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Abstract: In this study, we present a new configuration of the recently reported optofluidic platform
exploiting liquid crystals reorientation in lithium niobate channels. In order to avoid the threshold
behaviour observed in the optical control of the device, we propose microchannels realized in a x-cut
crystal closed by a z-cut crystal on the top. In this way, the light-induced photovoltaic field is not
uniform inside the liquid crystal layer and therefore the conditions for a thresholdless reorientation
are realized. We performed simulations of the photovoltaic effect based on the well assessed model
for Lithium Niobate, showing that not uniform orientation and value of the field should be expected
inside the microchannel. In agreement with the re-orientational properties of nematic liquid crystals,
experimental data confirm the expected thresholdless behaviour. The observed liquid crystal response
exhibits two different regimes and the response time shows an unusual dependence on light intensity,
both features indicating the presence of additional photo-induced fields appearing above a light
intensity of 107 W/m2.

Keywords: lithium niobate; liquid crystals; threshold-less response; photovoltaic; optofluidics

1. Introduction

Lithium niobate (LiNbO3) is among one of the most used crystalline materials in
photonic applications [1–3] and has been recently proposed as an optically active substrate
for the realization of microfluidic devices [4,5], opening its use in the field of optofluidics.
Additionally, liquid crystals (LC) are well-known to be very sensitive to external stimuli,
such as optical and electric fields, making them attractive for photonic applications beside
their large use for different types of displays [6]. Recently, the possibility of combining
these two materials for advanced all-optical devices was demonstrated [7–9]. In these in-
vestigations, a key role is played by the bulk photovoltaic effect induced by light in LiNbO3
crystals [10,11] and successfully used to reorient the molecular LC director in properly
designed nematic liquid crystal cells [7–9,12]. The bulk photovoltaic effect consists in the
appearance of a photo-induced current generated in LiNbO3 upon light illumination. The
subsequent charge redistribution that takes place inside the crystal gives rise to an electric
field, the photovoltaic field [11], that has been exploited to realize photorefractive optics
in LiNbO3 [13,14]. This effect is strongly enhanced by doping LiNbO3 with iron [10,15],
which introduces electron donor (Fe2+ ions) and acceptor (Fe3+ ions) centers and makes it
possible to reach a photovoltaic field up to 107 V/m.

The combination of LiNbO3 and LC has also been investigated in microfluidic config-
uration [16], and all optical control of the LC orientation in microfluidic channels engraved
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in iron-doped LiNbO3 crystals has been demonstrated. In the configuration of Ref. [16], the
microchannels were obtained in two z-cut crystals and the light-induced electric field was
orthogonal to the crystal surfaces. Since the initial LC orientation was along the microflu-
idic channel direction, the director reorientation showed a threshold for the field in a way
similar to the conventional Freedericks transition occurring in planar aligned nematic LC.

A typical configuration in LC technology is the hybrid aligned nematic cell (HAN)
realized with planar alignment on one boundary and homeotropic alignment on the other,
showing no re-orientational threshold both to electric and optical fields [17–19]. This
behavior is due to the initial director alignment that is found neither orthogonal nor
parallel to the electric field along most of the sample thickness even at low field values. In
case of planar alignment of LC, a similar configuration can in principle be realized if the
applied electric field has a hybrid configuration, i.e., it is not uniformly aligned along the
sample thickness. Such a geometry can be realized if the field is orthogonal to the boundary
on one surface and parallel to the boundary on the other.

In order to realize a similar configuration, we built a microfluidic chip based on two
LiNbO3 crystals with different crystallographic orientations: a x-cut crystal used as the chip
platform where we dug the microchannel and a z-cut crystal used as a cover closing the
fluidic channel on the upper side. A single z-cut crystal would give rise to a light-induced
electric field having components perpendicular and parallel to the crystal surface, the first
component being higher than the second. Such a configuration has been recently proved to
affect the LC orientation giving rise to topological defects able to generate optical vortex [20].
The use of an additional x-cut crystal as a host for the fluidic channel strengthens the in-
plane component of the photovoltaic field, since it gives rise to a field parallel to the surface.
Specifically, light illumination of the x-cut crystal produces a charge accumulation on
both the lateral walls and the bottom of the fluidic channel, thus originating fields mainly
oriented in plane. Since the alignment of the LC inside the microchannel is approximately
planar with the director oriented along the channel length, with these two LiNbO3 crystals
one can realize the conditions for a hybrid-oriented photo-induced field. Results show that
a threshold-less LC reorientation is indeed obtained, a behavior interesting for optofluidic
applications, where the development of active or passive optical devices based on a proper
material is currently the subject of wide investigation. The observed threshold-less LC
actuation combined with the recently observed threshold LC response [16] constitute a
bundle of strategies in the frame of the possible generation of all optical devices based on
LiNbO3 optofluidic platforms.

The device is realized by engraving the microfluidic channel in a x-cut LiNbO3:Fe
crystal and using a flat LiNbO3:Fe z cut crystal as the top boundary closing the channel
on one side. In this paper we give a detailed study of the proposed configuration, demon-
strating the expected threshold-less behavior of the opto-optical response and reporting a
response time about one order of magnitude shorter than in the previously investigated
configuration.

In Section 2 we provide the description of the experimental details; simulations of
the expected profile of the fields generated by light irradiation in the lithium niobate
optofluidic platform are reported in Section 3; Section 4 is devoted to presentation and
discussion of the experimental results followed by concluding remarks.

2. Experimental Procedure

The LiNbO3:Fe crystals to be used as substrates of the liquid crystals microfluidic chip
have been obtained from a boule grown by the Czochralski technique having congruent
composition with a dopant concentration cFe = 18.8 × 1018 at/cm3 (0.1% mol). The boule
was poled in air above the Curie temperature at 1200 ◦C, in order to get a single domain
structure that was checked by X-ray Diffraction. Then, it was oriented along the three
crystallographic axes of the material and cut in order to get samples with the main faces
perpendicular (z-cut crystal) or parallel (x-cut crystal) to the c-axis of lithium niobate. Both
crystals were polished by means of a Logitech PM5 lapping machine in order to get good
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optical quality of the main surfaces. Finally, the as-grown x-cut crystal that will act as the
microfluidic platform was characterized by means of optical absorption measurements [21]
to calculate its reduction degree R = Fe2+/Fe3+, which is equal to Rx = 0.010 ± 0.003,
whereas the z cut crystal underwent a reduction thermal treatment at 500 ◦C in a gas
mixture of Ar (98%) + H2 (2%), leading a to a final reduction degree of Rz = 0.008 ± 0.002.

An open channel with rectangular cross section (200 µm [width] × 100 µm [height])
has been realized on the surface of the x-cut crystal using a precision polymeric saw coated
with diamond particles for the mechanical micromachining, which allows obtaining a
roughness of the lateral surfaces of the microchannel of few nm [22]. In this way, the
channel length is parallel to the optical axis (c-axis) of the x-cut substrate, whereas the
lateral walls and the bottom are perpendicular to its y-axis and to its x-axis, respectively.
The choice of a x-cut crystal as a platform for the optofluidic circuit allows to minimize
the vertical component of the light-induced electric field in this substrate, indeed the
components of the photovoltaic matrix along the x-axis vanish, independently on the
light polarization direction [2]. In this way, on the bottom of the microchannel a charge
accumulation can be observed only at the border of the beam light. Worthy of note, the
use of a light beam large enough to illuminate the lateral walls would give rise to charge
accumulation also in these regions.

The microfluidic chip is finally realized by closing the open side of the channel by the
flat z-cut crystal and filling it with the nematic liquid crystal E7 (Merck) using a special
syringe connector. A sketch of the microfluidic chip is shown in Figure 1a, together with a
polarizing optical microscope image of the filled microchannel (1b).
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Figure 1. Experimental details. (a) Sketch of the microfluidic chip with the pump and probe beams counterpropagating in
the LC-filled microchannel along z; (b) polarizing optical microscope image of the microchannel filled with E7. The axis of
the microscope polarizer is parallel to the channel length; (c) example of the raw data observed upon pump irradiation with
500 ms cycles separated by 2 s of dark. The graph corresponds to a pump intensity I = 7 × 106 W/m2.

The image in Figure 1b is taken with the axis of the polarizer parallel to the channel
length, while keeping the analyzer crossed. The LC alignment is planar and uniform
except for regions close to the walls, where defects (not shown) are induced by the channel
geometry. The LC is at rest in all the experiments reported here.
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The optical response of the optofluidic chip has been investigated by using a conven-
tional pump-probe technique: the pump beam is provided by the green line of a cw Ar
ion laser (λ = 514 nm) focused to a waist of 30 µm in correspondence to the microchannel
central region, where it impinges at normal incidence. The pump light is linearly polarized
parallel to the microchannel axis and its power varies in the range 0–50 mW, which leads
to a pump intensity I in the range 0–1.8 × 107 W/m2. A mechanical shutter enabled
performing irradiation cycles, which in the experiments reported here had 500 ms duration
and 2 s dark time separation. The probe beam originates from a low-power He-Ne laser
(λ = 633 nm) focused to a waist of 20 µm and counter propagating with respect to the
green pump beam. Probe polarization is linear and forms an angle of 45◦ with that of the
pump. The probe light transmitted by the sample, orthogonally polarized with respect to
the incident one, was detected by a photodiode connected to a computer. Pump irradiation
was performed on the x-cut side of the optofluidic chip. Since the pump beam waist is
significantly smaller than the width of the fluidic channel, the charge accumulation at the
lateral walls can be neglected. A scheme of the pump and probe beams impinging on the
LC-filled microchannel is reported in Figure 1a.

In the configuration described above, light propagates orthogonal to the c axis of the
x-cut chip platform and along the c axis of the z-cut cup. Being linearly polarized in the
cell plane, light does not undergo any phase shift due to the z-cut crystal birefringence,
while it can be affected by propagation along the x-cut crystal. In order to take into account
this latter possible contribution and separate it from the signal due to LC reorientation,
pump-probe measurements were also performed before filling the microchannel with
the LC.

As previously described [7,16], due to the dependence of the detected signal on the
phase shift seen by the probe light travelling through the LC-filled region, the experimental
data can easily be related to the birefringence ∆n induced in the LC which, on its turn, is a
signature of molecular reorientation [23].

3. Calculation of the Light-Induced Electric field

In order to calculate the light-induced electric field profile inside the LC layer bounded
by two different lithium niobate substrates, we consider irradiation by light having a
Gaussian profile of the intensity. The light illumination creates surface charges located at
the top and bottom surfaces of the z-cut substrate, whereas the x-cut substrate contributes
with the presence of in-plane light-induced electric fields localized on the bottom of the
fluidic channel. To find the electric field spatial profile one needs to solve the Poisson
equation:

∇·(ε0 ε̂E) = ρ(r), (1)

in x-cut and z-cut in the LiNbO3 substrates and in the LC layer. In Equation (1), ε̂ is the
dielectric tensor and ρ(r, z) is the charge density in the corresponding layers.

The surface charge density in the z-cut crystal is given by

ρsur f = ρ0,sur f exp
(
−1

2

[ r
ω

]2
)

, (2)

where ω is the light beam waist and the magnitude of the surface charge density at
saturation is ρ0,sur f = 10−2 C/m2

We further assume that the volume free charges are only present in x-cut substrate
and to estimate them we proceed as follows. Under light illumination the free charges
(electrons) are generated from the donors in LiNbO3. The rate equation for excitation of
electron donors, N∗D, takes the form [11,24–27]:

∂N∗D
∂t

=
[ σ

hν
I0exp

(
−r2/2ω2

)
+ β

]
(ND − N∗D)− γnN∗D, (3)
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where ND is the concentration of electron donors, σ is donors photoionization cross section,
β is the thermal excitation rate, I0 is the light intensity, γ is the recombination rate, and n(r)
is the electrons density.

The stationary solution to this equation is:

N∗D(r) =
ND

[
σ
hν I0exp

(
− r2

2ω2

)
+ β

]
β + γn(r) + σ

hν I0exp
(
− r2

2ω2

) , (4)

The volume concentration of charges is given by ρ(r) = e(N∗D(r)− n(r)− NA). NA is
the concentration of charges that compensate for the charge of N∗D under dark conditions
(NA is the concentration of acceptor centers). Therefore, the charges conservation equation
(continuity equation) reads:

e
∂

∂t
(N∗D(r)− n(r)− NA) +∇·j(r) = 0, (5)

here, j(r) is the current density. Assuming NA = const, the continuity equation simpli-
fies to:

e
∂

∂t
(N∗D(r)− n(r)) +∇·j(r) = 0 (6)

The electric current has three contributions, the first one originates from the electrons
motion in the electric field (electrons drift), the second one comes from the diffusion due to
the gradient of the electrons concentration and the third one is the photovoltaic current.

Then the total current density is given by:

j = eµnE + eDe∇n + αkG I0exp
(
− r2

2ω2

)
ec, (7)

where ec is the unit vector of c-axis.
Since D = ε0 ε̂E the equation for the displacement reads:

∇×D = e (N∗D(r)− n(r)− NA). (8)

In the open-circuit case j = 0, then according to Equation (7) we have:

E = −De

µn
∇n− 1

eµn
αkG I0exp

(
− r2

2ω2

)
ecm (9)

where De is the electron diffusion coefficient in LiNbO3 and µ is the electron mobility.
We neglect the contribution of field originated in the z-cut substrate onto the electric

field (and charges profile) in the x-cut substrate. In this way, multiplying both sides of
the Equation (9) by ε0 ε̂LN and using Equation (8) we obtain the equation for the charges
concentration n(r) in x-cut substrate:

∇·
[

ε0 ε̂LN De

µn(r)
∇n(r) +

ε0 ε̂LN
eµn(r)

αkG I0exp
(
− r2

2ω2

)
ec

]
= −e (N∗D(r)− n(r)− NA), (10)

where the concentration of the excited donors N∗D(r) is given by Equation (4).
After solving Equation (10) numerically and finding the electron concentration spatial

profile n(r), Equation (8) can be used for calculating the electric field in the LC slab due to
the x-cut substrate. On the other hand, the contribution of the z-cut substrate to the field in
the LC layer is given by using the surface charge distribution given by Equation (2). The
total field is then given by the sum of the light-induced fields in the x-cut and in the z-cut
substrates.

In Figure 2 the components x and z of the electric field are reported as a function of
the distance from the beam axis located at x = 0, as calculated in the middle of the LC
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layer (z = L/2, L being the height of the microchannel, i.e., the thickness of the LC layer).
In Figure 3 the same components are plotted as a function of z, i.e., through the LC layer,
both at the center of the beam (a and b) and at a distance x = 100 µm from the beam axis
(c and d).
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In Figure 2 we observe that, at z = L/2, the radial and the transversal components Ez
of the electric field have a strong variation in the laser waist area and are of the same order
of magnitude in many points, therefore they originate an oblique total electric field. Note
that the behavior of the other in-plane component Ey is similar to the one calculated for Ex.
Figure 3 shows that the in-plane component of the photovoltaic field is zero along the LC
layer only right on the beam axis, while it is comparable to the z-component elsewhere and
thus it affects the direction of the total electric field in the LC bulk.

The expected “hybrid” orientation of the light-induced electric field is reported in
Figure 4 where the field profile is represented by arrows. Arrows lengths are proportional
to the field strength in Figure 4a and are represented in logarithmic scale in Figure 4b. The
center of the slab corresponds to the peak of the light beam intensity.
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4. Results and Discussion

Pump irradiation of the LC filled microchannel leads to a decrease of the probe
transmission for each value of the used power, as shown in the inset of Figure 1c where a
typical example of the signal detected is reported for a single value of the pump intensity I
(I = 7 × 106 W/m2).

From these and similar data we determined both the amplitude of the transmission
variation ∆T and the response times (on and off) as a function of the impinging pump
intensity I. ∆T vs. I is shown in Figure 5, where the threshold-less character of the LC
response is evident. This behavior is in agreement with the profile of the photoinduced
space charge field reported in Figure 4, which suggests the formation of a hybrid-oriented
photo-induced field, which is indeed able to affect the LC molecular orientation without
the need for any threshold value to be overcome, as expected. This behavior is due to the
mutual direction of the light-induced electric field and the initial director configuration, that
is neither 0 nor π/2 along most of the sample thickness and mimics the configuration of a
hybrid LC cell, that is characterized by threshold-less molecular reorientation. The amount
of probe transmitted light between crossed polarizers is related to the LC birefringence ∆n
through the induced phase shift δ [24]: IT = I0 sin2(δ/2), where δ = 2π∆n/λ. Therefore, a
measurement of ∆T also gives a way to evaluate the LC distortion induced by the action of
the optically-generated electric field.
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Figure 5. Transmitted probe signal vs. pump light intensity. A threshold-less response of the LC
molecular director is clearly observed. The curve slope changes in correspondence of a light intensity
I = 1.1 × 107 W/m2.

Interestingly, ∆T exhibits a linear dependence on I for values lower than I = 1.1×
107 W/m2, then, the slope of the curve changes and becomes steeper, indicating that a
higher field is responsible for the LC reorientation in this range of intensity. The observed
linear dependence of the signal on the pump intensity for I < 1.1× 107 W/m2 deserves
some comment. According to the one center model [19], valid up to about 107 W/m2,
the saturation value of the optically induced photovoltaic field in iron doped LiNbO3
crystals is independent on light intensity, thus an intensity independent response would be
expected for intensity values lower than the one mentioned above. However, the time τ the
photovoltaic field needs to reach the saturation value, does depend on I and it decreases
with increasing intensity. Specifically, the relation between τ and I has the form [11,24]:

τ =
εε0

σph + σd
=

εε0

eµsq
γhν

IR
∼=

5104

IR
, (11)

where σph and σd are the photo and dark conductivities, ε is the proper dielectric constant
of LiNbO3, γ is the recombination coefficient, q is the quantum efficiency of excitation
of an electron upon absorption of a photon, µ is the carrier mobility, s is the photon
absorption cross section, and R the reduction degree [24]. In Equation (11) the constant
value 5× 104 J/m2 takes into account all the indicated parameters. In this way, knowing
the reduction factor of the crystal it is possible to derive the value of τ for each value of
the intensity I. This is shown in Figure 6 for I in the range

(
0÷ 9× 106) W/m2 and for

R = 0.01, the reduction degree of the crystals used to build the substrate of the optofluidic
chip. With this value of R, τ is longer than the irradiation time for all the values of I, thus
the field does not reach saturation during light irradiation for any of the used values of
the pump intensity. This means that each value of I corresponds to a different value of
the photovoltaic field, all the values being lower than the saturation, which explains the
observed intensity dependent response.
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Figure 6. Photovoltaic time constants as function of the pump light intensity in the range
(0–9 × 106) W/m2, i.e., in the range of intensities before the change of slope of the curve ∆T vs.
I (see Figure 5).

As already mentioned, the one center model is valid up to light intensity on the order
of I ∼ 1× 107 W/m2 and the photovoltaic field is expected to increase and to become
intensity dependent for higher values of I [11,24]. The dependence on I and the slope
variation observed in the second part of the curve in Figure 5 are thus easily explained; an
additional contribution can also come from the pyroelectric field, which cannot be excluded
at these intensity values [16].

Measurements performed before filling the microchannel with E7 gave a transmission
variation lower by at least one order of magnitude with respect to the one observed when
the LC is present, and independent of the pump light intensity. This indicates that the
transmission variation ∆T reported in Figure 5 is only due to the action of the electric field
generated by light in lithium niobate on the LC average molecular orientation.

The response times have been evaluated by exponential best fits of the rise and decay
portions of the detected signal. The decay time τo f f is of the order of 100 ms, similar to what
is observed in [16], while the rise time τon appears shorter. It is reported in Figure 7 as a
function of the pump intensity I. Two comments have to be made about τon: (i) it decreases
linearly with increasing I up to I = 1.1× 107 W/m2, a behavior in agreement with the
relation [28] τon ≈ γ

ε0|∆ε|E2 describing the rise time for molecular reorientation of a nematic
LC with viscosity γ and dielectric anisotropy ∆ε. On the other hand, the actual values of
τon are orders of magnitude lower than those expected; (ii) as observed for ∆T, the curve
changes in correspondence of I = 1.1× 107 W/m2; in particular τon starts increasing with
increasing I. These two peculiar features are not easily accounted for. The fast dynamics
could indicate that the LC reorientation involves only a thin layer of the whole sample,
as already observed in [16], however the reasons for this cannot be directly related to any
particular characteristic of the analyzed microfluidic system. The behavior observed above
1.1× 107 W/m2 is even more puzzling and may be a further indication of the appearance of
additional contributions to the photo-induced fields, namely the pyroelectric field or even
the field generated by the channel walls that may come into play at high intensity. This,
due to a convolution of the different stimuli, may give rise to a different dependence of the
response time on I. Further investigations are in progress for clarifying these experimental
observations.
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5. Conclusions

Combining two lithium niobate crystals with different crystallographic orientation,
we demonstrated that a threshold-less all optical control of an optofluidic LC chip can be
realized. Both numerical simulations and experimental data confirm that the observed
behavior is due to the not uniform distribution of the field in the LC layer.

Besides being thresholdless, the LC response exhibits two different regimes, with a
change of slope above a specific intensity; moreover, the LC response time is faster than
expected and shows an unusual dependence on light intensity. These features, although
not yet completely understood, seem to indicate the presence of additional photo-induced
contributions that appear for values of I above 107 W/m2.

The reported threshold-less LC actuation together with the recently observed threshold
LC response [16] constitute a body of strategies in the frame of the possible development
of all optical devices based on lithium niobate optofluidic platforms.
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