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Abstract—Insulin pumps and other smart devices have
recently made significant advancements in the treatment of
diabetes, a disorder that affects people all over the world.
The development of medical AI has been influenced by
AI methods designed to help physicians make diagnoses,
choose a course of therapy, and predict outcomes. In this
article, we thoroughly analyse how AI is being used to
enhance and personalize diabetes treatment. The search
turned up 77 original research papers, from which we’ve
selected the most crucial information regarding the learn-
ing models employed, the data typology, the deployment
stage, and the application domains. We identified two key
trends, enabled mostly by AI: patient-based therapy per-
sonalization and therapeutic algorithm optimization. In the
meanwhile, we point out various shortcomings in the exist-
ing literature, like a lack of multimodal database analysis
or a lack of interpretability. The rapid improvements in AI
and the expansion of the amount of data already available
offer the possibility to overcome these difficulties shortly
and enable a wider deployment of this technology in clinical
settings.

Index Terms—Artificial intelligence, deep learning,
diabetes, machine learning, treatment optimization,
patient-specific, wearable devices, personalization of
care.

I. INTRODUCTION

THE impairment of insulin secretion or action is used to de-
fine diabetes as a long-term metabolic disorder. Diagnosis

of diabetes occurs when glucose homeostasis is disrupted, result-
ing in hyperglycemia [1]. Around 387 million people worldwide
are affected by the diabetes epidemic and its prevalence is
expected to double over the next 20 years, impacting more
than half a billion people [2]. Diabetes is distinguished by the
clinical phenotype, historical precedent, genotype, and specific
environmental causes, which has resulted in the classification
of type 1 diabetes (T1D), type 2 diabetes (T2D), gestational
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diabetes (GDM), and other disease types [3]. The manual testing
of blood sugar levels followed by daily subcutaneous insulin
injections is by far the most popular treatment method. Unfor-
tunately, this routine makes it difficult to adhere to the therapy
regimen, increasing the chances of the onset of acute and chronic
diabetes-related complications such as cardiovascular disease or
ketoacidosis and this is even more challenging when we consider
youth and children [4]. Nearly 50 years ago, continuous subcu-
taneous insulin infusion (CSII), also known as insulin delivery
with pumps, was developed. It only uses short- or rapid-acting
insulin types, minimizing administration variability and lower-
ing the possibility of glucose fluctuations. Pump technology has
advanced to the point where it can accurately imitate physiologi-
cal demands. To provide real-time, data-driven glycemic control
and early identification of hypoglycemia, glucose biosensors,
commonly referred to as continuous glucose monitoring (CGM),
have been incorporated with controlled insulin administration
in basal and bolus mode [5]. The combination of these devices
is referred to as an artificial pancreas (AP), also known as a
hybrid closed-loop system. It was demonstrated to be a valid
substitute for the classic treatment, increasing the effectiveness
of the therapy, especially in children and adolescents [6], [7].
Nowadays, a person with diabetes can also receive decision
support from a medical professional who makes recommen-
dations via a mobile interface, or directly from the patient
using a smartphone app that generates recommendations on its
own [8], [9], [10]. Obtaining, interpreting, and applying the vast
amount of knowledge required to address complicated medical
issues is a challenge for modern medicine. Medical Artificial
Intelligence (AI) has been connected to the development of AI
programs that aid clinicians in formulating a diagnosis, choosing
a course of therapy, and predicting outcomes [11]. The majority
of its application in diabetology is linked with the forecasting
of blood glucose levels [12], [13], diabetes prediction [14],
[15], diabetes complications [16], [17] and meals or physical
activity predictions [18], [19]. However, youth and adults with
diabetes face challenges in controlling pre-prandial blood sugar
levels, counting the grams of carbohydrates, computing insulin
sensitivity, or customizing the insulin-to-carbohydrate ratio, all
of which can affect insulin dosing. People may also need to con-
sider the day-to-day fluctuations in insulin, their glucose trend,
and the context in which an insulin dose is taken, and adjust
the therapy consequently. The burdens of the aforementioned
difficulties are being reduced by AI-based systems (Fig. 1) which
are helping in generating patient-specific treatment by using not
only clinical data but also considering personal variables like
social and economic conditions.For example, managing therapy
for diabetes can be particularly challenging when consider-
ing physical activity. Different levels of physical activity can
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Fig. 1. Diabetes management along with the large amount of data
produced by self-management and medical team visits. The data is pro-
cessed to develop AI-based algorithms for new treatments and decision
support.

significantly impact blood sugar levels. However, with real-time
analysis and AI, it is possible to continuously monitor a patient’s
activity levels, through accelerometers or heart rate data, avoid-
ing hypo or hypoglycaemia. Similarly, knowing the patient’s
socioeconomic status, like the family’s annual income, or the
parents’ education, the therapy adherence can be predicted [20].
The same consideration can be made for pregnant women with
type 1 diabetes since they are challenged in trying to maintain
tight glycemic control [21]. Reviews in the literature primarily
focus on analyzing various AI methods in well-established fields
of diabetes research, like prevention [22], [23], the emergence of
related illnesses [24], [25] or only technical reviews in diabetes
management [26], [27]. However, given the field’s rapid ad-
vancements, a review that focuses solely on the diabetic patient
and how researchers are attempting to personalize therapy is
required. Furthermore, the data utilised in the previously stated
research are primarily unimodal and usually come from a single
category of data sources, such as clinical records or glucose
readings. This restricted focus limits the capacity to comprehend
and handle the complexities of diabetes treatment completely.
None of this research aims to combine numerous data modalities
to improve therapeutic outcomes, nor do they seek to approach
the situation from a 360-degree viewpoint and, subsequentially,
without exploiting the full potential of AI approaches. This dis-
parity highlights the need for a more comprehensive strategy that
uses a variety of data sources to improve the level of treatment
personalisation for diabetes. Therefore, by examining the cross-
sectional association between diabetes and AI applications, the
review aims to fill a gap in the literature, especially in light of the
growing use of insulin pump therapy. We cover the difficulties
people encounter in controlling their blood sugar levels and
how this may affect insulin dosages, as well as the methods in
which these problems are resolved by fine-tuning the algorithm
and creating patient-centred strategies. The review evaluates
the existing and prospective future of protocol patient-based
care practices while emphasizing the significance of wearable
technology as a therapeutic decision support system.

II. METHODOLOGY

To ensure adherence with the PRISMA statement [28], a
thorough investigation was conducted, from March 2023 to July
2023, utilizing the PubMed, Web of Science, IEEE Xplore,
Scopus and Google Scholar databases. The selection of these
databases facilitated the comprehensive exploration of both

Fig. 2. Selection process of the eligible articles.

medical and engineering publications. A complete overview of
the selection process is presented in Fig. 2.

A. Search Strategy and inclusion/exclusion Criteria

The query search included using the truncation symbol *
for the terms “diabetes”, “type 1”, “type 2”, “gestational”, “in-
sulin pump”, “hybrid closed-loop”, “system*”, “decision sup-
port”, “personal*”, “optimiz*”, “child*”, “adulescent*”, “sim-
ulat*”, “machine learning”, “artificial intelligence”, “insulin-to-
carbohydrate ratio”, “insulin sensitivity factor”, “basal rate”,
“meal*”, “physical activit*”, “parameter*”, “bolus*”, “advi-
sor*”, and “artificial pancreas”. Search terms were combined
with the Boolean operators “OR” and “AND”.

For duplicate removal, the studies were imported into the
Mendeley Reference Manager program. We only considered
research papers with titles, abstracts, and the full text (review
papers were not included). Titles, abstracts, and full texts were
all subject to exclusion standards: i) no English publications; ii)
insufficient information about the study design and results; iii)
comparative studies in the medical field. Therefore, the articles
were included if i) present original research on the optimization
and customization of diabetes treatment; ii) considered real
data collected from diabetic patients or simulated data; and iii)
applied at least an AI algorithm and similar techniques.

B. Information Extraction

We examined the full text of the selected articles and extracted
crucial information to evaluate them. The data extraction was
conducted independently by two authors, while the remaining
three authors reviewed the results to ensure the accuracy of the
information. Specifically: a) Cases: we classified the research
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TABLE I
SUMMARY OF SELECTED ARTICLES FROM THE LITERATURE DIVIDED BY THE APPLICATION FIELDS

based on the available information about the forms of diabetes
into T1D, T2D, and GDM. b) Data sources: we extract informa-
tion about the datasets used, such as sources, types, and formats.
c) Models: we present an overview of model architectures,
including various AI techniques and other models used with
insight into the most used techniques for the intended use.
d) Applications: we summarise the main field of applications
of the examined works to demonstrate state-of-the-art AI for
individualized diabetes monitoring and therapy. e) Limitations:
this category gathers the studies’ limitations, which could stim-
ulate more research and enhance learning outcomes in each
application area.

III. RESULTS

A. Selection Process

In total, 893 articles were retrieved by the query, as shown in
Fig. 2. After removing the duplicates, we obtained 727 articles
eligible for the next steps. Firstly, we excluded the articles based
on the titles, following the criteria explained in Section II-A. So,
235 articles were examined in the second step. The abstract was
evaluated here, and 135 articles were selected for the full-text-
reading procedure. We manually assessed the eligibility of the
remaining papers by full-text inspection and included 77 papers
in the final collection. Based on the application scenarios, we
divided the final collection into different categories to better
analyze them: patient-based therapy personalizing (PT, n = 26),
optimization of the treatment (OT, n = 40), and mixed (POT, n
= 12). Moreover, we have individuated other subcategories that
can define better the aim of the examined works: blood glucose
prediction (BGP, n = 18), meals (M, n = 15), insulin/bolus
dosing (IBD, n = 14), tailored device/algorithm (TD, n = 6),
therapy recommendation (TR, n = 13), patter/patient profiling
(PPT, n = 12), and GDM prediction (GDMP, n = 2). The details
of the selected works are presented in Table I while in Table II,
there is a summary of the content that is common to all the
articles belonging to that category. Moreover, among the final
77 papers, 60 of them deal with T1D, 11 with T2D, and 5 with
GDM, and only 2 are focused on both T1D and T2D. Because
T1D mostly affects young patients, the increasing number of
studies focusing on it indicates a bigger challenge in optimizing
therapy. The ongoing rise in T1D incidence raises concerns
about customizing effective treatments to the specific needs of
pediatric patients, due to their dynamic physiological changes.
Simulation software has long been the go-to tool for many
works [82], [83], but there’s a growing interest in using real-
world data to enhance the accuracy of the proposed solutions,

TABLE II
DESCRIPTION OF EACH SUBCATEGORY ARGUMENTS

as reported in the lower panel of Fig. 3. As more researchers
recognize the importance of using actual data, the demand for
public databases based on real data has increased. Similarly, it
can be said that looking at the upper panel of Fig. 3, the desire
to put the patient at the centre of care is growing, as interest in
personalized therapy. Fig. 4 illustrates that most of the chosen
articles were recently published, indicating that the AI approach
for diabetes treatment optimization and personalization is a
relatively new issue and that interest in it has been growing. In
addition, we calculated and showed the Scopus citation counts
for the chosen works as of July 2023. The next subsections will
explore the selected works from the applicable point of view to
analyze them comprehensively.

B. Treatment Optimization

Treatment optimization refers to the process of improving al-
gorithms to achieve better precision and accuracy in the therapy
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Fig. 3. Databases and subcategories distribution through the years in the selected works divided among the three main application categories.

Fig. 4. Number of articles included in the collection grouped by the
year of publication and application fields until 2022.

formulation. This involves working on various aspects such as
calculating boluses, predicting meals without announcements,
testing platforms for the medical staff, and so on. By refining
these algorithms, the treatment’s overall quality can improve and
reduce the likelihood of errors. Treatment optimization is essen-
tial for patients with chronic conditions as it can significantly
enhance their quality of life and overall health outcomes [107].
Furthermore, technological advancements have made develop-
ing and implementing these algorithms easier, making treatment
optimization a crucial part of modern healthcare.

When defining the optimal technique for insulin dosage com-
putation or developing decision support devices, blood glucose
level prediction and control are still crucial tasks to deal with.
The importance of glucose forecasting cannot be overstated: it
not only helps in reducing hyperglycemia and hypoglycemia
events, identifying the cause and minimizing their impact on
overall health, but it also improves insulin and bolus adminis-
tration. In the past few years, many researchers from several dis-
ciplines have contributed to closing gaps in glucose forecasting

focusing on the data collected from CGM sensors to increase
the prediction horizon while minimizing adverse events and
applying both machine and deep learning approaches [29], [30],
[31], [64]. When dealing with glucose forecasting, an important
aspect to consider is food [58], [66]. The management of meals
for people with diabetes is crucial and it is important to consider
meal planning as an integral part of diabetes management. For
example, in the study conducted by Zheng and colleagues [55] a
meal detection algorithm that combines simulations with CGM,
insulin pump, and heart rate monitor data is proposed and it is ca-
pable of distinguishing if the predicted and actual glucose levels
differ because of a meal. Similarly, Samadi et al. [56] proposed
an AP system that can automatically avoid postprandial hyper-
glycemia by detecting a consumed meal or snack and adminis-
tering insulin boluses using an estimate of carbohydrates, based
on qualitative factors characterizing variance in CGM values.
Making errors in carbohydrate counting can result in inaccurate
bolus/insulin doses, leading to dangerous fluctuations in blood
glucose levels. According to [57], postprandial hypoglycemia
risk is not greatly enhanced if a meal is accurately recognized
within 25 to 30 minutes of the meal’s occurrence and dosed with
a portion of the nominal amount of required prandial insulin.
Only 20 minutes after eating a meal is a noticeable glucose
rise related to meal intake, and this delay is also based on the
meal’s content. One of the meals that the algorithm failed to
recognize contained a lot of fat, which slowed down the rise of
glucose and delayed the peak in glucose levels. This demon-
strates that considering nutritional factors when working with
glucose prediction is crucial, as demonstrated by [65]. Another
key role is played, as already stated, in glucose fluctuations -
meal control balancing is computing the right dose of boluses as
well as adjusting in real time the basal rate: while the amount of
fast-acting bolus insulin is often determined by a bolus adviser,
basal insulin parameters such as the pump infusion rate can be
changed depending on past data [83], [108]. In the past, a lot of
work has been done and investigated the topic from a different
perspective applying mainly model predictive control or com-
partmental models [43], [47], [48], [71]. Recently, more complex
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methodologies have been developed due to the difficulties in
fully comprehending the glucose-insulin dynamic. For example,
in the research proposed by Zhu et al. [42], an insulin bolus
advisor uses an actor-critic model based on deep deterministic
policy gradient and CGM data to optimize insulin dosing at
mealtime, significantly improving the average percentage time
in the target range in both the adult and adolescent simulated
cohort. Furthermore, Noaro et al. [46] attempt to overcome
the problem of effective estimation of the meal-insulin bolus
amount to avoid post-prandial hypo/hyperglycemia obtaining a
reduction in hypoglycemia duration and incidence even though
the time spent in the hyperglycemia state slightly increased.
Due to the difficulties in retrieving the optimal target of the
learning task, designing a supervised learning framework in such
a scenario is far from straightforward. Therefore, in 2023 Noaro
et al. [41] applied a double deep Q-learning method to develop
a bolus calculator which improved the time in the target range
from 68.35% to 70.08% and significantly reduced the time in
hypoglycemia (from 8.78% to 4.17%). %). The insulin bolus
calculator plays a crucial role not only for subjects undergoing
AP treatment but also for MDIs patients. An iterative learning
control is employed to update basal therapy including one long-
acting insulin injection per day, as demonstrated in the study
conducted by [67]. Furthermore, the run-to-run strategy modifies
meal bolus therapy based on infrequent SMBG measurements
by updating the mealtime-specific insulin-to-carbohydrate ratio.
This strategy was confirmed further in their following study [49],
which resulted in a significant weekly decrease in glycaemic
levels and an increase in time spent in the target range. Despite
the increasing use of insulin pumps and CGM, many people
with type 1 diabetes still struggle to meet their glycemic goals.
Because of the increased complexity of using these devices
and the need to avoid unwanted consequences, AP is a recent
innovation in diabetes care that necessitates thorough training
for medical staff to properly set all the parameters [92]. To
support healthcare providers, several tools have been developed
to aid in correctly configuring insulin pumps and accurately ad-
dressing therapy [76], [78], [80], [82], [83], [109]. Additionally,
researchers have focused on identifying critical variables that
may cause hypoglycemia during AP startup [33] and predicting
glucose fluctuations by considering factors such as basal and
fast-acting insulin infusion, current glucose levels, food intake,
and physical activity [77]. Creating tailored devices and algo-
rithms that can somehow make easier their utilization could be
helped by designing bio-inspired approaches, that can join the
AI methodology with the physiological and pharmacological
characteristics which allow the algorithm to learn an automated
treatment [69], [70]. There are now several instruments available
to aid in forecasting therapy adherence. Mohebbi and colleagues
developed a novel deep-learning algorithm to detect adherence
using simulated CGM signals for T2D patients. Comparing
various algorithms, the best performance (77.5% accuracy) was
achieved by CNN, highlighting their potential in adherence
detection [84].

Optimizing gestational diabetes therapy necessitates a signif-
icant emphasis on prevention, and AI can play an important
part in this process. Early detection and treatment of gesta-
tional diabetes are critical in reducing the development of type
2 diabetes later in life [105], [106]. Pregnant women with
gestational diabetes can minimise potential complications and
achieve better health outcomes for themselves and their unborn
children by constantly monitoring blood glucose levels and

sticking to a well-designed treatment plan. To support this, Rigla
et al. [79] presented an AI-augmented telemedicine strategy,
while Pustozerov et al. [63] investigated post-prandial glucose
monitoring. Early detection and comprehensive therapy during
pregnancy help greatly to lower the long-term incidence of type
2 diabetes.

C. Personalizing Therapy

Personalization of therapy involves tailoring algorithms based
on a patient’s physical characteristics and habits. This means
developing models that can understand and profile the patient,
allowing for real-time adaptation of therapy without manual
input from the patient or doctor. By incorporating data on a
patient’s lifestyle, such as exercise and dietary habits, algorithms
can provide more accurate and effective treatment. Personal-
ization is particularly important in chronic conditions, as it can
improve psychophysical outcomes and quality of life [110]. With
advances in AI, the potential for personalized therapy is growing
rapidly.

As previously stated, it is challenging to infer patient-specific
blood glucose trends from insulin units and carbohydrate content
since the body’s glucose kinetics is a complex, user-dependent
process. Regarding the glucose-insulin relationship, several
works have been proposed such as the [68] where specific
glucose and carbohydrate absorption curves for the patients have
been derived or the work proposed by [36], [37] or Liu et al. [35]
where physical activities and precise meal information have
been taken into account to increase the prediction horizon and
consequentially improve adherence to the therapy, respectively.
Another contribution to this topic is the one proposed by Amorim
and colleagues [61]: they suggested a method that makes use of
individual patient characteristics to compute a safe range for
the carbohydrate counting inaccuracy and then adapts this range
to the patient’s daily activities and eating habits. The proposed
technique first computes a safe interval for the carbohydrate
counting error using the insulin-to-carbohydrate ratio, insulin
sensitivity factor, blood glucose limits, and blood glucose target,
so the patient can train to accomplish this objective. The software
then adapts the initial safe interval for the carbohydrate counting
error based on the patient’s demands using the acquired daily
life data (such as blood glucose, meal carbohydrate content, and
insulin bolus). There are also efforts to overcome the difficulties
posed by inter- and intra-patient differences and personalize
insulin treatment. Sun et al. [50] suggested an adaptive basal-
bolus algorithm (ABBA) that accepts inputs from either SMBG
or CGM devices and uses those inputs to offer individualized
recommendations for the daily basal rate and prandial insulin
dosages based on the patient’s blood glucose levels of the day
before, reducing hypoglycaemias gradually and keeping blood
sugar levels in the desired range, even in the face of extreme
circumstances involving doubt, variability, and skipped main
meals. Also in the context of gestational diabetes, personalized
therapy has been introduced to prevent complications and the
onset of type 2 diabetes. For example, in the work [60] a method
that makes use of individual patient characteristics to compute
a safe range for the carbohydrate counting inaccuracy and then
adapts this range to the patient’s daily activities and eating habits
is proposed.

Personal health data is now more readily available thanks to
the rising popularity of wearable devices for continuous sens-
ing, although techniques for data interpretation are still under
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development. For example, Bartolome and colleagues [87] cre-
ate and test the GlucoMine algorithm to assist analysis of ex-
tended periods of CGM data to find patterns of poor management
that are concealed and can be used to inform treatment strategies.
They discovered that when extended periods of wearable device
data are not examined or analyzed, hidden patterns of adverse
glycemic events (high/low blood glucose episodes) are currently
missing and that these repeated patterns of poor management
cannot be found. Another therapy recommendation system is the
one suggested by Alina et al. [86] where they propose a proactive
diabetes self-care recommendation system for American Indi-
ans, based on AI. By integrating the AI users’ ontological profile
with general clinical diabetes recommendations and guidelines,
the system can make personalized recommendations (e.g., food
intake and physical workout) based on special socioeconomic,
cultural, and geographical status, and the correctness of the
recommendations are also approved, in the majority of the cases,
by the medical experts.

Clinical decision support systems utilizing pattern recognition
can aid patients with their therapies by considering their medical
conditions and the specific scenarios they encounter. The work
carried out by Contreras and colleagues [94] presents a clinical
decision support system that combines a predictor of blood sugar
levels with a classifier of glycaemic profiles. To forecast blood
glucose levels, the system aims to discover data profiles by a
given situation and to produce prediction models based on these
scenarios. In 2018, using CGM data, Hall et al. [96] assessed how
frequently people experience postprandial glucose increases, the
kinds of patterns they exhibit, and how patterns differ amongst
people who had the same nutritional challenge. They also con-
structed a web tool for visualizing a user’s uploaded CGM
profile and classifying unique glucose patterns into glucotypes,
as well as a model for discovering putative reasons for individual
glucose dysregulation through comprehensive phenotyping. A
clustering technique that extracts hidden information from T2D
CGM data might offer a workable way to recognize patients
with various characteristics of diabetes is presented in [111].
The findings, in particular, demonstrated that the four novel type
2 diabetes patient subgroups had unique clinical characteristics
based on the evolutions of C-peptide values, insulin sensitivity
and resistance as well as glucose level factor. Another work on
this topic was conducted by Lobo et al. [93]: they developed a
data-driven strategy for identifying a limited number of typical
daily profiles (motifs, Ω) so that nearly any daily T1D CGM
profile produced by a patient can be matched to one of the
motifs. A larger dataset the next year was used [98] to evaluate
Ω’s robustness after it successfully classified 99.0% of the 42595
daily CGM profiles in the testing data set. A further step forward
was made by Kahkoska and colleagues when they tried to
individuate dysglycaemia phenotypes and correlate them with
glycated haemoglobin and pump use [104]. Three dysglycemia
clusters were identified with significant variations across all
CGM parameters and the most dysglycemic cluster was found
to be the one linked with high HbA1c, which was associated
with lower pump utilization, higher insulin dosages, and more
frequent blood glucose readings.

The key obstacles in reporting and altering daily exercise
routines are the reliance on error-prone self-reporting and the
use of default settings in bolus calculators and insulin pumps.
These devices are intended to recommend meal-related insulin
doses based on predetermined insulin-to-carbohydrate ratios
and insulin sensitivity variables, which may result in mistakes.

Changes in every day habits can also occur over time without
being noticed, making self-management even more difficult. To
address these concerns, the research proposed by [97] suggests
a data-driven approach that utilizes self-monitoring data to
identify diurnal trends in diabetes management. The proposed
model enhances time-block settings’ accuracy, gives context
to data, and increases engagement and adherence to the bolus
advisor. A digital twin is also important to support in tailoring
and customizing the therapy [112]. It is a virtual representation of
a physical entity, living or not, such as a person or even a complex
system connected to a physical part, with which it can exchange
data and information both synchronously and asynchronously. It
is an important tool in the development of personalized therapy
recommendation systems as Thamotharan and colleagues [103]
demonstrate. They deal with the creation of several modules
for forecasting, predicting food nutrient information, analyzing
time-series trends, and other functions required for effectively
managing elderly T2D. Moreover, an adaptive patient model,
that personalizes insulin infusion based on geriatric factors,
is proposed to deliver precise insulin doses. Similarly, Haidar
and colleagues proposed a new method, “stochastic e-cloning,”
that generates virtual populations for metabolic simulators from
routine data. Using a Bayesian approach and Markov chain
Monte Carlo, it estimates parameters for a nonlinear glucose
regulation model. This method reflects population variability
and uncertainty, demonstrated with data from 12 young type 1
diabetes patients [85].

D. Mixed Applications

We shall discuss mixed applications in this paragraph since
they fall outside the two main categories. We will thus focus
on publications that address both issues above, tailoring the
therapy to the patient’s needs and characteristics while making
the best use of the available technology. Due to their flexibility
and variety, mixed applications make interesting research and
development topics since they offer a special opportunity for
interdisciplinary collaboration and novel use cases. For example,
the research by De Paula et al. [75] proposed an online selective
reinforcement learning system for real-time adaptation of a
control strategy based on continuing interactions with the patient
to tune the artificial pancreas. The suggested approach modifies
the support data dictionary for online learning by determining
whether there is unique information in the arriving data stream
that should be added to the dictionary to personalize the treat-
ment. Because of the high level of subject-specific glycemic
variability, the regimen of care must be constantly adjusted to
accommodate daily variations in the patient’s metabolism and
lifestyle. In two works proposed by Nimri and colleagues [89],
[90], the AI-DSS is a tool designed to help people manage their
diabetes more effectively. It collects data from various sources
such as CGM readings, capillary blood glucose measurements,
insulin doses, and carbohydrate intake from insulin pump data
and the pump bolus calculator. This data is collected over
at least 12 days during routine diabetes care. Using AI, the
AI-DSS analyzes the data and identifies patterns in glucose
levels and insulin dosing events. It applies a similar approach
to that of a healthcare provider who relies on expert knowledge
and recommendations based on data from clinical studies. The
AI-DSS generates personalized recommendations, which may
include specific adjustments for insulin pump settings (such
as basal rates, correction ratios, and carbohydrate factors). It
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Fig. 5. Trend of the adopted approaches in diabetes therapy through
the years.

also offers diabetes management tips related to insulin delivery,
like advice on missed boluses, timing of pre-meal boluses,
and addressing hypoglycemia. These insights are based on an
individual’s insulin dosing and delivery behaviours, aiming to
provide more tailored and effective diabetes management strate-
gies. Similarly, Guzman Gomez et al. [54] try to calculate the
basal insulin dose in patients with T1D using subcutaneous
insulin infusion pumps and considering several patient-based
information such as weight, sex, age, and height. Moreover, the
work proposed by Godoy and colleagues [62] focuses on an
offline carbohydrate intake signal reconstruction. The unknown
input estimation is based on a feedback scheme where the
measured blood glucose is compared with the predicted ones
using the patient’s functional insulin therapy parameters defined
by the treating physician. As the problem to solve increases in
difficulty, so do the techniques required to tackle it, growing
in robustness and complexity. An example is the [40], where
they proposed a Fast-adaptive and Confidence Neural Network
(FCNN) to learn representations from CGM input aiming to
compute personalized blood glucose predictions aiming to solve
the cold-start issue. They have also implemented the models
in a smartphone app to provide real-time decision support and
configured the system to be fed with other data generated by a
wristband or a smartwatch.

E. Impact of AI in Diabetes Therapy

This segment provides an overarching perspective on the use
of artificial intelligence methods in diabetes therapy, intending
to facilitate the formulation and implementation of innovative
interventions. First, a comprehensive delineation of the role of
AI in diabetes therapy is presented, followed by an in-depth
examination of its specific applications within various domains
of diabetes care. This section focuses on the AI approaches found
in the original 77 articles. Specifically, it will look at a subset of
58 papers that use AI models for our analysis [14], [113].

Fig. 5 shows a view of the types of technologies being used
to manage diabetes therapies. The graph shows two trends: one
related to No AI-based and one related to AI-based approaches.
The first trend includes all articles in which the proposed solu-
tions do not use model-based methods or AI-based algorithms.
In contrast, the second trend shows solutions that use AI models,
regardless of the learning paradigm or technique used. The figure
shows that from the late 2000 s, non-AI-based solutions were
in the majority. Specifically, the approaches used were mainly
based on statistical [55], [114] or deterministic [48], [115]
models. In the early 2010 s, AI-based solutions began to see

Fig. 6. State-of-the-art distribution between learning paradigm and AI
sub-fields.

limited adoption. However, a significant increase in the use of
AI was observed, eventually reaching a balance with non-AI
approaches by the end of 2019. Subsequently, starting in 2020, a
noticeable and pronounced increase in AI-based solutions took
center stage, establishing it as the dominant methodology for
diabetes therapies.

Given the importance of AI-based models, it is appropriate
to provide an overview of the main learning approaches and
techniques used. Fig. 6 and Table IV, respectively, describe
the distribution of state-of-the-art paradigms and learning tech-
niques. Fig. 6 shows how the state-of-the-art spreads along
two AI-based dimensions: 1) Learning Paradigms and 2) AI
sub-fields approaches.

Concerning the learning paradigms dimension, this survey
explores the relevance of different learning paradigms following
the following classification [116] :

– Supervised Paradigm; which is the process of learning a set
of rules to map an input to an output based on labelled datasets.
These learned rules can be generalized to make predictions for
unseen inputs.

– Unsupervised Paradigm; which is the process of finding
previously unknown patterns based on unlabeled datasets.

– Reinforcement Paradigm: in which an agent interacts with
an environment over several discrete time steps to achieve a
specific goal.

– Knowledge-Representation (KR): in which an inference
process is performed, via automated reasoning, on a represented
knowledge [117].

Concerning the AI sub-fields approaches dimension, the anal-
ysis of the state-of-the-art focus in terms of three main fields:
machine learning (ML), Deep learning (DL), and reinforcement
learning (RL). ML, DL and RL are integral components of arti-
ficial intelligence, each with distinct yet related characteristics.
Machine Learning (ML) is a branch of artificial intelligence
focused on developing algorithms that enable computers to learn
from and make data-based decisions. It encompasses a range of
techniques that allow systems to automatically discover patterns
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TABLE III
DISTRIBUTION OF AI AMONG THE THREE APPLICATION FIELDS

TABLE IV
OVERVIEW OF QUANTITATIVE DISTRIBUTION OF AI-BASED APPROACHES

and make predictions or decisions without explicit program-
ming [119]. Deep learning (DL) is a subset of machine learning
that uses layered neural networks to model complex patterns in
data. These neural networks, inspired by the human brain, con-
sist of interconnected neurons organized into layers. DL excels
at tasks such as image and speech recognition, natural language
processing, and game playing by automatically learning feature
representations from raw data. Training requires large data sets
and high computational power, often GPUs, to adjust network
weights through backpropagation and gradient descent. Key
architectures include convolutional neural networks (CNNs) for
image data, recurrent neural networks (RNNs) for sequential
data, and transformers for handling long-range dependencies in
data [120]. Reinforcement Learning (RL) is a machine learning
approach in which an agent learns to make decisions by inter-
acting with the environment to maximize cumulative rewards.
The agent observes the current state, takes action and receives
rewards to develop a policy that optimizes long-term rewards.
Key elements are states (current situations), actions (possible
moves), and rewards (feedback signals). RL involves a cycle
in which the agent acts, receives rewards, and updates its pol-
icy based on new experiences. Algorithms include Q-learning
and policy gradients. RL applications range from games (e.g.
AlphaGo) and robotics to autonomous vehicles and healthcare,
highlighting its versatility in enabling adaptive decision-making
in complex environments [121]. Fig. 6 shows the state of the
art, revealing distinct clusters concerning two dimensions. Each
data point is presented using the adopted Class of AI approach.
In particular, three densely populated clusters can be observed.
The first cluster appears at the intersection of (Deep Learning,
Supervised Learning), where the dominant class of AI relies on
Neural Network models. Here, Neural Network encompasses

a broad category of solutions whose models are based on al-
gorithms such as recurrent networks (LSTM/RNN) [29], [65],
convolutional networks (CNN) [35], and multi-layer perceptrons
(DNN) [91]. The second cluster is at the intersection of (Machine
Learning, Supervised Learning). The cited papers propose vari-
ous ML models in this cluster, such as support vector machines
(SVM) [37], Decision Trees (DT) [54], and more. Moreover, the
agent-based points are predominantly concentrated at the inter-
section of (Reinforcement Learning, Reinforcement Paradigm),
indicating a strong emphasis on agent-based methods [41], [77].
Finally, a fourth cluster, less dense than the previous three,
becomes apparent, primarily emerging at the intersection of
(Machine Learning, Unsupervised Learning). In this region, the
predominant class of AI is anchored in clustering models [37].

F. Review of the Application of AI by Diabetes
Application

Table IV reveals that 51,8% of the adopted solutions are based
on the Supervised Learning Paradigm (SP), which happens
to be the most widely used approach. Additionally, Reinforce
Paradigm (RP) and Unsupervised Paradigm (UP) are utilized to
a lesser extent, accounting for 22,4% and 19% of the solutions,
respectively. Conversely, a smaller fraction of solutions employ
approaches based on Knowledge Representation (KR). The
distribution of papers across various AI sub-fields is notably
well-balanced, exhibiting a diverse range of proposed solutions.

Table III offers a comprehensive analysis overview, indicating
that 48,3% of the papers in focus revolves around treatment
optimization, which reveals a clear predilection for supervised
approaches, which account for approximately 29,3% of the
articles. In contrast, other methodologies, such as RL, are also
considerably adopted, with about 12,1% of the papers demon-
strating effective utilization of such models. Conversely, using
unsupervised learning approaches remains limited, accounting
for only a marginal portion of the proposed solutions.

Regarding personalization applications, approximately 38%
of the selected papers fall into this category. Unlike the treatment
optimization aspect, personalization applications exhibit a fair
distribution of papers. Notably, there is a noteworthy increase in
the adoption of unsupervised learning paradigms based on ML
techniques, accounting for 13,8% of the solutions employed for
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Fig. 7. Distribution of subcategories application among AI classes.

Fig. 8. Distribution of subcategories application among learning
paradigms.

personalization applications. This combination emerges as the
most popular choice in this context.

In summary, the findings reinforce the efficacy of solutions
based on supervised learning paradigms in diabetes treatment
applications. Such supervised learning approaches are validated
in approximately 51,8% of the papers. On the other hand,
RL-based approaches for personalization applications are in the
minority, with only 7% of the papers exploring such methods.
Lastly, the number of solutions addressing optimization and
personalization applications appears small and insignificant.

G. Review of the Application of AI by Diabetes
Subcategories Applications

To provide an in-depth analysis of the impact of AI mod-
els on diabetes care, we offer a comprehensive comparison
across different application subcategories, as outlined in Ta-
bles I and V. Figs. 7 and 8 provide a comprehensive and
detailed distribution of the state-of-the-art methodologies, of-
fering valuable insights into two fundamental dimensions of
analysis: AI subfields approaches and learning paradigms, as
explicitly defined in Fig. 8. An in-depth examination of Fig. 8
highlights the continued preeminence of supervised learning
approaches as the favoured learning model in diabetes care.
Particularly noteworthy is their prominent utilization in the
subcategories Blood Glucose Prediction, Glucose Prediction
and Meal, and Meal. This aspect underscores the effectiveness of
supervised learning techniques in addressing the specific chal-
lenges posed by these subcategories. Equally compelling is the

conspicuous dominance of reinforcement-based paradigms,
which find extensive application in subcategories related to
Insulin/Bolus Dosing. The strategic implementation of RL mod-
els in this context suggests their efficacy in optimizing insulin
dosing and bolus adjustments, thus enhancing diabetes manage-
ment. Simultaneously, learning approaches founded on unsuper-
vised models witness significant usage, particularly within the
Patient Profiling/pattern recognition subcategory. The ability
of unsupervised models to discern patterns and profile patients
underscores their relevance in facilitating personalized treatment
strategies for individuals with diabetes. On the other hand,
approaches based on KR remain a minority presence, primarily
limited to the Therapy recommendation system subcategory.
Although less prevalent, applying KR techniques in therapy
recommendations signifies their potential to support health-
care decision-making processes. Furthermore, the remaining
high-frequency subcategories demonstrate a well-balanced dis-
tribution across various learning models. This diversity of AI
techniques indicates a tailored and adaptive approach to ad-
dress the intricacies of diabetes care across different application
subcategories. However, it is intriguing to note that algorithms
based on RL models emerge as the dominant choice in specific
subcategories, such as Insulin/Bolus Dosing. This suggests the
efficacy of RL paradigms in tackling challenges related to insulin
dosing and bolus adjustments for diabetic patients. The compre-
hensive analysis presented in Fig. 8 further substantiates these
trends, underscoring the importance of choosing appropriate
AI subfields and models to address the unique requirements of
each subcategory in diabetes care. The widespread adoption of
ML applications and the selective prominence of RL models
signify the ever-expanding role of AI in revolutionizing diabetes
care, offering personalized and effective solutions for patients
and healthcare providers alike. A meticulous analysis of the
state-of-the-art and the insights presented in Figs. 7 and 8 un-
derscore the diverse array of models and algorithms employed in
the discussed applications related to diabetic management. The
comprehensive insights from this analysis and the informative
table contribute significantly to understanding the current land-
scape of AI algorithms in diabetic management. To offer a more
precise indication of the specific application of AI algorithms
in supporting diabetic care, Table III meticulously outlines, for
each application subcategory, the most adopted algorithm serv-
ing as the baseline. The primary objective of this table is to serve
as a valuable reference for developing future solutions tailored
to address the unique requirements of each specific subcategory.
The values in the Algorithm Baseline column provide a concise
and consolidated representation of the most frequently utilized
algorithm types within the respective subcategories. Concerning
the value of the column Algorithm Baseline:

– LSTM-based: This value indicates that the analyzed papers
utilized AI models based on DL techniques, specifically employ-
ing Long Short-Term Memory (LSTM) recurrent networks as a
crucial data processing step. Subsequently, these solutions were
complemented by other models more focused on the learning
phase.

– Q-Learning-based: This score signifies the adoption of
agent-based learning models, predominantly relying on the Q-
Learning algorithm.

– K-Means-Based: This score indicates the application of the
K-means clustering algorithm as the primary analysis algorithm.
The papers in this category predominantly employed unsuper-
vised learning approaches.
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TABLE V
MOST ADOPTED ALGORITHM BY SUBCATEGORIES

Fig. 9. Distribution of AI categories among the final deployment
groups.

– Multi-Algorithms: This value represents papers in which
no single algorithm dominates the solution. Examining the pa-
pers within this category reveals a balanced use of algorithms,
including SVM, K-Nearest Neighbors (KNN), and DT.

– Fuzzy-rules-based: This score denotes the prevalence of
an algorithm based on fuzzy rule reasoning, representing the
dominant approach in the adopted solutions.

These descriptive explanations within the Algorithm Baseline
column offer valuable insights into the underlying AI techniques
more frequently utilized in the respective subcategories, provid-
ing a clearer understanding of the methodologies employed in
diabetic management applications and guiding the development
of innovative and practical solutions to enhance patient care and
optimize diabetes management strategies.

After conducting a comprehensive analysis of the application
of AI in the treatment of diabetes, it is crucial to emphasize the
final application targets of the solutions developed concerning
the state of the art. Fig. 9 presents two vital dimensions of anal-
ysis: AI subfields and Application Target. The latter dimension
defines four distinct types of applications:

– Clinical Decision Support Systems (DSS): This category
encompasses clinical decision support systems, and standalone
or web-based applications designed to integrate the generated
AI models.

– Insulin Pump: The value associated with this category
denotes solutions intended explicitly for seamless integration
and embedding into infusion pumps and the subject’s on-body
control systems.

– Mobile App: This value pertains to solutions predominantly
intended for integration into mobile devices.

– Prototype: The value assigned to this category indicates
solutions that remain in the prototype stage without being
integrated or deployed in commercial devices or systems.

Several observations can be derived from Fig. 9. Approxi-
mately 64% of the developed models are integrated into three
main application typologies: DSS, Insulin Pump, and Mobile
App. Among these, the primary application target is DSS, ac-
counting for about 33% of the models, followed by Insulin
Pump with 24%, and Mobile App with approximately 9%.
Within the DSS category, most of the models are based on
ML techniques, mainly focusing on clustering and generic AI
models like SVM, KNN, and DT. In the context of Insulin
Pump applications, the dominant algorithms are agent-based,
relying on RL approaches and neural networks based on DL
methodologies. Mobile solutions represent a minority among
the application targets, with fewer models developed for this
category. Techniques based on RL algorithms find primary
usage in the DSS and Insulin Pump application targets, in-
dicating their suitability for decision-making and control in
these domains. The Prototype category comprises models not
integrated into real-world applications. Approximately 34% of
the produced models fall into this category, displaying a well-
balanced distribution across both the AI Sub-Field dimension
and the class of algorithms employed. Analyzing the models
within this category, some aspects can be highlighted: 65%
of the reference papers related to the Prototype category were
published between 2021 and 2023. Furthermore, it is interesting
that only 23% of these projects use simulated data, while the
remaining 77% utilize real data. This aspect contrasts to DSS
and Insulin Pump targets, where the percentage of projects using
simulated data is close to 50%. By highlighting the diverse
application targets of the state-of-the-art solutions, stakeholders
in the medical and technological domains gain a comprehensive
understanding of the breadth and significance of AI in diabetes
management.

IV. DISCUSSION

In this section, a deep explanation of the limitations found
in the analyzed papers and possible future challenges are ad-
dressed. Specifically, among the limitations we discuss:

– Data availability and how it affects the AI model develop-
ment.

– Lack of multimodal dataset.
– Model interpretability.
Similarly, for future challenges, we have:
– Development of a fully closed-loop system with multimodal

data acquisition.
– New metrics to evaluate the AI model results in the medical

fields.
– Trustworthy, explainability and ethics of AI in medicine.

A. Limitations

Even if AI has advanced state of the art in several diabetes-
related fields, applications in healthcare systems still need to
be strong, trustworthy, and compelling to prevent safety con-
cerns and offer useful therapeutic tools. Several restrictions and
difficulties in this situation still prevent the wider introduction
in actual therapeutic settings. The majority of the study makes
use of publicly available datasets or simulated glycemic data,
as was discussed in earlier sections. About 40% of the training
data are simulated instances, which is indicative of this issue. The
explanation is related to the difficulties faced by diabetes patients
in precisely recording their routines or activities, uploading con-
tinuous data to the various storage platforms, and some concerns
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with sensor artefacts. Since data protection rules make it difficult
for research teams to share data sets, real data collection can
be expensive and time-consuming. These factors cause many
researchers to use a small, perhaps insufficient amount of data
or modelling software, which can lead to biased predictions, as
the AI model tends to favour the majority class while neglecting
the minority class. Simulated data can be used to train and test
AI-based models, however using them exclusively can result in
a lack of data variability, which is essential for improving the
generalization of AI algorithms. The variability among diabetics
is high due to complex glucose dynamics, and it gets worse
when we take into account various age groups going through
various life stages. In general, patient participation is neces-
sary for individualized diabetes treatment. Regular recording of
pertinent events and adherence to the therapy goals are neces-
sary for the development of elements for personalization. An-
other drawback of these studies is the insufficient consideration
given to other factors and variables that can influence glucose
evolution, such as information gathered from other wearable
devices (smartwatches, wristbands, etc.), limiting the studies
to use single-modal databases and inadvertently missing the
opportunity to leverage different data sources and gain more
comprehensive insights. The accuracy of currently accessible
less intrusive sensor systems, however, is the issue and to avoid
mistakes in the formulation of the therapy, sensors must be
extremely precise. Socioeconomic variables and mental health
measures have a big impact on diabetes management. Financial
constraints, access to high-quality healthcare, and resources can
prevent constant treatment and monitoring. Diabetes and mental
health conditions like stress and depression frequently interact,
which affects how well people take their medications, eat, and
exercise. Stress can increase blood sugar levels and make it
harder to care for oneself. Struggles with mental health may
also sap motivation for good diabetes management. Addressing
and considering these issues while optimizing algorithms would
further personalize the therapy.

Addressing the interpretability of AI models in pediatric
diabetes is critical due to the challenges posed by black-box
models that often lack transparency in their results. The lack
of explanation can introduce negative biases and reduce trust
among patients and clinicians. From a clinical perspective, in-
terpretability not only supports the adoption of these systems
by clarifying the logic of the model but also supports clinical
decision-making, monitoring, and verification of the reliability
of AI models. This may help to identify and address potential
errors, thereby improving patient safety and quality of care.

Despite groundbreaking advances in AI, susceptibility to
black-box problems remains a significant shortcoming. To in-
crease confidence in AI-generated results, it is important to
augment outputs with comprehensive explanations that clarify
the rationale behind specific decisions. Current methods often
provide generic explanations that do not take into account the
diverse backgrounds and knowledge levels of users.

Another issue concerning the balancing model of inter-
pretability with predictive accuracy is a significant challenge.
Indeed, hybrid methods attempt to achieve this balance by
using post-hoc interpretability techniques or by designing new
model architectures. However, post hoc techniques can be com-
putationally expensive and may not fully capture the nuances
of the model, while new models may struggle with complex
interactions. The choice of approach depends on specific ap-
plication requirements and acceptable trade-offs. Indeed, there

are many more challenges worth addressing. However, these
are the ones that, in our opinion, are particularly significant as
they affect the medium- to long-term development vision of AI
models in the context of pediatric diabetes [122].

B. Future Works

The open problems described until now are common chal-
lenges in all medical fields since AI is still quite new support
that the medical teams can adopt to predict, monitor and treat
several diseases. Hence, there is the possibility to improve their
applications, especially for diabetes treatment. Initializing and
optimizing personalized therapy is a difficult undertaking due to
the variety of variables impacting the therapy and the available
therapeutic choices. To initiate and optimize therapy with a
lower risk of safety-critical events like hypoglycemia, contin-
uous monitoring with on-body sensors (blood glucose, dietary
intake, physical activity, and health status) is recommended.
Therefore, multi-modal systems using wearable and smartphone
applications can help in recording digital records and vital signs.
Researchers and practitioners should prioritize exploring and
incorporating multi-modal approaches also to fully realize the
potential of AI methods and to create a comprehensive and
diverse dataset encompassing multiple data types, enabling the
development and evaluation of more effective multi-modal AI
models. In this way, we can overcome some of the limitations
previously described since it will positively affect the data
volume and variability. This means that many low-quality data
samples can be filtered out and significantly lower measurement
errors, training robust AI algorithms that can capture the inter-
and intra-variability of the glucose evolution. The creation of a
fully closed-loop artificial pancreas system is the ultimate ob-
jective of technical development in the field of diabetes therapy.
Developing such a system requires considering several factors,
such as socioeconomic, cultural, and mental status, that can
be used to initialize and optimize the therapy from the very
beginning. It has been demonstrated that, mainly for children
and adolescents, these factors play a crucial role in adhering
to and accepting the therapy [123], [124], [125] and a first
attempt in this direction has been made by [86] demonstrating
to be a piece of important information to add. Additionally,
rather than just being saturated with performance metrics that
may not be relevant to the adoption of medical technology,
clinicians and practitioners should be given the chance to fairly
evaluate the utilities of the proposed interpretability approaches.
Although providing a visual and written explanation provided
by an algorithm may seem like the logical solution, the specifics
of how algorithms like DNNs make decisions are still not fully
known. To address this, a specialized education combining med-
ical knowledge, applied mathematics, data science, etc. may be
required [126]. The imperative is to embrace the development of
explainable AI systems that shed light on the decision-making
process, thereby fostering trust and confidence in the results of
these cutting-edge algorithms through various methodologies,
such as incorporating attention mechanisms [127]. Furthermore,
research in this area must focus on trustworthy AI and the
ethical implications of its application. Reliable AI in medical
devices needs to be strong, open, and egalitarian to guarantee
both safety and effectiveness while maintaining patient privacy
and accountability. Regulatory agencies must ensure that the
aforementioned open problems meet high standards of safety
and efficacy.
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V. CONCLUSION

In this article, we provide an in-depth analysis of the current
development of AI-based diabetic therapy. We conducted a
thorough search, selected several articles, and synthesized the
important data with a focus on two areas: therapy personalization
and treatment optimization. Patient-focused systems and algo-
rithms have drawn a lot of attention in recent years. This pattern
emphasizes the significance of treating the person as a whole,
which directs the creation of personalized and focused treat-
ments. This strategy represents a shift towards wider-ranging
and more flexible medical solutions, constituting a substantial
advancement in the integration of patient requirements into the
medical setting. As AI research in diabetic management continu-
ously evolves, novel algorithms and cutting-edge techniques are
frequently introduced and explored in the literature. Researchers
and developers are encouraged to explore and experiment with
a diverse range of AI models and methodologies to uncover
innovative solutions and address specific challenges in diabetic
care effectively. By continuously expanding the knowledge base
and embracing advancements in AI, we can enhance the quality
of care and outcomes for diabetics.
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