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ABSTRACT Modeling data generated by physiological systems is a crucial step in many problems such
as classification, signal reconstruction and data augmentation. However finding appropriate models from
high-dimensional data sampled from biosignals is in general unpracticable due to the problem known as the
‘‘curse of dimensionality’’. Dimensionality reduction, that is representing data in some lower-dimensional
space, is the commonly adopted technique to handle these data. In this context manifold learning has drawn
great interests as a promising nonlinear dimensionality reduction method. Neverthless the main drawback
of methods based on manifold learning is that they learn data implicitly, that is with no explicit model
of data belonging to the manifold. The aim of this article is to develop a manifold learning approach to
parametrize data for generative modeling of biosignals, by deriving an explicit function that represents the
local parametrization of the manifold. The approach involves two main stages, i) estimation of the intrinsic
dimension of data, that is the dimension of the manifold, and ii) estimation of the function representing the
local parametrization of the manifold. Experimental results both on synthetic and real-world data shown the
effectiveness of the presented approach. The source code of the algorithm for unsupervised learning of data
is available at https://codeocean.com/capsule/6692152/tree/v3.

INDEX TERMS Biosignal generative modeling, intrinsic dimension, latent variables, manifold learning,
nonlinear dynamical systems, regression.

I. INTRODUCTION
High dimensional data generated by physiological systems
are common inmany application fields, inwhich observations
are signals achieved in the form of time series. Biological
signals such as ECG, EEG and speech signals are well known
examples of signals that generate data of high dimensionality.

In many related problems of classification, signal recon-
struction and so on, the goal is to learn a model that ade-
quately describes the behaviour of the system that generates
the observed data [1]. Data augmentation, that synthetically
increase the amount of training data to increase learning
accuracy is another application that requires accurate signal
generative models [2].
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A common approach to derive biosignal generative model
is the so called mathematical-based approach which rely on
physical insights into the specific problem for choosing the
appropriate parametric form [3], [4]. Experimental evidence
has proven that physiological systems that generates biolog-
ical signals belong to the wide class of nonlinear dynam-
ical systems (NLDS) [5], that are described by nonlinear,
time-dependent equations. However, since the dynamics of
the systems that generate this kind of signals are too complex
or unknown, just in a few cases they can be described by
analytical equations.

An effective method to face this problem is to use unsu-
pervised learning techniques in order to learn a model from
unlabeled data. In this case one has a set of N observations
and the goal is to directly derived a model of data without the
help of a supervisor or teacher providing a degree-of-error
for each observation [6]. Nevertheless analysing real world
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signals and finding appropriatemodels from high-dimensional
data is in general unpracticable because many data analysis
techniques fail due to the problem known as the ‘‘curse
of dimensionality’’. As these techniques perform well for
low dimensional data, understanding the potential intrin-
sic low-dimensional structures of high-dimensional data is
an essential preprocessing step in many data analysis pro-
cesses. In general to handle those data in a proper way
a usually adopted approach is to represent data in some
lower-dimensional space. Linear transforms, such as prin-
cipal component analysis, factor analysis, linear discrimi-
nant analysis [7] and nonlinear transforms such as kernel
principal component analysis [8] have been widely used for
dimensionality reduction. In recent years, many new math-
ematical models have been proposed to capture more com-
plex low-dimensional structures than a single subspace [9].
Dimensionality reduction methods based on local geometric
structure [10] and graph learning [11] have also been widely
used in the recent literature, particularly for hyperspectral
imagery.

In the context of dimensionality reduction approaches,
manifold learning (ML) has recently attracted extensive
attention due its rigorous geometric interpretation, nonlinear
nature and computational feasibility [12]–[15]. The main
assumption in manifold learning is that the observable high
dimensional data are embedded in a nonlinear manifold of
lower dimension. In recent years several different manifold
learning approaches, i.e. locally linear embedding (LLE),
isometric mapping (IM), locally multidimensional scaling
(LMDS), maximum variance unfolding (MVU), local tan-
gent space alignment (LTSA), Laplacian eigenmaps (LE),
Riemannian manifold learning (RML), diffusion maps (DM)
and Hessian eigenmaps (HE), have been proposed [16]–[26].
However, a main drawback of the manifold learning meth-
ods is that they learn the low-dimensional representations
of the high-dimensional data implicitly. This means that no
explicit mapping representing the local parametrization of
the manifold can be obtained after the training process. As a
consequence during testing stage the learning procedure has
to be repeatedly implemented including both the training and
the testing samples as inputs, making this approach unsuitable
for signal generation.

In order to apply manifold learning techniques to data
generated by nonlinear dynamical systems, an explicit para-
metric model of such systems must be derived. Said in
another way a low-dimensional manifold M embedded in
the high-dimensional space of data and characterized by
a nonlinear map φ from low-dimensional parameter space
to high-dimensional space has to be determined. Thus the
the manifold learning or nonlinear dimensionality reduc-
tion (NLDR) problem is to recover the nonlinear mapping
relationship φ from data to the reduced feature map.
Several machine learning-based approaches have been

proposed [27] so far for signal generation, however none
of these takes advantages of the manifold concept. Here
we will prove that under wide general assumptions, data

generated by a dynamical nonlinear system lie on a non-
linear manifold φ between data and some feature vari-
ables, also called latent variables. The dimension of such
variables in low-dimensional space is called ’intrinsic
dimension’ (ID) of data. This measure essentially may be
interpreted as the minimum number of parameters required
to describe data [28]. The estimation of ID is particularly
crucial in the unsupervised learning of nonlinear time series
as it allows data they generate can be accurately modelled.
Several methods have been suggested for ID estimation
which can be classified in two main classes [29]: local
methods [29]–[32] and global methods [33]–[38]. However
many of these methods are empirical or not specifically
suitable for ID estimation of time series data. Recently a
useful result based on the geometry of local parametrization
of manifolds that establishes a rigorous criterion to determine
the ID of time series data, has been derived [39].

Once the latent variables have been discovered, the initial
unsupervised learning problem reduces to a supervised prob-
lem. The supervised learning of nonlinear time series falls
into the wider problem of nonlinear systems identification.
Over the years a large variety of different approaches has
been proposed in the literature to face this problem [40].
One of the most popular is the Lee-Schetzen method that
identifies the Volterra kernels of nonlinear systems stimulated
by random inputs with assigned statistic [41], [42]. Simplified
Volterra-based models which combine a static nonlinearity
and a linear dynamical system (Hammerstein-Wiener sys-
tems) have been profitably used to overcome calculation
of multidimensional Volterra kernels [43]–[45]. Because of
nonlinear signal processing and learning capability, artificial
neural networks (ANN’s) have become a powerful tool for
nonlinear system identification [46], [47]. Recently machine
learning techniques such as support vector machine (SVM)
are progressing rapidly, and overcomes the neural networks’
shortcomings, that is local minimizing and inadequacy to
statistical problems [48], [49].

Machine learning techniques reduce nonlinear system
identification to solving a regression problem, thus polyno-
mials play a central role in this context due to their property
of approximating a functionwith arbitrary accuracy. Among a
great variety of polynomials Bernstein polynomials [50] have
the property that the coefficients of polynomials are given by
the function to be approximated evaluated at points in a fixed
grid. This useful property avoid the need of an algorithm to
determine the unknown coefficients, as in other techniques
occur. Recently an effective machine learning technique for
regression of input-output relationships based on a set of
new functions named Particle-Bernstein Polynomials (PBP)
has been suggested for nonlinear system identification [51],
that circumvents the problem of a time-consuming learning
stage.

In this article we propose an effective manifold learn-
ing approach to the generative modeling of biosignals. The
main assumption of this approach is that data are generated
by a NLDS to be identified.
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The aim of this article is twofold:
i) to derive a parametric model of a NLDS, thus trans-

forming the unsupervised time series identification to a
supervised problem;

ii) to develop a manifold learning approach to the identifi-
cation of the model derived in i).

Concerning the first point, it will be shown that under wide
assumptions an NLDS generates data that are parametrized
by set of variables, that represent the so called latent vari-
ables. Besides, once data are filtered to discard irregular
components, data can be represented by a graph of a smooth
function G, thus proving that to a NLDS corresponds a
manifoldM.
With reference to the second point the proposed approach

follows the scheme reported in Fig. 1. Assuming data are
sampled from a manifold, the first stage is addressed to deter-
mine the intrinsic dimension of data, that is the dimension
of the manifold. In such a way a local parametrization φ
of the manifold, through a partition

(
y′′,G(y′′)

)T of the data
vector y, that represents the graph of a function G, is derived.
A crucial step in determining the local parametrization is the
estimation of ID, that is the dimension of the parametriza-
tion. Although several methods have been suggested for this
purpose, a very effective method based on the Jacobian of
the parametrization is used in this article. To improve the
accuracy an optimal version of Nadaraya-Watson derivative
estimator is developed. To this end a rigorous analysis to guar-
antee the best accuracy for the Jacobian estimation, is derived.
By partitioning data in accordance with this parametriza-
tion, the observed data can be considered as input-output
values of a function G. Thus the identification of the time
series reduces to the supervised learning of the function G.
To face this problem an effective machine learning tech-
nique for regression based on the set of PBPs has been
adopted, that does not depend on unknown parameters to be
determined.

The rest of the paper is organized as follows. In Section II
we summarize related work. Section III deals with the
parametric model of a dynamical system. Section IV is
addressed to the supervised learning of the function that
represents the local parametrization of the manifold, using
Particle-Bernstein Polynomials as basis functions. Experi-
mental results are presented in Section V.

II. RELATED WORK
A. HMM
Among machine learning-based approaches for biosignal
generative modeling, the HiddenMarkovModel (HMM) [52]
is a popular method for modeling sequential data. HMM
is defined by two probability distributions: the transition
probability between hidden state to the next state and the
observation distribution between the observed values and
hidden states. One of the main limitations with HMMs is
that they require 2N hidden states in order to model N bits
of information about the past history.

FIGURE 1. Schematic diagram of the algorithm for unsupervised learning
of data generated by dynamical systems.

B. AUTOENCODER
Autoencoders have been successively applied for the recon-
struction and analysis of biomedical signals [53]. An autoen-
coder consists of two parts. The encoder maps the input to a
latent space, and the decoder maps the latent representation
of the data. Unfortunately this model is not able to represent
a causal model, since both the encoder and decoder are static
maps, thus making autoencoders unsuitable for the generative
problem.

C. RNN
A model that has been used for modeling sequential data is
the Recurrent Neural Network (RNN). Generally, an RNN
is obtained from a feedforward network by connecting the
neuron outputs to their inputs, and modeling the short-term
time-dependency by the hidden-to-hidden connections. There
are two issues associated with RNN models: i) the number
of time steps ahead has to be predetermined for most RNNs,
ii) they fail to capture long temporal dependency for the input
sequence. A popular extension to address these drawbacks,
is to use a special RNN architecture named Long-Short-Term
Memory Neural Network (LSTM) [54]. An LSTM neural
network is composed of one input layer, one recurrent hidden
layer and one output layer. The main lack of LSTM neural
networks is that they are described by nonlinear composition
functions depending on a large number of unknown parame-
ters, thus requiring a time-consuming training stage.

D. GAN
Recently effective approaches based on the class of genera-
tive adversarial networks (GANs) have been proposed [55],
[56]. A GAN [57] consists of two networks: the generator
(G) and the discriminator (D). The generator is trained to pro-
duce data from noise samples. The discriminator is trained to
distinguish training data from data generated by the generator.
In the architecture proposed in [56] for biosignal generation,
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both G and D are LSTM networks. More specifically G con-
sists of a deep LSTM layer and a fully connected layer, while
D consists of a deep LSTM layer, a fully connected layer, and
an average pooling layer. Comparing with other techniques,
this approach has shown to be more accurate, however some
limitations exist. First, it requires a substantial long time to
train the model that depends on 2.4 × 103 hyperparameters
to be determined. Moreover, without a knowledge of the ID,
the number of parameters used for training is not in general
the minimum required to describe data. Second, the method
is not able to vary the fundamental frequency of the generated
signal, since the generator produces data from noise samples.
This is a severe limitation that reduces the capability of the
proposed approach to generate a large variety of signals.

III. OUR METHOD
A. MOTIVATION
Let us consider an n-dimensional random vector z(t),
t = 1, . . . , n satisfying the condition E{z(t)} = 0 that
represents a biosignal of length n. We assume a set of data
Z = {zj, j = 1, . . . ,N } , i.e. the observations of the random
n-vector z , can be collected from measurements.

Given data Z , our first goal is discover a low-dimensional
vector xd ∈ Rd of variables, the latent variables, such that
data are parametrized by xd . These latent variables xd can
be view as the hidden intrinsic state variables of the dynam-
ical system, that mostly affect the dynamics of the system.
If these variables exist with d � n, they allow data can be
described in a more compact form without incurring in the
curse of dimensionality problem. Mathematically this prob-
lem is equivalent to determine a d-dimensional manifold M
embedded in Rn (d < n), characterized by a nonlinear map

z = α(xd ), xd ∈ U ⊂ Rd , z ∈ Rn (1)

from low-dimensional space U ∈ Rd to high-dimensional
space Rn. In simple words, manifolds is used in mathematics
to describe a parametrized surfaceM (see Fig. 2) such that to
data points {z1, . . . , zN } sampled fromM ⊂ Rn corresponds
the set {x(1)d , . . . , x(N )

d } from U ⊂ Rd given by

zi = α(x
(i)
d ), i = 1, . . . ,N , zi ∈ Rn, x(i)d ∈ Rd . (2)

Here d is the so called intrinsic dimension (ID), that
represents the minimum number of parameters required to
describe data.

The effectiveness of manifold approach for generative
modeling of biosignal is related to the dimensionality
reduction of the model. Several benefits are obtained by
this reduction: i) it is well known that high dimension-
ality often degrades the classification performance in pat-
tern recognition, thus dimensionality reduction can boost
the classification accuracy; ii) in the unsupervised learn-
ing the estimation of the probability density function
Pr (z) = Pr (z(1), . . . , z(n)) can be made simpler, as for large
value of n requires a huge amount a training data; iii) in a low
dimensionality space a substantial reduction of time required
to train a model is obtained.

FIGURE 2. An example of parametrized surface or manifold M.

B. NOVELTY
Three main aspects are relevant in order to capture in a
manifold the low dimensional structure of data for biosignal
generation: nonlinearity, explicit modeling, intrinsic dimen-
sion (ID) estimation.

Nonlinearity is essential to capture the nonlinear geometric
structure of data. For biosignal generation an explicit model
of the signal to be generated, as a function of some latent
variables, is required. The ID of dataset has to be discovered
in order to reduce the feature space and the cost of modeling
computation.

Several algorithms of ML have been proposed such as
LLE, IM, LMDS, MVU, LTSA, LE, RML, DM, HE. How-
ever none of these approaches for ML is able to satisfy all the
aforementioned key requirements.

Our approach has been designed to address all the three
fundamental aspects of ML for biosignal generation in a uni-
fied framework and represents an advancement with respect
to the state-of-the-art. Indeed, to the best of our knowledge,
these three aspects have never been combined in the way done
in this article. The main steps of our approach are:

• We assume biosignals are caused by nonlinear dynam-
ical systems (NLDS), that is generated by a nonlin-
ear input-output transformation. This is a very general
assumption including a large variety of biosignals.

• On the basis of the previous assumption it will be proven
that the nonlinear input-output transformation can be
parametrized as

z = α(xd )+ V (xd )η + ε (3)

where xd is the vector of latent variables, α(·),V (·) are
nonlinear functions and η, ε are noise vectors.

• The term y = α(xd ) is a mapping from low-dimensional
space xd ∈ Rd to the high-dimensional space y ∈ Rn,
thus representing a parametrized manifold M.
This proves that, once noise is discarded, biosignals lie
on a manifold.

• Since xd is hidden, i.e. not known, it will be shown that
a local parametrization φ of the manifold, through a par-
tition

(
y′′,G(y′′)

)T of the vector y can be derived. This
is the explicit nonlinear generative model depending on
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latent, but known, variables y′′ ∈ Rd , where d =ID. The
model is completely defined once d and G(·) have been
estimated.

• To derive ID a robust technique based on the esti-
mation of the Jacobian J (φ) of the local parametriza-
tion will be used. In particular to face this problem a
Nadaraya-Watson derivative estimator approach will be
adopted. To improve the accuracy an optimal version of
this estimator will be developed. This result represents
an improvement of the technique presented in [39], and
a true advancement compared to the state-of-the-art of
ID estimation.

• To estimate the function G(·), an effective machine
learning technique for regression of input-output rela-
tionship based on a set of new functions named Particle-
Bernstein-Polynomials (PBP) will be used.

The framework so derived satisfies the three main aspects,
mentioned before, which are relevant to capture in a manifold
the low dimensional structure of biosignals.

C. PARAMETRIC MODEL OF A DYNAMICAL SYSTEM
In many physiological systems the signal z(t) can be consid-
ered as caused by a nonlinear transformation h of an input
random signal e(t), t = 1, . . . , n, so that the following
input-output relationship

z(t) = h (e(t), e(t − 1), . . . , e(1)) , t = 1, . . . , n (4)

holds as depicted in Fig. 3. In this scheme e(t) represents
the excitation (hidden or non observable), while h is the
physical system that generates the random process z(t) under
observation. Without lack of generality we assume that to a
given input e(t) corresponds a unique output z(t), i.e. h is
one-to-one.

FIGURE 3. Input-output relationship.

D. LATENT VARIABLES IN DYNAMICAL SYSTEMS
One of the most general models for nonlinear transforma-
tions, that encompasses a wide class of real world dynamical
nonlinear systems, is given by the following series expansion

z(t) =
t−1∑
i=0

ai e(t − i)+
t−1∑
i=0

t−1∑
j=0

aij e(t − i)e(t − j)

+

t−1∑
i=0

t−1∑
j=0

t−1∑
k=0

aijk e(t − i)e(t − j)e(t − k)+ . . . ,

t = 1, . . . , n. (5)

This series can be formally derived by assuming h in (4) is
sufficiently well-behaved so that it can be expanded in Taylor

series about some fixed point, the point 0 = (0, 0, 0, . . .)
without lack of generality. Thus, we can write

h(0) = 0,

ai =
(

∂h
∂e(t − i)

)
0
,

aij =
(

∂h
∂e(t − i) ∂e(t − j)

)
0
,

aijk =
(

∂h
∂e(t − i) ∂e(t − j) ∂e(t − k)

)
0
, etc. (6)

The expansion in (5) is known as Volterra series and it
provides one of most general representations for nonlinear
dynamic systems [5], [41], [58]–[60].

It is well known form the linear theory of stochastic pro-
cesses (s.p.), that every s.p. e(t) such that E{e(t)} = 0, can
be represented as the sum of the two mutually orthogonal
process,

e(t) = x(t)+ η(t) (7)

where x(t) is a ’linear deterministic’ process, that is a s.p.
that is completely determined by a linear function of its past
values, while η(t) is a ’purely non deterministic’ process,
an s.p. that at time t is determined by a random shock or
innovation which is unrelated to the shocks at other times.
Say in another way, x(t) is a process with memory while η(t)
has no memory since the random variable defined by η(t) at a
given t is independent of the random variables defined by η(t)
at all other t . The results is known asWold decomposition the-
orem [61]–[63], for stationary processes and it was extended
by Cramér and Leadbetter [61] to nonstationary processes.

The theorem can be states as follows: Every stochastic
process e(t) such that E{e(t)} = 0 and E{|e(t)|2} < ∞ for
all t, can be represented as the sum (7), where η(t) is purely
nondeterministic, while x(t) is linear deterministic.

A proof of this proposition is reported in [61]. On the basis
of this result, we can assume x(t) is completely determined
by d lagged values x(t − 1), . . . , x(t − d) so that it results
x(t) = L (x(t − 1), x(t − 2), . . . , x(t − d), t) , t > d where
L(·, t) represents a linear combination of the values x(t −
1), . . . x(t−d). It is worth to notice that with the general repre-
sentation (7) inmind, all the components of the signal e(t) that
nonlinearly depend on the past values are included in term
η(t). Highlighting the linear part is a fundamental assumption
in the linear theory of random processes, nevertheless (7) is a
general decomposition that is true for every process.

Substituting (7) in (5) we have

z(t) =
t−1∑
i=0

ai x(t − i)+
t−i∑
i=0

ai η(t − i)

+

t−1∑
i,j=0

aij x(t − i) x(t − j)+
t−1∑
i,j=0

aij x(t − i) η(t − j)

+

t−1∑
i,j=0

aij η(t − i) η(t − j)+ . . . , t = 1, . . . , n.

(8)
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Rearranging the terms, (8) can be rewritten as a summation
of three functions

z(t) = hx (x(t), x(t − 1), . . . , t)

+ hv (x(t), x(t − 1), . . . , η(t), η(t − 1), . . . , t)

+ hn (η(t), η(t − 1), . . . , t)

= y(t)+ v(t)+ ε(t), t = 1, . . . , n. (9)

The first term of (9)

y(t) = hx (x(t), x(t − 1), . . . , t) (10)

only depends on the deterministic process x(t), so that it can
be classified as ’nonlinear deterministic’ process. The second
term

v(t) = hv (x(t), x(t − 1), . . . , η(t), η(t − 1), . . . , t) (11)

is a ’non deterministic’ process as it depends both on the
innovations η(t), η(t−1), . . . and the process x(t). The third
term

ε(t) = hn (η(t), η(t − 1), . . . , t)

=

t−1∑
i=0

ai η(t − 1)+
t−1∑
i,j=0

ai,j η(t − i) η(t − j) t . . . (12)

is a ’purely non deterministic’ since only depends on η(t).
From properties of linear deterministic processes previ-

ously discussed, we can write

x(t) = L (x(t − 1), x(t − 2), . . . , x(t − d), t) , t > d

(13)

where L(·, t) represents a linear combination of the values
x(t−1), . . . , x(t−d). Since for t = d+1 it results x(d+1) =
L (x(d), . . . , x(1), d + 1) it is straightforward to show that in
general we have

x(t) = L ′ (x(d), . . . , x(1), t) , t > d (14)

meaning that for t > d x(t) is a linear combination of initial
values x(1), . . . , x(d) alone. Using this result in (10) yields

y(t) = hx (x(t), x(t − 1), . . . , t) = h′x (x(d), . . . , x(1), t)

(15)

where

hx (x(t), x(t − 1), . . . , t)

=

t−i∑
i=0

ai x(t − i)

+

t−1∑
i,j=0

ai,j x(t − i) x(t − j)

+

t−1∑
i,j,k

ai,j,k x(t − i) x(t − j) x(t − k)+ . . . (16)

and

y(t) = h′x (x(d), . . . , x(1), t) =
d∑
i=1

α
(t)
i x(i)

+

d∑
i,j=1

a(t)ij x(i)x(j)

+

d∑
i,j,k=1

α
(t)
ijk x(i)x(j)x(k)+ . . . , t > d . (17)

(17) can be rewritten as

y(1) = h′x (x(d), . . . , x(1), 1)
...

y(n) = h′x (x(d), . . . , x(1), n) , (18)

thus defining the vectors xd = (x(1), . . . , x(d))T , y = (y(1),
. . . , y(n))T and the nonlinear function α(xd ) = (α(1), . . . ,
α(n))T such that

α(1) = h′x (xd , 1)
...

α(n) = h′x (xd , n) , (19)

we have

y = α(xd ), xd ∈ Rd , y ∈ Rn. (20)

On the other hand the term v(t) in (11) is given by

v(t) =
t−1∑
i,j=0

aij x(t − i)η(t − j)

+

t−1∑
i,j,k=0

aijk x(t − i)x(t − k)η(t − j)+ . . .

=

t−1∑
j=0

(
t−1∑
i=0

aij x(t − i)

+

t−1∑
i,k=0

aijk x(t − i)x(t − k)+ . . .

 η(t − j)
=

t−1∑
j=0

gj (x(t − 1), x(t − 2), . . . , t) η(t − j) (21)

and by virtue of (14) we have

v(t) =
t−1∑
j=0

g′j (x(d), . . . , x(1), t) n(t − j)

=

t−1∑
j=0

g′j(xd , t)n(t − j). (22)

Then defining the vectors η = (η(1), . . . , η(n))T , v =
(v(1), . . . , v(n))T and the n × n matrix V (xd ) = {g′j(xd , i),
i, j = 1, . . . , n}, (22) can be rewritten as

v = V (xd )η (23)
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and finally, using (20) and (23), (9) becomes

z = α(xd )+ V (xd )η + ε (24)

where ε = (ε(1), . . . , ε(n))T , z = (z(1), . . . , z(n))T and
α(·) is a smooth nonlinear function. The above equation
corresponds to the input-output transformation given by (5),
thus it is able to describe a wide class of nonlinear dynamical
systems. The above equation represents a parametrization of
the general input-output transformation (5), through the latent
variables xd . The model expressed by (24) is quite general
since encompasses a wide variety of nonlinear dynamical
systems. In (20) α(xd ) is a mapping α : U → Rn where
U ⊂ Rd with d < n, thus it can be interpreted as a
parametrized manifold M of dimension d embedded into
the n-dimensional Euclidean space Rn. The dimension of the
vector xd , the vector of latent variables is the intrinsic dimen-
sion (ID) of data, that is the minimum numbers of parameters
required to describe data. The term V (xd )η is the response to
the driving input, or excitation signal, η. Being η a purely non
deterministic process, or a noise, this component gives rise to
an irregular behaviour. This signal corresponds to an artefact
or, for example in speech signal, to the unvoiced speech.
Although this term can be dominant in some circumstances,
the estimation of this signal is out the scope of this article as
it would require advanced statistical techniques. Thus in this
article we only focus on systems whose dynamics is mainly
determined by the first term, thus assuming V (xd ) = 0.
This assumption is equivalent to consider data have a smooth
behaviour, so that data points are confined to a region around
a regular surface, and they are modeled by

z = α(xd )+ ε (25)

where ε is a noise.
The term y = α(xd ) in (25) is a mapping from some

representation space, called the latent space, to the space of
the data y, then we may express this more formally as

α : xd ∈ Rd
→ y ∈ Rn (26)

where xd is a sample from the latent space. Thus (25) can be
interpreted as generative model, meaning that once the statis-
tical distribution of latent variables xd is known, the model is
able to capture the statistical distribution of training data Z .

Following this point of view, suppose data is a set of points
z1, . . . , zN sampled from (21), thus we are interested in recov-
ering the mapping α(·) that represents the parametrized man-
ifold M. To this end any filtering technique can be adopted
to remove the ε component, however principal component
analysis (PCA) represents an effective technique based on
geometrical considerations. In this scheme, assuming B is an
orthonormal basis thus z can be decomposed as

z = Bk = (By,Bε)
(
ky
kε

)
= Byky + Bεkε (27)

where ε = Bεkε and the term Byky corresponds to the prin-
cipal components, with ky = BTy z. Comparing (21) and (27)

we have

y = ByBTy z (28)

and data with noise removed are

Y = {yi, i = 1, . . .N | yj = ByBTy zi}. (29)

E. DATA AS GRAPH OF A FUNCTION
Following previous assumptions, as data Y are modeled
by (20), thus the vector xd completely describes data. How-
ever these variables are hidden, as they cannot be directly
observed at the output of the system. Here we want to
show that within the assumption previously established,
a parametrized model in terms of output variables can be
derived.

Given the first d time instants t = 1, 2, . . . , d we have

y(1) = h′x(xd , 1) = y′′(1)
...

...
...

y(d) = h′x(xd , d) = y′′(d)

(30)

or in compact form

y′′ = F(xd ) (31)

where y′′ =
(
y′′(1), . . . , y′′(d)

)
is a row vector. From (20) it

also results

y =
(
y′′(xd ), y′(xd )

)T (32)

being y′′, y′ row vectors. Having assumed the input-output
relationship h is one-to-one, thus F is invertible in a generic
point x of U

xd = F−1(y′′). (33)

Then we have

y =
(
y′′, y′(F−1(y′′))

)T
(34)

or

y =
(
y′′,G(y′′)

)T (35)

where

G(·) = y′(F−1(·)). (36)

From (35) it follows that y describes a manifold M or a
parametric surface φ(y′′) from U to Rn defined by the graph
of G(·), so that (20) can be rewritten as

y = φ(y′′) =
(
y′′,G(y′′)

)T
, φ : U → Rn. (37)

Similarly to (20), (37) is a mapping from the latent space to
the space of data y

φ : y′′ ∈ Rd
→ y ∈ Rn, (38)

thus using (37) in (25) a generative model that depends on
latent variables y′′ is obtained. Since y is zero mean and
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assuming, without lack of generality, the local parametriza-
tion is around the point y′′0 = 0 then from differentiability
of φ around y′′0 it results

y = J (φ)y′′T + R(y′′) (39)

where J (φ) is the Jacobian of φ and R(y′′) = o(‖y′′‖) is the
residual such that o(‖y′′‖)→ 0 as ‖y′′‖ → 0, ‖·‖ is the norm
of a vector and o(·) is such that limt→0 o(t)/t = 0. In (39)
the first term is linear deterministic as it linearly depends
on the past values y′′, while the second term is nonlinear
deterministic as it depends on the past values y′′ but in a
nonlinear manner.

The result so obtained proves that, once data are fil-
tered to discard irregular components, data generated by the
generic input-output nonlinear transformation (4) lie on the
manifoldM given by (37).

F. ID ESTIMATION
The intrinsic dimension (ID) of y is the dimension d of vector
y′′ ∈ Rd that, together with the function G(·), completely
define the deterministic component y of Z . The main issue
in defining such a model is to estimate the ID (d) and the
nonlinear function G.

The estimation of ID is crucial for this purpose since once
ID is known, a partition of y can be derived so that the
unsupervised learning of y reduces to the regression of the
functionG(·) in (37). To give a more operational definition of
intrinsic dimension, we proceed as follows.

Assuming φ is differentiable at point y′′0 ∈ U then for
every y′′ around y′′0 we have

φ(y′′) = φ(y′′0)+ J (φ)(y
′′
− y′′0)

T
+ o

(
‖y′′ − y′′0‖

)T (40)

where J (φ) is the Jacobian matrix of φ. It is straightforward
to show that

J (φ) = J
(
φ(y′′)

)
=

(
Idd

J (GT )

)
(41)

where Idd is a (d × d) diagonal identity matrix, so that by
virtue of condition q� d it results

rank J (φ) = d (42)

meaning that the intrinsic dimension d is the dimension of the
tangent subspace J (φ).

Although the rank of J (φ) univocally defines the intrinsic
dimension of data, this approach is not practicable as the
Jacobian matrix of φ can not be derived from data in general
since the function φ and the dimension d are not known.
The following proposition gives a more practicable method

to estimate d [39].
Proposition 1: Let y ∈ Rn a s.p. with ID = d , that is such

that all the observations belong to a manifold M defined by
the graph (37) of the function G. For any partition p > d of y
given by

y = ψ(u) = (u, β(u))T , u ∈ Rp (43)

the singular values of Jacobian Jψ(t) are such that

λ = (λ1, . . . , λd , λd+1, . . . , λp) (44)

with λd+1 = . . . = λp = 1.
In [39] a kernel approximation for β(u) is used to derive the

Jacobian analytically by differentiating (43). Although this
approach has shown to be effective in the estimation of the ID,
it is very sensitive to the superimposed noise. Thus in order
to reduce the effect of noise a more robust technique has been
developed for the estimation of Jacobian J (ψ).

NONPARAMETRIC ESTIMATION OF JACOBIAN J(ψ)
Applying a generic partition p to data, as given by (43), the ID
estimation reduces to the computation of Jacobian J (βT )
since by differentiation (43) we have

J (ψ) =
(

Ipp
J (βT )

)
(45)

where Ipp is a (p × p) diagonal identity matrix and J (βT )
is the (n − p) × p Jacobian matrix of βT (u). Thus in this
way the ID estimation is equivalent to the estimation of Jaco-
bian J (βT ) from data. However since β(u) is not available
in analytic form, a numerical technique has to be adopted.
To face this problem a Nadaraya-Watson derivative estimator
approach [64] is used.

Let us consider a noise-perturbed scalar model:

wk = f (uk )+ εk k = 1 . . .N (46)

where uk ∈ Rp is a random vector, f (·) is a scalar function
and εk is a noise with a variance σ 2

= E(ε2k ), and uncorre-
lated with u. With reference to a given kernel function K (·),
the Nadaraya-Watson regression is given by:

f̂ (u) =
ĥ(u)
ĝ(u)

(47)

where ĝ(u) denotes the estimate of the pdf g(u) of the random
vector u, and ĥ(u) is the estimate of h(u) = f (u)g(u).
Nadaraya-Watson regression is a non parametric technique

that estimates the quantities g(u) and h(u) with the following
relationships:

ĝ(u) =
1
N

N∑
k=1

ck (u), ĥ(u) =
1
N

N∑
k=1

(bk (u)+ εkck (u))

(48)

ck (u) =
1
Dk

K
(
H−1k (uk − u)

)
(49)

bk (u) =
f (uk )
Dk

K
(
H−1k (uk − u)

)
(50)

where Hk is the kernel bandwidth.
At first we consider the general case with a different kernel

bandwidth for each variable:

Hk = diag(hk1 . . . h
k
p) , Dk = det(Hk ) =

p∏
j=1

hkj . (51)
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The choice of the bandwidth Hk is crucial for the quality
of Nadaraya-Watson estimator, thus in the following we will
derive an optimal value for the bandwidthHk , that guarantees
the best accuracy for the Jacobian estimation.

The gradients of ĝ(u) and ĥ(u) are given by:

∂ ĝ(u)
∂u
=

1
N

N∑
k=1

dk (u)
∂ ĥ(u)
∂u
=

1
N

N∑
k=1

(ak (u)+ εkdk (u))

(52)

where

dk (u) = H−2k
uk − u
Dk

K
(
H−1k (uk − u)

)
(53)

ak (u) = f (uk )H
−2
k

uk − u
Dk

K
(
H−1k (uk − u)

)
. (54)

The final derivative estimator therefore becomes:

∂ f̂
∂u
=

1
ĝ(u)

∂ ĥ(u)
∂u
−
f̂ (u)
ĝ(u)

∂ ĝ(u)
∂u

(55)

The convergence properties of Nadaraya-Watson estimator

of the gradient
∂f
∂u

with respect to Hk have been studied
in [64] for the 1-dimensional case, here a generalization of
such analysis to the p-dimensional case was performed.
The mean-square error E2(u) = E(||∇ f̂ − ∇f ||22) can be

written as the sum of two main terms:

E2(u) = E2
V (u)+ E2

B(u) (56)

E2
V (u) = E

(
||∇ f̂ − E(∇ f̂ )||22

)
(57)

E2
B(u) = ||E(∇ f̂ )−∇f ||

2
2 (58)

where ∇ denotes the partial derivative
∂

∂u
. Strictly speaking

E2
V (u) represents the variance contribution to the error while

E2
B(u) is the bias of the estimator. The asymptotic behaviour,

i.e. as the bandwidth Hk → 0, of those two terms in the p-
dimensional case is given by:

E2
V (u) =

σ 2ξ2p
g(u)N 2

N∑
k=1

〈
diag

(
H−2k

) 〉
Dk

(59)

E2
B(u) =

1
N 2

∥∥∥∥∥
N∑
k=1

Bk (u)

∥∥∥∥∥
2

2

. (60)

where ξ2 is a constant, 〈·〉 denotes the average of the elements
of a vector, diag(·) denotes the diagonal of a matrix. Bk (u) is
a quadratic form of the bandwidthHk , i.e. it can be expressed
as follows:

Bk (u) = O(H2
kQk (u)) (61)

where Qk (u) is an appropriate function which does not
depend on Hk and a = O(b) means that a/b is bounded.
A derivation of (59) and (60) is reported in Appendix.

In order to derive relationships more intuitive than (59)
and (60), we assume a constant scalar bandwidth

Hk ≡ H = h̃ I . With this simplification the expressions for
E2
V ,B(u) reduce to:

E2
V (u) =

σ 2ξ2

Ng(u)̃hp+2
(62)

E2
B(u) = h̃4||Q(u)||22 (63)

where the dependency on index k has been eliminated.
In general is difficult to estimate directly the function Q(u)
since it depends on first and second-order derivatives
of f (u) and g(u), nevertheless an analysis for the estimation of
Q(u) can be found in Appendix. Some useful considerations
can be derived from (62) and (63) as follows.

The bias term E2
B(u) does not depend on the number of

regression points N and is an increasing function of the band-
width h̃. The variance term E2

V (u), which is responsible for the
fast fluctuations of the estimate, is proportional to the noise
power σ 2 and decreases with the number of the regression

points N as well as their density g(u). Clearly E2
V (u) ∼

1
hp+2

which is high rapidly increasing function as h̃→ 0. Since the
two terms E2

V and E2
B show an opposite trend with respect to

h̃ thus E2(u) has a global minimum which immediately leads
to the optimal choice for h̃:

hopt(u) =

(
(p+ 2)σ 2ξ2

Ng(u)||Q(u)||22

) 1
p+6

(64)

The detailed estimation error analysis and the practical imple-
mentation of (64) can be found in Appendix.

As a simple example to validate the technique discussed in
this section, we refer to the following 2-D noisy model:

w = f (x1, x2)+ ε

f (x1, x2) = exp(−τx1)+ A0 sin(ωx2) (65)

where x ∼ N (0, 1), ε ∼ N (0, σ 2), σ = 0.05, A0 = 1/2,
ω = 0.3.

Fig. 4 compares the true and the estimated gradient
achieved with the proposed technique. The estimation error
E2(u) is reported in Fig. 5 as a function of h̃ for different
points u. As you can see all the graphs have a minimum point
which balances the trade-off between variance and bias error,
as predicted by (62) and (63).

IV. SUPERVISED LEARNING BASED ON PARTICLE
BERNSTEIN POLYNOMIALS
A. BERNSTEIN POLYNOMIALS
Assuming the ID of data set has been determined with the
previous approach, the unsupervised learning of s.p. y that
generates data reduces to the estimation of the input-output
function G(·) in (35). In such a way the initial problem of
unsupervised learning reduces to a supervised learning as the
input y′′ of the system (37) is known. In this context poly-
nomials are useful basis functions to represent input-output
relationships of the kind given by (36) [65], [66]. Such
important result is founded on the well known Weierstrass
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FIGURE 4. Comparison of the true and estimated gradient
∂f
∂x1

.

FIGURE 5. The estimation error E2(u) as a function of h̃ for different
points u.

approximation theorem which states that every continuous
function f defined in a finite interval can be approximated by
a polynomial with arbitrary accuracy in the uniform norm.
In the class of such basis functions, Bernstein polynomials
have been widely used to solve both theoretical and applica-
tion problems [50], [67].

The univariate Bernstein polynomials of degree m over the
interval [0, 1] are defined by:

bmk (x) =
(
m
k

)
xk (1− x)m−k , k = 0, 1, . . . ,m (66)

where x ∈ [0, 1] and
( cm
k
)
=

m!
(m−k)! k! . They form a

complete basis for the space of polynomials of degree less
than or equal to m, as they span the space of polynomials
and they are linearly independent. A complete treatment of
Bernstein polynomials is reported in [50] where a number of
other properties can be found. It can be easily proven that
each term xk (1 − x)m−k is maximum at x = k/m , and this
behaviour is shown in Fig. 6 for m = 20 and some values
of k .

FIGURE 6. The functions bm
k (x) for m = 20 and k = 1, . . . ,m.

The multivariate version of Bernstein polynomials can be
easily derived from (66) giving

bmk (x) =
(
m
k1

)
. . .

(
m
kd

)
xk11 (1− x1)m−k1 . . . x

kd
d (1− xd )m−kd

(67)

where x = (x1, . . . , xd ) , k = (k1, . . . , kd ) .
One of the main properties of Bernstein polynomials is

that given a continuous function f (x) in [0, 1]d the sequence
Bm(x) defined as

Bm(x1, . . . , xd ) =
m∑

k1=0

. . .

m∑
kd=0

f
(
k1
m
, . . . ,

kd
m

)
× bmk (x)

(68)

converges uniformly to f as m → ∞. As you can see this
representation only requires the knowledge of the function at
the points

x = (k1/m, . . . , kd/m), k1 = 0, . . . ,m, kd = 0, . . . ,m

(69)

without the need of an algorithm to determine the unknown
coefficients, as in other techniques occurs. The set of points
in (69) defines a grid in the space Rd of the input variable
formed by (m + 1)d points. The grid must be sufficiently
dense to get a good approximation of f , thus requiring an
increasing value of m for better accuracy. However as the
dimensionality d of input space increases, the computational
cost of (68) increases dramatically. In order to overcome this
limitation a new class of polynomials will be derived in the
following.

B. PARTICLE-BERNSTEIN POLYNOMIALS
In Bernstein polynomials both the variables m and k are
integer, as the binomial coefficients are defined for integer
values alone. We can remove the constraint of a fixed grid
by assuming k is real and denoting this value with ξ so that
a new set of functions, called particle-Bernstein polynomials
(PBPs) [51], can be defined as follows

Cm
ξ (x) = α

m
ξ x

ξ (1− x)m−ξ = αmξ k
m
ξ (x),

ξ ∈ R1, ξ ∈ [0,m] (70)
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with the coefficients αmξ chosen in such a way the integral
constraint ∫ 1

0
Cm
ξ (x) dx = 1 (71)

holds, that is

αmξ =
0(m+ 2)

0(ξ + 1)0(−ξ + m+ 1)
(72)

In the multivariate case (70) becomes

Cm
ξ (x) = α

m
ξ x

ξ1
1 (1− x1)m−ξ1 . . . x

ξd
d (1− xd )m−ξd

= αmξ k
m
ξ (x) (73)

with ξ = (ξ1, . . . , ξd ), x = (x1, . . . , xd ) and

αmξ =

d∏
t=1

0(m+ 2)
0(ξt + 1)0(−ξt + m+ 1)

(74)

kmξ =
d∏
t=1

xξtt (1− xt )
m−ξt . (75)

Fig. 7 shows several examples of functions defined by (70)
for m = 20 and different values of ξ . As you can see all the
functions have the same area and attain their maximum at x =
ξ/m. This property can be used to approximate a function f (x)
around a given point. In fact supposing the function Cm

ξ (x) is
mostly concentrated around its maximum, and this is true for
m� 1, the following approximation for f

f (ξ/m) ∼=
∫ 1

0
f (x)Cm

ξ (x) dx (76)

FIGURE 7. The function Cm
ξ

(x) for m = 20 and several values of ξ .

holds, where f (ξ/m) is the value of f (·) at the maximum of
Cm
ξ (x). Thus the integral

fm(ξ/m) =
∫ 1

0
f (x)Cm

ξ (x) dx (77)

represents an approximating function of f (x) around the point
x = ξ/m. For a given set of values {x(j), j = 1, 2, . . . ,N }
the integral in (77) can be approximated as

fm(ξ/m) ∼=
1
N

N∑
j=1

f (x(j))Cm
ξ (x

(j)) (78)

Similarly, using the same approximating concept, it results∫ 1

0
Cm
ξ (x)dx ∼=

1
N

N∑
j=1

Cm
ξ (x

(j)) ∼= 1 (79)

thus combining (76), (78) and (79) we have

fm(ξ/m) ∼=
fm(ξ/m)

1
∼=

∑N
j=1 f (x

(j))Cm
ξ (x

(j))∑N
j=1 C

m
ξ (x

(j))
. (80)

(80) can be used to estimate the function f (x) at testing point
ξ/m given the training set {f

(
x(j)
)
, j = 1, . . . ,N } . As you

can see the estimate of the function f at a given point does
not require the knowledge of the function in a fixed grid, as in
Bernstein polynomials occurs, instead only the function at a
set of N points randomly chosen is required for this purpose.
In addition, once the order m is chosen, (80) does not depend
on unknown parameter to be determined, thus avoiding the
need for a time-consuming training stage.

V. EXPERIMENTAL RESULTS
The method to parametrize data generated by dynamical
systems previously discussed, has been validated by sev-
eral experiments. The experiments were conducted both on
data generated by synthetic nonlinear dynamic systems (first
and second experiments) and data generated by real systems
(third, fourth and fifth experiments).

A. UNSUPERVISED LEARNING OF DATA GENERATED
BY A FORCED NONLINEAR OSCILLATOR
In the first example data are obtained as the output values y
of the following input-output nonlinear discrete system

y(t + 1) =
1t2

[
e(t)− βy3(t)

]
− y(t − 1)+ δy(t)

(1+ k1t)
t = 1, . . . , n (81)

forced by the input

e(t) = γ x(2) cos (x(1) ·1t(t − 1)) (82)

where δ = k1t−α1t2+2 , being 1t, k, α, β, γ constant
parameters, and x = (x(1), x(2)) is a random vector. (81) is
the discrete-time version of the well known Duffing equation
with 1t = 0.2, k = 0.3, α = −4, β = 1, γ = 2 , and
x uniformly distributed in the interval [0, 1]2 . The initial
conditions have been chosen to be y(0) = y(−1) = 1 . Some
realizations of the stochastic nonlinear system defined by (81)
are reported in Fig. 8 The experiment has been conducted
withN = 103, assuming n = 50 and for different partitions of
y = (u, u′)T , u ∈ Rp with p = 1, . . . , n − 1 . Table 1 shows
the singular values of Jacobian matrix J (ψ) as estimated with
the approach of Section III-F with p ranging from 1 to 12.
As you can see for all the values of p a number p − 2 of
singular values equal to 1 occur, thus resulting in a value of
intrinsic dimension d = 2. As a consequence we assume each
observation y is partitioned as y = (y′′, y′)T , such that the
input-output relationship (37) holds, with y′′ ∈ Rd . In such
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FIGURE 8. Some randomly chosen frames generated by the nonlinear
system defined by (81).

TABLE 1. Singular values in experiment 1.

a way the unsupervised learning reduces to the regression of
the function G(·) given the data yj, j = 1, . . . ,N . To solve
efficiently this problem the regression method based on Parti-
cle Bernstein Polynomials of Section IV-B has been applied.
Fig. 9 reports as blue stars the results achieved with this
approach for two different observations, and for comparison
the behaviour of data as continuous lines. As you can see the
learning approach is able to model data with good accuracy.

FIGURE 9. Comparison of the results achieved by the approximation (80)
(blue stars) with data (continuous line) in the experiment 1.

B. UNSUPERVISED LEARNING OF DATA GENERATED
BY NARENDRA’s EQUATIONS
In the second experiment data were generated according to
equation proposed by Narendra and Parthasarathy [46].

y(t) =
y(t − 1)y(t − 2)(y(t − 1)− 2.5)

1+ y2(t − 1)+ y2(t − 2)
+ e(t − 1) (83)

e(t) = ax(2) sin(x(1)ωt)+ b cos(ω1x(3)) t = 1, . . . , n

(84)

where x = (x(1), x(2), x(3)) is a uniformly distributed in
[−1, 1]3 random vector, a = 2, b = 1.2, ω = 1, ω1 = 1/3.
The initial conditions have been set to y(0) = y(−1) = 1.
Experiments were performed by using n = 20 and

N = 106 data points.
The same partition y = (u, u′)T , u ∈ Rp as in

Experiment 1 was chosen with p = 3, . . . , 12.
Table 2 provides Jacobian eigenvalues showing that the

correct value d = 3 of the intrinsic dimension is estimated
by the method.

TABLE 2. Singular values in Narendra experiment.

C. UNSUPERVISED LEARNING OF SPEECH DATA
As a third example speech data have been used to validate
the unsupervised learning approach previously described.
An example of signals used in this experiment is shown
in Fig. 10, which depicts a portion of the signal corresponding
to the vowel ’a’ pronounced by an Italian speaker. As you can
see the signal is almost periodic, thus every period of length
n can be considered as generated by a nonlinear system of the
kind given by (4) with random initial conditions.

FIGURE 10. A frame of the speech signal corresponding to the vowel ’a’
pronounced by an Italian speaker.

The suggested approach for the ID estimation proposed in
Section III-F was applied to a set of N = 33567 signals of
length n = 140 extracted from a collection of speech vowels
sampled at 16000 Hz, pronounced by different speakers. The
same partition y = (u, u′)T , u ∈ Rp as in synthetic data
experiments was used with p ranging from 16 to 26.
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TABLE 3. Singular values in experiment 3.

Table 3 shows the singular values of Jacobian matrix J (ψ)
in a single dataset point u.

ID was locally estimated by thresholding the residual
energy of singular values vector λ̃ = λ − 1 (see Fig. 11),
using the following criterion

ÎD(u) = min d : ||̃λd+1:p||1 ≤ θ ||̃λ||1 (85)

where θ is a threshold parameter.

FIGURE 11. Residual Cumulative Eigenvalues Energy for Speech signals.

The global ID was obtained by weighting local estimates
with the pdf given by the regression ĝ(u).

ID =

∑
j

ÎD(uj )̂g(uj)∑
j

ĝ(uj)
(86)

As shown in Fig. 12 the overall estimation converges to
d = 16, as p increases.

The parametrization modelG(·) was estimated by the mul-
tivariate regression based on Particle Bernstein Polynomials.
From a signal of length 284200 samples a set of N = 2030
signals of length n = 140 samples was extracted, that repre-
sents the training set.

Fig. 13 shows a comparison between model and data. Also
in this case the learning accuracy is very good.

FIGURE 12. Global estimated Intrinsic dimension for Speech signals.

D. UNSUPERVISED LEARNING OF PPG DATA
This experiment was performed on data gathered from photo-
plethysmografic signals (PPG). The signals used to generate
the time series to be identified, belong to the PhysioNet
database available in [68], [69] and are referred to several
different subjects. From 150470 samples a set of N = 734
signals of length n = 205 was extracted. Fig. 14 depictes the
behaviour of several of such signals. The signals were filtered
in order to reduce the amount of the superimposed noise and
the signals so obtained are shown in Fig. 15.

The proposed ID estimation technique was applied by
partitioning y = (u, u′), u′ ∈ Rp with p = 8 . . . 16.
By deriving a global estimate for ID using the samemethod

as for the speech signals, poorer results are obtained since
a saturation in ÎD is not reached as shown in Fig. 17. This
is probably due to the lower number of dataset points than
those used for previous experiments, which plays a key role
in Nadaraya-Watson regression performances.

However a reasonable value for ID can be guessed by
Jacobian eigenvalues shown in TABLE 4 which gives d = 8.

Concerning the learning of the parametrization modelG(·),
from a total of 293237 samples a set of N = 1141 signals of
length n = 257 samples was extracted, that was used as the
training set.

With this value of ID using the regression approach based
on Particle Bernstein Polynomials to model data, the results
shown in Fig. 18 are achieved. As you can see also in this case
a good learning accuracy is obtained.
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FIGURE 13. Comparison of the results achieved by the
approximation (80) (broken line) with data (continuous line) in the
experiment 3 for two different frames of the same signal.

TABLE 4. Experiment 4.

E. BIOSIGNAL GENERATION
This last experiment aims to show that the proposed
parametrized model for nonlinear dynamical systems can be
successfully used for biosignal generation.

In this case the signal to be generated is assumed to be a
sequence of frames yt ∈ Rn, each partitioned according to

yt = (y(1)t , y
(2)
t )T , t = 1, 2, . . . (87)

with y(1)t ∈ Rn−d , y(2)t ∈ Rd . Then two consecutive frames of
the sequence are constrained by the following autoregressive
model

yt+1 = G(y(2)t + η) (88)

where G(·) is the regression function estimated with the
d samples y(2)t of the previous frame, and η is a noise

FIGURE 14. Some randomly chosen frames of PPG signals used in the
fourth experiment.

FIGURE 15. The same randomly chosen frames of Fig. 14 after filtering to
reduce the effect of noise.

FIGURE 16. Residual Cumulative Eigenvalues Energy for PPG signals.

component with standard deviation ση, introduced to avoid
a perfect periodicity of the signal.

The generative model given by (87) and (88) has been
validated using two dataset of ECG signals from UEA
& UCR Time Series Classification Repository [70], [71]:
ECG200 and Two Lead ECG. ECG200 consists of 200 sam-
ples of an ECG series, of which 133 are labeled as normal
and the remaining 67 are myocardial infarctions (abnormal).
The length of each series is 96 and traces the electric
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TABLE 5. Singular values in experiment 5.

FIGURE 17. Global estimated Intrinsic dimension for PPG signals.

FIGURE 18. Comparison of the results achieved by the approximation (80)
(broken line) with data (continuous line) for the experiment 4.

activity during one heartbeat. Two Lead ECG consists of
1, 162 samples of an ECG series whose length is 82. Each
signal originates from one of two leads and labeled as class 1
or class 2 depending from which lead was originated. Out of
1, 162 samples, 581 are labeled as class 1 and the remaining
581 are class 2.

The ID for the dataset Two Lead ECG has been estimated
with the method discussed in Section III-F using θ = 10−5

in (85). Table 5 reports the singular values so obtained, while
Fig. 19 and Fig. 20 show the global estimated ID and the
residual cumulative eigenvalues energy respectively. On the
basis of these results a value ID = 20 has been chosen. For
the data of ECG200 a similar approach cannot be used since
the size of data matrix (96× 100) is insufficient to guarantee

FIGURE 19. Global estimated ID for Two Lead ECG dataset.

FIGURE 20. Residual cumulative energy for Two Lead ECG dataset.

an accurate ID estimation, thus the same value ID = 20 has
been used in this case.

Other model parameters are the polynomial order m and
noise standard deviation expressed as a fraction of the norm
of the generated frame: σ%

η = ση/||G(y
(2)
t )||2. The chosen

parameters are reported in Table 6. They have been opti-
mized by accurate fitting techniques, i.e., simulated anneal-
ing, genetic algorithms and also regression methods. Since
the number of parameters to be optimized is very small,
as reported in Table 6, we have chosen the well-known simu-
lated annealing algorithm to optimize them, already available
in Matlab.
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TABLE 6. Parameters of generative model.

FIGURE 21. Some examples of the original data and data generated by
the proposed approach. The two time-series data have been aligned
using the DTW method.

The similarity between the training data set and the data
set achieved with the generative model was computed by
using the dynamic time warping (DWT) distance between
two time-series data x(i) and x(j), calculated as

DWT (x(i), x(j)) =

√√√√ argmin
w1,w2....,wR

R∑
r=1,wr=(k,l)

(x(i)k , x
(j)
l )2 (89)

COMPARISON WITH GAN BASED MODEL
Fig. 21 shows the warping of frames generated by the model
proposed in this article, compared with the best aligned
frames of Two Lead ECG, using DTW for the alignment of
the two datasets. Similar results are shown in Fig. 22 for
the dataset ECG200. As you can see, the learning accuracy
achieved with the proposed model is very good.

Fig. 23 and Fig. 24 compare the quality of the data gener-
ated with our model and the model based on generative adver-
sarial networks (GANs), recently proposed in [56], for the
data ECG200 and Two Lead ECG respectively. The average
DTW distance and standard deviation were used as metrics

FIGURE 22. Some examples of the original data and data generated by
the proposed approach. The two time-series data have been aligned
using the DTW method.

FIGURE 23. Average DTW distance for the two generative models.

to validate the results. The results show that the similarity
obtained with our model always outperforms that obtained
with GAN based model.

In addition, the approach suggested in this article has also
the following advantages:

i) the model does not need to be trained before signal
generation;

ii) the fundamental frequency can be easily varied.

Concerning the first point, the model (80) based on
particle-Bernstein polynomials is a non parametric model,
thus it does not require a training stage in contrast with
GANs model which require time-consuming algorithms to
determine the unknown coefficients [56].
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FIGURE 24. Standard deviation of DTW distance for the two generative
models.

With reference to the point ii), the fundamental
frequency f0 of the ECG signal can be easily varied trans-
forming G(·) ∈ Rn in (88) to the function Gs(·) ∈ Rs such
that

Gs(·) = H sG(·), (90)

whereH s
∈ Rs×n is a random permutationmatrix and the size

s =
⌊Fs
f0

⌋
< n is the ratio between the sampled frequency

Fs and f0. Here the symbol bxc denotes the nearest integer
less than or equal to x. It can be easily shown that (90)
corresponds to downsampling G of a factor s/n proportional
to the frequency f0. Fig. 25 reports some examples of ECG
signal generated by our model from Two Lead ECG dataset
with different values of f0.
A time-varying f0 will result in a more realistic ECG signal

whose fundamental frequency is not perfectly constant along
time. Ideally we can consider a sinusoidal trend of the signal
given by:

f0(t) = F0 + |1f sin(�t)| (91)

Fig. 26 compares the ideal frequency behaviour f0(t)
and the true fundamental frequency of the generated signal
achieved through the transformation (90) showing a good
agreement between them. Obviously the generated f0 cannot
be chosen arbitrarily high, since this will lead to a total
distortion of signal pulses. A reasonable maximum limit is
twice the original fundamental frequency, f0,max ≈ 2F0.

F. BIOSIGNAL CLASSIFICATION
This latest experiment was conducted to demonstrate the
effectiveness of our approach in improving the classification
of biosignals, by enhancing the size of the training data.

One of the main limitations of learning-based techniques
for biosignal classification is that a large amount of training
data is required to obtain enough accuracy. Indeed, use of
machine learning techniques on small datasets subjects the
models to issues of over-fitting, noise and outliers. Unfortu-
nately, availability and access to large datasets is limited in

FIGURE 25. Examples of ECG signal generated by the proposed model
from Two Lead ECG dataset with different values of f0.

FIGURE 26. Comparison of the ideal fundamental f0(t) (red) and the true
fundamental frequency (blue) generated by (90).

TABLE 7. Classification accuracy with data augmentation using GANs.

the real-world. This is primarily due to the limited number
of people submitting to data collection. Additionally, in order
to label each sample of collected data special qualification or
expert knowledge is required.

DATA AUGMENTATION BY SYNTHETIC DATA
Data augmentation, that is the technique used to increase the
amount of data, is one of the easiest ways to improve classifi-
cation accuracy [72]. In this context a very effective approach
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TABLE 8. Classification accuracy with data augmentation using our
approach.

FIGURE 27. Comparison between GANs and the proposed approach for
the classification of augmented ECG200 dataset, by varying the number of
synthetic samples and using SVM classification algorithm.

is to add newly created synthetic data from existing data,
to enlarge the dataset, using a biosignal generative model [2].

In this experiment we used both GANs and our approach to
demonstrate the effectiveness of these techniques in biosig-
nal classification. The experiment was conducted on the
dataset ECG200, previously described. Table 7 reports the
results of the classification performed by support vector
machine (SVM) algorithm on real data and real data plus
synthetic data generated with GANs. The experiment was
repeated using a different number of synthetic generated
samples. As you can see the classification accuracy increases
as the size of synthetic data set increases, clearly showing
the benefit of data augmentation in biosignal classification.
Besides, in order to evaluate the effect of using an embed-
ded low-dimensional generative model for classification, our
approach was used to conduct the same experiment. Table 8
reports the results obtained and confirms that a generative
model with reduced dimensionality is able to create new
synthetic data that improve classification. Finally, the two
techniques for biosignals generation used in this experiment,
i.e. GANs and our approach, are compared in Fig. 27, that
depicts the SVM classification accuracy as a function of the
number of synthetic samples added to the ECG200 data set.
As you can see our method outperforms GANs for all the

sizes of synthetic data set, confirming the validity of the
proposed approach.

VI. CONCLUSION
In this article a machine learning-based approach for biosig-
nal generative modeling that takes advantage of the manifold
concept, is presented. In particular it has been proven that
data, assuming they are sampled from a biosignal generated
by a nonlinear dynamical system, lie on a nonlinear manifold
between data and some latent variables. The dimension of
such variables, called intrinsic dimension of data, is a funda-
mental parameter in the unsupervised learning of data, as it
allows data can be accurately modelled. Thus a crucial step
in determining the local parametrization that represents the
manifold is the estimation of ID, that is the dimension of
the parametrization. A very effective method based on the
Jacobian of the parametrization is used in this article, and to
improve the accuracy an optimal version of Nadaraya-Watson
derivative estimator is developed. Once the latent vari-
ables have been discovered, the initial unsupervised problem
reduces to a supervised problem. To face this problem an
effective machine learning technique for regression based on
the set of the so called Particle-Bernstein polynomials has
been adopted, that does not depend on unknown parameters
to be determined, thus avoiding a time-consuming training
stage as required by other learning techniques. Experimental
tests on both synthetic and real-world data have validated the
effectiveness of the proposed algorithm.With respect to mod-
els based on generative adversarial networks our approach
offers some advantages: it guarantees a better similarity of the
generated data, it does not require a time-consuming training
stage, it is able to generate a large variety of signals.

APPENDIX
BANDWIDTH OPTIMIZATION FOR GRADIENT
ESTIMATION
Here we will describe in details the p-dimensional error
analysis of Nadaraya-Watson estimator and the bandwidth
optimization technique proposed in this work.

In the same fashion as [64], gradient estimation error
EHk (u) can be expressed by:

EHk (u) = ∇ f̂ −∇f =

=
1
ĝ(u)

(
∇ĥ−∇h

)
−
∇f
ĝ(u)

(̂g(u)− g(u))−

−
f̂ (u)
ĝ(u)

(∇ĝ−∇g)−
∇g
ĝ(u)

(̂
f (u)− f (u)

)
(92)

We now compute mean and variance of each term by making
Taylor approximations of f (t) and g(t) around estimation
point x:

f (t) ≈ f (u)+∇f T (t − u)+
1
2
(t − u)THf (u)(t − u)

g(t) ≈ g(u)+∇gT (t − u)+
1
2
(t − u)THg(u)(t − u) (93)
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If we make the following substitution in the integrals
t = x − Hky, and denote as z = Hky:

E(ck (u))

=

∫
Rp

1
Dk

K
(
H−1k (t − u)

)
g(t)dt

=

∫
Rp
K (y)

(
g(u)−∇gTHky+

1
2
yTHT

k Hg(u)Hky
)
dt

= g(u)+
∫
Rp

1
2
yTH2

kHg(u)yK (y)dy

= g(u)+
1
2
Tr
(
H2
kHg(u)

)
= g(u)+

1
2

p∑
j=1

h2j
∂2 g

∂u2j
(94)

E(c2k (u))

=

∫
Rp

1

D2
k

K 2
(
H−2k (t − u)

)
g(t)dt

=
Dk
D2
k

∫
Rp
K 2(y)

(
g(u)−∇gTHky+

1
2
yTH2

kHg(u)y
)
dy

= g(u)

∫
Rp
K 2(y)dy

Dk
+

1
Dk

∫
Rp
yTH2

kHg(u)yK
2(y)dy (95)

For a generic Kernel we can define:

ξm =

∫
Rp
ymi K

2(y)dy i = 1, . . . , p

Therefore we can write:

E(c2k (u)) =
1
Dk

(
ξ0g(u)+

ξ2

2
Tr(H2

kHg(u))
)

(96)

Each terms differs from the target in both variance and mean;
the bias is very difficult to estimate directly as it depends
on second-order derivatives of g(u) and it is a second-order
polynomial of Hk : E (̂g(u) − g(u)) = O(H2

k ). In the same
manner we calculate mean and variance of other terms:

E(dk (u)) = −g(u)
∫
Rp
H−1k yK (y)dy+∇g

−
Hk
2

∫
Rp
y(yTH2

kHg(u)y)K (y)dy

= ∇g+ O(H2
k ) (97)

E(||dk (u)||22) =
g(u)
Dk

∫
Rp
||H−1k y||22K

2(y)dy

−
∇gT

Dk

∫
Rp
Hky||H

−1
k y||22K

2(y)dy+

+
1

2Dk

∫
Rp
yTH2

kHg(u)y||H
−1
k y||22K

2(y)dy

=
ξ2p
〈
diag(H−2k )

〉
Dk

g(u)+ O

(
R(H2

k )

Dk

)
(98)

where R(H2
k ) is a second-order rational function of Hk (j)2.

R(Hk ) =

p∑
j=1

ajH2
k (j)

p∑
j=1

bjH2
k (j)

(99)

E(bk (u)) = f (u)g(u)+ O(H2
k )

E(bk (u)2) = ξ0
f 2(u)g(u)

Dk
+ O

(
R(H2

k )

Dk

)
(100)

E(ak (u)) = ∇(fg)+ O(H2
k )

E(||ak (u)||22) =
ξ2p
〈
diag(H−2k )

〉
Dk

f 2(u)g(u)+ O

(
R(H2

k )

Dk

)
(101)

By taking expectation of eqn. 92 we obtain nonzero
cross-correlation terms in addition to absolute errors:

g2(u)E(||∇ f̂ −∇f ||22)

= E(||∇ĥ−∇h||22)

+ f 2(u)E(||∇ĝ−∇g||22)

+ ||∇f ||22E (̂g(u)− g(u))
2

− 2f (u)E
[
(∇ĥ−∇h)T (∇ĝ−∇g)

]
− 2∇f TE

[
(∇ĥ−∇h)(̂g(u)− g(u)

]
+ 2f (u)∇f TE [(∇ĝ−∇g)(̂g(u)− g(u)) (102)

If we evaluate these correlation terms we can write:

E(∇ĥT∇ĝ) =
ξ2p
〈

1
Hk (j)2

〉
Dk

f (u)g(u)+ O(
R(H2

k )

Dk
)

E (̂g(u)∇ĥ) = O(
R(H2

k )

Dk
)

E (̂g(u)∇ĝ) = O(
R(H2

k )

Dk
) (103)

By substituting these results into 103 it is easy to verify
that similarly to the 1-dimensional case [64], total variance

term proportional to
R(H2

k )

Dk
is only dependent on noise power

σ 2
= E(ε2k ).
Therefore the total error will be expressed by:

E2
Hk (u) =

σ 2ξ2p
g(u)N 2

N∑
k=1

〈
diag(H−2k )

〉
Dk

+
1
N 2

∥∥∥∥∥
N∑
k=1

Bk (u)

∥∥∥∥∥
2

2

(104)

where Bk (u) is the k-th point contribute to Bias(u) = E(∇ f̂ −
∇f ). If we suppose to use the same bandwidth for all data
points Hk ≡ H we will have:

E2
H (u) =

σ 2ξ2p
〈
diag(H−2k )

〉
Ng(u)Dk

+ ||Bias(u)||22 (105)
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Another simplification we can apply is to use the same
bandwidth across dimensions: H = h̃I ; since Bias(u) =
O(H2) it will be a simple quadratic function of h̃2:

Bias(u) = h̃2Q(u) (106)

The Jacobian estimation error with a constant and scalar
bandwidth finally becomes:

E2
h̃ (u) =

ξ2σ
2

Ng(u)̃hp+2
+ h̃4||Q(u)||22 (107)

The minimum value of E2
h̃
is obtained with:

hopt(u) =

(
(p+ 2)σ 2ξ2

Ng(u)||Q(u)||22

) 1
p+6

(108)

Practical implementation of 64 however requires estima-
tion of the quantities σ 2, Q(u).
Additive noise power σ 2 can be estimated with leave-one-

out regression on function f (u) [73]:

σ̂ 2 =

〈 (
f (ui)− f̂−i(ui)

)2 〉 (109)

where f̂−i(ui) is the estimate of f (u) made by excluding point
ui from regression:

f̂−i(ui) =

∑
k 6=i

wk
Dk

K
(
H−1k (uk − u)

)
∑
k 6=i

1
Dk

K
(
H−1k (uk − u)

) (110)

An approximate estimation of the bias can be given with
results developed in [74]:

E(∇ĥ−∇h) ≈
1
N

N∑
k=1

f (uk )L(uk )−∇ĥ

E(∇ĝ−∇g) ≈
1
N

N∑
k=1

L(uk )−∇ĝ

L(uk ) =
1
Dk

(K ∗ ∇K )H−1k (u−uk )
(111)

where ∗ is the convolution operator and∇K is the gradient of
unitary kernel. If using the Gaussian kernel we have simply:

L(uk ) =
1
Dk
∇K

(
H−1k
√
2
(u− uk )

)
(112)

Denoted as M (u) = g(u)Q(u), it simpler to use the esti-
mated quantity M̂ (u) than Q̂(u). By observing 111 and 112
we can write in a compact form:

M̂ (u) =
1
s2

[(
∇ĥ− f̂∇ĝ

)
√
2s −

(
∇ĥ− f̂∇ĝ

)
s

]
(113)

where bandwidth s needs to be properly adjusted.
By substituting into (108) we obtain the final formula for

the choice of bandwidth:

ĥopt(u) =

(
(p+ 2)̂σ 2ξ2̂g(u)

N ||M̂ (u)||22

) 1
p+6

(114)
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