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Abstract 

Purpose The most harmful atmospheric pollutant for human health is particulate matter (PM). We analyzed the cor-
relation between short-term lag exposure to PM10 and PM2.5, salivary cortisol and TNF-α level, and methylation levels 
of the TNF-α promoter.

Methods A pilot study including 20 subjects. Eight salivary samples for each subject at various times of the day were 
collected for comparing cortisol levels and TNFα detection. TNFα promoter methylation levels on salivary DNA were 
analyzed. Regression analyses were performed using generalized linear mixed models between the different out-
comes and 4, 3, 2 and 1 day’s lag values of PM10/PM2.5.Generalized additive mixed model (GAMM) was used to evalu-
ate any potential deviation from linearity.

Results Area under the curve with respect to the ground (AUCg) showed a statistically positive association with 4-, 
3-, 2-, and 1-day lag of exposure to PM10. Area under the curve with respect to the increase (AUCi) showed a statisti-
cally negative association with 4-, 3- and 1-day lag of exposure to PM10. TNFα showed statistically significant associa-
tion with both exposures, PM10 and PM2.5, at 4-, 3-, 2-, and 1-day lag.

Conclusions Regarding cortisol levels there is an increase of overall hormone levels but a less dynamism of the sys-
tem to answer to external stressors. Increase of TNF-α may reflect increased levels of oxidative stress and inflammation 
due to pollution exposure.

Keywords Salivary testing, Tumor necrosis factor-alpha, Environmental pollution, Epigenetic process, Methylation

Introduction
The World Health Organization (WHO) has identified 
air pollution as the main environmental risk for human 
health in the European Union (EU). In fact, according to 
a recent report, up to 2016, around 4.2 million prema-
ture deaths were attributable to it, as well as substantial 

health-related diseconomies amounting to hundreds of 
billions of euros [1, 2]. In Italy, in 2016, 723 DALYs (Dis-
ability-Adjusted Life Years) per 100,000 inhabitants were 
lost due to air pollution, and there were 49 deaths per 
100,000 inhabitants associated with it [3]. People living 
in cities and urban areas are particularly exposed to this 
risk, as the higher population density compared to rural 
areas results in greater release of atmospheric pollutants 
and makes their dispersion more difficult. According to 
the WHO, one of the most harmful atmospheric pollut-
ants for human health is particulate matter (PM).

Source of pollution and route of exposure
Main source of this pollution is represented by several 
factors: Industries such as power plants, manufacturing 
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facilities, and refineries emit large quantities of PM 
through the combustion of fossil fuels and other pro-
cesses. These activities release a variety of particles, 
including metals, sulfates, nitrates, and organic com-
pounds [4].

The transportation sector is another major contribu-
tor to PM pollution, particularly in urban areas. Exhaust 
from cars, trucks, and buses, especially those using die-
sel engines, releases a significant amount of fine particles 
into the atmosphere. Brake and tire wear also contribute 
to PM levels [5].

Moreover, activities such as construction, demolition, 
and road works generate dust and other particulate mat-
ter, contributing to elevated PM levels in surrounding 
areas [6, 7].

The route of exposure to PM is primarily through inha-
lation. When individuals breathe in air containing PM, 
the particles can deposit in different parts of the respira-
tory system depending on their size.

• PM10: These larger particles tend to deposit in the 
upper respiratory tract, including the nose and 
throat. They can cause irritation and exacerbate con-
ditions like asthma and bronchitis [8].

• PM2.5: Due to their smaller size, PM2.5 particles can 
penetrate deeper into the lungs, reaching the alve-
oli. Once in the alveoli, these particles can enter the 
bloodstream, leading to systemic effects such as car-
diovascular and neurological impacts [9].

Adverse effects on human health
The health effects of PM exposure can vary based on sev-
eral factors, including the duration and concentration 
of exposure, as well as individual susceptibility. Chronic 
exposure to high levels of PM can lead to serious health 
outcomes, including respiratory and cardiovascular dis-
eases, and has been linked to increased mortality rates 
[10].

Moreover, recent studies have shown that exposure to 
air pollution may be a complex scenario influenced by 
several elements, such as other pollutants or meteoro-
logical conditions, indicating that assessing this relation-
ship requires a multidimensional approach to be better 
quantified [11–13]. Despite this complexity, exposure 
to environmental pollutants has been clearly linked to 
multiple negative health outcomes, including short-term 
symptoms, chronic effects on morbidity, and premature 
mortality [14]. Environmental pollution is associated 
with a high risk of developing certain diseases such as 
cardiovascular diseases [15], diabetes [16], asthma [17, 
18], chronic obstructive pulmonary disease (COPD) [19], 
and emergency room visits for respiratory diseases [20]. 

Furthermore, recently, the World Health Organization 
(WHO) and the International Agency for Research on 
Cancer (IARC) have classified air pollution as a Group 1 
carcinogen [21].

In this context, prevention remains a challenge of pri-
mary importance. The main obstacle in recognizing and 
managing the potential risks of chemicals is the lack of 
information regarding citizens’ exposure, including 
workers, to chemicals and their interaction with other 
substances related to the environment or lifestyle. Many 
studies have shown the important role of green and blue 
spaces, identified, respectively, as natural or artificial 
areas characterized by the presence of vegetation, such 
as parks, gardens, forests, and meadows, and natural or 
artificial environments characterized by the presence of 
water, such as seas, rivers, lakes, ponds, canals, and even 
swimming pools, in bringing positive effects on human 
health [22]. Meta-analyses have shown how green spaces 
may positively affect diastolic pressure, cortisol produc-
tion, and heart rate, also reducing all-cause mortality 
[23]. The reason for this could be a pleiotropic effect, also 
obtained through a reduction of air pollution thanks to 
the presence of vegetation [24].

Biological pathways and mechanisms 
behind the association of Tnf‑α, cortisol levels, 
and exposure to PM10 and PM2.5
One of the main studied hypotheses is the pathogenic 
role of PM as a trigger of the stress response. Exposure 
to particulate matter (PM), especially PM10 and PM2.5, 
has been shown to activate the hypothalamic–pitui-
tary–adrenal (HPA) axis, a central stress response sys-
tem [25, 26]. The inhalation of fine particles leads to 
oxidative stress and inflammation in the respiratory 
tract, which can trigger the release of pro-inflammatory 
cytokines such as tumor necrosis factor-alpha (TNF-α) 
[27–30]. TNF-α is a key cytokine involved in systemic 
inflammation. It is produced by various cells, includ-
ing macrophages, and its elevated levels lead to chronic 
inflammation, which is associated with a range of adverse 
health outcomes, including respiratory and cardiovas-
cular diseases [31]. This cytokine can stimulate the HPA 
axis, leading to increased production and release of corti-
sol from the adrenal glands [32–35]. Regarding stress and 
inflammation, several animal studies have shown changes 
in cortisol and related hormones following short-term 
exposure to fine particulate matter like PM2.5, implying 
activation of the hypothalamic–pituitary–adrenal axis 
[36, 37].

Some epidemiological studies have investigated the 
relationship between cortisol levels and exposure to air 
pollution but with different, heterogeneous, and some-
times null results, for example for exposure to PM2.5 
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while observing some effects for other exposures such 
as NO2 [38, 39]. Very few epidemiological studies have 
examined short-term exposure to urban air pollution 
and response to salivary cortisol, and only one [40, 
41], to our knowledge, specifically studied the relation-
ship between salivary cortisol and both exposure to 
PM2.5 and PM10. Most studies have concentrated on 
the long-term effects of PM exposure, while the short-
term lag effects on biomarkers like cortisol and TNF-α 
are less explored. This gap is crucial because short-
term exposure can also trigger significant physiological 
responses, which are important for understanding the 
immediate impact of air pollution on human health [42, 
43].

In addition, TNF-α is involved in systemic inflamma-
tion [44], and it has been linked to human body reactions 
to exposure to air pollution in murine models. Its blood 
circulating levels showed a possible role of this cytokine 
in modifying and affecting human physiology and pathol-
ogy [45–47]. An interesting in  vitro study showed how 
seasonal variability of PM composition may influence 
cytokine cell production like TNF-α or IL-6 [48]. Never-
theless, the relationship between salivary levels of TNF-α 
and short-term exposure to both PM10 and PM2.5 has 
not yet been deeply investigated, since only one study, 
to the best of our knowledge, reported an association 
of TNF-α salivary levels and very short-term exposure, 
within hours, to PM2.5 [49]. Moreover, the TNF-α path-
way related to air pollution has been studied from an 
epigenetic point of view, since methylation levels in this 
relationship between air pollution exposure and health 
outcomes involve not only association but also mediation 
[50–52]. Methylation is a key factor in terms of epige-
netic regulation, as its presence changes and modulates 
gene expression [53, 54], and air pollution could exert its 
harmful effects also through this pathway by modifying 
the quantity levels of the TNF-α cytokine in the human 
body. However, its salivary promoter methylation levels 
and their relationship with salivary cortisol and PM are 
not fully elucidated.

Our study addresses these gaps by examining the asso-
ciation between short-term lag exposure to PM10 and 
PM2.5 and salivary cortisol and TNF-α methylation lev-
els, thereby providing new insights into the immediate 
biological responses to air pollution. In addition, we pro-
vide comparative data on PM exposure effects in urban 
and rural populations, which can inform region-specific 
public health strategies. Furthermore, the inclusion of 
TNF-α promoter methylation analysis helps elucidate 
the epigenetic mechanisms that may mediate the health 
effects of PM exposure, bridging a crucial gap in the exist-
ing literature. In conclusion, the aim of this study is to 
analyze the association between short-term lag exposure 

to PM10 and PM2.5, salivary cortisol and TNF-α levels, 
and methylation levels of the TNF-α promoter.

Methods
Study population
To define the study population, we reviewed air pollu-
tion data recorded by the local Environmental protec-
tion Agency (Agenzia Regionale Protezione Ambientale 
Marche—ARPAM), recorder through fixed registration 
units. We used records coming from two fixed registra-
tion units located in the areas, one rural and one urban, 
where our subjects have their residency. Validation of 
these data are guaranteed by ARPAM agency that is a 
government regional agency which activities and regis-
trations are regulated by Italian law. ARPAM considers 
registrations coming from these units as a good approxi-
mation of the exposure of people that are residents in 
the municipal areas where the units are located. These 
data are publicly available. According to these data, two 
areas with different level of exposure to air pollution have 
been selected, one with the lowest and another one with 
the highest exposure. Selected 4  days lag values before 
saliva specimens were collected to look at possible effect 
of short-term air pollution. We recruited 20 subjects, 10 
from the above-mentioned urban area with an historical 
major exposure to air pollution and 10 from the rural area 
with an historical lower exposure to air pollution [55–
57]. First set of saliva samples have been collected among 
July 2018 while second set has been collected during Feb-
ruary 2019. Thirty-nine observations have been used in 
the present analysis, since one saliva sample collected has 
been undetermined both on TNF-alfa and Cortisol quan-
tification. All subjects have been requested to answer 
some question regarding their health conditions, possible 
presence of chronic diseases like hypertension or diabe-
tes, dietary habits, lifestyles, social interactions. Inclusion 
criteria were being resident in the two areas analyzed and 
being aged more than 18 years old. Recruitment has been 
carried out on voluntary basis and subjects have been 
contacted through their general practitioners.

Exclusion criteria were being affected by chronic dis-
eases like chronic liver diseases (viral, NASH, autoim-
mune cirrhosis, drug), previous myocardial infarction, 
angina presence, previous stroke, BMI > 30, cortisone 
drugs therapies, sexual hormones therapies.

All procedures performed in studies involving human 
participants were in accordance with the ethical stand-
ards of the institutional and/or national research com-
mittee and with the 1964 Helsinki declaration and its 
later amendments or comparable ethical standards. Ethi-
cal approval for the study was obtained from by the local 
ethics committee (Comitato Etico Regionale Marche—
CERM, Prot. N. 2017-0317OR).
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Saliva collection and extraction
Procedures were conducted as previously described [58]. 
At least 1 mL of saliva was collected in a  Salivette® (Sarsted 
Aktiengesellschaft & Co., Nümbrecht, Germany). Subjects 
were instructed not to consume water or food (includ-
ing candies or chewing gum) or brush their teeth within 
30 min prior to sample collection. Saliva samples were cen-
trifuged at 1000  rpm for 2  min, and the supernatant was 
collected and stored at − 20 °C [59]. Sampling was carried 
out using the same standard procedure in both July and 
February: the first saliva sample was collected rigorously 
30 min after awakening to ensure that the morning peak of 
cortisol secretion was not missed (7:00 am). The other sam-
ples were collected at 7:15 AM, 7:45 AM, 11:30 AM, 3:00 
PM, 6:00 PM, 8:00 PM, and 10:00 PM.

Cortisol and TNF‑alfa measuring on saliva
A commercial enzyme immunoassay kit to determine sali-
vary cortisol (®DRG International, Inc) was used accord-
ing to manufacturer’s instructions. This is an enzyme 
immunoassay for the quantitative determination of cor-
tisol, based on the principle of competitive binding. The 
microtiter wells are coated with a monoclonal antibody 
directed towards an antigenic site on the Cortisol molecule. 
Endogenous Cortisol of a sample competes with a Corti-
sol-horseradish peroxidase conjugate for binding to the 
coated antibody. After incubation the unbound conjugate 
is washed off. The amount of bound peroxidase conjugate 
is inversely proportional to the concentration of Cortisol 
in the sample. After addition of the substrate solution, the 
intensity of color developed is inversely proportional to 
the concentration of Cortisol in the sample. The level of 
TNF-α, was established in the saliva by using the commer-
cially available kit Diaclone SAS, France. This is an enzyme 
immunoassay for the quantitative determination of TNF-
α, based indirect method. Regarding equations performed 
to calculate cortisol area under the curve with respect to 
the ground (AUCg) and cortisol area under the curve with 
respect to the increase (AUCi) we used following equation 
as indicated in previous works [60]:

DNA extraction from saliva
Genomic DNA extraction from the specimens was per-
formed using a PureLink™ Genomic DNA Mini Kit 
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(Invitrogen, Carlsbad, California, USA) according to the 
manufacturer’s instructions with some modifications. 
DNA concentrations were determined spectrophotomet-
rically using Qubit® 2.0 Fluorometer (Invitrogen, Carls-
bad, California, USA).

Methylation assay
To study methylation levels of promoter region of TNFα 
gene on DNA extracted from saliva, we used methyla-
tion DNA immune precipitation purification technique 
(MeDIP) which is used in molecular biology to enrich for 
methylated DNA sequences. It consists of isolating meth-
ylated DNA fragments via an antibody raised against 
5-methylcytosine (5mC). This technique was described 
previously [61]. To perform the technique, we used the 
MagMeDIP qPCR/Auto MagMeDIP qPCR Kit from 
Diagenode following manufacturer protocol. Then the 
immunoprecipitated samples have been amplified trough 
real time PCR using following primers:

TNF‑alpha promoter
Forward primer: TTG ATG CTT GTG TGT CCC CAA.
Reverse primer: CTC CCT CTT AGC TGG TCC TCT.

We designed our primers based on the same region of 
the TNFα promoter analyzed in previous studies [62, 63].

Methylation it has been than calculated as percentage 
of methylation after adjusting each sample with its cor-
responding input, a fixed amount of DNA that has been 
processed in the same way of corresponding sample 
except for immunoprecipitation step.

Statistical analysis
Univariate analysis has been performed to evaluate base-
line characteristic of the subjects followed by bivariate 
analyses to study possible association of variables for 
being exposed to air pollution or not. Exposure has been 
considered as present if subject was resident in the urban 
area and not present if resident in rural area.

Data distribution of outcomes variables AUCg, AUCi, 
TNFα and TNFα methylation levels have been checked 
trough histogram graphical representation, showing a 
not normally distribution of the values for all outcomes 
considered.

Regression analyses were performed using generalized 
linear mixed models [64–66] with a linear link between 
the different outcomes (Cortisol mean, TNFα mean, 
AUCi, AUCg, TNFα methylation) as the dependent vari-
ables and 4,3,2 and 1 days lag values of PM10 and PM2.5 
as the independent variable, adjusting for potential con-
founders age (continuous), gender (male/female), alco-
hol consumption(yes/no), marital status(single, married, 
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divorced/separated, and widowed), if rural or urban area 
(1 = urban, 0 = rural), smoking(yes/no), Body Mass Index 
(continuous), Beta blockers assumption (yes/no), Diuret-
ics assumption (yes/no), Psychotropic drugs assumption 
(yes/no), Hypertension (yes/no), Arthritis/AI diseases 
(yes/no), Chronic Pain (yes/no), Severe depression (yes/
no), effective sleep time m(continuous). Lag days values 
refer to the delay between the day we performed biologi-
cal sampling on subjects and their exposure to PM. To 
clarify, we evaluated the possible association between 
cortisol and methylation levels and values of PM10 and 
PM2.5 from 1, 2, 3, and 4 days before the sampling event. 
We used random intercepts to account for repeated 
measures and within-subject clustering. To assess any 
potential deviation from linearity, we also fit a general-
ized additive mixed model (GAMM) with a penalized 
spline for air pollution values and used generalized cross-
validation to select the optimal number of degrees of 
freedom for this association. Generalized cross-valida-
tion estimated that the best-fitting number of degrees of 
freedom was 1, suggesting that a linear association was 
the best fit. This result was valid for all our models except 
for TNFα vs PM2.5 3  days lag, AUCg vs PM10 4  days 
lag, AUCg vs PM2.5 4  days lag, AUCi vs PM10 and vs 
2.5 4 days lag and AUCi vs PM10 3 days lag that showed 
slopes with degree of freedom > 1. All our models have 
been adjusted for age, sex, alcohol consumption, marital 
status, if rural or urban area, smoking, Body Mass Index, 
Beta blockers assumption, Diuretics assumption, Psycho-
tropic drugs consumption, Hypertension, Arthritis/AI 
diseases, Chronic Pain, Severe depression, effective sleep 
time. The cutoff for statistical significance was set at the 
95% confidence level (p value ≤ 0.05). All analyses have 
been performed with STATA® 15/SE. Graphical repre-
sentations of GAMM models have been obtained using R 
(v 4.1.1) (R Core Team 2021). R: A language and environ-
ment for statistical computing. R Foundation for Statisti-
cal Computing, Vienna, Austria).

Results
The population studied is composed of 20 subjects; 39 
observations have been used in the present analysis, since 
one saliva sample collected was undetermined for both 
TNF-α and cortisol quantification. The main character-
istics of the subjects at baseline are shown in Table 1. We 
performed a bivariate analysis with baseline characteris-
tics of our subjects to evaluate possible statistically sig-
nificant differences between the two populations based 
on different residency areas, rural or urban (Table  2). 
Only hypertension and smoking reached statistical sig-
nificance. Regarding levels of exposure, Table  3 shows 

Table 1 Univariate analyses for baseline characteristics of 
participants

Variables N %

Gender

 Male 10 50

 Female 10 50

Age

 Mean 60,6 (C.I. 54,38/66,82)

Hypertension

 Yes 6 30

 No 14 70

Type2 diabetes

 Yes 1 5

 No 19 95

Chronic pain

 Yes 8 40

 No 12 60

Smoke

 Yes 4 20

 No 16 80

BMI

 Mean 25.41 (C.I. 23.87–26.96)

Severe depression

 Yes 1 5

 No 19 95

Psychosis

 Yes 1 5

 No 19 95

Arthritis or other autoimmune diseases

 Yes 2 10

 No 18 90

Presence of disease or infirmity in the family

 Yes 7 35

 No 13 65

Marital status

 Single 2 10

 Married 16 80

 Widowed 2 10

Alcohol units/week

 0 11 55

 1–5 1 5

 6–10 2 10

 11–15 5 25

β-blockers

 Yes 2 10

 No 18 90

Diuretics

 Yes 18 90

 No

Psychotropic drugs

 Yes 2 10

 No 18 90
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the mean exposure for all time periods considered for 
both PM10 and PM2.5. Means have been stratified by 
season (winter/summer) since, as already described, 
samples were collected in February and July, correspond-
ing, respectively, to winter and summer seasons at our 
latitude. Next, we examined the relationship between 
TNF-α and exposure to PM10 and PM2.5 at different lag 
days. We found a positive association for both PM2.5, 
which was statistically significant, and PM10, which was 
statistically significant in all exposure periods analyzed 
from 4 days lag to 1 day lag, except for the relationship 
between PM2.5 at 3 days lag and TNF-α, which was not 
statistically significant (Table  4). Looking at the rela-
tionship between AUCg and air pollution, we found a 
positive statistically significant association with PM10 at 
4-day, 3-day, 2-day, and 1-day lag exposure, and a positive 
but not statistically significant association with PM2.5 at 
4-day, 3-day, 2-day, and 1-day lag exposure (Table 5). The 
association between AUCi and PM10 at 4  days lag and 
PM2.5 at 4  days lag was evaluated; we found a statisti-
cally significant negative association with PM10 at 4 days 
lag, 3  days lag and 1  day lag (Table  6). This association 
maintained the same trend but did not reach statisti-
cal significance for 2 days lag. Regarding the association 
with PM2.5, all lag periods considered showed a nega-
tive but not statistically significant association (Table 6). 
The general trend of our relationships considering all 
time periods from 1 to 4 days lag showed a linear asso-
ciation except for a few specific cases as shown in figures 
(Figs. 1, 2, and 3). Figure 1 shows GAMM modeling for 
TNF-α, displaying a general trend of a linear relation-
ship from 1 to 4 days lag, with the only exception being 
exposure to PM2.5 at 3 days lag. Figure 2 shows GAMM 
modeling for AUCg, indicating a general trend of a linear 
relationship from 1 to 4 days lag, with the only exception 
being exposure to 4 days lag for both PM10 and PM2.5. 
Figure 3 shows GAMM modeling for AUCi, illustrating a 
general trend of a linear relationship from 1 to 4 days lag, 
with the only exception being exposure to 4 days lag for 
both PM10 and PM2.5. We then performed methylation 
analyses through MagMeDIP to analyze the methylation 
levels of the TNF-α promoter. GAMM models (Fig.  4) 
showed a general linear association except for exposure 
to PM10 at 3- and 1-day lag. Interestingly, the associa-
tion with increasing air pollution was negative except for 
exposure at 4 days lag, which was positive for both PM10 
and PM2.5 exposure. In Table 7, we report β values of the 
association of TNF-α promoter methylation levels with 
different exposures to air pollution, both in terms of lag 
exposure and PM type. The β values confirmed the direc-
tionality of the association found through GAMM mod-
els. None of them reached statistical significance.

Table 2 Bivariate analyses for association with Exposure

Variables Exposure p value

No (rural) Yes (urban)

Gender 0.37

 Female 6(30%) 4(20%)

 Male 4(20%) 6(30%)

Age 0.09

 18–34 1(5%) 0(0%)

 35–54 2(10%) 2(10%)

 55–64 5(25%) 1(5%)

 65 and over 2(10%) 7(35%)

Hypertension 0.05

 No 9(45%) 5(25%)

 Yes 1(5%) 5(25%)

Diabetes 0.30

 No 10(50%) 9(45%)

 Yes 0(0%) 1(5%)

Chronic pain 0.65

 No 4(20%) 5(25%)

 Yes 6(30%) 5(25%)

Smoking 0.02

 No 10 (50%) 6 (30%)

 Yes 0 (0%) 4 (20%)

BMI 0.07

 Normal weight 3(15%) 7(35%9

 Overweight 7(35%) 2(10%)

 Obese 0(0%) 1(5%)

Severe depression 0.30

 No 10(50%) 9(45%)

 Yes 0(0%) 1(5%)

Arthritis or other autoim-
mune diseases

0.14

 No 10(50%) 8(40%)

 Yes 0(0%) 2(10%)

Marital status 0.14

 Single 2(10%) 0(0%)

 Married 8(40%) 8(40%)

 Widow 0(0%) 2(10%)

Alcohol units/week 0.34

 0 5(25%) 7(35%)

 1–5 2(10%) 0(0%)

 6–10 2(10) 1(5%)

 11–15 1(5%) 2(10%)

β-blockers 0.14

 No 10(50%) 8(40%)

 Yes 0 2(10%)

Diuretics 0.14

 No 10(50%) 8(40%)

 Yes 0(0%) 2(10%)

Psychotropic drugs 1

 No 9(45%) 9(45%)

 Yes 1(5%) 1(5%)

Highlighted in bold results with statistical significance p value ≤ 0.05



Page 7 of 16Dolcini et al. Environmental Sciences Europe          (2024) 36:141  

Discussion
Association between PM exposure and salivary cortisol
Our results show an interesting statistically significant 
association between exposure to PM10 and PM2.5 and 
salivary cortisol. It is very important to underline that 
comparing cortisol levels is extremely complex, especially 
when there are repeated measures with many samples, as 
our study design provided. It is crucial to take into con-
sideration changes over time of this hormone [58, 60]. 
Therefore, we also analyzed two additional measures that 
are usually used in studies with repeated cortisol sam-
pling: AUCi and AUCg. They showed different character-
istics of association: AUCg showed a statistically positive 
association with 4-, 3-, 2-, and 1-day lag of exposure to 
PM10. On the other hand, AUCi showed a statistically 
negative association with 4-, 3-, and 1-day lag of exposure 
to PM10. Considering that AUCg is more related to “total 
hormonal output” and AUCi is more related to the sensi-
tivity of the system, it could be possible to speculate that 
there is an increase in overall hormone production but, 
at the same time, a reduced dynamism of the system to 
respond to external stressors [58, 60]. Since cortisol is a 
fundamental part of the human body’s hormonal axis to 
respond to modifications of normal homeostasis induced 
by internal or external stimuli, a significant increase in 
the overall quantities of this hormone reflects an increase 
in a subject’s stress and a reduced capability to respond 
to stressors, when necessary, since the basal production 
is already high. This point is illustrated by the negative 
association between exposure to PM10 and AUCi. These 
findings are in accordance with previous studies looking 
at the relationship between cortisol levels and PM expo-
sures [67–69]. Regarding the association of AUCg and 
AUCi with continuous PM2.5, the magnitude and direc-
tionality of β coefficients reflect the same kind of associa-
tion found for PM10 without statistical significance. So, 
the absence of statistical significance in AUCi and AUCg 

analyses may be due to the different nature of the parti-
cles that constitute PM10 and PM2.5: the smaller diam-
eter of the particles in the PM2.5 mixture allows them 
to penetrate deeper into the lower airways, resulting in 
less permanence in the mouth and consequently a lower 
effect on salivary cortisol.

Linear and non‑linear associations in GAMM analysis
Using generalized additive mixed models (GAMM) in the 
R environment, we decided to check for any deviation 
from linearity regarding the different relationships inves-
tigated. Even though some specific associations showed 
a nonlinear pattern, taken together, all GAMM per-
formed showed a general trend of linear association for 
the outcomes AUCg and AUCi with PM10 and PM2.5. 
Moreover, the directionality of our GAMMs confirmed 
estimates from regression analyses.

TNF‑α levels and air pollution exposure
Regarding regression models involving TNF-α and PM10 
and PM2.5, continuous models showed a statistically sig-
nificant association with both exposures at 4-, 3-, 2-, and 
1-day lag, and we found positive trends that have been 
confirmed by GAMM models for both PM10 and PM2.5, 
showing a general trend of linear association. From a 
biological point of view, exposure to air pollution may 
cause oxidative stress and inflammation, as evidenced 
by increased salivary TNF-α levels. Our result, even with 
different exposure times, is in accordance with findings 
by Zhu X et al. [41] and is also supported by other stud-
ies linking air pollution with inflammatory responses and 
TNF-α [70–72].

TNF‑α promoter methylation and PM exposure
We then decided to analyze the association of promoter 
methylation levels of TNF-α with exposure to PM10 and 

Table 3 Mean exposure levels for all time periods

PM10/PM2.5 by lag day Exposure levels

Winter Summer

Mean(μg/m3) C.I. 95% Mean(μg/m3) C.I. 95%

PM10 4 days lag 29.02 22.38–35.66 16.58 15–18.17

PM10 3 days lag 23.93 20.46–27.40 16.10 15.20–17.01

PM10 2 days lag 27.51 23.39–31.62 19.28 18.13–20.43

PM10 1 days lag 27.61 24.32–30.89 19.78 18.70–20.86

PM2.5 4 days lag 17.33 11.66–23.02 8.25 7.43–9.06

PM2.5 3 days lag 12.88 9.02–16.73 9.07 7.98–10.16

PM2.5 2 days lag 15.44 11.93–18.96 9.59 8.65–10.53

PM2.5 1 days lag 16.33 11.83–20.83 11.09 9.97–12.22
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PM2.5 at different lag days. GAMM models showed a 
general trend of linear association, which was positive 
for both PM10 and PM2.5 at 4 days lag and then nega-
tive at 3-, 2-, and 1-day lag. The directionality of these 
results was confirmed by β values estimates from regres-
sion models, but none of them reached statistical signifi-
cance. The interpretation of these results is quite tricky: it 
could be possible to speculate that only very recent expo-
sure, like 3-, 2-, and 1-day lag, could cause demethylation 
of the TNF-α promoter and subsequently an increase in 
the protein, as we found by analyzing the levels of this 
cytokine in salivary samples. In fact, it is well known that 
promoter demethylation allows an increase in gene tran-
scription [53]. The difference in statistical significance 
levels between regression models involving the TNF-α 
protein and those involving the promoter of its gene may 
have multiple explanations: first, we were able to obtain 
methylation data from only 22 samples out of 39 because 
some samples did not have enough DNA required for a 
MagMeDip procedure, which could have caused a loss 
of information and statistical power. Moreover, there 
could also be biological reasons causing this difference 

since other epigenetic events together with methylation, 
like mRNA post-transcriptional modifications, may play 
an important role in TNF-α protein levels. So, the meth-
ylation levels we encountered are only a part of a more 
complex biological equation. In addition, we used site 
time of exposure in our analysis for both the protein and 
promoter methylation levels, but for epigenetic changes, 
much shorter time points might be needed, possibly just 
a few hours, since methylation and demethylation events 
could happen immediately after air pollution exposure.

Study strengths and limitations
To our knowledge, our study is the first to analyze 
together salivary cortisol levels, TNF-α salivary cytokine 
levels, and salivary promoter TNF-α methylation lev-
els at short-term exposure expressed as 4-, 3-, 2-, and 
1-day lag of exposure. We decided to look at this time 
period because too much lagged exposure could have 
lost its effect on very complex biological mechanisms 
such as cortisol and TNF-α levels, since these pathways 
can be influenced by many other factors and potential 
confounders may increase their effects when looking at 
longer periods of observation. Moreover, our study is 
longitudinal since we have studied our subjects with two 
different sampling periods and have been able to collect 
much information about their habits and lifestyles. In the 
end, our sample is composed of both men and women 
essentially in good health without any major diseases that 
could have influenced TNF-α and cortisol levels and pro-
duction pathways. Regarding methylation analyses, our 
technique allowed us to focus better on only one gene by 
studying its promoter methylation with a method that is 
less expensive and much less time-consuming compared 
to next-generation sequencing techniques (NGS), which 
are more expensive and can generate BIG DATA whose 
interpretation may be quite tricky due to high levels of 
noise and biases, and data heterogeneity [61, 73].

Table 4 Association between TNF-α levels and PM levels during 
the previous four days of exposure

Highlighted in bold results with statistical significance p value ≤ 0.05

TNFα Coef. Std. Err. p value [95% Conf. 
Interval]

PM10 4 days lag 0.90 0.37 0.015 0.18 1.62
PM10 3 days lag 1.61 0.7 0.020 0.27 2.97
PM10 2 days lag 2.00 0.63 0.001 0.76 3.23
PM10 1 day lag 2.09 0.67 0.002 0.76 3.42
PM2.5 4 days lag 1,29 0.45 0.001 0.41 2.17
PM2.5 3 days lag 2.32 0.69 0.001 0.96 3.67
PM2.5 2 days lag 2.85 0.65 0.000 1.57 4.13
PM2.5 1 day lag 2.44 0.41 0.000 1.64 3.24

Table 5 Association between AUCg and PM levels during the 
previous four days of exposure

Highlighted in bold results with statistical significance p value ≤ 0.05

AUC g Coef. Std. Err. P value [95% Conf. 
Interval]

PM10 4 days lag 0.01 0.005 0.035 0.001 0.023
PM2.5 4 days lag 0.01 0.007 0.192 − 0.005 0.02

PM10 3 days lag 0.02 0.01 0.05 0.00 0.04
PM2.5 3 days lag 0.01 0.013 0.515 − 0.02 0.03

PM10 2 days lag 0.02 0.009 0.049 0.00 0.04
PM2.5 2 days lag 0.02 0.01 0.173 − 0.01 0.04

PM10 1 day lag 0.02 0.01 0.017 0.00 0.04
PM2.5 1 day lag 0.01 0.01 0.301 − 0.00 0.03

Table 6 Association between AUCi and PM levels during the 
previous four days of exposure

Highlighted in bold results with statistical significance p value ≤ 0.05

AUC i Coef. Std. Err. p value [95% Conf. 
Interval]

PM10 4 days lag − 119.19 50.25 0.017 − 218.1 − 21.12
PM10 3 days lag − 201.16 96.61 0.037 − 390.52 − 11.8
PM10 2 days lag − 147.8 93.46 0.114 − 330.97 35.4

PM10 1 day lag − 173.63 101.25 0.09 − 372.07 24.82
PM2.5 4 days lag − 89.11 67.73 0.188 − 221.88 43.64

PM2.5 3 days lag − 83.2 122.68 0.498 − 323.64 157.24

PM2.5 2 days lag − 116.34 110.85 0.294 − 333.60 100.92

PM2.5 1 day lag − 54.24 93.48 0.562 − 237.46 128.98
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There are some limitations to our study. The small 
sample size of our population, which resulted in a total 
of 39 observations, limited the statistical power of our 

findings. Although we collected 8 saliva samples from 
each subject throughout the day until 10:00  pm, we 
were unable to collect samples during nighttime due 

Fig. 1 GAMM models between lag days values of exposure levels PM10/PM2.5 and TNFα
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Fig. 2 GAMM models between lag days values of exposure levels PM10/PM2.5 and AUG 
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Fig. 3 GAMM models between lag days values of exposure levels PM10/PM 2.5 and AUC 
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Fig. 4 GAMM models between lag days values of exposure levels PM10/PM 2.5 and TNF-alfa promoter methylation
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to logistical constraints. This limitation might have 
impacted the accurate measurement of biological param-
eters, especially cortisol levels. Consequently, this could 
have affected the robustness of some of our findings, par-
ticularly in terms of statistical significance. However, our 
results are in accordance with larger studies that found 
a statistically significant positive association between 
PM2.5 and salivary cortisol output [41, 74]. On the other 
hand, some studies considering multipollutant models 
and longer PM2.5 exposures have found a negative asso-
ciation with serum cortisol levels [75].

Another limitation is the reliance on fixed station 
data for PM exposure, as we did not have individual 
exposure information. This could have biased the expo-
sure assessment. Moreover, even if we adjusted for 
many possible confounders, there may be some ele-
ments we did not consider that could influence the 
associations we analyzed. Regarding this aspect, we 
would like to point out that we are aware that we used 
many confounders for relatively few observations, but 
they have been selected due to biological and clinical 
reasons since each of them can influence our biologi-
cal parameters, especially cortisol levels. We decided 
to take into consideration variables that may have a rel-
evant biological magnitude even if not mirrored by sta-
tistical power due to the small size of our population. 
Other variables such as occupation, exercise history, 
or other socio-demographic characteristics were not 
included due to the limitations of our data collection 
process. These factors can significantly impact cortisol 
and TNF-α levels and should be considered in future 
studies.

Another limitation is the lack of meteorological vari-
ables like temperature in our study: in this kind of study, 
it has been shown how there could be an interaction 
between effects coming from temperature and air pol-
lutants. However, some studies have shown interactions 
between temperature and air pollution effects, but these 

are often considered in the context of macroscopic events 
rather than single biological parameters like cortisol or 
TNF-α levels [76], and even at this large scale, studies 
are not always in accordance [77, 78]. Moreover, previ-
ous works looking at the relationship between cortisol 
levels and air pollution did not account for temperature 
[74, 75]. Certainly, more studies are needed to better 
address this point since some of them showed how PM 
may encounter seasonal variation in terms of pattern 
composition influencing inflammatory cytokine produc-
tion in vitro like TNF-α and IL-6 [48]. This aspect could 
be related to seasonal differences that have been found in 
epidemiologic studies looking at air pollution and health 
outcomes, especially considering that some previous 
works encountered seasonal differences and variation in 
air pollution associated with various seasons and speci-
ficity of particular months [79].

Studying these temporal differences in terms of com-
position could clarify some of our results that lack sta-
tistical significance, such as air pollution exposure and 
the association with promoter TNF-α methylation levels, 
despite strong associations with the cytokine saliva lev-
els. This may be the result of more complex interactions 
between PM components, size, and cytokine crosstalk 
that we cannot fully capture with the data at our disposal. 
Moreover, the relationship between promoter methyla-
tion levels and protein levels of TNF-α may be influenced 
by several factors such as post-transcriptional regulation: 
TNF-α protein levels can be regulated at multiple levels, 
including transcriptional, post-transcriptional, and post-
translational modifications. Methylation of the promoter 
is just one regulatory mechanism, and other factors 
might play a more dominant role in regulating TNF-α 
levels in response to particulate matter exposure. A more 
detailed approach could also clarify mechanistic aspects 
rather than simple associations between air pollution and 
health outcomes. In addition, it might be interesting to 
follow our subjects for a longer period, taking more sam-
ples to better account for inter-person variability.

Regarding methylation analysis, unfortunately, some 
samples did not yield a significant amount of DNA to 
proceed with the immunoprecipitation technique. 
Moreover, our population may not be representative 
enough, being composed only of Caucasian males and 
females. More studies with larger and more ethnically 
diverse populations are needed to better investigate the 
relationships we described [80].

Conclusions
Cortisol levels, as well as protein levels of TNF-α, showed 
significant associations with different lag days of expo-
sure to PM10 and PM2.5. Our findings reveal that there is 

Table 7 Association between TNF-α promoter methylation and 
PM levels during the previous four days of exposure

TNF‑α promoter 
methylation

Coef. Std. Err. P value [95% Conf. 
Interval]

PM10 4 days lag 0.24 0.23 0.30 − 0.21 0.69

PM10 3 days lag 0.19 0.53 0.72 − 0.85 1.24

PM10 2 days lag − 0.03 0.61 0.95 − 1.24 1.17

PM10 1 days lag 0.32 0.61 0.60 − 0.87 1.50

PM2.5 4 days lag 0.28 0.63 0.65 − 0.95 1.52

PM2.5 3 days lag − 2.21 2.25 0.33 − 6.62 2.20

PM2.5 2 days lag − 0.67 0.89 0.45 − 2.42 1.07

PM2.5 1 days lag − 1.58 0.97 0.10 − 3.49 0.32



Page 14 of 16Dolcini et al. Environmental Sciences Europe          (2024) 36:141 

an increase in the overall cortisol hormone levels, accom-
panied by a reduced dynamism of the system to respond 
to external stressors. This suggests that prolonged expo-
sure to air pollution could lead to a state of heightened 
stress with diminished adaptive capacity. The observed 
increase in TNF-α levels may indicate elevated levels of 
oxidative stress and inflammation as a result of air pollu-
tion exposure, highlighting the potential for air pollution 
to exacerbate inflammatory pathways.

In addition, our study contributes to the growing 
body of research exploring the relationship between 
air pollution and promoter methylation levels of TNF-
α, although further investigation is needed to elucidate 
these epigenetic mechanisms. The novelty of our find-
ings lies in the detailed temporal analysis of exposure 
effects, the integration of cortisol and TNF-α path-
ways, and the inclusion of epigenetic factors analyzed 
through the methylation DNA immunoprecipitation 
purification technique (MeDIP), which together pro-
vide a more comprehensive understanding of how air 
pollution impacts biological systems. These insights 
underscore the importance of addressing air pollution 
to mitigate its adverse health effects.
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