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Abstract 

Amidst a dynamic energy market landscape, understanding evolving influencing factors is 

pivotal. Accurate forecasting techniques are indispensable for effective energy resource 

management. This study focuses on illuminating insights into economic uncertainty and 

commodity price forecasting. A meticulously curated dataset spanning January 2000 to 

December 2022 forms the foundation, incorporating diverse economic and financial 

uncertainty metrics. Through an innovative research framework, we discern influential factors 

and forecast their trajectories. Three deep learning models - Short-Term Memory, Gated 

Recurrent Units, and Multilayer Perception Network - are deployed. The Multilayer Perception 

model emerges as the standout, showcasing exceptional predictive capability rooted in its 

adeptness at decoding intricate market patterns. This finding holds significance for 

policymakers, industry experts, and energy economists. The Multilayer Perception model's 

supremacy offers a robust tool for decision-making in crafting economic policies and 

navigating volatile markets. 

JEL Classification: O14, Q56    

Keywords: Oil Price; Natural Gas; Economic uncertainty; Deep Learning; Forecast; 

commodity prices  
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1 – Introduction 

Energy policies play a critical role in the current global economy, as energy is a vital resource 

to lead economic growth and development (Kasman and Uman, 2015; Tiba and Omri, 2017; 

Wang et al., 2018). Remarkably, the global economy is sensitive to energy price changes; hence 

policies can help to ensure that it remains stable. An appropriate energy program based on 

diversification to reduce dependence on a single supplier could promote and ensure energy 

security by preventing potential energy supply disruptions (Zakeri et al., 2022; Zhou et al., 

2023). The current geopolitical situation has contributed to the rise in global inflation levels 

due to the energy crisis that is a consequence of the war in Ukraine. Roughly, the increased 

political uncertainty level can converge into price spikes that significantly impact the real 

economy. Therefore, governments and policymakers may be interested in preventing energy 

price tools that can help to address the more appropriate economic policies, such as the 

European price cap. 

According to Herrera et al. (2019) and Al-Thaqeb and Algharabali (2019), the role of economic 

policy uncertainty is crucial to determine energy prices. Recent literature has examined how 

uncertainty shocks impact the economy. For example, Baker et al. (2016) created an index of 

economic policy uncertainty based on word frequency in U.S. newspaper articles. Similarly, 

Knotek and Zaman (2018) developed a historical index for energy price news using New York 

Times articles. They used a Bayesian approach to model energy inflation, excluding food and 

energy prices, and consumption growth. Notably, consumer responses to positive and negative 

energy shocks are nonlinear, with larger shocks showing more pronounced differences. While 

heightened uncertainty could lower investments and employment (Baker et al., 2016), Knotek 

and Zaman (2018) propose that consumers closely follow energy price news during major oil 

shocks. If high oil prices coincide with policy uncertainty, future economic activity might 

decline.1 

Forecasting oil and gas prices is extremely important because of their central role in the global 

economy (Alquist and Kilian, 2010). They are crucial components in the production of many 

goods and services, thereof changes in prices can significantly impact different industries and 

economies. Accurate energy price forecasts can help businesses and governments make 

informed decisions about their operations and investments. For example, governments can use 

them to formulate ad hoc energy and economic policies. Many methods have been used in the 

 
1 Several papers investigated the relevance of economic uncertainty in the context of energy prices, see, 
among others, Kang and Ratti (2013), Kang et al. (2017) and Herrera et al. (2018). 
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literature to forecast oil and gas prices, ranging from standard econometric techniques (Lee and 

Huh, 2017; Hendrawaty et al., 2020) to deep learning methods (Shiri et al., 2015; Zhao et al., 

2017). 

There exists a plethora of factors that can affect commodity prices, including geopolitical 

events (Coleman, 2012), changes in global supply and demand (Kilian, 2009; Barsky and 

Kilian, 2010; Baumeister and Kilian, 2012), and technological advances (Dees et al., 2007; 

Ravazzolo and Vespignani, 2015). Lu et al. (2020) demonstrated the relevance of Google 

Trends research in influencing the rapid instability of commodity prices, highlighting the 

importance of the speculative component. As such, their forecasting can be a complex and 

challenging task. Several methods have been proposed for forecasting oil prices, including 

statistical models, fundamental analysis, and expert opinion. In recent years, machine and deep 

learning approaches have also gained popularity in forecasting oil prices (Gabralla and 

Abraham, 2013; Sehgal and Pandey, 2015; Zhang et al., 2015). Miao et al. (2017), through a 

Least Absolute Shrinkage and Selection Operator (LASSO), concluded the crucial role of 

political factors in forecasting crude oil prices. 

The US Energy Information Administration (EIA), which formally produces monthly and 

quarterly forecasts of commodity prices for up to two years, is one of the most closely watched 

energy price forecasters. While the EIA's short-term estimates help influence business 

investment and resource use decisions, they are difficult to reproduce and occasionally 

inaccurate. The lack of comprehensive information on the forecasting approach makes 

replication difficult. Price estimates based on futures provide a market-based expectation. 

Although, in theory, the futures market should be a reliable predictor of future spot prices, 

actual data do not support this (Alquist and Kilian, 2010). 

Given the difficulties of previous forecasting methods, several scholars investigated the 

motivations for the hardness in fossil fuel price prediction. The literature provides fascinating 

insights (Hamilton, 2009). A wide range of dynamic and multidimensional elements influence 

oil and gas prices, including physical market factors, financial market factors, and trade factors, 

all of which are difficult to anticipate and may have opposing effects. Further, perfect 

predictability is hampered by unforeseen movements in global demand, supply disruptions, 

changes in oil and gas production and storage requirements, geopolitical events, and other 

considerations. Such events raise concerns about the future supply curve, which can lead to 

increased price volatility. Unexpected events, such as refinery outages or pipeline failures, add 
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to the unreliability. As a result, market participants constantly analyse the prospect of future 

events and their potential impact on prices, considering the history of oil and gas supply and 

demand shocks resulting from various events. Agents examine existing stocks and the ability 

of producers to compensate for a possible supply and demand shock, as well as the extent and 

duration of the potential disruption. 

Besides, the forward-looking behaviour of speculators and the measurement of theoretical fuel 

demand shocks can sometimes invalidate standard econometric models. According to Kilian 

and Lee (2014), if investors and hedge funds react quickly to the missing forecasters' 

information, the detached purpose of demand and supply shocks using historical data may be 

irrelevant. To further complicate matters, the reverse causality issue (Chatrath et al., 2016) 

from macro aggregates to oil prices makes it difficult to link fluctuations in effective oil and 

gas prices to macroeconomic outcomes. Despite all these issues, forecasting efforts have 

allowed researchers to expand the range of potential factors influencing oil and gas prices 

(Tissaoui et al., 2022). This paper aims to determine the role of global political uncertainty 

factors in predicting commodity price trends. The above elements have also been shown to be 

of considerable importance with the recent financial crises brought on by COVID-19 and the 

Russian-Ukrainian war (Ding et al., 2022). In addition, using hybrid deep learning models, we 

incorporate relevant economic factors such as general inflation, the relative dollar index, and 

the financial uncertainty indicator considered by the Chicago Board Options Exchange (CBOE) 

into the forecasting context. 

In details, the predictive analysis can help formulate energy and economic policies. In 

particular, according to Ahmad et al. (2021) and Ahmad et. al (2022), accurate energy price 

predictions enable governments and businesses to allocate resources more efficiently. For 

example, if predictive analytics suggest a future rise in oil prices, policymakers can prioritize 

investments in renewable energy sources or energy-efficient technologies. In addition, 

according to Song et al. (2019), forecasting price fluctuations helps countries plan for energy 

security. Governments can adjust their strategic reserves of crude oil and natural gas based on 

anticipated price trends, ensuring a stable supply during periods of volatility. Finally, according 

to Khan et al (2021), predictive analytics can guide policymakers towards more sustainable 

energy choices. If the analysis points to a rise in fossil fuel prices, governments could speed up 

the rollout of renewable energy projects or enact tougher environmental regulations. 

Accordingly, we highly contribute the literature in forecasting fossil fuels prices. 
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This study examines and forecasts the effects of oil prices using advanced deep-learning 

methodologies. As part of this investigation, we use a cutting-edge algorithm that integrates 

multiple variables to forecast oil price fluctuations. In contrast to traditional econometric 

forecasting models, deep learning approaches generate predictions that are not based on pre-

established assumptions(Chen et al., 2023; Guliyev & Mustafayev, 2022; Zhao & Hastie, 

2021). Notably, the Deep Learning methodology in macroeconomic data forecasting has 

grown and become significant in macroeconomic series forecasting and prediction (Dieudonné 

et al., 2023; Magazzino et al., 2022). Empirical evidence suggests that these techniques 

outperform traditional statistical methods, mainly when dealing with non-parametric, non-

linear challenges and large datasets required for short-term and long-term forecasting. In this 

context, the treatment of non-linearity, a domain in which machine learning excels, is 

profoundly shaped by the dynamics of economic uncertainties and the richness of the data 

model, highlighting the ability to encapsulate intricate macroeconomic 

interconnections(Guliyev & Mustafayev, 2022; Shahzad et al., 2023; Zhao & Hastie, 2021). 

Furthermore, while alternative linearization strategies such as Lasso and Ridge are notable, 

they do not outperform the factor model, reinforcing that a component-based representation of 

the macroeconomy is an effective dimensionality reduction tool. Understanding that deep 

learning, a subset of machine learning, is distinguished by its inherent ability to learn 

autonomously, eliminating the need for human-annotated labelling is critical. Furthermore, 

deep learning optimization techniques within artificial neural networks mimic the structural 

complexities of the human neural framework. 

This paper contributes to the literature using a relatively new methodology that optimally 

weights the factors underlying oil and gas price movements. We aim to innovate the current oil 

and gas forecasting literature in three ways. First, we consider several measures of economic 

policy uncertainty to improve the forecasting performance of our model. In particular, we 

consider the different categories of Economic Policy Uncertainty (EPU) discussed in Baker et 

al. (2016), the geopolitical risk index of Caldara and Iacovello (2021), and the climate policy 

uncertainty index of Gavriilidis, K. (2021). The EPU is a daily index that contains several 

measures of uncertainty: monetary policies, taxes, tax policies and government spending, 

health care, national security, entitlement programs, regulation, financial regulation, trade 

policy and sovereign debt, and currency crises (the detailed list is shown in Table 1). Second, 

by examining the current uncertain environment, we can establish the predictive quality of 

models when turbulent economic situations arise. Furthermore, we can understand how the 
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data generation process underlying the estimated processes affects the generality of our results 

and thus conclude possible viable economic policies. Third, the heterogeneity of variables 

considered allows us to infer the contribution of each factor to the prediction of commodity 

prices considered. Finally, we analyse the series' short- and long-term forecasting ability 

through different deep-learning methods. Based on the accuracy metrics, we found that the 

Multilayer Perception (MLP) network has the best forecasting ability to predict trends and 

peaks. We believe this work provides insights from a policy perspective, as it allows for action 

to reduce price rises and falls. 

The rest of the article is organised as follows. Section 3 provides a brief literature review of the 

topic. Section 2 describes the deep learning methods used. Section 3 presents the dataset. 

Section 4 describes the results, and Section 5 concludes. 

2 – Literature Review 

Many methods have been used in the literature to forecast oil and gas prices, ranging from 

standard econometric techniques (Lee and Huh, 2017; Hendrawaty et al., 2020) to deep 

learning methods (Shiri et al., 2015; Zhao et al., 2017). 

There exists a plethora of factors that can affect commodity prices, including geopolitical 

events (Coleman, 2012), changes in global supply and demand (Kilian, 2009; Barsky and 

Kilian, 2010; Baumeister and Kilian, 2012), and technological advances (Dees et al., 2007; 

Ravazzolo and Vespignani, 2015). Lu et al. (2020) demonstrated the relevance of Google 

Trends research in influencing the rapid instability of commodity prices, highlighting the 

importance of the speculative component. As such, their forecasting can be a complex and 

challenging task. Several methods have been proposed for forecasting oil prices, including 

statistical models, fundamental analysis, and expert opinion. In recent years, machine and deep 

learning approaches have also gained popularity in forecasting oil prices (Gabralla and 

Abraham, 2013; Sehgal and Pandey, 2015; Zhang et al., 2015). Miao et al. (2017), through a 

Least Absolute Shrinkage and Selection Operator (LASSO), concluded the crucial role of 

political factors in forecasting crude oil prices. 

Besides, the forward-looking behaviour of speculators and the measurement of theoretical fuel 

demand shocks can sometimes invalidate standard econometric models. According to Kilian 

and Lee (2014), if investors and hedge funds react quickly to the missing forecasters' 

information, the detached purpose of demand and supply shocks using historical data may be 

irrelevant. To further complicate matters, the reverse causality issue (Chatrath et al., 2016) 
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from macro aggregates to oil prices makes it difficult to link fluctuations in effective oil and 

gas prices to macroeconomic outcomes. Despite all these issues, forecasting efforts have 

allowed researchers to expand the range of potential factors influencing oil and gas prices 

(Tissaoui et al., 2022). This paper aims to determine the role of global political uncertainty 

factors in predicting commodity price trends. The above elements have also been shown to be 

of considerable importance with the recent financial crises brought on by COVID-19 and the 

Russian-Ukrainian war (Ding et al., 2022). In addition, using hybrid deep learning models, we 

incorporate relevant economic factors such as general inflation, the relative dollar index, and 

the financial uncertainty indicator considered by the Chicago Board Options Exchange (CBOE) 

into the forecasting context. 

According to Bernanke (1983), Economic Policy Uncertainty (EPU) has played an important 

role in shaping economic cycles and guiding investment decisions, including oil markets. 

Despite its importance within economic paradigms, previous studies frequently overlooked 

uncertainty's role in predicting oil prices owing to a lack of reliable and quantifiable metrics to 

assess policy uncertainty. In response to this gap, Baker et al. (2016) developed an EPU index 

based on newspaper data, a methodology that has received widespread acclaim in the academic 

community. This index has since been used by academics worldwide to investigate the effects 

of EPU on oil price dynamics. (Y. Zhang et al., 2023) investigated the role of EPU in oil price 

predictability. According to their findings, increased global economic uncertainty can 

accurately forecast crude oil market volatility within the sample and in extrapolated scenarios. 

It is worth noting that, as (He et al., 2022; Sen et al., 2023; S. Zhang et al., 2023)point out, the 

adoption of deep learning techniques, a subset of Machine Learning, is still in its infancy when 

compared to traditional time-series econometric approaches, despite their demonstrable 

empirical prowess in forecasting oil prices. The intricate web of global economic and financial 

linkages suggests that geopolitical events can impact the oil market (Si Mohammed et al., 

2023). The effects of the COVID-19 pandemic have been particularly severe on US businesses, 

prompting predictions of oil prices based on Healthcare Uncertainty(Al Mustanyir, 2023; 

Tissaoui et al., 2022). Furthermore, fluctuations in energy prices strongly impact the global 

economic landscape, emphasizing the importance of consistent policies. Oil price oscillations, 

caused by monetary and fiscal policy uncertainties, are now recognized as primary 

determinants in changes in oil prices (Bashar et al., 2013; Su et al., 2020). 
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3 – Methodology 

Machine learning and deep learning approaches can produce accurate forecasts because they 

can analyse large amounts of data and learn patterns. The learning-based mechanism on 

historical patterns allows the model to adapt to changes in data over time, which is often a key 

challenge in forecasting. A crucial advantage of machine learning and deep learning 

approaches is that they can handle complex, non-linear relationships in the data, which can be 

difficult for traditional statistical models to capture. In addition, these approaches can handle 

large amounts of data, including data that may be noisy or incomplete, and learn from the data 

in real-time as it becomes available. Overall, the learning ability of machine learning and deep 

learning approaches from data is a powerful tool for forecasting and decision-making in a 

variety of applications. 

Recursive Neural Network (RNN) approach 

In typical neural network applications, there are only complete layer connections between 

neighbouring, but not between nodes in the same layer. Since in a temporal-spatial network, 

there are continuous exchanges between components, this type of network can fail when it 

comes to temporal-spatial challenges. Considering Graves' (2013) famous discourse, unlike 

conventional networks, the hidden units of RNNs (Recursive Neural Networks) receive input 

from the past state to the present one. Figure 1 shows a basic RNN architecture with a delay 

line deployed in the time domain for two-time steps. 

 

Instead of using a combination of multiple vectors like typical network designs, the input 

parameters are supplied to the RNN once at a time. In addition, this design can use all input 

Figure 1: RNN structure 
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data accessible up to the present time. The RNN depth can be defined according to the actual 

conditions. The outcome depends not only on the input sequence but also on the result of the 

previously hidden layer. 

Let xi be the input variable, Wrx Wrr Wor weight matrices, br and by bias vectors, σ and η sigmoid 

functions, the mathematical representation of the RNN model in Figure 1 is as follows: 

𝑡𝑡𝑖𝑖 = 𝑊𝑊𝑟𝑟𝑟𝑟𝑥𝑥𝑖𝑖 + 𝑊𝑊𝑟𝑟𝑟𝑟𝑥𝑥𝑖𝑖−1 + 𝑏𝑏𝑟𝑟 (1) 

𝑟𝑟𝑖𝑖 = 𝜎𝜎(𝑡𝑡𝑖𝑖) (2) 

𝑠𝑠𝑖𝑖 = 𝑊𝑊⬚𝑟𝑟𝑖𝑖 + 𝑏𝑏𝑦𝑦 (3) 

𝑦𝑦𝚤̂𝚤 = 𝜂𝜂(𝑠𝑠𝑖𝑖) (4) 

Where ti, ri, and si, are the temporary variables, and y hat is the expected output. The cost 

function is the modular difference between the sum of the expected output and its actual value. 

Consequently, the result at t+1 is a function of both the input at t+1 and the previous data. The 

RNN model correlation in the time series, along with the thickness of the network, is 

determined by the time interval. However, due to the curse of dimensionality and the inflation 

gradient problem, the accuracy of the RNN model decreases as the time interval increases, 

affecting the final output. 

Long short-term memory (LSTM) algorithm 

The LSTM network is a type of RNN. Using convolutions as the cache memory, the LSTM 

network can handle both short- and long-term time series correlation. Figure 2 illustrates the 

structure of the memory unit. The red circle represents a memory cell in the center. The 

available data is the input, and the expected result Yt is the output. The memory unit has three 

ports, illustrated by the green circles: input, forget and output. In addition, Dt represents the 

state of the cell, the input of each gate is pre-processed data, and Dt-1 represents the previous 

state of the memory. The blue dots represent confluences, and the dotted lines represent the 

function of the previous level. The status update and output of the memory unit can be 

summarised as follows according to the information flow in the memory unit structure: 

𝑖𝑖𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑖𝑖𝑋𝑋𝑡𝑡 + 𝑈𝑈𝑖𝑖𝑆𝑆𝑡𝑡−1�  (5) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑋𝑋𝑡𝑡 + 𝑈𝑈𝑜𝑜𝑆𝑆𝑡𝑡−1)  (6) 

𝑦𝑦𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑦𝑦𝑋𝑋𝑡𝑡 + 𝑈𝑈𝑦𝑦𝑆𝑆𝑡𝑡−1) (7) 
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𝑆𝑆~ = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑠𝑠𝑋𝑋𝑡𝑡 + 𝑊𝑊𝑠𝑠𝑆𝑆𝑡𝑡−1) (8) 

𝑆𝑆𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∘ 𝑆𝑆𝑦𝑦−1 + 𝑖𝑖𝑡𝑡 ∘ 𝑆𝑆𝑡𝑡~   (9) 

𝑌𝑌𝑡𝑡 = 𝑦𝑦𝑡𝑡 ∘ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑆𝑆𝑡𝑡)  (10) 

where ∘ is the Hadamard product. The first three equations are the outputs of the separate gates, 

the fourth is the new state of the memory cell, the fifth is the final state of the memory cell, and 

the last is the final output of the memory unit. LSTM memory units can record complex 

correlation information within short- and long-term time series using the separate port function, 

which is a significant advantage over RNNs. 

 

Gated Recurrent Units (GRU) method 

According to Cho et al. (2014), Gated Recurrent Units (GRUs) are a filtering method in an 

RNN structure like LSTMs. It has fewer parameters than LSTMs, as it lacks an output gate. 

GRUs do not have an additional memory cell to store information, so they can only control it 

within the unit. The structure of the equations is like that of LSTMs and can be summarised as 

follows: 

𝑢𝑢𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑢𝑢𝑋𝑋𝑡𝑡 + 𝑈𝑈𝑢𝑢𝑆𝑆𝑡𝑡−1)  (11) 

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟𝑋𝑋𝑡𝑡 + 𝑈𝑈𝑟𝑟𝑆𝑆𝑡𝑡−1)  (12) 

𝑦𝑦𝑡𝑡~ = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑟𝑟𝑡𝑡 + 𝑊𝑊𝑆𝑆𝑡𝑡−1 + 𝑋𝑋𝑡𝑡) (13) 

𝑌𝑌𝑡𝑡 = (1 − 𝑢𝑢𝑡𝑡) ∘ 𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 ∘ 𝑦𝑦𝑡𝑡~  (14) 

Figure 2: LSTM memory procedure 
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In the previous block of equations, ut decides how much content or information is updated. 

Then, rt is a kind of dummy operator, if the gate is set to zero, it reads the input sequences and 

forgets the previously calculated state. Furthermore, the tilde yt shows the same functionality 

as the recurring unit, and yt of the GRU at time t represents the linear interpolation between the 

various equations of state. 

Multilayer Perceptron (MLP) system 

According to Basheer et al. (2000), the Multilayer Perceptron (MLP) is one of the most widely 

used FeedForward Neural Networks (FFNN). Its structure is as follows. The input layer is the 

initial layer that feeds the network with input variables, the output layer is the last, and all layers 

between the input and output layers are called the hidden layer. The neurons in the MLP are 

one-way connected. The connections between the neurons are expressed by the weights, which 

are real integers in the range [-1;1]. 

 

 

Each layer in an MLP can be described mathematically, as depicted in Figure 3: 

𝑂𝑂𝑖𝑖𝑙𝑙 = 𝜁𝜁�∑ 𝑂𝑂𝑗𝑗𝑙𝑙−1⬚
𝑗𝑗 𝑘𝑘𝑗𝑗,𝑖𝑖 + 𝑘𝑘0,𝑖𝑖�,  (15) 

where 𝜁𝜁 is the activation function of the layer. It is often designed as a complex hyperbolic 

tangent function for the hidden units and a linear function for the output layer results. The index 

'l' identifies the real layer in a structure of L non-input layers, and nl denotes the number of 

neurons in layer Ol indicating the output of neuron I in real layer l. In addition, kj,i are the 

Figure 3: MLP framework. 
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weights relative to the connections of neuron I in layer l, and k0,i is the bias of neuron i in the 

real layer. The output vector coincides with the input feature vector, and the final output vector 

corresponds to the network results. 

4 – Data Specification  

The dataset we used includes several market indicators. First, we aim to predict crude oil and 

natural gas prices. All deep learning methods described in Section 2 aim to forecast them. 

Furthermore, we use several indicators to enable good forecasting. According to Tissaoui et al. 

(2022), who demonstrated the relevance of policy indicators in energy price forecasting, we 

use the categorical policy indicators of Baker et al. (2016). The categorical data include some 

sub-indices based solely on journalistic data. These are extracted from the Access World News 

database, which contains over 2,000 US newspapers. We detailed in Table 1 the variables used. 

Furthermore, due to the recent clash between Russia and Ukraine, we include the geopolitical 

risk indicator of Caldara and Iacovello (2021) to account for the occurrence of the recent energy 

crisis. Furthermore, given the fossil nature of the dependent variables, we include the Climate 

Policy Uncertainty index by Gavriilidis, K. (2021) to establish a possible link to this 

framework. Given the relevance exploited in the literature, we include several financial 

measures such as the CBOE volatility index (VIX), the Dow Jones Industrial Average (DJIA), 

the median consumer price index, and the US dollar index. While the uncertainty measures are 

directly downloadable from the specific web page 

(https://www.policyuncertainty.com/index.html), the financial data are obtained via 

Datastream. The period is from January 2000 to December 2022, with variables observed 

monthly according to sample availability.  

Figure 4 shows the time series of the dependent variables, while Figure 5 shows the explanatory 

variables. Table 2 shows the descriptive statistics. Deep Learning methods allow us to use non-

stationary prices, so we do not report Unit Root tests here. The mean value of the WTI is higher 

than that of the NG and indicates a potentially higher expectation of the former. Both dependent 

variables show a more volatile behavior in the second part of the sample, being significantly 

influenced by different economic events. Several EPU categories, such as Trade Policy, Aid 

Programme, and Sovereign Debt, Uncertainty of Currency Crises, show higher peaks in the 

different periods considered. These preliminary statistics highlight the role of time-varying 

uncertainty in this context. 
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Variable Label 

Crude Oil Price West Texas Intermediate WTI 

Natural Gas NG 

US Field Production of Crude Oil (1000 per barrel) CRUDE_PROD 

Economic Policy Uncertainty index (EPU) EPU 

Monetary policy uncertainty index (MPU) MPU 

Fiscal Policy Uncertainty Index (Taxes OR Spending) FISCAL 

Taxes Uncertainty TAX 

Government spending Uncertainty GOV 

Health care Uncertainty HEALTH 

National security Uncertainty NS 

Entitlement programs Uncertainty EP 

Regulation Uncertainty RU 

Financial Regulation Uncertainty FRU 

Trade policy Uncertainty TPU 

Sovereign debt, currency crises Uncertainty SCU 

Geopolitical Risk Index (GPR) GPR 

Climate Policy Uncertainty Index (CPU) CPU 

CBOE Volatility Index (VIX) CBOE 

Dow Jones Industrial Average (DJIA) DJIA 

Median CPI CPI 

US Dollar Index USD 

Table 1: Variables and respective token. 
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 Mean Max Min Std. Dev. Skew Kurt JB N 

WTI 62.87 140 18.84 26.05 0.3 2.22 11.004*** 275 

CBOE 20.28 59.89 9.51 8.15 1.62 6.73 280.08 275 

CPI 2.67 9.22 -0.29 1.32 1.83 9.18 590.83 275 

CPU 116.86 411.29 28.16 64.01 1.52 5.42 172.73 275 

CRUDE_PROD 7524.78 13000 3974 2539.07 0.67 1.97 33.11 275 

Figure 4: Dependent variables 

Figure 5: Explanatory variables 
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DJIA 16161.96 36338.3 7062.93 7693.49 1.05 2.96 50.84 275 

EP 148.13 1118.79 14.38 142.15 3.09 16 2373.86 275 

EPU 106.8 503.01 37.27 59.63 2.63 14.05 1715.09 275 

FISCAL 114.91 433.29 23.05 72.99 1.58 5.73 199.7 275 

FRU 118.48 877.55 0 119.19 2.7 12.94 1465.75 275 

GOV 91.82 635.27 5.78 93.6 2.93 13.83 1738.98 275 

GPR 104.9 512.53 45.06 53.01 4.29 28.63 8368.41 275 

HEALTH 163.5 1030.68 29.97 128.42 2.65 13.88 1677.52 275 

MPU 89.49 407.94 17.62 58.64 1.79 7.73 403.69 275 

NS 93.99 593.46 23.74 80.7 3.21 16.08 2431.57 275 

RU 118.75 384.39 31.06 59.28 1.3 5.21 133.67 275 

SCU 83.77 1039.34 0 136.29 3.51 17.64 3021.1 275 

TAX 120.2 471.9 24.44 75.76 1.64 6.21 240.88 275 

TPU 119.32 1946.68 7.67 209.66 4.53 30.05 9321.58 275 

USD 91.52 120.59 72.17 11.39 0.55 2.67 14.89 275 

Table 2: Descriptive statistics and normality test (*** means p-value lower than 1%) 

5 – Results 

The prediction results are primarily shown in Figures 6 and 8, while the metrics are calculated 

in Tables 3 and 4. We based our prediction results on an 80-20% split of the training and test 

data, as stated by most of the literature. We include model loss estimates, defined as the penalty 

for poor prediction. If the model prediction is perfect, the loss is zero; otherwise, the loss is 

higher. We include some additional variables in the raw dataset, such as the SP 500 Energy 

index, which we decided to remove due to its high correlation with the dependent variable. 

The number of neurons, batch size, and optimizer are chosen in this study via hyperparameter 

tuning. The number of layer neurons in the models is 64, as is the batch size. The neural 

network structure was trained using the back-propagation algorithm (BP), with the learning 

rate, batch size, and epochs set to 0.05, 64, and 100, respectively. The learning rate, which is a 

function of reducing time, controls the convergence rate. When the number and learning 

frequency of epochs is respectively set to 100 and 0.05, the training set converges, and the 

empirical findings tend to be stable, allowing the training set data to be recognized. 

Crude oil price forecasts demonstrate the feasibility of MLP when adverse economic situations 

occur. The model shows a surprising fit for the test set. Since it is involved in 20% of the last 

data, it includes COVID-19 and the Russian-Ukrainian war. It can predict the negative oil price 

peak reached in April 2020. However, it can forecast the positive max caused by the energy 
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crisis. These results are confirmed by the three accuracy metrics used. While most of the 

literature states the predictive power of LSTM models (Lu et al.; 2021), it is not the best in our 

case. Moreover, looking at the graphical representation, it manages to predict the negative peak 

reached during the COVID-19 period. What emerged is the difficulty in predicting the direction 

of prices after a peak is reached, whether negative or positive. 

The LSTM deep learning method was often used to forecast the natural gas price. However, 

our analysis shows the higher predictability power of MLP with respect to the other methods. 

In this situation, the LSTM forecasting power is significantly lower than the others. Moreover, 

both LSTM and GRU predict a natural gas increase during the COVID-19 period. Quite the 

opposite, GRU had a good performance after the widespread pandemic. The MLP forecasts 

show a greater power, both in peaks and trends, as confirmed by the metrics. We can conclude 

about the forecasting predictability of MLP. 

 

 LSTM MLP GRU 

MAE 11.479 6.6192 16.625 

RMSE 15.22 8.13 20.521 

MAPE 23.944 13.005 34.52 

Table 3: WTI metrics accuracy 

Figure 6: WTI Forecasts 
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 LSTM MLP GRU 

MAE 2.7961 0.6307 1.9408 

RMSE 3.3283 0.8299 2.437 

MAPE 94.615 16.555 67.247 

Table 4: NG metrics accuracy 

 

5.1 – Discussion of Findings  

In this section, we discuss the economic implications of our results. Given the complexity of 

international fossil fuels price movements and the uncertainty of forecasting results, this paper 

proposes a new empirical application for natural gas and crude oil price forecasting. With the 

proposed approaches, we can take into account the nonlinearities of the system together with 

the temporal dynamics of crude oil prices, which the literature has considered fundamental 

from a forecasting perspective (Çepni et al., 2022). All these results indicate the excellent 

predictive ability of the Multilayer Perceptron (MLP) method for forecasting crude oil prices. 

However, it should be noted that the computational process of the hybrid method is relatively 

complicated compared to most previous standard methods, although the hybrid method can 

capture the complex dynamic behaviour of crude oil prices. Overall, our forecasting method 

definitely provides a decision support tool for investors and analysts involved in the energy 

markets to assess trends price movements and thus effectively measure the dynamics of 

extreme risk developments. 

Figure 7: NG Forecasts 
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Several studies in the literature have highlighted the role of integrating structural disruptions 

to improve commodity price forecasting (Arouri et al., 2012; Chatzikonstanti and Venetis, 

2015; Wang and Hao, 2023). In our case, thanks to the proposed machine learning techniques, 

we were also able to filter out these events and define hybrid models capable of integrating 

these situations. The MLP model, which is by far the best in terms of all the metrics used, thus 

allows us to identify hidden layers capable of explaining the behaviour of the economic 

variables under study. Given the structure of the sample analysed, two events of global 

importance, the war in Ukraine and the outbreak of COVID-19, made it possible to understand 

the predictive power of our models. In this situation, it is crucial to specify that our study is 

purely predictive of prices, not volatilities, as in much relevant economic literature (Mensi et 

al., 2014; Qu and Li, 2023). In our case, volatility is an exogenous instrument that is filtered 

through the use of the proposed measures of uncertainty. The literature on volatility forecasting 

has been studied extensively. See, for example, Kristjanpoller and Minutolo (2016) and Chen 

et al. (2022). 

We have also been able to show that the inclusion of uncertainty measures improves the 

performance of out-of-sample forecasts. These results have important policy implications. 

Macroeconomic policy decisions usually take into account oil price estimates. In terms of 

policy efficiency, accurate oil price estimates are undoubtedly required. Since oil price shocks 

significantly affect the real economy, any policy to mitigate their adverse effects must be 

considered. Baumeister and Peersman (2013) provide supporting evidence by showing the 

time-varying effects of oil supply shocks on the real side of the economy. 

Furthermore, several scholars have affirmed the goodness of forecasting commodity prices in 

turbulent situations (Baumeister and Kilian, 2014; Wang et al., 2017). We further corroborate 

these findings by providing a more general model that helps policymakers and traders predict 

these values in calm and turbulent situations. According to Baumeister and Kilian (2016a), 

empirical models may fail in predicting real-time oil prices. However, we can affirm the 

goodness of oil price prediction even if it is based on monthly observations. We use the 

uncertainty measure as opposed to Baumeister and Kilian (2016b), who employed the oil price 

decline to predict the financial crisis. Our results are crucial from a policy point of view, as 

they allow us to make accurate predictions in any occurrence based on the value of economic 

and financial uncertainty measures. 
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6 – Conclusions and policy implications 

In this paper, we conduct a forecast analysis of natural gas and oil prices. The growing 

uncertainty in world energy markets, especially in energy importers countries, has led many 

states to review their energy structure. As several scholars have pointed out, the impact of 

prices on energy production has been significant and growing over the past decade. While 

during COVID-19 a general reduction in the price level occurred due to the various national 

lockdowns imposed, the invasion of Ukraine by Russia saw an increase in fossil prices. 

The restriction of energy supplies by Russia, as a reaction to the sanctions adopted, led to a 

decrease in supply. Moreover, given the persistence on the demand side, the sanctions led to 

an increase in the prices of fossil fuels and raw materials. In this context, having a model 

capable of predicting oil price trends based on other economic indicators (leading) is of 

fundamental importance because it helps states to define their economic policies. Based on the 

increasing availability of data, we used different measures of uncertainty to build deep learning 

models. In our dataset, we integrated measures of political uncertainty and measures of 

financial uncertainty. By comparing the results obtained through the accuracy measures (MAE, 

MAPE, RMSE), we were able to conclude the predictive power of the MultiLayer Perception 

(MLP) algorithm. Not only was it the best on average, but from a graphical analysis, we affirm 

its ability to predict negative and positive price spikes. 

We firmly believe that having a model to predict market trends can intervene during the policy-

making decision. If energy prices are expected to rise steadily, from the point of view of an 

energy-importing country, it would be essential to reduce external dependencies. One possible 

solution to this problem may be to use an energy mix that reduces risk and improves the 

environment, which is increasingly subject to deterioration. Conversely, for a 

producer/exporter country, incentive mechanisms for energy purchases are needed. For 

instance, the elimination of taxes could attract purchasers from abroad. 

This paper uses the hybrid method to forecast international natural gas and crude oil prices 

based on historical data. However, energy markets have proven to be a typical complex system, 

the movement of which can commonly be influenced by many factors, as mentioned above. 

Therefore, the forecast accuracy is determined not only by the quantitative results of the hybrid 

method but also by some random variables that are difficult to quantify. Thus, in the future, we 

will be able to infer the influence of these qualitative factors, by combining quantitative and 

qualitative findings. 
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To conclude, future research prospects can compare model accuracy based on different 

explicative variables. In addition, through dimensionality reduction mechanisms, scholars 

could identify whether the loss of information is relevant. As a result of this analysis, 

researchers could conclude about the applicability of these reduction mechanisms. Finally, 

given a deep-learning system, possible future studies could compare performance measures 

with classical econometric forecasting models. 
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