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Abstract: Diabetic foot syndrome is a multifactorial pathology with at least three main etiological
factors, i.e., peripheral neuropathy, peripheral arterial disease, and infection. In addition to complexity,
another distinctive trait of diabetic foot syndrome is its insidiousness, due to a frequent lack of early
symptoms. In recent years, it has become clear that the prevalence of diabetic foot syndrome is
increasing, and it is among the diabetes complications with a stronger impact on patient’s quality
of life. Considering the complex nature of this syndrome, artificial intelligence (AI) methodologies
appear adequate to address aspects such as timely screening for the identification of the risk for foot
ulcers (or, even worse, for amputation), based on appropriate sensor technologies. In this review,
we summarize the main findings of the pertinent studies in the field, paying attention to both the
AI-based methodological aspects and the main physiological/clinical study outcomes. The analyzed
studies show that AI application to data derived by different technologies provides promising results,
but in our opinion future studies may benefit from inclusion of quantitative measures based on
simple sensors, which are still scarcely exploited.

Keywords: machine learning; neural network; deep learning; thermogram; skin resistance; plantar
pressure; ulcer; lower limb wound; amputation; type 2 diabetes

1. Introduction

It was about two decades ago that international consensus emerged vigorously about
the severity of diabetic foot syndrome among the complications of diabetes mellitus,
leading to the first guidelines from an international working group [1]. In that report, it was
indicated that among people suffering from diabetes worldwide, up to 10% develop foot
ulceration in their life. An editorial on this consensus report highlighted that in the United
Kingdom, about 9% of the National Health Service funds were spent on diabetes, and
nearly half of them on hospitalization due to complications mainly related to the diabetic
foot [1]. In addition to the healthcare costs, the personal costs were then emphasized in
terms of poor quality of life, as well as the possible social costs. Indeed, patients with a
diabetic foot often live with chronic ulcers, pain, and progressive deformity, and often
undergo repeated drug medication (such as antibiotics) and outpatient attendances, as well
as surgical procedures, with consequent enforced rest and time lost from work [1]. The
clinical picture of course worsens dramatically when the diabetic foot pathology leads to
amputation. Since the early 2000s, it has been well known that diabetic foot ulcers are the
most common precursor of amputation and an important cause of morbidity and mortality
in patients with diabetes [2,3]. In the United States, it was assessed that diabetic foot ulcers
contribute to approximately 80% of the 120,000 non-traumatic amputations performed
yearly [4]. Worldwide, it was reported that the global prevalence of diabetes mellitus was
425 million in 2017, with lifetime prevalence of the diabetic foot ulcers ranging from 19% to
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34% [5]. Unfortunately, about one-third of such ulcers will not heal, eventually leading to
some form of lower extremity amputation. In fact, every 20–30 s, a lower limb is lost due to
diabetes somewhere in the world [5].

Is diabetic foot syndrome a multifactorial pathology? The answer is definitely yes.
Indeed, diabetic foot pathophysiology includes at least three relevant etiological factors, i.e.,
peripheral neuropathy, peripheral arterial disease, and infection. Furthermore, trauma can
be added, due to the use of inappropriate shoes or insoles [6]. In the majority of patients,
peripheral neuropathy plays a central role (up to 50% of people with type 2 diabetes have
neuropathy). Neuropathy leads to an insensitive and sometimes deformed foot, often with
an impaired walking pattern that translates into abnormal biomechanical loading of the
foot, subsequently leading to thickened skin (callus) and subcutaneous hemorrhage. In
these conditions, even a minor trauma, caused by inappropriate shoes/insoles, or by an
acute injury, can precipitate into a chronic ulcer [7]. Together with peripheral neuropathy,
peripheral arterial disease is another major risk factor for diabetic foot syndrome. Peripheral
arterial disease is specifically associated with impaired wound healing and lower extremity
amputation. A small percentage of foot ulcers in patients with peripheral arterial disease
are purely ischemic, and they are usually painful, but the majority of foot ulcers are
either purely neuropathic or neuro-ischemic (that is, caused by combined neuropathy and
ischemia), and they can often be asymptomatic [8]. Notably, the indicated factors can lead
to foot ulcers of differing severity, possibly reaching a remarkable size and depth, as shown
by images reported in several studies [9–13].

The illustrated situation indicates on one hand the complexity of diabetic foot syn-
drome, and on the other hand how insidious this syndrome can be, due to the frequent lack
of early symptoms. This justifies the major attention received by diabetic foot syndrome
in the latest years, also mirrored by the updates to the guidelines from the International
Working Group on the Diabetic Foot, in 2015 and 2019 as well [14,15]. In this context, the
importance of appropriate guidelines appears crucial, as it was reported that the implemen-
tation of a structured diabetes foot screening program could achieve up to 75% reduction in
amputation rates [4]. Such a percentage of reduction is promising, but, on the other hand,
it indicates that the problem of diabetic foot-related amputations is far from being solved.
Further effort therefore needs to be carried out.

We have briefly summarized the complexity of diabetic foot syndrome. In such
complex pathophysiological problems, significant benefits can nowadays be provided by
artificial intelligence for the smart analysis of data derived from different sensors and
technologies, of relevance for screening, diagnosis and care of the diabetic foot. In fact,
artificial intelligence has unique capabilities to analyze problems affected by the behavior
or the condition of a wide battery of factors and measured parameters, finally providing
crucial indications about those that are more relevant to focus on in the problem under
investigation. In the general field of diabetes, artificial intelligence has proven to be
effective for several applications, as summarized by many review studies, such as those
by Fregoso-Aparicio et al., Nomura et al., Tan et al., and Gautier et al., to mention some of
the latest [16–19]. However, studies related to diabetic foot syndrome, with exploitation of
the artificial intelligence applied to different technologies, are not as common as for other
diabetic complications, such as diabetic retinopathy [20]. On the other hand, it is worth
noting that a not negligible number of studies on artificial intelligence in diabetic foot are
emerging, especially in very recent years (from 2020 onwards). In fact, considering artificial
intelligence’s capability in addressing complex problems, and, as previously illustrated,
diabetic foot syndrome being such a problem, we definitely expect further studies in the
field. In this review analysis, we aimed to summarize those studies carried out so far, and
draw some conclusions about possible future directions of research. Specifically, this review
study is intended as a sort of guide for those investigators aiming to develop new and
improved methods for diabetic foot data analysis, and for those users aiming to establishing
among the already proposed methods the most appropriate for application to their data.
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2. Scientific Literature Search Strategy

The search through the scientific literature was performed in PubMed by one of the
study authors, then checked and agreed upon by another author.

Following testing of different PubMed search strings, we identified this final string:

diabet*[ti] AND (foot*[ti] OR feet*[ti] OR ulcer*[ti] OR skin*[ti]) AND (((ma-
chine*[tw] OR deep*[tw]) AND learning*[tw]) OR (artificial*[tw] AND intelli-
gen*[tw]) OR (data*[tw] AND mining*[tw] OR (neural*[tw] AND network*[tw])))

According to PubMed guidelines, “ti” searches in the article title, whereas “tw” (“text
word”) enables searching in all main fields of PubMed records, i.e., in the title, abstract,
MeSH terms, plus some additional fields. The symbol “*” enables searching for all varia-
tions of a word root: e.g., intelligence, intelligent, etc. Notably, we used different terms for
our search, which are sometimes used interchangeably, though strictly speaking they are
not. Specifically, in this literature search, the pair of terms occurring most frequently was
“machine learning”, which indicates a series of techniques that are part of the more general
artificial intelligence framework (though, to our knowledge, machine learning identifies a
wider portion of artificial intelligence in data analysis).

The indicated search strategy yielded 49 items (last check: 20 September 2022). We
therefore analyzed each item, and ended with a set of 36 articles pertinent for our analysis
(plus three review studies that will be indicated in the discussion section). The PRISMA
flow chart of our literature search is reported in Figure 1.
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In addition, from the reference list of the selected articles, we identified another
4 pertinent articles which were not captured by our search strategy, thus for a total of
40 articles included in the review. Interestingly, 33 out of these 40 articles were published
from 2020 onwards, indicating rapidly expanding interest in the investigated topic. In
this review, we did not consider articles from conference proceedings, or those not in
English language.

In the following sections, we summarize the main aspects of the selected studies, with
focus on both the main physiological/clinical study goals and outcomes and the method-
ological aspects related to artificial intelligence/machine learning techniques. Articles are
presented in two separate sections: the first section is related to studies concerning the
screening for diabetic foot syndrome and the assessment of risk for diabetic foot ulcers,
whereas the second section describes studies related to the identification of already present
diabetic foot ulcers, of the lesion severity and possible treatments. Each section is then
divided into two subsections, one related to the exploitation of different clinical, socioeco-
nomic and sociodemographic data as inputs for the machine learning algorithms, and the
other characterized by the inclusion of image-based data. In each subsection, articles are
reported in chronological order.

3. Artificial Intelligence in Diabetic Foot Syndrome: Methodological Approaches and
the Main Physiological and Clinical Outcomes
3.1. Screening for Diabetic Foot Syndrome and Risk Prediction for Ulceration
3.1.1. Screening and Risk Prediction: From Clinical, Socioeconomic, Sociodemographic Data

Summary information about the studies presented in this section is reported in Table 1.

Table 1. Summary information related to the studies concerning diabetic foot syndrome screening—
studies based on socioeconomic and sociodemographic data, and on different measured clinical data,
but without imaging. The list of abbreviations is reported in the Abbreviations section.

Reference Aim Population Measured/Collected
Data AI Methods Metrics

Singh et al.,
2013 [21]

Finding DFU risk
associated with

5 SNPs in the TLR4
gene

255 T2DM patients
(125 with DFU, 130

without DFU)

Genomic DNA,
clinical and laboratory

evaluation, family
history, habits,

duration of disease

ANN Accuracy

Ferreira et al.,
2020 [22]

Early identification
of T2DM patients

at high risk of
developing DFU

239 T2DM patients

Health conditions,
changes perceived in
feet, information on

foot care, type of
footwear,

socioeconomic and
sociodemographic

conditions

CNL
Accuracy,
sensitivity,
specificity

Schäfer et al.,
2020 [23]

Risk of DFU
develop-

ment/amputation
in diabetic people

246,705 diabetic
patients

Patient’s health and
socioeconomic data LR, RF Accuracy,

AUCROC

Stefanopoulos
et al., 2021 [24] Prediction of DFU

Over 10 million
diabetic patients,
326,853 of which

with DFU

Nationwide Inpatient
Sample dataset

(2008–2014, USA)
CTREE

Accuracy,
sensitivity,
specificity,
AUCROC

Haque et al.,
2022 [25]

Prediction of
diabetic

neuropathy or
overt DFU

21 subjects (6 with
diabetic

neuropathy, 9 with
DFU, 6 controls)

Electromyography and
ground reaction forces

DA, EC, KC, KNN,
LC, NB, SVM, BDC

Accuracy,
sensitivity,
precision,

AUCROC, F1-score
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Table 1. Cont.

Reference Aim Population Measured/Collected
Data AI Methods Metrics

Nanda et al.,
2022 [26]

Detection of DFU
risk and of its

severity (according
to Wagner Score)

160 T2DM patients
(80 with DFU, 80

without DFU)

Clinical and
biochemical risk
factors for DFU

SVM, NB, KNN,
RF, ensemble

learners; Relieff,
Info Gain, Gain

Ratio and
Chi-squared (for
feature ranking)

AUCROC, F1-score,
MCC

Troitskaya
et al., 2022 [27]

Prediction of onset
of diabetic foot

syndrome

198 diabetic
patients without

complications, and
199 diabetic

patients with signs
of diabetic foot

Polymorphisms of
genes, markers of

endothelial
dysfunction

MLP

Accuracy,
sensitivity,
specificity,
AUCROC

The first study pertinent to our review was dated 2013 [21]. In that “pioneering” study,
Singh et al. aimed at analyzing patients with type 2 diabetes mellitus (T2DM) to find the
risk for a diabetic foot ulcer (DFU), in relation to five single nucleotide polymorphisms
(SNPs) in the TLR4 gene (namely, Asp299Gly (rs4986790), Thr399Ile (rs4986791), rs11536858,
rs1927911, and rs1927914), by using an artificial neural network (ANN). A total of 255 T2DM
individuals, namely 125 patients already with DFU and 130 patients without DFU assumed
as the control group, were enrolled in the study. All participants underwent clinical and
laboratory evaluation, and family history, life habits and duration of disease were recorded
through a questionnaire. Genomic DNA was extracted from peripheral blood and the SNPs
were analyzed to find allelic combinations that may alter the risk of DFU. The final ANN
architecture consisted of 5 input nodes (the SNPs), 10 hidden layer nodes, and 1 output
node representing the risk of DFU. For validation purposes, with the same set of data used
for training and testing, a conventional statistical multivariate linear regression (MLR) was
also carried out. The ANN model with the five SNPs as inputs was able to correctly predict
83% of the validation set (25% of the dataset), i.e., the presence or absence of DFU. The
conventional statistical MLR model correctly predicted 74% of the cases only. Based on
the study findings, it was concluded that some haplotypes of the analyzed SNPs may be
involved in the pathogenesis and progression of DFU, whereas, in contrast, some others
appear to be protective against DFU.

Since 2020, several studies have been published that are pertinent for our review. The
work by Ferreira et al. aimed at using an unsupervised learning technique to automatically
classify the risk of developing diabetic foot syndrome before any visual change can be
perceived [22]. The developed method did not require clinical exams, physical contact with
the patients or foot imaging. It was based on a questionnaire collecting data related to
the health conditions of the patients and to the changes they had felt in their feet, such as
numbness, loss of sensation, and tingling. Additionally, information on daily foot care, on
the type of footwear commonly used, and on the patient’s socioeconomic and sociodemo-
graphic conditions was collected. For each of the 239 T2DM patients, the database included
a record containing 54 variables. After normalization, a competitive neural layer (CNL) was
trained to cluster the data into two groups by using the Kohonen Learning Rule. A nurse
specialized in diabetic foot diagnosis and prevention verified the presence of variables
considered to be risk factors for the development of the condition. Her classification was
assumed as the ground truth. Then, the CNL-based architecture performed its selection and
hence clustered the patients into two groups, i.e., Group A with 127 patients, and Group B
with 112 patients, the latter representing patients having the greatest risk of developing
diabetic foot. Out of 54 variables, the 15 variables presenting absolute weight greater than
0.5 were selected (age, type of diabetes, body mass index (BMI), food control, physical
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activity, smoking, hypertension, circulatory problems, sensation of shock in feet and legs,
presence of bunion, visual changes, habit of washing the feet, presence of calluses, presence
of wound, and presence of amputation). The model was applied to the randomly selected
test set composed of data from 73 subjects, reaching sensitivity of 71%, specificity of 100%,
and accuracy of 90%. Following comparison with previous relevant works, the authors
concluded that the proposed method has the advantage of non-invasiveness, and it does
not require image processing or sensors to monitor the patient’s feet. On the other hand,
it is obvious that such a method, also based on subjective information provided by the
participants, may provide in some cases unreliable predictions.

The study by Schäfer et al. aimed at understanding whether different sources of
patient’s health and socioeconomic data (collected at not specific time intervals in a period
of almost twenty years) can be leveraged through machine learning techniques to assess
the risk of developing DFU, as well as subsequent amputation [23]. Using available socioe-
conomic registry data and the medical records of 246,705 patients with diabetes, the study
was organized into two steps. First, through survival analysis, it was investigated what risk
factors are associated with DFU or amputation. After identifying the risk factors, machine
learning models were applied to predict the occurrence of DFU/amputation at different
time intervals across two different setups: in the first one, the aim was classifying whether
patients develop DFU/amputation based on their medical history up to a maximum of
n years, with n ranging from 3 to 11. The second setup considered patient’s information
in a prescribed time interval after diabetes onset (from a minimum of 3 to a maximum
of 11 years) and predicted the development of DFU/amputation within the next 2, 3 or
5 years. Logistic regression (LR) and random forest (RF) classifiers were used. It was shown
that important risk factors for DFU/amputation are low family income, cardiovascular
and chronic renal complications, peripheral artery disease, and neuropathy. By evaluating
receiver operating characteristic (ROC) curves obtained from the classifiers, it was con-
cluded that in the first setup, both classifiers were able to distinguish between patients
with and without DFU/amputation. In contrast, the second setup did not show sufficiently
accurate prediction, thus suggesting the need for improvements in the implementation of
the predictive models.

In 2021, Stefanopoulos et al. published a study based on a conditional inference tree
(CTREE) algorithm for the prediction of DFU risk in an inpatient population [24]. Na-
tionwide Inpatient Sample datasets (USA) from 2008 to 2014, including over 10 million
diabetic patients (of which 326,853 had DFU), were used for model generation and testing.
The CTREE classifier, i.e., a decision tree that estimates relationships by means of binary
recursive partitioning, was used to predict the incidence of DFU. An initial selection was
performed to identify potential predictors. The chi-square test was used to identify categori-
cal variables with different frequency values between subjects with and without DFU (those
variables therefore being potential significant predictors for the output). Other appropriate
tests were performed on continuous variables for the initial selection (maintaining only
those with significant regression with the output, i.e., the presence or absence of DFU).
Subsequently, a LASSO (Least Absolute Shrinkage and Selection Operator) regression
was performed for the final selection of predictors, yielding six predictors. In addition,
a different strategy was applied for predictor selection, based on backward and forward
regression, in this case yielding 10 predictors. Finally, CTREE was applied on both the
6- and 10-predictor sets to derive optimal cut-off values for each predictor. Performance
was assessed by accuracy, sensitivity, specificity and AUCROC, i.e., Area-Under-the-Curve
of the ROC curve. The 6- and 10-predictor models achieved similar performance, and thus
the more parsimonious 6-predictor model was considered preferable.

In 2022, the study by Haque et al. aimed to predict diabetic neuropathy (a risk factor for
DFU) or already overt DFU by analyzing some biomechanical variables, specifically muscle
electromyography (EMG) parameters and ground reaction forces (GRF) [25]. The analyzed
dataset included 21 subjects, with diabetic neuropathy (n = 6), with diabetic neuropathy
already complicated by ulceration (n = 9), and with neither diabetic neuropathy nor ulcera-
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tion, assumed as control subjects (n = 6). The EMG data were derived from the right vastus
lateralis, gastrocnemius lateral, and tibialis anterior, whereas the ground reaction force data
included three-dimensional components (GRFx, GRFy, GRFz). All data underwent appro-
priate processing to derive several parameters (features for machine learning analysis),
especially from the EMG signal, including the mean absolute value, slope changes, number
of zero crossings, skewness, signal moment. High-correlation feature elimination was
then performed to optimize the subsequent feature ranking phase. The correlation matrix
between pairs of features was calculated using pairwise linear correlation, and in the case
of values higher than 0.9, one of the two features in the pair was discarded. Thereafter, four
feature selection approaches were used for feature ranking (chi-square, Minimum Redun-
dant Maximum Relevant, Neighborhood Component Analysis, and the ReliefF algorithm).
For the classification in the control, diabetic neuropathy or DFU condition, eight different
algorithms were trained—that is, Discriminant Analysis (DA), Ensemble Classification
(EC), Kernel Classification (KC), K-Nearest Neighbor (KNN), Linear Classification (LC),
Naïve Bayes (NB), Support Vector Machine (SVM), and Binary Decision Classification tree
(BDC). The best-performing algorithm was KNN. This algorithm was thus optimized to
tune the hyperparameters by using Bayesian optimization. The best accuracy reached
96.18%. Other performance metrics were AUC, sensitivity (recall), precision, and F1-score,
i.e., a harmonic average of sensitivity and precision.

In the study by Nanda et al. [26], a model was developed for predicting the onset of
DFU and its grading according to the Wagner score (five classes). Eighty patients with
T2DM and with DFU, as well as eighty patients without DFU, were enrolled. Clinical and
laboratory biochemical risk factors were considered as features for different machine learn-
ing algorithms (up to 32 features, among which 23 were continuous and 9 were categorical).
More precisely, the features list included diabetes duration, insulin use, ulceration dura-
tion, Wagner ulcer classification, the presence of diabetic complications, smoking history,
blood/plasma parameters, as well as sex and anthropometric parameters. To gain insight
into the importance of the different features, four different feature ranking algorithms were
used (ReliefF, Info Gain, Gain Ratio and chi-squared). The analyzed machine learning
algorithms were SVM (with Poly kernel and RBF (Radial Basis Function) kernel), NB, KNN,
RF and three ensemble learners (Stacking C, Bagging and AdaBoost). These models were
exploited first to discriminate between the two groups of patients (stage I classification),
and secondly for ulcer grading classification (stage II classification). In stage II, since the
five DFU classes had different numbers of samples, the Synthetic Minority Oversampling
Technique (SMOTE) was used to obtain a balanced dataset. The top features predicting
DFU were interleukin-10 (IL-10), fasting plasma glucose, alipoprotein A1 (Apo A1), neu-
ropathy presence, low-density lipoprotein and triglycerides. As regards stage II, diastolic
blood pressure, uric acid, postprandial plasma glucose, sex, low-density lipoprotein and
IL-10 were the top features discriminating between different ulcer grades. In terms of the
best machine learning approach, the ensemble learning algorithms performed better than
individual classifiers, according to various performance metrics (Matthews correlation
coefficient (MCC), which is an appropriate formula of true/false positive/negative values,
as well as F1-score and AUCROC).

In the study by Troitskaya et al., some polymorphisms of genes related to vascular
tone regulation factors, platelet receptors, vascular wall remodeling and prothrombotic
factors were studied, as well as some markers of endothelial dysfunction, such as MMP9
(metalloproteinase-9) [27]. The hypothesis was that these different biomarkers may help to
predict the possible development of diabetic foot syndrome, considering the multifactorial
nature of the syndrome. For this purpose, 397 patients with diabetes were studied, of which
198 had no complications and 199 demonstrated some signs of diabetic foot syndrome.
By means of neural network analysis, with the Multilayer Perceptron (MLP) approach, it
was found that the indicated data allow for predicting the development of diabetic foot
syndrome with an accuracy of 92.9%. Other considered metrics were sensitivity, specificity
and AUCROC. However, no details were provided about the MLP approach.
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3.1.2. Screening and Risk Prediction: From Imaging

Summary information about the studies of this section is reported in Table 2.

Table 2. Summary information related to the studies concerning diabetic foot syndrome screening—
studies based on imaging. The list of abbreviations is reported in the Abbreviations section.

Reference Aim Population Measured/Collected
Data AI Methods Metrics

Toledo Peral
et al., 2018 [28]

Identification and
classification of skin

macules

19 diabetic patients
(without DFU)

82 photographs of
skin macules ANN Accuracy, confusion

matrix

Cruz-Vega
et al., 2020 [29]

Classification of
diabetic foot

thermograms (five
classes)

Diabetic patients
(number not

specified)
110 thermograms

MLP, SVM, CNN
(GoogLeNet and

AlexNet, and new
CNN: DFTNet)

Accuracy, sensitivity,
specificity, precision,
AUCROC, F1-score

Khandakar
et al., 2021 [30]

Classification in
diabetic or control

subject for early
detection of DFU

risk

122 diabetic and
45 control subjects

Gender, age,
weight, height,

pairs of
thermograms

Machine learning
algorithms on

features extracted
from images; deep
CNN algorithms

on images

Accuracy, sensitivity,
specificity, precision,
AUCROC, F1-score

Arteaga-
Marrero et al.,

2021 [31]

Proof-of-concept of
foot sole

segmentation of
multimodal images

37 healthy subjects
74 visual-light,

infrared and depth
images

CNN (U-Net),
deep CNN
(SegNet)

Accuracy, sensitivity,
specificity, precision,

DICE, spatial
overlap

Dremin et al.,
2021 [32]

Identification of skin
differences between
diabetic and healthy

subjects

32 healthy subjects
(1st study phase),
20 diabetic and

20 healthy subjects
(2nd study phase)

Photonic data
(hyperspectral
imaging and
parameters)

ANN (MLP) Accuracy, sensitivity,
specificity, AUCROC

Khandakar
et al., 2022 (two
articles) [33,34]

Early detection of
DFU risk, clustering

of severity in foot
temperature
anomalies

122 diabetic and
45 control subjects

Gender, age,
weight, height,

pairs of
thermograms

Machine learning
algorithms; deep
CNN algorithms;

K-mean clustering

Accuracy, sensitivity,
specificity, precision,
AUCROC, F1-score

Zhang et al.,
2022 [35]

Detection of DFU
risk and of its

severity (according
to Wagner Score)

203 diabetic
patients

Sociodemographic
and clinical data,
and CTA images

ANN, with MLP
algorithm

Accuracy, PPV, NPV,
sensitivity,

specificity, AUCROC

Bouallal et al.,
2022 [36]

Segmentation of
diabetic foot

145 diabetic and
54 healthy subjects

398 pairs of
thermal and RGB

images
DE-ResUnet IoU, Acc

Muralidhara
et al., 2022 [37]

Detection of DFU
risk and of its

severity (6 classes)

122 diabetic and
45 control subjects Thermograms

CNN algorithm
coupled with class

balancing
(weighted

classification and
data

augmentation)

Accuracy, sensitivity,
specificity, precision,

F1-score

In 2018, Toledo Peral et al. developed an application for skin macule characterization,
based on a three-stage segmentation and characterization algorithm [28]. Specifically, the
purpose was to classify vascular macules, petechiae, and macules due to trophic changes
or trauma from photographs of the lower limbs of diabetic patients. Indeed, it was claimed
that such diabetic skin manifestations are among the first symptoms of vascular damage,
and may precede the onset of DFU. A group of 19 diabetic patients was studied, with
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82 skin macules, but no DFU. For the study purposes, the first step was the acquisition
of color photographs of the skin macules from the lower limb (stage 1), then images
segmentation was performed to identify the skin regions with macules (stage 2), and finally
the macules were characterized in terms of the severity of the skin damage. Thereafter, the
macule features were fed into an ANN classifier (feedforward backpropagation architecture,
two hidden layers and four neurons per layer), which demonstrated a 97.5% accuracy in
differentiating between the different macule types.

In 2020, the study by Cruz-Vega et al. analyzed the use of machine learning and
deep learning techniques for the classification of diabetic foot thermograms [29]. Differ-
ent approaches were compared: two traditional machine learning classifiers (MLP and
SVM), two models based on pre-trained convolutional neural networks (CNN), such as
GoogLeNet and AlexNet, and a new CNN proposed by the authors, i.e., Diabetic Foot
Thermograms Network (DFTNet). All methods were applied to 110 thermograms of pa-
tients with diabetes, obtained from a public thermogram database. For the selection of
the regions of interests (ROIs), required for the use of the MLP and SVM algorithms, a
histogram-based segmentation method was exploited, obtained by fuzzy logic approach
according to the measure of entropy. The CNN classifiers required additional images to
prevent the network from overfitting. For this reason, each image was divided into patches,
increasing the dataset by about ten-fold. The foot was divided into four angiosomes, i.e.,
the medial plantar artery, lateral plantar artery, medial calcaneal artery and lateral calcaneal
artery. A thermal change index was used to measure the difference between corresponding
angiosomes from each subject and related reference values were properly established. The
algorithms were trained to classify five classes of thermal changes in the plantar regions.
The pre-trained CNN AlexNet was fine-tuned by replacing some layers. Little information
was reported on the GoogLeNet network, but it appears that GoogLeNet was exploited
for the development of the new network. Indeed, in DFTNet, the number of layers was
reduced to 9, starting from the 22 layers of GoogLeNet, this allowing a decrease in the
training time. The results showed that the best two algorithms were DFTNet and MLP, with
AUCROC of 0.8533 and 0.8333, respectively. Other performance metrics were sensitivity,
specificity, precision, accuracy, and F1-score. It was claimed that possible future works
include increasing the number of thermograms, improving the structure of DFTNet, and
reducing the need for participation of human experts in the selection of patches and ROIs.

In 2021, the study by Khandakar et al. was somewhat similar to that by Cruz-Vega
et al. [29] performed one year earlier, as both studies shared the exploitation of thermograms
for the early detection of diabetic foot abnormalities (and hence for possible assessment
of DFU risk) [30]. In Khandakar’s study, artificial intelligence models were trained on a
dataset related to 122 patients with diabetes and 45 control subjects, including for each
subject gender, age, weight, height, and foot pair thermograms. In this study, the purpose
was simply to distinguish between diabetic and control subjects (i.e., two-class classifier).
Machine learning algorithms were applied to features extracted from the thermograms,
whereas deep CNN algorithms were applied to the whole images. Regarding the feature-
based detection problem, careful feature selection was carried out to reduce the possibility
of overfitting: redundant features were removed, and machine learning algorithms were
applied to obtain different feature ranking sets. Feature ranking was performed by the
Multi-Tree Extreme Gradient Boost (XGBoost), RF, and Extra Tree techniques. Different
feature subset combinations were then tested as predictors. The implemented classifiers
were MLP, XGBoost, LR, Adaptive Boosting (AdaBoost), KNN, SVM, Extra Tree, RF, Gradi-
ent Boosting and Linear Discriminant Analysis (LDA). Regarding the deep CNN models,
transfer learning (i.e., use of pre-trained models) from ImageNet database (with more than
one million images) and image enhancement techniques were applied to cope with the
small size of the dataset. The implemented CNN algorithms were ResNet18, ResNet50,
DenseNet201, InceptionV3, MobileNetV2, and one Visual Geometry Group (VGG) network,
specifically VGG19. To avoid an imbalanced training dataset and consequent possible
biased estimates, SMOTE was used for training data augmentation. The 10-feature Ad-
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aBoost algorithm was found to be the best classifier (performance metrics were sensitivity,
specificity, precision, AUCROC, F1-score). Finally, the inference time of the algorithms
was also assessed, this being relevant to consider the opportunity for implementation of
these algorithms on smartphones, allowing early DFU risk detection even in the patient’s
home setting.

In the same year, the study by Arteaga-Marrero et al. employed deep learning tech-
niques, compared with more conventional techniques, to obtain a proof of concept for
foot sole segmentation of multimodal images (consisting of visual-light, infrared, and
depth images), providing spatial information of the sole [31]. Indeed, the authors claimed
that the lack of standardized foot sole segmentation is one of the greatest technical obsta-
cles for the inclusion in standard care protocols of the thermography technique, which
is important for DFU prevention. The proposed approaches for automatic segmentation
included conventional skin segmentation not exploiting artificial intelligence algorithms, a
CNN (U-net, previously generated and trained by the authors), and a deep CNN (SegNet)
for semantic pixel-wise segmentation. The different techniques were compared based on
performances over a dataset of 74 images by 37 healthy subjects. Manual segmentation
was used as ground truth to evaluate performance, expressed in terms of spatial overlap,
accuracy and precision. The conventional approach and the U-net approach performed
best, at least in terms of spatial overlap. The other considered performance metrics were
sensitivity, specificity, and Dice Similarity Coefficient (DICE). It was concluded that au-
tomatic foot sole segmentation could be used to substitute the time-consuming manual
segmentation approach.

The study by Dremin et al. was not specifically focused on the diabetic foot issue, but
more generally on skin abnormalities, which in diabetic patients can lead to complications
such as DFU [32]. Specifically, the study addressed the problem of protein glycation, which
causes dysfunction of tissues containing collagen. In fact, the structural and functional
changes in collagen contribute to the development of alterations affecting the skin, blood
vessels, and nerves, fostering the onset of different pathologies, such as DFU. In the study,
photonics-based technology was exploited to derive biomarkers of protein glycation. In
more detail, polarization-sensitive hyperspectral imaging and parameters allowed the
calculation of distribution maps for skin blood content and blood oxygenation, and of the
polarization index of reflected radiation. These biomarkers were proven able to differentiate
the skin condition, as well as the microcirculation state, between diabetic and healthy
subjects. The subjects analyzed were 32 healthy subjects in a first study phase, and a group
of 20 diabetic patients plus a further 20 healthy subjects in the second study phase. The
machine learning approach used to analyze the data was an ANN, of MLP type, with an
input layer, one hidden layer, and a linear output layer. Performance metrics were AUCROC,
sensitivity and specificity.

In 2022, Khandakar et al. continued the previous research [30] on thermograms
analysis [33]. As a fact, the methodological approaches were very similar to those of
the previous study [30]. In this new study, it was concluded that one of the analyzed
classifiers (the MLP one), applied to the features extracted from the thermograms, showed
an accuracy that outperformed those reported in the literature over the same dataset. In a
second study of the same year [34], Khandakar et al. also focused on the aim of clustering
the thermograms based on the severity of the abnormalities in the temperature patterns.
From the methodological point of view, the novelty of this study was the exploitation of
the K-mean clustering technique for unsupervised cluster identification.

In the study by Zhang et al., the aim was to predict the onset of DFU, and of its severity,
by lower extremity computed tomography angiography (CTA), complemented by other
clinical data, and sociodemographic data [35]. A group of 203 patients with possible diabetic
foot syndrome were analyzed, and divided into two subgroups based on the severity of
the DFU according to an appropriate grading index (Wagner score), ranging from grade 0
(no skin lesion) to grade 5 (gangrene of the entire foot). According to a specific cut-off,
138 patients were assigned to the low Wagner score group, and 65 patients to the high
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Wagner score group. Based on CTA data, 10 predictive features were selected for inclusion
in the model. The total dataset was randomly split into training, testing and holdout
samples (3:1:1 ratio). An ANN model was created, based on the MLP algorithm. The MLP
model was composed of three layers (input layer, hidden layer, and output layer). The
model used predictive factors from the input layer (age, gender, BMI, duration of diabetes,
duration of a diabetic foot ulcer, limb symptoms, degree of lower-extremity arterial stenosis,
segment of lower-extremity arterial stenosis, arterial calcification, and comorbidities) and
the output layer (low or high Wagner score). A LR model was also developed as a control
for the MLP model. The metrics considered for the model performance over the holdout
sample were accuracy, sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV), which were 88.9%, 90.0%, 88.5%, 75.0% and 95.8%, respectively.
The AUCROC was also considered (0.955), which was remarkably superior to that of the
classic LR model. It was concluded that the MLP model could accurately predict the onset
and severity of a DFU.

In the study by Bouallal et al., the main aim was to develop an automated accurate
algorithm for the segmentation of the diabetic foot [36], with the consideration that appro-
priate segmentation is important for the interpretation of thermal images, which can predict
the onset of DFU. A dataset consisting of 398 pairs of thermal and RGB (Red, Green, Blue)
images was studied, obtained from 145 diabetic patients and 54 healthy subjects. A deep
neural network architecture was proposed, named Double Encoder-ResUnet (DE-ResUnet),
which includes encoder and decoder pathways (starting from the thermal image and ending
with the segmentation output), with skip connections between the corresponding layers.
The proposed new network combines the advantages of U-Net and ResNet architecture.
The former belongs to the category of fully convolutional networks, allowing data aug-
mentation and facilitating the propagation of information among the different network
layers. The latter is a residual network, able to propagate the information with minimum
degradation thanks to the skip connections, and allowing accurate object detection and
semantic segmentation, i.e., appropriate labelling of specific image regions. Moreover, the
proposed network fuses thermal and color information to improve segmentation accu-
racy. This approach was found to be able to accurately delineate the regions of toes and
heels that are at high risk for ulceration, and outperformed other methods, reaching an
average intersection over union (IoU) of 97%. The accuracy per class (Acc) metric was
also considered.

The study by Muralidhara et al. [37] was similar to those of Khandakar et al. [30,33,34],
as it exploited the same dataset (122 diabetic patients, and 45 control subjects). Two levels of
multi-class classification were considered, namely a five-class classification of the diabetic
thermograms and a six-class classification including the non-diabetic thermograms as an
additional class. This consideration of diabetic samples of different grades along with
non-diabetic thermograms (defined as “holistic classification”) provides additional relevant
information during the training process, resulting in a more robust classifier. The problem
of class balancing was addressed by weighted classification (adjusting class weights to
assign higher importance to minority classes) and by data augmentation (generating
multiple slightly different versions of images through image rotation, scaling, flipping,
and cropping). Then, a CNN was proposed for discrimination between non-diabetes (i.e.,
no DFU) and the five severity DFU grades according to the thermal images, and the new
network performance was compared to those of pre-trained networks such as AlexNet.
The considered metrics were accuracy, specificity, sensitivity, precision, and F1-score. The
achieved accuracy was 0.9827.

3.2. Overt Diabetic Foot Ulcer Detection, Grading, Prognosis and Care
3.2.1. Overt Diabetic Foot Ulcer Focus: From Clinical, Socioeconomic, Sociodemographic Data

Summary information for this section is reported in Table 3.
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Table 3. Summary information related to the studies about overt diabetic foot ulcers—studies based
on socioeconomic and sociodemographic data, and on different measured clinical data, but without
imaging. The list of abbreviations is reported in the Abbreviations section.

Reference Aim Population Measured/Collected
Data AI Methods Metrics

Yusuf et al.,
2015 [38]

Validation of e-nose in
detection of bacteria

responsible for
DFU infection

Patients with DFU
(number not

specified)

In vitro bacteria
samples

SVM, KNN, LDA,
PNN

Accuracy,
sensitivity,
specificity,
precision

Huang et al.,
2018 [39]

Quantification of
rehabilitative efficiency
of Buerger’s exercise;

discrimination between
healthy and

diabetic subjects

30 diabetic and 15
healthy subjects

Tissue oxygen
saturation in lower
limbs and relative
total hemoglobin

concentration

RBFNN F1-score

Lin et al.,
2020 [40]

Prediction of
amputation/mortality in

patients with DFU

200 patients
with DFU

Biochemical
markers, clinical

data and presence
of complications

Cox regression,
BPNN (also with

GA)

Sensitivity,
specificity,
AUCROC

Du et al.,
2021 [41]

Prediction of
amputation/mortality in

inpatient with DFU
before/after pandemic

23 inpatients
with DFU

Clinical and
laboratory data,

WIFI classification

LR, SVM, RF,
GBDT, ANN,

XGBoost

Accuracy, NPV,
PPV, sensitivity,

specificity,
AUCROC

Xie et al.,
2022 [42]

Prediction of in-hospital
amputation

618 patients
with DFU

Demographic
features, medical
and medication
history, clinical
and laboratory

data, Wagner and
WIFI classifications

LightGBM

Accuracy, NPV,
PPV, sensitivity,

specificity,
AUCROC

Margolis
et al.,

2022 [43]

Prediction of
wound healing

204 patients
with DFU

Wound area,
duration, depth,
site, arterial flow,
BMI, history of

dialysis

LR, LASSO AUCROC

Deng et al.,
2022 [44]

Prediction of mortality
in DFU+HCE patients

27 inpatients with
DFU+HCE,

93 inpatients with
isolated DFU

HCE presence,
mortality

occurrence,
clinical data

XGBoost
AUCROC, accuracy,

sensitivity,
specificity

The first study that we include in this section of our review is that by Yusuf et al. in
2015, which focused on the use of an electronic nose (e-nose) for the detection of single and
multiple pathogens responsible for infections in the ulcerated diabetic foot [38]. Indeed,
the response of the e-nose is known as a “smell print”, and different bacteria may exhibit
different smell print patterns. In more details, the work aimed to determine a proof
of concept for the use of the e-nose in the identification of microbial species in vitro, to
subsequently move on to its use in the clinical context. Data were obtained by media
culture preparation and bacteria isolation, retrieved from samples of diabetic foot wounds
(wild-type bacteria) and by the American Type Culture Collection (standard bacteria). The
e-nose was applied on the resulting dataset, i.e., the agar medium with the bacteria, and
different machine learning multi-class odor classifiers were tested to evaluate the ability of
the e-nose in identifying single/multiple pathogens. The used classifiers were SVM, KNN,
LDA, and Probability Neural Network (PNN). These four classifiers were implemented
via the leave-one-out cross-validation technique, using two different sets of predictors:
the first set consisted of the features retrieved by principal component analysis (PCA),
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and the second set was obtained by also applying LDA to the first set, to reduce the high
dimensionality of the feature space. Performances of the classifiers were evaluated in terms
of accuracy, precision, specificity, and sensitivity. Almost all of the classifiers achieved a
precision of at least 90% and an accuracy of at least 89%.

In 2018, Huang et al. exploited a Radial Basis Function Neural Network (RBFNN)
to quantify the rehabilitative efficiency of the Buerger’s exercise, which is a rehabilitation
technique that improves blood flow in the lower limbs, possibly leading to a reduction in
the risk of amputation due to DFU [39]. The RBFNN classifier was used to discriminate
between healthy and diabetic subjects, based on tissue oxygen saturation in lower limbs
and relative total hemoglobin concentration as model predictors, which are measured at
different locations of the foot. The dataset included 30 diabetic and 15 healthy subjects. In
the RBFNN model, radial basis functions were used as activation functions. The model
output was a continuous value between 0 and 1, with these limits corresponding to healthy
and diabetic subjects, respectively. An optimal cut-off for the output value was searched
to distinguish between the two participants’ categories. However, the continuous output
value was itself an informative index, quantitatively assessing the state of blood circulation.
If this index is computed before and after Buerger’s exercise, its variation can be assumed
as a quantitative index of rehabilitative efficiency. The neural network performance was
evaluated using the F1-score classification metric. It was concluded that the neural network
performed satisfactorily, achieving an F1-score of 80%.

In 2020, the study by Lin et al. aimed at generating models for the prediction of
amputation/mortality of patients with DFU [40]. Three predictive models were gener-
ated: a traditional Cox regression model, and two models from the artificial intelligence
framework, i.e., a Back-Propagation Neural Network (BPNN) and a BPNN based on ge-
netic algorithm (GA) optimization. Each of the three models was implemented with two
different setups. In one setup, the goal was to predict whether the patient would have
been subject to amputation; in the second setup, the model tried to predict whether the
subject would survive for three years. Based on biochemical indicators (blood/plasma
parameters) selected through cluster analysis, combined with clinical data and the presence
of complications (related to 200 patients), the Cox regression model was implemented first.
In the BPNN model (the “basic” one), three risk factors, identified by the Cox regression
model, were used as initial predictors. Finally, the BPNN based on GA was built upon
the basic BPNN, allowing model optimization by the simulation of Darwin’s theory of
the process of biological evolution, and the process of the biological evolution of genetic
mechanisms. Analyses were performed separately for the prediction of amputation and
prediction of mortality. Performances were assessed through the AUCROC, sensitivity and
specificity metrics. The predictive models based on optimized BPNN and basic BPNN were
superior to the model based on simple Cox regression analysis, both for amputation and
mortality prediction. However, the study failed to demonstrate improved performances of
GA-based BPNN compared to basic BPNN.

In 2021, the study by Du et al. explored characteristics of inpatients suffering from
DFU before (2019) and after lockdown (2020), due to the COVID-19 pandemic [41]. The
study searched for common features associated with amputation/mortality in patients with
DFU, and subsequently generated predictive models of the indicated outcomes. Exploited
data included clinical and laboratory values, and Wagner ulcer classification and Wound,
Ischemia, and Foot Infection (WIFI) classification. A group of 23 patients were studied.
Based on the available data, authors identified a longer delay in admission and a higher
risk of mortality in subjects suffering from DFU in the post-lockdown period. Six machine
learning prediction models for amputation/mortality were developed to identify risk
factors: LR, SVM, RF, gradient boosting decision tree (GBDT), ANN, and XGBoost. For
hyperparameter tuning, three-fold cross-validation was used in each model. Performances
were assessed using AUCROC, accuracy, sensitivity, specificity, PPV, and NPV. The XGBoost
model outperformed the others in terms of AUCROC, accuracy, sensitivity, and NPV. As
regards amputation, the main risk factors were white blood cell and blood potassium
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levels, and pre-hospitalization in the pre-lockdown period, whereas pre-hospitalization,
foot ischemia and serum albumin levels were identified as risk factors in the post-lockdown
period. For mortality, the main risk factors were age, and both foot and non-foot infections.
It was concluded that DFU patients with any kind of infection should require prompt
intervention.

In 2022, the study by Xie et al. aimed at developing an accurate prediction model
that could estimate the probability of in-hospital non-amputation, minor amputation (i.e.,
amputation below the ankle) or major amputation in patients with DFU, providing indi-
vidualized analyses of the patients’ risk factors [42]. Light Gradient Boosting Machine
(LightGBM) with five-fold cross-validation was used to develop a multi-class classification
model, which incorporated 37 baseline characteristics of 618 patients. Bayesian hyper-
parameter optimization based on the Tree–Parzen estimator was used to determine the
optimal calibration set under the cross-validation procedure. This set was used to calibrate
the model predictions based on isotonic regression, while a specific score (Brier score) was
used to evaluate the coherence between predicted and observed probabilities. Among the
participants’ data, the collected data were demographic characteristics, medical and medi-
cation history, clinical and laboratory data, and WIFI classification. The model performance
was evaluated using five evaluation metrics (AUCROC, sensitivity, specificity, PPV and
NPV). The overall model performance was the weighted average of the performance in
each category. It was shown that the proposed multi-class classification model had strong
predictive power, with high weighted-average AUCROC (0.90), and acceptable sensitivity
(87.1%), specificity (74.4%), NPV (79.7%) and PPV (86.3%). In addition, to provide a visual
interpretation of the contribution of each patient’s characteristics to the model predictions,
the Shapley Additive explanations (SHAP) algorithm was used. Precisely, SHAP values
provided a direct measure of the influence of each patient’s variable on the actual predic-
tions under the interaction with other variables. In the authors’ view, the SHAP algorithm,
enhancing the transparency of the model, could promote its acceptance by physicians. The
study was, however, conducted retrospectively, and missed external validation cohorts.

In the study by Margolis et al., the main aim was to demonstrate by a machine learning
approach that simple DFU characteristics, such as wound area and wound duration, can
predict wound healing [43]. For this purpose, a multicenter study, called the Diabetic
Foot Ulcer Consortium (DFUC), was carried out, including 204 patients with DFU. The
main study outcome was a healed wound by the 16th week of care. LR and LASSO were
exploited to build a prediction model of the outcome. Features considered for the model
development were wound area, wound duration, wound depth, wound site (categorical
variable), arterial flow, patient’s BMI, and history of dialysis. The performance of different
models was assessed by the AUCROC. It was found that wound area and duration were the
most relevant predictors of wound healing, their combination providing AUCROC of 0.71.
The other features were shown to add little to that AUCROC value.

The premise of the study by Deng et al. was that severe infections, including an
acute DFU infection, can induce an acute hyperglycemic crisis episode (HCE), such as
diabetic ketoacidosis and hyperglycemic hyperosmolar status [44]. Thus, the study aimed to
investigate risk factors for mortality in patients with DFUs and HCE. A total of 27 inpatients
with DFUs concomitant with HCE were compared to 93 inpatients with isolated DFUs.
Amputation and survival rates were compared over a 6-year period. XGBoost was used
to explore the relative importance of HCE (and other risk factors) to all-cause mortality in
DFU patients. It was found that HCE is a major risk factor for mortality in patients with
DFUs, whereas no difference was observed between DFU+HCE and isolated DFU groups
as regards the amputation rate. Performance metrics for the XGBoost model were AUCROC,
accuracy, sensitivity, specificity.

3.2.2. Overt Diabetic Foot Ulcer Focus: From Imaging

Summary information for this section is reported in Table 4.
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Table 4. Summary information related to the studies about overt diabetic foot ulcers—studies based
on imaging. List of abbreviations is reported in the Abbreviations section.

Reference Aim Population Measured/Collected
Data AI Methods Metrics

Wang et al.,
2017 [45]

Detection of DFU
area

15 patients with
DFU 100 DFU images Two-stage SVM Sensitivity,

specificity

Wang et al.,
2019 [46]

Automatic DFU
localization under

different
conditions

15 patients with
DFU

162 moulage
wound images +
100 actual DFU

images

AHRF Sensitivity,
specificity

Ohura et al.,
2019 [47]

Automatic DFU
localization

Patients with DFU
(number not

specified)

400 pressure ulcer
images and

20 DFU images

SegNet, LinkNet,
U-Net and U-Net

with VGG16

Accuracy, sensitivity,
specificity, AUCROC,

MCC, DICE

Goyal et al.,
2019 (and

2020) [48,49]

Real time
automatic DFU

localization

Patients with DFU
(number not

specified)

(Up to) 1775 DFU
images

From machine
learning: SVM; from

deep learning:
R-CNN, R-FCN,

SSD; DFUNet

mAP, overlap
percentage, size of

model, speed;
accuracy, sensitivity,
specificity, precision,
AUCROC, F1-score

Goyal et al.,
2020 [50]

Detection of
ischemia/infection

in DFU

Patients with DFU
(number not

specified)
1459 DFU images

From machine
learning: RF, BN,
MLP; from deep

learning: three CNN
(InceptionV3,
ResNet50, and

InceptionResNetV2),
ensemble CNN

based on the three
CNN

Accuracy, sensitivity,
specificity, precision,
AUCROC, F1-score,

MCC

Kim et al.,
2020 [51]

Prediction of DFU
prognosis

155 patients with
2291 visits for

381 DFUs

Clinical variables,
smartphone-based

photographs
ResNet50, RF, SVM

Accuracy, precision,
recall, AUCROC

F1-score

Al-Garaawi
et al., 2021 [52]

DFU classification,
detection of

ischemia, detection
of infection

Patients with DFU
(number not

specified)

RGB images and
derived

information about
texture of the ROI

CNN
Accuracy, sensitivity,
specificity, precision,
AUCROC, F1-score

Yap et al., 2021
(and Cassidy

et al.,
2021) [53,54]

DFU detection
Patients with DFU

(number not
specified)

4000 DFU images
with expert
annotations

R–CNN, three
variants of R–CNN,

an ensemble method;
YOLOv3, YOLOv5;

efficientDet; Cascade
Attention Network

Precision, recall, true
and false positives,

F1-score, mAP

Xu et al.,
2021 [55]

Detection of
ischemia/infection

in DFU

Patients with DFU
(number not

specified)
1459 DFU images CKBs

Accuracy, sensitivity,
specificity, precision,
AUCROC, F1-score

Viswanathan
et al., 2021 [56]

Identification of
wound Gram type

infections

178 patients with
DFU, for

203 wound tissue
samples

Autofluorescence
images Not specified Not specified

Güley et al.,
2022 [57]

Identification of
wound infection
and/or ischemia

Patients with DFU
(number not

specified)

15,863 DFU images
(possibly with

wound infection
and/or ischemia)

VGG11, VGG16,
VGG19

Recall, AUCROC,
F1-score
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Table 4. Cont.

Reference Aim Population Measured/Collected
Data AI Methods Metrics

Wang et al.,
2022 [58]

Ability of MRI
images to describe
therapeutic effect
of skin grafting

78 patients with
DFU (39 +39, for
composite and

autologous graft,
respectively)

MRI images
of DFU

Deep learning model
(SSD)

Accuracy, sensitivity,
specificity, AUCROC

Yogapriya
et al., 2022 [59]

Prediction of DFU
non-infection or

infection (risk for
amputation)

Patients with DFU
(number not

specified)

5890 DFU images
(2945 with foot
infection, 2945

without infection)

CNN with
normalization and

dropout layers
(DFINET)

Accuracy, NPV, PPV,
sensitivity,

specificity, precision,
F1-score, MCC

Chan et al.,
2022 [60]

DFU detection and
measurement of its

length, width,
and area

Patients with DFU
(number not

specified)
547 DFU images Not specified Intra- and inter-rater

reliability

In 2017, Wang et al. carried out a study aimed at the identification of the wound
area of DFUs, since the wound area (more precisely, its possible reduction over time) was
assumed as a relevant indicator of successful wound healing process [45]. For this purpose,
after the segmentation of images in some regions (superpixels), a cascaded two-stage
classifier was used. In the first stage, a set of binary SVM classifiers were trained and
applied to different subsets of the entire training images dataset, and incorrectly classified
instances were collected. In the second stage, another binary SVM classifier was trained
on the incorrectly classified set. Various color and texture descriptors were extracted
from the image superpixels and used as the input for each stage in the classifier training.
Finally, the detected wound boundary was refined by applying conditional random field
methods. A group of 15 patients were tracked over a two-year period, providing 100 high-
resolution DFU images. The results showed that the proposed approach was superior to
other classifiers that were analyzed (specifically, single-stage SVM-based classifier with the
same configuration of the first-stage classifier in the two-stage approach, and single-stage
classifier based on neural network with 40 neurons hidden layer). Indeed, the proposed
approach provided good global performance rates (sensitivity = 73.3%, specificity = 94.6%).
In addition, in terms of computational requirements, it was sufficiently efficient for possible
smartphone-based image analysis applications.

In 2019, Wang et al. performed a new study, somewhat following that in 2017 [45],
aimed at developing a DFU recognition system able to determine the wound boundary
in images acquired under different conditions [46]. In particular, the analyzed variations
were those in illumination and viewing angles. In addition, images may have contained
background objects, different from wounds, in the proximity of the wound boundary. Two
image datasets were analyzed. The first dataset was composed of images of moulage
wounds placed on an artificial foot. A total of 162 images of six moulage wounds were
collected (27 images for each wound, at three different scales, three different viewing angles,
and three different illumination conditions). The second dataset consisted of 100 images of
actual DFU from 15 subjects followed over a two-year period (i.e., the dataset used in the
2017 study [45]). To determine the wound area, an Associative Hierarchical Random Field
(AHRF) model was proposed. This model can be viewed as an extension of the Conditional
Random Field (CRF) model, which is a discriminative machine learning approach that
directly models the conditional probability of different class labels (such as wound and no-
wound), given a set of images. In fact, it was claimed that AHRF has advantages compared
to traditional CRF, as the former allows the use of image features defined at any scale and
captured under different lighting conditions, and it requires no human intervention (wound
determination is completely automatic). Following comparison of the AHRF model to some
traditional CRF models, better overall performance was found for the former (specificity:
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>95% and sensitivity: >77%). With regard to the possible comparison to deep learning
models, specific tests were not performed, but it was hypothesized that, when working
with a small number of DFU images, AHRF is likely to outperform deep learning. On the
other hand, when the number of images increases, the situation probably inverts, since
the AHRF performance likely reaches a plateau, whereas deep learning has much more
trainable parameters as compared to AHRF, typically allowing to improve performance.

In the same year, Ohura et al. assessed the possibility for segmentation of DFUs (as
well as venous leg ulcers) by a CNN being trained using pressure ulcer (PU) images [47].
To this end, a dataset was exploited with 400 PU images and 20 DFU images. Different
CNN architectures were analyzed, specifically SegNet, LinkNet, U-Net and U-Net with the
VGG16 encoder pre-trained on the ImageNet dataset (U-Net_VGG16). It was found that the
best results were achieved through U-Net, being the best compromise between performance
(showing high specificity (0.943) and sensitivity (0.993)) and computational time. Other
considered performance metrics included accuracy, AUCROC, MCC and DICE. It was
concluded that the proposed approach may be adequate for practical wound assessment of
DFUs in eHealth applications.

One 2019 study by Goyal et al. focused on the implementation of an algorithm for
automatic, real-time localization of DFU [48]. Specifically, conventional machine learning
and deep learning techniques were implemented. As regards the conventional machine
learning implementation, a SVM model with quadratic polynomial kernel was initially
generated, but it was subsequently discarded for real-time applications because of its
slowness in solving the DFU localization task. As regards the deep learning implementa-
tion, several CNNs were generated, characterized by different hyperparameter settings
and different object localization meta-architectures (namely, Region-based Convolutional
Neural Networks (R-CNN), Region-based Fully Convolutional Networks (R-FCN) and
Single Shot Multibox Detector (SSD)). The two-tier transfer learning technique was ap-
plied, which exploits the implementation of networks pre-trained on massive datasets of
non-medical images, thus avoiding the possibility that the networks are generated only
from the limited medical images available. Two experts identified the ROIs in the dataset,
consisting of 1775 DFU images. These ROIs were used as ground truth for the performance
evaluation. In detail, the metrics considered for performance evaluation were speed, size
of the model, mean average, precision and overlap percentage. It was found that all deep
learning methods were characterized by good localization capabilities of multiple DFUs,
with high inference rate. The SSD meta-architecture obtained the best inference speed,
while the R-CNN generated the most accurate results (especially assessed by mean Average
Precision (mAP)). This study showed that deep learning models are capable of real-time
DFU localization, although they should be further enhanced using more extensive datasets.
In 2020, Goyal et al. published a similar study, in that case focused on a specific CNN
(called DFUNet), whose performance was compared to that of traditional networks, such
as AlexNet, GoogLeNet, LeNet [49].

Again in 2020, another work by Goyal et al. focused on the implementation of a model
for the detection of ischemia and infection in DFUs [50]. The first step consisted of data aug-
mentation of the initial dataset comprising 1459 DFU images, carried out with a technique
based on a deep DFU localization algorithm. Secondly, information about the colors of
the ROIs was extracted from the DFU images, to identify the visual cues important for the
detection of ischemia/infection. This step was implemented by a new method proposed by
the authors, called Superpixel Color Descriptors (SPCD). Finally, several algorithms were
implemented for ischemia/infection classification. From the context of machine learning,
RF, Bayesian Network (BN) and MLP models were proposed, along with CNN algorithms
(i.e., InceptionV3, ResNet50, and InceptionResNetV2). Finally, an ensemble CNN approach
was employed, which combined the features of the three CNN models and used a SVM to
perform the classification. Two experts identified the presence of ischemia/infection in the
images of the dataset, and their assessments were used as the ground truth for classifier
training. Traditional classification metrics were considered for performance evaluation (ac-
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curacy, precision, sensitivity, specificity, F1-score, MCC, AUCROC). Based on those metrics,
it was concluded that the ensemble CNN algorithm performed best in both the ischemia
classification (90% accuracy) and the infection classification problem (73% accuracy). In
general, better results were obtained in the ischemia detection rather than in the infection
detection problem (average accuracy of 83.3% vs. 65.8%).

In the same year, Kim et al. performed a study aimed at predicting the healing of
DFU, using both clinical features extracted from patients’ electronic health records (EHRs)
and image features extracted from photographs (simply taken by a smartphone or tablet
camera) [51]. A wide set of clinical features (48 variables) were considered, as derived from
the EHRs of 2291 visits over a three-year period, for 381 DFUs from 155 patients. Due to
the large number of clinical features, some missing values were present, but the problem
was overcome by the imputation of each missing value as the Euclidean distance-weighted
mean of the three most similar data samples (according to the not-missing features), using
the KNN algorithm. The DFU photographs were manually segmented, then processed to
extract color and texture features. In addition, deep learning-based features were extracted
from the global average pooling (GAP) layer of the ResNet50, which is a 50-layer-deep
CNN, with a pre-trained version available based on training over the wide ImageNet
dataset. RF and SVM models were then trained for the prediction of eventual wound
healing. Somewhat surprisingly, the models built with hand-crafted imaging features
alone outperformed models built with clinical or deep learning features alone. Models
trained with all features performed similarly against models trained with hand-crafted
imaging features (performance metrics were AUCROC, accuracy, precision, recall, and
F1-score). It was concluded that since the most important features are predominantly hand-
crafted imaging features, one application for predicting prognosis of DFUs may not require
relevant computational resources (as it often happens for machine learning/deep learning
approaches), and hence it could be adequate for running in a smartphone environment.

In 2021, the study by Al-Garaawi et al. aimed at developing a method for DFU
classification through the use of CNN, in which texture information on the DFU is used
as the model input in addition to a RGB image of the ROI [52]. In particular, the ability to
discriminate between healthy subjects and subjects affected by DFU, as well as between
ischemia and non-ischemia and infection and non-infection, was evaluated. Different
model inputs were employed, starting from a single input based on the RGB image alone
(this being the reference approach, used for comparison with other approaches based on
multiple inputs). Thereafter, the RGB image complemented with an image containing
texture information was considered as a model input. Texture information was obtained
from the RGB image using the local binary patterns (LBP) technique of texture description:
several LBP responses were extracted and merged with the RGB image to obtain an image
with improved textures. The final CNN model was obtained by gradually adjusting the
parameters such as the number of convolutions and max-pooling, and the number of
filters to yield the final texture-enhanced image. The model was trained using the binary
cross-entropy loss function, optimized with adaptive moment estimation. Performances,
expressed in terms of sensitivity, specificity, precision, accuracy, F1-score, and AUCROC,
were compared with the results obtained by the state-of-the-art algorithms AlexNet and
GoogLeNet on the same dataset. It was concluded that the CNN classification model with
the texture-enhanced image as input outperformed the state-of-the-art methods, obtaining
higher AUCROC values for the classification of DFU, as well as for ischemia and infection.

The article by Yap et al. is somewhat different from the others included in this review
study [53]. In fact, Yap’s article reports the results of a challenge, called DFUC2020, in which
the aim was to train deep learning algorithms for DFU detection on a dataset composed of
4000 images (50% used for training, 50% used for testing). The algorithms that obtained
the best performances in terms of different metrics, such as F1-score, mAP, true and false
positives, were summarized: R-CNN, three variants of R-CNN, an ensemble method, two
versions of You-Only-Look-Once (YOLO), EfficientDet, and a Cascade Attention Network.
In all implementations, to increase the number of images for training the algorithms,
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different data augmentation techniques were employed. In addition, a post-processing
phase was implemented for each model to mainly minimize the number of false positives,
though it was noted that this would lead to increased healthcare costs if these algorithms
were to be used in clinical practice. Four images were generated through data augmentation
from each image, and the predictions obtained on these derived images were combined
to obtain the final prediction on the original image. Predictions generated by the R-CNN
model and its variations were combined in post-processing with the ensemble Weighted
Boxes Fusion algorithm to generate an averaged localization of the predictions (i.e., the
region of each image where the algorithm identified the presence of the DFU, if any).
As mentioned above, two versions of the YOLO real-time object detection model were
implemented for the challenge: YOLOv3 and YOLOv5. Generally, the YOLO approach
transforms the object detection problem into a regression problem. Specifically, YOLOv3
predicts bounding boxes (i.e., the regions with DFU presence) on different scales, and a
score from LR is associated with each generated bounding box. YOLOv5 focuses on the
exploitation of data augmentation techniques. The EfficientDet model was based on a
feature fusion technique that merged the detection of image regions at various resolutions.
The Cascade Attention Network was composed of a series of neural networks. Overall,
the best approach was considered one of the R-CNN variants (a Faster R-CNN called
Deformable Convolution model), which obtained the best results in terms of mAP (0.6940)
and F1-score (0.7434). On the other hand, based on the significant number of false positives
obtained during testing by all analyzed algorithms, it was concluded that further research
is required for improved DFU detection. It has to be noted that in the same period, another
article, by Cassidy et al., presented some details about the DFUC2020 dataset, including
the indication of assessment methods and benchmark algorithms available, and results of
an initial evaluation [54].

The study by Xu et al. was again based on the consideration that identifying the
presence of infection and ischemia in DFU is important for treatment planning [55], as in
the 2020 study by Goyal et al. [50]. It was claimed that the deep learning-based classifica-
tion of infection has shown promising performance, especially when using deep neural
networks (CNNs in particular) to extract discriminative features from DFU images and
predict class probabilities (specifically, infection and/or ischemia presence/no presence).
However, it was observed that in the typical CNN-based methods, in the testing phase the
classification depends on the individual input image and trained networks parameters,
but the knowledge provided in the training data is not explicitly (fully) exploited. To
better use the training data knowledge, the Class Knowledge Banks (CKBs) approach was
proposed. In this approach, each unit in a CKB is used to compute similarity with an input
image. The averaged similarity between units in the CKB is a representative parameter
of the input image that can be helpful in the image classification, since the classification
depends not only on the image and the trained parameters, but also on the class knowledge
extracted from the training data and stored in the CKBs. The proposed approach was ap-
plied to the same dataset used by Goyal et al. in the 2020 study [50]. The dataset included
628 non-infection and 831 infection cases, as well as 1249 non-ischemia and 210 ischemia
cases. Due to the obvious class imbalance issue (especially for ischemia/non-ischemia
classification), data augmentation strategy was applied, this ending in 9870 image patches
for ischemia/non-ischemia, and 5892 for infection/non-infection. Considered performance
metrics were accuracy, sensitivity, precision, specificity, F1-score, AUCROC.

The study by Viswanathan et al. aimed to evaluate the accuracy of an imaging device
working on multispectral autofluorescence (Illuminate®, Adiuvo Diagnostics, Private
Limited, Chennai, India) in detecting bacterial Gram type compared with standard culture
methods [56]. Indeed, evidence-based assessment of early infections can be of help in
providing the right first-line treatment, thus improving the wound healing rate. A total of
178 patients with DFU were recruited, and 203 tissue samples were taken from the wound
color-coded device images of the infected regions, as indicated by the device artificial
intelligence algorithm. The device capability in classifying the right Gram type (positive
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or negative), or no-infection condition, was expressed in terms of accuracy, PPV and NPV.
The NPV for no-infection reached 96%, whereas PPV and NPV for Gram-positive or Gram-
negative ranged from 80% to 92%. Unfortunately, no details were provided on the artificial
intelligence algorithm of the device.

In 2022, similarly to previous studies [50,55], Güley et al. carried out a study aimed
again at addressing the “classic” four-class classification problem for DFU [57], with the
four classes being (i) infection, (ii) ischemia, (iii) both infection and ischemia, and iv) control
case (i.e., neither infection nor ischemia). Indeed, identification of infection and/or ischemia
in a wound is important, since the presence of these conditions can significantly prolong
treatment and often results in limb amputation, with more severe cases resulting in terminal
illness. For the study purposes, the DFU Challenge 2021 (DFUC2021) dataset was exploited,
including 15,863 images for which ground truth labels were available for the indicated
four classes. As regards the machine learning approach, the study relied on the Generally
Nuanced Deep Learning Framework (GaNDLF). In fact, GaNDLF facilitated the model
development by providing tools to rapidly incorporate techniques such as cross-validation,
data pre-processing, and data augmentation. A series of VGG architectures were evalu-
ated, with different layers, training strategies, and data pre-processing and augmentation
techniques. One of the advantages of the VGG architectures for the study’s aims was the
use of small convolutional filters and spatial padding, with the goal of preserving the origi-
nal resolution of the input images. Three versions of the VGG architecture were trained,
namely the VGG11, VGG16, and VGG19. For transparency, all implementations were made
available through the GaNDLF. When compared to the other models in DFUC2021, the best
model in this study ranked in the 2nd–7th range, depending on the performance metrics
considered (AUCROC, F1-score, recall).

Wang et al. aimed to analyze the ability of magnetic resonance imaging (MRI) in
assessing the effectiveness of DFU treatment [58]. A group of 78 patients with DFU were
randomly split into the experimental group, treated with a composite skin graft, and the
control group, treated with an autologous skin graft (39 patients in each group). MRI
scans were performed before and after treatment. A deep learning algorithm model, called
single shot detector (SSD), was applied to the MRI images to locate and extract features
of the foot wounds requiring skin grafting. SSD exploits a CNN to detect all objects of
interest within an image in one pass, at difference with a sliding window approach. It
was found that in the experimental group, some parameters of the MRI images (signal
intensity parameters) differed pre- and post-intervention. As regards specific clinical
parameters of the therapeutic effect, it was also found that the wound healing time and
complete healing rate were not different between experimental and control groups, but the
wound recurrence rate and the scar status (rated with a specific score) were considerably
decreased in the former. Interestingly, it was reported that MRI-derived signal intensity
parameters correlated with the therapeutic effect of the intervention, as expressed by
the previously indicated clinical parameters. The considered performance metrics were
accuracy, specificity, sensitivity, and AUCROC.

In the study by Yogapriya et al., clinical signs and symptoms of local inflammation
were used to diagnose diabetic foot infection, in the hypothesis that infections have signif-
icant implications in predicting the likelihood of amputation in DFU [59]. The analyzed
dataset consisted of 5890 DFU images, with 2945 images for infection and 2945 images
for non-infection. The dataset underwent proper data augmentation approach, ending
with 29,450 images. Then, a CNN, named Diabetic Foot Infection Network (DFINET), was
developed from the DFU images to predict infection or non-infection, based on 22-layer
CNN architecture, with one normalization layer and one dropout layer. The DFINET hyper-
parameters were analyzed and fine-tuned to enhance the model performance. DFINET was
also compared to other models, such as AlexNet, GoogLeNet, VGG16. Several performance
metrics were computed (accuracy, sensitivity, specificity, precision, F1-score, MCC, PPV,
and NPV). Interestingly, DFINET outperformed all other models in almost all metrics.
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DFINET accuracy reached 91.98%, being much higher than that of the other models, not
exceeding 83%.

Chan et al. aimed to validate an artificial intelligence-enabled wound imaging mobile
application (CARES4WOUNDS system, Tetsuyu, Singapore) against traditional wound
assessment measurements as performed by a trained specialist nurse in patients with
DFU [60]. Seventy-five wound episodes (median wound area of 3.75 cm2) were collected
from 28 diabetic patients, and a set of 547 wound images were analyzed. Excellent intra-
rater reliability of CARES4WOUNDS was observed, by analysis of three different images
of the same wound (0.933–0.994 range). Most importantly, between CARES4WOUNDS
assessment and nurse measurement there was also good inter-rater reliability for wound
length, width, and area (0.825–0.934 range). Unfortunately, no details were reported about
the artificial intelligence algorithms used by the CARES4WOUNDS system.

4. Discussion
4.1. Introductory Comments and Comparison with Previous Review Studies

In this review, we focused on the use of artificial intelligence techniques applied to data
derived from different sensors and technologies for the study of diabetic foot syndrome.
Previous reviews, such as some of those mentioned previously [17,19], indicated diabetic
foot as one of the fields for the application of artificial intelligence in the more general
context of diabetes, but they were not focused specifically on the diabetic foot. On the other
hand, one review focused on the diabetic foot, but artificial intelligence methodologies
were only covered in a small part of the review [61]. Another review study focused
on artificial intelligence in diabetic foot [62], but it did not report details either on the
physiological/clinical study outcomes or on the specific artificial intelligence techniques
used in each of the analyzed studies. In contrast, another recent review study presented
with care and in detail some artificial intelligence-based studies on the diabetic foot [63], but
the addressed studies were limited to those based on diabetic foot imaging and analyzed
with deep learning methodologies. As shown by our review study, imaging is a relevant
aspect in diabetic foot investigation, since two-thirds of the revised studies focus on, or at
least included, some image data. On the other hand, one-third of the studies in our review
did not include imaging at all. It is also worth noting that not all studies with imaging
exploited deep learning approaches, since some studies applied other artificial intelligence
algorithms. In summary, to our knowledge, this is the first review study analyzing a vast
set of research studies, where the diabetic foot was investigated with a wide bunch of
heterogeneous approaches for data collection and artificial intelligence-based analysis.

4.2. Comments on the Specific Sections Summarizing the Studies Pertinent for The Review

In more detail, our review stratified the relevant studies into four sections (namely,
Sections 3.1.1, 3.1.2, 3.2.1 and 3.2.2). The first of these sections relates to the screening
for diabetic foot syndrome and risk prediction for ulceration from socioeconomic and
sociodemographic data, as well as clinical data, but without exploitation of any imaging
of the foot. What appears somewhat striking is the remarkable heterogeneity in the
number of subjects involved in the different studies, ranging from a few dozen to some
millions. On the other hand, it has to be acknowledged that, typically, a lower number of
patients relates to more accurate patient phenotyping, i.e., a higher number of collected
parameters and measured variables, and hence a higher number of features considered
in the artificial intelligence-based approaches. From this point of view, it is worth noting
the heterogeneity in such approaches, though some algorithms were somewhat more
commonly used (Support Vector Machine, K-Nearest Neighbor, Naïve Bayes, and Random
Forest). Finally, an interesting aspect of the studies falling in this section is that most of
them (six out of seven) were published in the last two years (from 2020 onwards). In our
opinion, this is an indication of the remarkably growing interest in early diabetic foot
screening based on possibly simple variables and parameters, not necessarily requiring
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imaging or other somewhat complex health technologies. We will comment on this aspect
in one of the next sections of the Discussion.

The second section of this review addressed the studies about diabetic foot syndrome
screening and ulceration risk prediction where imaging technologies have been exploited
(mainly, though not exclusively, thermal imaging of the plantar foot). Compared to the
studies falling in the previous section, the studies in this section are more homogeneous
in terms of the number of subjects, which typically is not particularly high (not exceed-
ing a few hundred subjects). This may be reasonable considering that studies including
imaging are more complex (and likely expensive) than studies only relying on simpler
variables and parameters, but on the other hand, one may wonder whether the use of
imaging is in fact cost-effective for screening purposes (which, by definition, should be
ideally applied to large cohorts of subjects). However, it has to be acknowledged that
similarly to the studies in the previous section, the great majority of studies in this section
are again very recent (9 out of 10 studies since 2020), suggesting that the scientific commu-
nity typically considers imaging-based approaches appropriate for screening, despite the
potential limitations in terms of complexity and costs if applied to large populations. It
also has to be noted that some studies complemented imaging information with other data
(socioeconomic/demographic and/or clinical), thus ending with heterogeneous features
to be handled. With regard to the type of artificial intelligence approach, neural networks
(typically convolutional, possibly deep networks) have been often exploited in the studies
of this section, thus being more homogeneous than the studies in the previous section.
It is likely that neural networks have been found to be efficient in dealing not only with
imaging-derived features, but also with the heterogeneous features that are present in these
studies (as noted above), and this is reasonable in light of their flexibility. On the other hand,
it has to be considered that the results derived by neural networks, especially the most
complex (deep networks), are typically difficult to explain. Specifically, since such networks
include several interconnected processing nodes, it is often difficult to understand how the
node weights result in the predicted network output. For this reason, neural networks may
not easily be accepted by users without specific expertise in this type of algorithms, and
thus from this point of view the neural network approach may not be the easiest one to
integrate into clinical practice. On the other hand, it is worth noting that the issue of neural
networks’ interpretability is being addressed in some studies [64–66].

The following (third and fourth) sections of the review focus on the detection and
grading of already overt ulcerations, and on related prognosis and care. In the third section,
as in the first section, we analyzed studies with no exploitation of imaging techniques.
The number of subjects in these studies again does not exceed a few hundred, but this
is reasonable considering that patients with overt wounds are clearly less frequent than
subjects screened for wounds (addressed in the first two review sections). Features consid-
ered in this section are heterogeneous, including data directly related to the ulcer (ulcer
area, and/or markers of ulcer type and severity), as well as other demographic and clinical
data (especially, patient’s medical history). As regards the artificial intelligence approaches,
there was heterogeneity among studies, although some algorithms were more commonly
used (Support Vector Machine, Extreme Gradient Boosting). The majority of studies were
again very recent (from 2020 onwards).

In the last (fourth) section, we analyzed studies about already overt ulceration with
exploitation of imaging techniques, with “traditional” (visible light) imaging being the
most common approach (also derived by non-professional devices, such as smartphones).
The number of patients in these studies was similar to that in the studies in the third section
(a few hundred at most, when indicated), but the overall number of images in some studies
was remarkable (up to more than 10,000 images). On the other hand, interestingly, the
image-derived features were rarely complemented by other types of data, likely indicating
the general investigators’ belief that other data are not expected to add relevant information
to those provided by actual images of the wound, especially if several images are available.
In terms of algorithms, similarly to the second section of this review (dealing with images
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as well), neural networks (especially convolutional, in different variants) were the most
commonly used. As regards publication time, again the majority of studies were published
after 2020, but here a not negligible number of studies were published earlier (though
still recently). This may indicate that the investigation of overt diabetic foot ulcers by
imaging was the first category of studies attracting considerable interest, within the context
of artificial intelligence applications in the diabetic foot.

4.3. Other Comments and Our Personal View for Future Studies in the Field of the Diabetic Foot

What are the main conclusions that can be drawn from the presented studies? As
mentioned above, these studies were quite various in terms of both technologies and
methodologies, as well as with regard to the main study outcomes. In particular, some
studies were mainly devoted to diabetic foot ulcer prevention, whereas others were focused
on the prognosis and care of already overt ulcers. In our opinion, this heterogeneity indi-
cates on one the hand that it is still not clearly established as to what artificial intelligence
methodologies are more appropriate in diabetic foot issues, and this calls for further re-
search. On the other hand, the different and various physiological and clinical outcomes of
the examined studies suggest that artificial intelligence may be useful for several purposes,
within the general context of the research activity in diabetic foot syndrome.

Some of the analyzed studies were aimed at the early identification of the risk for
the onset of diabetic foot syndrome, and especially for the prevention of diabetic foot
ulcers (see Tables 1 and 2). In these studies, the artificial intelligence methodologies were
typically exploited to identify, among a wide battery of variables, the main predictors of
diabetes foot risk. Some of the examined studies analyzed potential diabetes foot predictors
derived from general patients’ clinical records, or using socioeconomic/sociodemographic
information. When direct quantitative measures of the foot health condition was added,
this was typically limited to the foot temperature, considered in terms of thermal images
(thermograms). Foot temperature is certainly an appropriate variable to be measured for
basic early screening of the diabetic foot, and measurement can even be performed at home
through a traditional digital thermometer [67–72]; of note, studies also suggested thresholds
in terms of temperature variation between the two feet, which should trigger more accurate
examinations, in cases where the threshold is exceeded [73,74]. However, in our opinion,
other simple quantitative measures may be performed for a first-level early screening of
the foot condition, possibly even at home if implemented in appropriate devices. First, we
suggest the measurement of foot skin resistance. Indeed, it has been reported that skin
resistance can be a marker of endothelial damage [75], and this of course appears important
in diabetic foot syndrome. Another relevant simple measure may be the degree of humidity
in the foot skin [76,77]. Furthermore, plantar pressure measurement appears relevant as
well [78–80]. Notably, special insoles have been proposed that integrate several pressure
sensors, and thus are able to monitor the pressure exerted by the foot at different locations of
the plantar region. As an example, the Parotec insoles system includes 16 pressure sensors,
distributed among the hallux, lateral heel, lateral midfoot, medial heel, medial midfoot, and
first, second to third, and fourth to fifth metatarsal head regions (thus, for a total of eight
regions, with two sensors each) [81,82]. Another device is the F-Scan insole system, which
detects foot pressure by means of ultra-thin resistive film sensors distributed over the whole
plantar region [83]. Interestingly, the system offers the opportunity of using sensor tabs of
different sizes and for different types of boot (ski, military, work boots, etc.), thus essentially
providing solutions tailored for the specific user needs [84]. In another study, three different
insole systems were analyzed and compared, one of which being the F-Scan system, and the
others being the Medilogic system and the Pedar system [85]. The study findings were that
the F-Scan and Medilogic systems perform better for pressure values in the 200–300 kPa
range, whereas Pedar essentially performs satisfactorily across all pressure values, thus
suggesting its validity for use in both clinical and research settings [85]. Other insole
systems proposed particular pressure sensing solutions, based on optical fiber technology
(the so-called fiber Bragg grating sensors) [86–88]. Of note, some studies emphasized the
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opportunity to produce such pressure measurement insoles at low cost, in the order of
USD 50 for all insole components [89].

Thus, skin temperature, resistance, humidity and plantar pressure may provide impor-
tant and somewhat complementary information about the foot condition. In addition, since
small and inexpensive sensors are available for such measures, they may be integrated into
a single device adequate for personal, at-home use (possibly, a “special” scales device, with
a shape similar to traditional body weight scales, or even an in-shoe device). It is worth
noting that some studies already moved in the direction of integrating different sensors
for diabetic foot monitoring. Specifically, some recent studies the proposed integration of
temperature and pressure sensing, plus, possibly, glucose levels in sweat [90,91]. However,
as stated above, skin resistance and humidity sensors should be integrated; we suggest that
there should be at least two resistance sensors for each foot, one possibly placed between
the second and third metatarsal head regions, and one between the lateral and medial heel
regions, whereas at least one humidity sensor per foot should be used, possibly placed
between the lateral and medial midfoot regions.

All these quantitative measures (thus, not only temperature) could then be exploited
by artificial intelligence approaches, possibly in addition to other clinical variables by
patient’s clinical records and the socioeconomic/sociodemographic variables. This would
likely allow improvement in the performance of the artificial intelligence models for the
prediction of the risk for diabetic foot syndrome (or, specifically, for diabetic foot ulceration),
without the need for more complex and expensive technologies (such as imaging). Of
note, in our opinion, despite some pitfalls (as discussed above), neural networks may be a
very valuable option among all those available in the artificial intelligence context, for the
neural networks ability to “learn” and hence possibly optimize the diabetic foot strategy
for different categories of diabetic patients, and hopefully for a single patient. This appears
consistent with the expected future for the care of diabetes (thus including diabetic foot
care), moving towards precision and even personalized (i.e., for the single individual)
medicine [92–96]. In fact, the integration of different sensing strategies, which is advisable
for the reasons explained (mainly, the heterogeneity of diabetic foot syndrome), coupled
with appropriate artificial intelligence approaches (able to “evolve” and improve their
performances), offers important grounds for the application of concepts in the context of
precision and personalized medicine.

5. Conclusions

In conclusion, we analyzed studies that applied several artificial intelligence method-
ologies for the analysis of different measured data or relevant information related to diabetic
foot syndrome. Given the complex, multifactorial nature of this syndrome, artificial intel-
ligence appears to be an appropriate approach to identify the variables of relevance for
prescribed scientific purposes, among many variables possibly involved. The analyzed
studies showed promising results achieved by the employed artificial intelligence tech-
niques. However, with regard to the specific aspect of diabetic foot early screening, in our
opinion, future studies may benefit from the integration of further quantitative measures
of the foot condition, which may be obtained by simple and inexpensive sensors.
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Abbreviations
This section reports the meaning of the abbreviations, in alphabetic order.

Acc Accuracy per class
AdaBoost Adaptive Boosting
AHRF Associative Hierarchical Random Field
AI Artificial Intelligence
ANN Artificial Neural Network
Apo A1 Alipoprotein A1
AUCROC Area-Under-the-Curve of ROC curve
BDC Binary Decision Classification
BMI Body Mass Index
BN Bayesian Network
BPNN Back-Propagation Neural Network
CKBs Class Knowledge Banks
CNL Competitive Neural Layer
CNN Convolutional Neural Network
CRF Conditional Random Field
CTA Computed Tomography Angiography
CTREE Conditional Inference Tree
DA Discriminant Analysis
DE-ResUnet Double Encoder-ResUnet
DFINET Diabetic Foot Infection Network
DFTNet Diabetic Foot Thermograms Network
DFU Diabetic Foot Ulcer
DFUC Diabetic Foot Ulcer Consortium
DICE Dice Similarity Coefficient
DT Decision Tree
EC Ensemble Classification
EHR Electronic Health Record
EMG Electromyography
GA Genetic Algorithm
GaNDLF Generally Nuanced Deep Learning Framework
GAP Global Average Pooling
GBDT Gradient Boosting Decision Tree
GBM Gradient Boosting Machine
GRF Ground Reaction Forces
HCE Hyperglycemic Crisis Episode
IL-10 Interleukin-10
IoU Intersection over Union
KC Kernel Classification
KNN K-Nearest Neighbor
LASSO Least Absolute Shrinkage and Selection Operator
LBP Local Binary Patterns
LC Linear Classification
LDA Linear Discriminant Analysis
LightGBM Light Gradient Boosting Machine
LR Logistic Regression
mAP mean Average Precision
MCC Matthews Correlation Coefficient
MLP Multilayer Perceptron
MLR Multivariate Linear Regression
MMP9 Metalloproteinase-9
MRI Magnetic Resonance Imaging
NB Naïve Bayes
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NPV Negative Predictive Value
PCA Principal Component Analysis
PNN Probability Neural Network
PPV Positive Predictive Value
PU Pressure Ulcer
RBF Radial Basis Function
RBFNN Radial Basis Function Neural Network
R-CNN Region-based Convolutional Neural Network
RF Random Forest
R-FCN Region-based Fully Convolutional Networks
RGB Red, Green, Blue
ROC Receiver-Operating-Characteristic
ROI Region of Interest
SHAP Shapley Additive Explanations
SMOTE Synthetic Minority Oversampling Technique
SNPs Single Nucleotide Polymorphisms
SPCD Superpixel Color Descriptors
SSD Single Shot Detector
SVD Singular-Value Decomposition
SVM Support Vector Machine
T2DM Type 2 Diabetes Mellitus
WIFI Wound, Ischemia, Foot Infection
XGBoost Extreme Gradient Boosting
YOLO You-Only-Look-Once
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