in Section 3 can be reformulated as an RLS estimation

problem which can be solved using the procedure of Section 2.2. To this purpose the closed loop

dynamical matrix Af (α) of Σf is rewritten as Af (α)
4
= Āf + ∆Af (α) where Āf is the nominal

closed loop dynamical matrix obtained puttingAp(α) = Āp inAf (α)) and ∆Af (α)
4
= Af (α)− Āf .

Consequently, any term of the kind Akf (α) can be written as Akf (α)
4
= Ākf + ∆Af,k(α), where

∆Af,k(α) is a suitably defined matrix.

Expressing the input r(k) as B̄d(k)c̄ according to (5), and recalling that u(k) = Czu(k)xf (k)

and x̂f (k) =

[
x̂Tp (k) xTc (k) 0T

]T
is the current state estimate, the predicted output and control

effort are given by

y(k + i|k) = CfA
i
f (α)x̂f (k) +

k+i−1∑
j=k

CfA
k+i−j−1
f (α)Bf B̄d (j)c̄, i = 1, · · · , Ny (32)

u(k + i|k) = CzuA
i
f (α)x̂f (k) +

k+i−1∑
j=k

CzuA
k+i−j−1
f (α)Bf B̄d (j)c̄, i = 1, · · · , Nu (33)

Explicit dependence on α is omitted in the most part of vectors and matrices defined in the following

for simplicity of notation and because such dependence is clear from the context.

By (32),(33) and r(k + i) = B̄d (k + i)c̄, ey(k + i|k), er(k + i|k) and eu(k + i|k) given by (16)-

(18) respectively, can be rewritten as

ey(k + i|k) = gy(k + i|k) + δgy(k + i|k)− (Dy(k + i|k) + δDy(k + i|k))f, (34)

er(k + i|k) = gr(k + i|k)−Dr(k + i|k)f (35)

eu(k + i|k) = gu(k + i|k) + δgu(k + i|k) + (Du(k + i|k) + δDu(k + i|k))f, (36)

where
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gy(k + i|k)
4
= yd(k)− Cf Āif x̂f (k) , δgy(k + i|k)

4
= −Cf∆Af,i(α)x̂f (k),

Dy(k + i|k)
4
=

k+i−1∑
j=k

Cf Ā
k+i−j−1
f Bf B̄d(j) , δDy(k + i|k)

4
=

k+i−1∑
j=k

Cf∆Af,k+i−j−1(α)Bf B̄d(j)

gr(k + i|k)
4
= yd(k) , Dr(k + i|k)

4
= B̄d(k + i),

gu(k + i|k)
4
= CzuĀ

i
f x̂f (k)− ũ(k) , δgu(k + i|k)

4
= Czu∆Af,i(α)x̂f (k),

Du(k + i|k)
4
=

k+i−1∑
j=k

CzuĀ
k+i−j−1
f Bf B̄d(j) , δDu(k + i|k)

4
=

k+i−1∑
j=k

Czu∆Af,k+i−j−1(α)Bf B̄d(j)

f
4
= c̄.

Define the following vectors e 4= [eTy e
T
r e

T
u ]T , g 4= [gTy g

T
r g

T
u ]T , δg 4= [δgTy 0T δgTu ]T and matrices

D
4
=


Dy

Dr

−Du

, δD 4
=


δDy

0

−δDu

, Qe
4
= diag[Qy, Qr, Qu] where:

ey
4
=

[
eTy (k + 1|k) · · eTy (k +Ny|k)

]T
, gy

4
=

[
gTy (k + 1|k) · · gTy (k +Ny|k)

]T
,

δgy
4
=

[
δgTy (k + 1|k) · · δgTy (k +Ny|k)

]T
, Qy

4
= diag{Qy(k)}, i = 1, · · · , Ny,

Qr
4
= diag{λ1(k)Qr(k)}, i = 0, · · · , Ny − 1 , Qu

4
= diag{λ2(k)Qu(k)}, i = 1, · · · , Nu,

Dy
4
=



Dy(k + 1|k)

·

·

Dy(k +Ny|k)


, δDy

4
=



δDy(k + 1|k)

·

·

δDy(k +Ny|k)


.

An analogous definition applies to vectors er, eu, gr, gu, δgu and matrices Dr, Du, δDu.

From the above definitions, it is evident that only δg and δD are depending on α. This dependence

is now explicitly reintroduced to better clarify the formulation of the MMCOP as an RLS estimation

problem.

Exploiting the above defined vectors and matrices, the 2qNy +mNu scalar equations (34),(36)

can be expressed in the compact form e(α) = (g + δg(α))− (D + δD(α))f and functional (14)

can be written as Jα
4
= J(e′(α)) = e′T (α)e′(α), where e′(α)

4
= Q

1/2
e e(α). Also defining g′ +
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δg′(α)
4
= Q

1/2
e (g + δg(α)) and D′ + δD′(α)

4
= Q

1/2
e (D + δD(α)), it is evident that the MMCOP

is equivalent to the constrained minimization of ‖e′(α)‖22. Hence the MMCOP can be formulated as

the following box-constrained RLS problem

min
f

max
‖δD′(α) δg′(α))‖F≤ρ

‖(D′ + δD′(α)f − (g′ + δg′(α)‖2 (37)

subject to fmin ≤ f ≤ fmax. (38)

The bounds fmin and fmax relative to the vector c̄
4
= f of control points are determined on the basis

of condition (19) (and hence (10)).

At each k = jNr, the bound ρ such that ‖δD′(α) δg′(α)‖F ≤ ρ is computed by performing a

gridding on the parameter vector α ∈ Λl. Next, the parameter vector c̄
4
= f of control points is

estimated through an SOCP as explained in Section 2.2. The corresponding B-spline input r(k)

results to be known over [k, k +Ny), but only the first Nr samples are applied to Σf according to

the receding horizon control strategy.

Feasibility of the MMMPC strategy and stability of Σ2DOF can be now formally stated in the

following theorem.

Theorem 2. Assume that the problem P1 stated in Section 4 is solvable and that the input r(k) of

Σf is computed as the solution of the box-constrained RLS problem (37),(38), then the resulting

2-step MMMPC strategy explained in the above sections is recursively feasible and yields an

asymptotically internally stable Σ2DOF .

Proof of Theorem 2. Recursive feasibility is a direct consequence of computing r(k) as the solution

of an optimization problem where the feasible box-constraints (38) are imposed on a vector of

variables which is the same one with respect to the optimization problem has to be solved. Moreover,

by Theorem 1, the fulfillment of (38) directly implies that also the components of zf (k) satisfy

constraints like (11). Internal asymptotic stability of the resulting overall control system Σ2DOF is

a direct consequence of the internal asymptotic stability of Σf and of the uniform boundedness of

r(k) resulting from (38).

Remark 6 Some comments on the claimed simplification of the constrained optimization problem
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involved in the new MMMPC strategy are in order. The B-spline parametrization of r(k) allowed us

to formulate the constrained minimization of the worst-case cost as the RLS estimation problem of

a parameter vector f . This problem can be solved through an SOCP for which numerically efficient

primal-dual interior point methods can be used (see e.g. [25],[26], and references therein). The

vector f to be estimated is composed of q` elements, where q is the dimension of r(k) and ` is

the number of control points of each scalar B-spline function composing r(k). The well known

approximation properties of B-splines allow choosing a value ` << Ny, thus obtaining a greatly

reduced number of decision variables with respect to qNy, as required by the actual MMMPC

methods. Moreover, as shown in Section 3, all constraints on zf (k) can be transferred on the

surely feasible interval type inequalities (19), whose number is q Ny. Nevertheless, by the convexity

property of B-splines, these constraints must only concern the control points, so that their number

reduces to q`. Following the usual approaches, the constraints to be satisfied (provided they are

fulfillable) would be nuNu + nxf
Ny where nu and nxf

are the dimensions of zu(k) and zxf
(k)

respectively. It is recalled that zu(k)
4
= u(k) and hence nu = m. Moreover, if zxf

(k) ≡ y(k) then

nxf
= q.

Also the numerical minimization of functional (14) is simplified. Its formulation as an RLS problem

as in (37), reduces the problem of evaluating the worst case cost for all the possible parametric

uncertainties to the computation of the upper bound ρ. The most part of calculations related to the

gridding procedure on α ∈ Λl for determining ρ can be executed off-line because the only term

of matrix [δD′(α) δg′(α)] depending on the current value of x̂f (k) is δg′(α). Approaching the RLS

estimation problem as a SOCP allows the application of efficient primal-dual interior-point methods.

Theoretical analysis shows that in the worst case the number of iterations required to solve an SOCP

grows at most as the square root of the problem size, while numerical experiments indicate that the

typical number of iterations ranges between 5 and 50, almost independent of the problem size [26].
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6. SOME ISSUES ON THE TRACKING PROBLEM

Without any loss of generality, assume that the closed loop system Σf is characterized by a

unitary feedback gain. Then, the internal model Σc and the stability of Σf , ∀α ∈ Λl, guarantee

W (z, α)z=1 = Iq, ∀α ∈ Λl, where W (z, α) denotes the input-output transfer matrix of Σf .

So, for any fixed, desired set points vector yd, the corresponding desired steady-state vector r̃ of the

input r(k) is r̃ = yd. Hence, if the LMIs stated in Theorem 1 are satisfied for some η, then a robust

feasible solution to the exact steady-state tracking problem is obtained when r(k) has converged

to r̃, provided that ‖yd‖22 ≤ γ = 1/η. If this condition is not satisfied the so called unfeasible

reference problem arises. With reference to certain plants, this problem has been widely discussed

in the MPC literature, see e.g. [28]-[33] and references therein. The commonly adopted solution

consists of introducing in the cost functional a term penalizing the distance between the actually

required (but unfeasible) reference and a fictitious (but feasible) reference. A different approach

has been proposed in [34] where, using an extra optimization variable, the terminal set is moved

to an arbitrary set point. The difficulty of extending the previous methods to uncertain plants has

been noticed in [35], [36], where an alternative procedure based on a iterative steady-state target

optimizer is proposed.

The present approach offers a direct robust solution to the unfeasibility problem: it is enough to

define a different (but feasible) vector of set points y′d optimally approximating yd in the euclidean

norm sense, under the constraint ‖y′d‖22 ≤ γ. Such a vector y′d is the solution of the following (off-

line) constrained optimization problem

min
y′d

J(ed) = min
y′d

‖W 1/2
ed

ed‖22 = min
y′d

eTdWeded (39)

subject to : ‖y′d‖22 ≤ γ (40)

with ed = (yd − y′d) and Wed = diag[w1, · · · , wq].

The wi’ s are chosen to define a prioritizing policy on the basis of the possibly different degrees of

tracking error tolerated for different output components. Problem (39)-(40) can be reformulated as
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the following SOCP:

minimize λd

subject to: ‖y′d‖22 ≤ γ and ‖W 1/2
ed

ed‖22 ≤ λd.

In this way the controlled output of Σf is asymptotically and robustly driven to the closest

admissible steady -state value y′d, solution of (39)-(40).

7. NUMERICAL RESULTS

To show the effectiveness of the proposed method two examples taken from the literature

are studied. In the first one the feasible reference tracking problem for an uncertain SISO

plant with unmeasurable state is considered. The second one concerns the unfeasible reference

tracking problem for an uncertain MIMO plant under the assumption of measurable state. All the

computations were performed on a MacBookPro11,4; 2,2 GHz; 4 Core; 16GB RAM, using the

Yalmip toolbox [38] in Matlab. The Matlab functions cputime and tic-toc were used to determine

the CPU time and the execution time spent to compute the output response of the closed loop system.

7.1. Example 1

The first example concerns the angular positioning system of a rotating antenna at the origin of

the plane driven by an electric motor [37]. The MPC stabilization problem of this plant under the

assumption of an accessible state vector has been considered in [9]. Here, the proposed MMMPC

procedure is applied to the tracking problem of a desired piece-wise constant reference signal under

the more realistic assumption of an unmeasurable state vector.

Denoting by θ (rad) and θ̇ (rad s−1), respectively, the angular position and the angular velocity

of the antenna, and by setting xp
4
= [θ, θ̇]T , the following discretized time equations are obtained

from their continuous time counterparts using a sampling time Tc of 0.1s and Euler’s first-order

approximation for the derivative
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xp(k + 1) =

1 0.1

0 1 − 0.1ω

xp(k) +

 0

0.1κ

u(k) (41)

y(k) =

[
1 0

]
xp(k), (42)

where κ = 0.787 rad−1V −1, u ∈ IR, y ∈ IR. The parameter ω is proportional to the coefficient of

viscous friction in the rotating parts of the antenna and is assumed to be constant but unknown over

the range 0.1s−1 ≤ ω ≤ 10s−1. Consequently, the dynamical matrix of Σp belongs to the following

polytopic matrix family

Ap(α) =

2∑
i=1

αiApi = α1

1 0.1

0 0.99

+ α2

1 0.1

0 0

 , α ∈ Λ2.

The control problem consists of using the input voltage (µV ) to the motor to rotate the antenna

so that it points in the direction of an object in the plane whose angular position is denoted by

yd(k)(rad). The desired reference yd(k) to be tracked is the following piece-wise constant signal:

yd(k) = yd1 = 0.1(rad), 0 ≤ k < 300(30s) and yd(k) = yd2 = −0.1 (rad), 300 ≤ k ≤ 600 (60s).

The control effort is required to satisfy the constraint: |u(k)| <= 2V , k > 0. Hence, according

to (24), the constrained state zu(k) is assumed to be given by the control effort u(k) with bound

z̄u,1 = 2.

The first step of the whole procedure is to design an output feedback controller Σg. According

to the procedure described in section 4.1, the observer gain L of Σo is first computed. The gain

matrix L = [1.2076, 1.0387] is found. Considering the pair (Â(α), B̂) given by (25), the feedback

gain K̂ = [−Kp Kc 0] and the invariant γ-feasible set X for Σf ≡ (Cf , Â(α) + B̂K̂, Bf ) are

determined solving the semidefinite programming problem defined by (26)-(28). As the constraints

only concern u(k), by (24) one has z(k) = zu(k) and the set of inequalities (28) concerning zxf

are not considered. According to Remark 5, (26) has been transformed in an LMI executing a

search line for β ∈ (0, 1). As explained in Section 6, a robust feasible solution to the almost exact

steady-state tracking problem for yd(k) exists if the set of LMIs (26)-(27) admits solution for

γ = 1/η ≥ max{‖yd1‖22, ‖yd2‖22} = 0.01, and each set point is kept over a sufficiently long time
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interval.

For β = 0.01, the feedback gain K̂ = [−8.0219, −7.8762, 0.0499, 0, 0] is found. The invariant γ-

feasible set X ≡ E(P, γ) with P = Q−1 =



1.1971 0.7379 −0.0075 0 0

0.7379 1.3586 −0.0046 0 0

−0.0075 −0.0046 0.0001 0 0

0 0 0 31.5090 −2.3552

0 0 0 −2.3552 0.4772


and γ = η−1 = 0.0632 is obtained for the resulting closed loop system Σf ≡ (Cf , Â(α) +

B̂K̂, Bf ).

The second step is to determine the trajectory of the input r(k), subject to (10) with γ = 0.0633,

and optimally driving the output transition between the two consecutive set points of the given

switching sequence. This step is performed modeling r(k) ∈ R, as a sampled B-spline function. The

control points defining the B-spline r(k) over a moving prediction horizon are iteratively estimated

by the SOCP as explained in Section 2.2. At each k = jNr, j = 1, 2, · · · and Nr = 10, the bound ρ

such that ‖δD′(α) δg′(α)‖F ≤ ρ is computed by performing a gridding for α ∈ Λ2. The obtained

sequence of ρ ranges in the interval [0, 0.2292]. The computed r(k) is applied according to the usual

receding horizon control strategy.

The following parameters are chosen: d = 1 (order of B-spline), ` = 3 (number of control points of

the scalar B spline over each prediction horizon Ny), 5
4
= `+ d+ 1 (number of knot points k̂i over

each Ny) and Ny = 40. All the weight matrices are set to identity matrix. An S-shaped membership

function is chosen for λ1(k) for the following motivations. In correspondence of the transient

response following any set point change, a null initial value of λ1(k) allows r(k) to freely vary

over all the admissible range. After the transition period has elapsed, λ1(k) should tend to a suitable

positive value λ̄ to speed up the convergence of r(k) to the desired set point value. In this case the

value λ̄ = 1 has been chosen. A null λ2(k), has been fixed ∀k ≥ 0, because the feedback controller

has been designed to guarantee that, for any r(k) satisfying (10), the control effort u(k)
4
= zu(k)

obey constraint (11). The vector f 4= c̄ = c1 of decision variables to be determined at each k = jNr
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is composed by ` = 3 control points. As γ = 0.0632 and r(k) is a scalar, the bounds of inequalities

(38) are |fmin| = fmax =
√
γ = 0.2565.

The simulation has been performed starting from xf (0) = [x̂Tp (0), xTc (0), xTp (0)− x̂Tp (0)] =

[−0.05, 0, 0, 0, 0.001]T ∈ X and choosing Ap(ᾱ)
4
= ᾱ1A1 + ᾱ2A2 = 0.2A1 + 0.8A2.

The simulation has been stopped at k = 600 samples (60s). The obtained input r(k) is depicted in

figure 2. The actual controlled output of Σf yielded by r(k) is given in figure 3 (solid line). The

behavior of the constrained control effort is shown in figure 4.

0 10 20 30 40 50 60

seconds

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 2. Example 1. The computed scalar B-spline input function r(k).
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Figure 3. Example 1. The desired reference signal (dashed line) and the actual controlled output (solid line).

As for the computational complexity, the following considerations hold:
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Figure 4. Example 1. The trajectory of the constrained control effort.

• the proposed MMCOP is solved at each time instant k = jNr where j = 0, 1, · · · and Nr is

a positive integer while the on-line optimization procedure in [9] must be solved at each time

instant k ≥ 0. In this case the value Nr = 10 has been chosen.

• According to Remark 6, at each k = jNr the number of scalar decision variables (control

points of r(k)) involved in the proposed on-line optimization procedure is q` = 3 << qNy =

40 and the total number of interval type scalar inequalities (38) to be imposed is q` = 3 <<

qNy = 40. Both numbers of decision variables and inequalities are independent of the process

state dimension. In [9], at each k ≥ 0 the number of Linear Matrix Inequalities (LMIs)

to be solved is (L+ 2) = 4 (namely (20), (21) defined at the vertices l = 1, · · · , L of the

uncertainty polytope and (33)) with respect to two matrix decision variables (Q ∈ IRnp×np

and Y ∈ IRm×np) with np = 2 and m = 1) and a positive scalar decision variable (γ ∈ IR).

Hence the total number of scalar decision variables increases with np and m.

Table I shows the euclidean norm of the tracking error over the whole simulation: et
4
=

[eTt (0), · · · , eTt (600)]T , with et(·)
4
= yd(·)− y(·). The same table also reports the CPU time and

execution time required to compute the closed loop response for different values of the prediction

horizon Ny and Nr = 10.
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Ny CPU time (s) Execution time (s) ‖et‖2

20 29.87 16.2530 1.7743

30 35.00 18.0163 1.7070

40 45.04 20.9938 1.7004

Table I. Example 1. The CPU time, the execution time and the tracking performance measure for different

values of the prediction horizon Ny and Nr = 10.

7.2. Example 2

Consider the following MIMO discrete time system Σp inspired by [39]

xp(k + 1) =

 0 1

−1 + δ −1

xp(k) +

0 1

1 0

u(k) (43)

y(k) =

1 0

0 1

xp(k) (44)

where δ ∈ [−0.1, 0.1] is an unknown parameter. Unlike [39], the dynamical matrix of Σp belongs

to the following polytopic matrix family

Ap(α) =

2∑
i=1

αiApi = α1

 0 1

−1.1 −1

+ α2

 0 1

−0.9 −1

 , α ∈ Λ2.

A tracking control problem subject to the control input constraint |ui(k)| ≤ 5, i = 1, 2, is considered.

Hence, according to (24), the constrained state zu(k) is assumed to be given by the control effort

u(k), with bound z̄u,r = 5, r = 1, 2. The desired piece-wise constant reference to be tracked is the

following piece-wise constant signal

yd(k) =


yd1 = [1 1]T 0 ≤ k < 100

yd2 = [2 1]T 100 ≤ k ≤ 200

(45)

The first step is to design a state feedback controller Σg, following the procedure described in

section 4.2. Considering the pair (Â(α), B̂) given by (31), the feedback gain K̂ = [−Kp Kc]

and the invariant γ-feasible set X for Σf ≡ (Cf , Â(α) + B̂K̂, Bf ) are determined by solving the
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semidefinite programming problem defined by (26)-(28). Since the constraints only concern u(k),

by (24) one has z(k) = zu(k) and the set of inequalities (28) concerning zxf
are not considered.

According to Remark 5, (26) has been transformed in an LMI executing a search line for β ∈ (0, 1).

As explained in section 6, a robust feasible solution to the almost exact steady-state tracking problem

exists if the set of LMIs (26)-(27) admits solution for

γ = 1/η ≥ max{‖yd1‖22, ‖yd2‖22} = max{2, 5} = 5, (46)

and each set point is kept over a sufficiently long time interval. Performing a search line for

β ∈ (0, 1) with a gridding step δβ = 0.2 and giving up the maximization of Xxp the following

sequence of pairs of values (β, γβ): {(0.2, 4.7985), (0.4, 0.4, 4.7984), (0.6, 4.51), (0.8, 2.41)} are

obtained. By (46) it follows that that exact steady-state tracking can be only obtained for yd1 and the

unfeasible reference problem for yd2 arises. As mentioned in Section 6 this problem can be directly

solved replacing yd2 in (45) with a a different (but feasible) optimal approximation y′d2 satisfying

the constraint ‖y′d2‖
2
2 ≤ γβ = 4.7985 (obtained for β = 0.2). Such new vector y′d2 is obtained as the

solution of the off-line constrained optimization problem defined by (39)-(40). Assuming to assign

a maximum priority to the first component of yd2 , the weight matrix Wed = diag[1, 10−4] is chosen

and the new vector y′d2 = [2, 0.89]T is found. For β = 0.2, the obtained stabilizing feedback gain is

K̂ =

 0 −0.2 0.22 0.4000

−0.0709 −0.2813 0.2501 −0.1808

 .
The matrix P defining the invariant γ-feasible set X ≡ E(P, γβ) = E(P, 4.7985) for Σf ≡

(Cf , Â(α) + B̂K̂, Bf ) results to be

P =



0.2956 0.1307 −0.1002 0.0063

0.1307 0.1673 −0.0410 −0.0394

−0.1002 −0.0410 0.0680 −0.0029

0.0063 −0.0394 −0.0029 0.0470


.

Next step is to determine the trajectory of the input r(k), subject to (10) with γ = 4.7985, optimally
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driving the output transition between the two consecutive set points vectors. This step is performed

modeling r(k) ∈ Rq, as a vector of q = 2 sampled B-splines. The q` control points vector f = c̄ =[
cT1 cT2

]T
defining r(k) over a moving prediction horizon are iteratively estimated by the SOCP

as explained in Section 2.2. At each k = jNr, j = 1, 2, · · · and Nr = 10, the bound ρ such that

‖δD′(α) δg′(α)‖F ≤ ρ is computed by performing a gridding for α ∈ Λ2. The obtained sequence

of ρ ranges in the interval [0, 0.2632]. The computed r(k) is applied according to the usual receding

horizon control strategy.

The following parameters are set: d = 1 (order of each B-spline), ` = 3 (number of control points

for each B-spline over each prediction horizon Ny), 5
4
= `+ d+ 1 (number of knot points k̂i over

each Ny), Ny = 30. All the weight matrices are set to identity matrix. Arguing as in example 1, the

tuning parameters λi, i = 1, 2, are chosen in the following way: λ1(k) is a S-shaped membership

function with λ̄ = 50 and λ2(k) = 0, ∀k ≥ 0.

Let Āp = (A1 +A2)/2 be the nominal plant, the two steady state values ũ1 and ũ2 of u(k)

corresponding to yd1 and y′d2 are ũ1 = [3 0]T and ũ2 = [3.78 1.11]T respectively.

The simulation has been performed starting from null initial conditions and choosing Ap(ᾱ)
4
=

ᾱ1A1 + ᾱ2A2 = 0.2A1 + 0.8A2.

The obtained input r(k) is depicted in figure 5. The actual controlled output of Σf yielded by r(k)

is given in figure 6. The behavior of the constrained control effort is shown in figure 7.

Analogously to Example 1, Table II shows the euclidean norm of the tracking error over the whole

simulation: et
4
= [eTt (0), · · · , eTt (200)]T , with et(·)

4
= yd(·)− y(·). The same table also reports the

CPU time and execution time required to compute the closed loop response for different values of

the prediction horizon Ny and Nr = 10. .

8. CONCLUSIONS

The advantage of using a 2DOF control scheme to deal with the MMMPC consists in the possibility

of decomposing the problem in two distinct steps: the first one is the off-line design of a feedback

controller which stabilizes the uncertain plant and guarantees in advance the fulfillment of hard
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Figure 5. Example 2. The two components of the computed B-spline input function r(k).
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Figure 6. Example 2. The feasible desired reference signal (dashed line) and the actual controlled output

(solid line).
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Figure 7. Example 2. The trajectory of the constrained control effort u(k).
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Ny CPU time (s) Execution time (s) ‖et‖2

20 39.66 15.47 1.3466

30 66.72 21.44 1.2688

40 75.6 24.85 1.1960

Table II. Example 2. The CPU time, the execution time and the tracking performance measure for different

values of the prediction horizon Ny and Nr = 10.

constraints for any input r(k) satisfying the admissibility condition; the second step consists in

the on-line computation of the input r(k) forcing the stable closed-loop system. Modeling r(k)

as a B-spline decreases the number of decision variables and of hard constraints. It also allows the

formulation of the constrained optimization of the quadratic cost functional as a much simpler robust

estimation problem with box-constraints on the unknowns (the control points of r(k)). Computing

the box constraints is a straightforward consequence of the admissibility condition established

off line at step 1 and of the membership of B-splines to the convex hull defined by their control

points. The robust estimation problem can be formulated as a SOCP, for which numerically efficient

interior point methods exist. Finally, it is worth mentioning that the proposed MMMPC can be easily

extended to the tracking problem for the more general class of signals generated as the free output

response of unstable linear systems. Endowing Σg of the opportune internal model, this extension

can be performed without increasing the number of decision variables.
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19. D. Muñoz de la Peña, D.R. Ramirez, E.F. Camacho, T. Alamo, ” Explicit solution of min-max MPC with additive

uncertainties and quadratic criterion”, Systems & Control Letters, Vol.55, pp. 266-274, 2006.

20. Y.Gao, K.T. Chong, ”The explicit constrained min-max model predictive control of a discrete-time linear system

with uncertain disturbances”, IEEE Trans. Automatic Control, Vol. 57, pp. 2373-2378, 2012.

21. C.A. Desoer, Y.T. Wang, ”Linear time invariant robust servomechanism problem: a self contained exposition”,

Control and Dynamic Systems, Vol. 16, pp. 81-129,1980.

22. U. Maeder, M. Morari, ” Offset-free tracking with model predictive control”, Automatica, Vol. 46, pp. 1469-1476,

2010.

23. L. Jetto, V. Orsini, ”Enhancing the near decoupling property of closed-loop control systems through external

constant feedback loop”, Journal of Process Control, Vol. 68, pp. 70-78, 2018.

24. C. De Boor, ”A practical guide to splines”, Springer Verlag, New York, 1978.

25. L. El Ghaoui, H. Lebret, ”Robust solutions to least-squares problems with uncertain data”, SIAM Journal on Matrix

Analysis and Applications, Vol.18, pp.1035-1064, 1997.

26. M. S. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, ”Applications of second-Order cone programming”, Linear

Algebra and its Applications, Vol. 284, pp.193-228, 1998.

27. L. Anamaria, R. A. Pedro, D. Dieder, ”Invariant set method for state feedback control design”, 17th

Telecommunications forum TELFOR, Serbia, Belgrade, pp. 681-684, 2009.

28. L. Chisci, A. Lombardi, E. Mosca ”Dual receding horizon control of constrained discrete-time linear systems”,

European Journal of Control, Vol. 2, pp. 278-285, 1996.

29. G. Pannocchia, ”Robust model predictive control with guaranteed setpoint tracking”, Journal of Process Control,

Vol. 14, pp. 927-937, 2004.

30. D. Limon, L. Alvarado, T. Alamo & E. Camacho, ”MPC for tracking piecewise constant references for constrained

linear systems”, Automatica, Vol. 44, pp. 1583-1592, 2008.

31. D. Limon, I. Alvarado, T. Alamo, E.F. Camacho, ” Robust tube-based MPC for tracking of constrained linear

systems with additive disturbances”, Journal of Process Control, Vol. 20, pp. 248-260, 2010.

32. G. Betti, M. Farina, R. Scattolini, ”An MPC algorithm for off-set free tracking of constant reference signals”, 51st

IEEE Conference on Decision and Control, Maoui, USA, pp. 5182-5187, 2012.

33. S.S. Dugham, J.A. Rossiter, ”A survey of guaranteeing feasibility and stability in MPC during target changes”,

IFAC IFAC-PapersOnLine, Vol. 48-8, pp. 813?818, 2015.

34. D. Simon, J. Lofberg, T. Glad, ”Reference tracking using dynamic terminal set transformation”, IEEE Trans.

Automatic Control, Vol. 59, pp. 2790-2795, 2014.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc



32

35. L.R.E. Shead, K.R. Muske, J.A. Rossiter, ”Conditions for which MPC fails to converge to the correct target”, 17th

IFAC World Congress, Seul, Korea, pp. 6968-6973,2008.

36. L.R.E. Shead, K.R. Muske, J.A. Rossiter, ”Conditions for which MPC converges to the correct target”, Journal of

Process Control, Vol. 20, pp. 1243-1251, 2010.

37. H.Kwakernaak, R.Sivan, Linear Optimal Control Systems, Wiley Interscience, 1972.
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