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A B S T R A C T   

District heating (DH) network is a key infrastructure to decarbonize the heating sector through the centralized 
production of heat distributed to final users. The implementation of advanced control techniques is increasingly 
common in the field of energy optimization since they can provide a more efficient way of minimizing energy 
demand by appropriate scheduling of the control variables. 

The aim of this work is to present the application of two control strategies, i.e., Model Predictive Control 
(MPC) and Reinforcement Learning (RL), to a system based on a DH network supplied by a Combined Heat and 
Power plant (CHP-DH plant). The analyzed case study is a real CHP-DH plant operating in the small Italian town 
of Osimo (central Italy). The DH network currently connects more than 1200 users, generating peak heat demand 
of about 9.7 MWth. The heat generator is composed of a natural gas fueled internal combustion engine coupled 
with natural gas boilers. 

The work provides a comparison between the current control strategy (deduced from measured data) and the 
performance of the CHP-DH plant controlled with an MPC and an RL control. The results showed the effec
tiveness of the two controls in satisfying the thermal demand of the users, while minimizing the thermal losses 
towards the ground. Both MPC and RL allow to implement control strategies different from the current control in 
terms of supply temperature and flow rate circulating in the network. Referring to the winter months, in which 
the current operation of the system tends to prefer high supply temperatures, the advanced controls made it 
possible to reduce the thermal heat supply by reducing the thermal losses of about 3.9 % with the MPC and 6.54 
% with the RL, corresponding to emission avoidances up to 23.3 tCO2 and 12.6 tCO2, respectively. 

The paper, as well as showing the application of the controls, contains a critical discussion of all the positive 
aspects and weaknesses found in the application of the MPC and the RL control to the case study.   

1. Introduction 

In recent years, global energy policies are increasingly aimed at 
accelerating the transition to a fully decarbonized energy system. En
ergy efficiency, circular economy and reduction of greenhouse gas 
emissions are the main objectives that the European Union has set for 
the medium-long term [1]. Several technological solutions for the 
different sectors responsible for most of the energy consumption (i.e., 
industrial, buildings, transport, …) have been identified and encour
aged. One of the most promising areas to address is heat demand. Ac
cording to the International Energy Agency, heat is the largest energy 
end‑use [2]. Considering both the residential and industrial sectors, the 

energy demand for heating represents about 50 % of the global energy 
use and is responsible for more than 40 % (13.1 Gt in 2020) of CO2 
emissions [2]. 

The European Union has basically identified two ways to achieve the 
energy transition of the thermal sector, namely (i) electrification of 
heating demand and (ii) efficient heat and power production via Com
bined Heat and Power (CHP) plants and District Heating (DH) networks 
[3]. In particular, DH can play a very important role in decarbonising 
the heating sector, thus the European Union has planned strong in
vestments to increase its spread in urban areas by 2050 [4]. 

There are many advantages introduced by a wide spread of DH. First, 
the replacement of localized production by larger distributed generation 
plants. This allows to satisfy the demand with an increased efficiency of 
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energy conversion [5]. Moreover, DH allows to efficiently integrate 
different energy sources, including waste energy and renewable sources. 
In this regard, Yuan et al. [6] proposed an interesting case study in 
which the heating demand of a community in Aalborg (Denmark), 
estimated to reach 1.56 TWhth per year, is satisfied in a completely clean 
way with a DH system. The heat supply, in fact, comes both from the 
exploitation of excess heat from an industrial user, and from the use of 
renewable sources which supply heat pumps. 

The scenario assessed by the Yuan et al. is an example to understand 
the great potential of DH to meet the thermal demand of a network of 
users in a sustainable way. This ability, however, is not only due to the 
possibility of integrating clean energy sources but also to the possibility 
of managing them in a flexible way. In fact, as many studies show [7], 
DH networks can also allow to decouple demand from generation in 
different ways. The heat transfer fluid contained in the pipes can be used 
as a thermal storage medium. In addition, the network can integrate 
several added Thermal Energy Storage (TES) devices to increase thermal 
inertia [8]. In this sense, Zhang et al [9] proposed an interesting map
ping of the potential of the different TESs that can be used in low tem
perature DH networks. From the results of their simulations, the authors 
concluded that the best flexibility performance can be achieved with a 
centralized storage tank while discouraging the use of building envelope 
mass and inertia of network. 

To activate the flexibility in DH networks an effective means is 
represented by advanced control techniques [8] and, in particular, 
optimal controls for this purpose are quite widespread. In the literature 
several studies can be found in which the ability of optimal controls to 
activate flexibility in DH networks is assessed. For instance, Laakkonen 
et al. [10] implemented an optimized control to minimize pumping costs 

and heat losses by exploiting the flexibility provided by the thermal 
inertia of the DH pipes. Predicting the time delays of DH response, the 
control proposed by Laaksonen et al. is based on determining the supply 
temperatures to be set. Also, Bavière and Vallée [11] proposed a similar 
application. Indeed, they implemented a controller able to optimize the 
heat distribution through a suitable programming of the supply tem
peratures and differential pressure at the production level. Their aim 
was to minimize economic expenditure by flexibly exploiting network 
management through the prediction of the dynamic behaviour of the 
system. 

Although these are just some of the examples of the application of 
optimal controls to DH networks, in this work we decided to focus on a 
specific type of optimal control (Model Predictive Control, MPC), 
considering its increasing diffusion for the advanced management of 
energy systems [12]. An MPC is a constrained optimal control that 
calculates the control actions by minimizing a given objective function 
over a finite prediction horizon [13]. The MPC application to manage 
DH networks is not new. Currently, there are many studies in literature 
proving the effectiveness of MPC for DH networks. For instance, Verrilli 
et al. [14] implemented a MPC to activate energy flexibility in a DH 
system with a TES and flexible loads. The authors considered a network 
of almost 600 users in Ylivieska (Finland) and demonstrated that the 
management through MPC of the heating power plant (consisting of 
CHP, grate boiler, or oil boiler) and the TES allows to estimate a po
tential cost reduction of about 7.5 % compared to a scenario without 
MPC. Another example of applying MPC to a DH network is the work 
proposed by Hering et al. [15]. In this case the authors studied a low 
temperature DH system powered by heat pumps. Their MPC was 
formalized to optimize the operation of heat pumps in combination with 

Nomenclature 

π Policy for RL 
A Matrix for state space model 
a Action for RL 
A Set of action for RL 
AC Actor-critic agent for RL 
B Matrix for state space model 
C Thermal capacity (J K− 1) 
c Specific heat (J kg− 1 K− 1) 
CHP Combined Heat and Power 
ct Control (1/0) 
DH District Heating 
f Factor (–) 
G Sum of future discounted rewards for RL 
HVAC Heating, Ventilation and Air-Conditioning 
i Index 
ICE Internal Combustion Engine 
j Index 
K Themal conductance (W K− 1) 
k Discrete time (s) 
ṁ Flow rate (kg s− 1) 
MDP Markov Decision Process 
MPC Model Predictive Control 
N Horizon (s) 
o Observation for RL 
P Terminal weight 
PID Proportional-Integral-Derivative 
POMDP Partially Observable Markov Decision Process 
Q Weight for predicted output error 
q Action-value function for RL 
Q̇ Thermal power (Wth) 
r Reference output 

R Weight for input rate error 
RL Reinforcement Learning 
RMSE Root Mean Squared Error 
Rw Reward for RL 
s State for RL 
S Set of states for RL 
T Temperature (◦C) 
t Time (s) 
TES Thermal Energy Storage 
u Input 
x State model 
y Output 
γ Discount factor 
Δu Predicted input rate 
ν Critic for RL 

Subscripts 
DH District Heating 
B Baseload 
c Corrective 
e External 
L Losses 
max Maximum value 
min Minimum value 
p Predicted (referred to predictive horizon) 
r Return 
r,sp Setpoint for the return temperature 
s Supply 
SH Space heating 
t Thermostat 
U Users connected 
u Control (referred to control horizon) 
w Water  
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thermal energy storages. Controlling the flow rate and the return tem
perature, Hering et al. obtained savings of electrical energy consumption 
up to 5.49 %. Also, Saloux and Candanedo [16] demonstrated the 
effectiveness of MPC for DH system. They implemented a MPC aimed to 
minimize the primary energy use in a solar DH with dedicated energy 
storage. The case study considered is the Drake Landing Solar Commu
nity (52 homes in Okotoks, Canada) which is composed of solar thermal 
collectors along with a thermal energy storage and a back-up natural gas 
boiler. With the MPC acting on variable speed circulation pumps, the 
authors estimated pumping power savings of 47 %, energy costs 
reduction of 38 % and a 32 % decrease of the greenhouse gas emissions. 
Another interesting example of application of an MPC to a thermal 
network is the one proposed by Vivian et al. [17]. Indeed, they formu
lized a MPC to optimize a centralised CHP and storage unit with the aim 
of reducing the overall operational costs in a fifth-generation thermal 
network. With their study, Vivian et al. also demonstrated the potential 
effectiveness of MPC and obtained an estimated saving of around 11 % 
in comparison to a traditional rule-based control. 

These are just some of the several studies in literature that evaluate 
the application of MPCs to thermal networks and/or their generation 
systems. In recent years, however, interest in assessing the application of 
fully data-based controls for energy systems is also increasing. In 
particular, Machine Learning (ML) techniques look very promising [18]. 
ML algorithms are based purely on data and enable models to learn by 
themselves once the learning algorithm is determined [19]. Reinforce
ment Learning (RL) is a particular type of ML. RL models learn to 
perform serial actions according to situations to maximize the reward 
signal by trial-and-error search [20]. Applications of RL algorithms are 
increasingly widespread in buildings [21]. Several applications concern 
the control of building heating and/or cooling systems to increase the 
efficiency [22] or to unlock the flexibility (e.g, Demand Response stra
tegies) [23]. Furthermore, RL is also chosen as a control technique when 
dealing with multiple energy carriers [24]. 

Considering the thermal networks, ML and RL algorithms are 
currently mainly used to predict the thermal load of the network. 
Indeed, Sakkas and Abang [25] applied a data-driven ML based on 
artificial neural networks to forecast the thermal load of the DH network 
of Cottbus (Germany). Also, Wei et al. [26] conducted a similar study for 
a residential DH system. In particular, the authors compared different 
ML algorithms (e.g., Support Vector Regression, XGBoost and Long 
Short-Term Memory neural network) to predict the thermal load of a DH 
network in Shanghai (China). The same objective is also posed by the 
work of Geysen et al [27], who implemented different algorithms of ML 
(i.e., Linear Regression Artificial Neural Networks, Support Vector Ma
chines and extremely randomized extra tree regressors) to predict the 
thermal demand of a DH network based on outdoor temperature fore
cast, historic thermal load information and historic control signals. 
Maljkovic and Basic [28], indeed, evaluated the main parameters that 
influence the heat demand in DH networks by applying ML techniques. 
The authors implemented several algorithms (i.e., Regression Trees, 
Random Forest and Regression Support Vector Machines) to predict the 
heat demand of a DH network based on actual billing data for 260 
buildings and data for a specific demonstration building in Zagreb 
(Croatia). The interesting aspect of their work is that they have 
demonstrated that the most influential parameter on the heat con
sumption of a single final consumer is the overall consumption of the 
building, while the second is users’ behavior. 

It is important to note that in all the above-mentioned works, the ML 
algorithm is not used to establish control logics for the network and/or 
its generator. A case in which an RL algorithm is integrated within the 
control is the one presented by Solinas et al. [29]. Indeed, Solinas et al. 
proposed an interesting application of RL to a DH network to produce 
peak shaving events. To limit the peak in a DH network located in Turin 
(Italy), the authors proposed a combined control: a thermodynamic 
model was used to assess the response of the buildings to energy profile 
modifications and an agent-based model to represent the end-users’ 

adaptability to imposed temperatures variations. Then, the RL algorithm 
was formulated to choose the best control action (a set of anticipations 
and delays to energy profiles) to reduce peak thermal demand and limit 
the dissatisfaction of the most sensitive users. 

These are some of the examples that are available in the literature 
involving the use of ML or RL algorithms on thermal networks. However, 
applications of RL algorithms for direct management of DH network 
and/or its generation system are not very widespread. The literature 
analysis allows to observe that the studies on MPC controls applied to 
the management of DH networks are quite numerous and all show a 
good performance of the control in achieving the target objective. On 
the other hand, the use of RL techniques to control DH is less common. 
However, in other applications involving energy systems, the discussion 
about choosing an optimized control based on system model (e.g., MPC) 
rather than a completely data-based approach (e.g., RL) for energy 
systems is still open. Some papers have addressed this issue for some 
case studies. For instance, Brandi et al. [30] compared an online and 
offline deep RL with MPC for thermal energy management in an office 
building and Ceusters et al. [31] compared MPC and RL for a high-level 
control in multi-energy systems. Brandi et al. [30] suggested that the 
deep RL agent trained online may represent a promising solution to 
overcome the barrier represented by the modelling requirements of MPC 
and offline-trained deep RL approaches. Even Ceusters et al. [31] 
concluded that RL can be an adequate control technique for multi energy 
systems that can also outperform MPC, given a sufficient training in 
terms of time and memory. However, they also highlighted how the 
performance of the RL greatly depends on the selection of adequate a 
priori unknown hyper-parameters. 

To the best of the authors’ knowledge, a comparison between the 
application of MPC and RL for an energy system composed of a DH 
network and its heat generation systems is not yet available in literature. 
Although, as emerged from the literature analysis, the application of an 
MPC control for the management of a thermal network is quite wide
spread, in this paper we propose an evaluation of its potential applica
tion to a real case study in comparison with the application of an RL- 
based control technique, which, as mentioned, is less common. The 
real case study is a CHP-DH plant, operating in central Italy (Osimo), for 
which measured data are available. The aim of the work is twofold. 
Firstly, to compare in terms of performance and effectiveness the 
application of the two control techniques (MPC and RL) for a real CHP- 
DH plant. Secondly, provide a critical discussion of the strengths and 
limitations that have emerged during the modelling and training of the 
controls. This paper wants to propose some food for thought on the 
application of these two controls to a system similar to the one 
considered. 

The paper is structured as follows: Section 2 describes the methods 
and the considered case study. Section 3 discusses the results obtained, 
also reporting a critical analysis on the application of the two control 
techniques. Finally, Section 4 summarizes the main conclusions 
obtained. 

2. Materials and methods 

In this Section, the modelling techniques of the MPC and the RL 
controls applied to the case study will be described. The Section is 
divided into three subsections: the first (subsection 2.1) contains the 
description of the case study; in subsection 2.2 the formulation of the 
MPC is described in detail, while in the last subsection (2.3) the RL is 
presented. 

2.1. Description of the case study 

The case study consists of a CHP plant which feeds a DH network in 
central Italy. The CHP-DH plant has also been presented in detail in 
other studies ([5 32 33]), however this short Section reports the main 
features useful for understanding the setting and modelling of the 
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controls listed below. In the first subsection (2.1.1) the DH network is 
described. In subsection 2.1.2 the main features of the heat generator are 
presented, while in the last (subsection 2.1.3) the control strategy 
currently used is reported. 

2.1.1. District Heating network 
As mentioned, the DH network is located in Osimo, a small town in 

the centre of Italy (43◦29′09.89′′N, 13◦28′55.56′′E). The network is the 
only one present in the Marche region and connects about 1278 utilities, 
of which 94 % are residential buildings and the remaining 6 % are 
public/commercial customers. In terms of heat demand, residential 
users are responsible for 49 % of demand, while the remaining 51 % is 
absorbed by public/commercial users. The DH network is 45 km long 
and contains approximately 444 m3 of water, used as a heat transfer 
fluid. The pipes are made of steel and insulated with polyurethane. The 
thermal power transported by the network reaches a peak around 9.7 
MWth, in winter while falls below 1 MWth in summer. Fig. 1 represents 
the duration curve of the thermal demand met by the DH network for the 
year 2018 (measured data). 

The network has an incidence of thermal losses towards the ground 
which varies considerably with the seasons. It was estimated that for the 
entire year 2018, the thermal losses amounted to approximately 5983 
MWhth, about 29 % of total heat demand [32]. As shown in Fig. 2, the 
percentage share of losses increases from the winter to the summer 
months, in which they reach peak values of 63.5 %. 

2.1.2. Thermal power plant 
The DH network described above is supplied by a thermal plant 

consisting of a CHP unit and 3 natural gas boilers. The main generator of 
the CHP is a Natural Gas (NG) fuelled Internal Combustion Engine (ICE), 
with a rated thermal power of 1.3 MWth and 1.2 MWel of rated electricity 
production. Due to its small size, the CHP engine only covers the base
load from the DH (Fig. 1). The remaining part is supplied by the inte
gration boilers (each of 4.6 MWth,). Table 1 summarises the main size 
characteristics of the generating system. 

Fig. 3 shows a schematic of the coupling of the generation plant with 
the DH. It can be noted that the CHP engine is connected in series with 
the two boilers, which are in parallel with each other. A plate heat 
exchanger allows the transfer of thermal power from the generation side 
to the DH network. 

2.1.3. Current control strategy 
The present control strategy can be subdivided into two levels: (i) the 

high-level and the (ii) the low-level control. The high-level control 
concerns the choice of the generation technologies involved and their 
order of operation, while the low-level control sets the supply temper
atures and the water flow rates to the DH. Currently, the operation 
strategy of the plant changes during the months of the year and aims to 
maximize the hours of operation of the CHP, avoiding that it works at 
too low load modulations. It is considered that below 60 % (thermal 
demand below 780 kWth) the performance is too poor, and the engine is 
shutdown. Therefore, in the winter season (November–March), in which 
there is always a demand above the minimum modulation threshold, the 
CHP unit is always operating. In these months, the boilers are also 
switched on to cover the excess of the demand. The first one is activated, 
then if the demand cannot be satisfied, the second one also enters in 

operation. In the mid-season (April–mid-June and mid-September–Oc
tober), the CHP is switched off during the night (from 8.00 pm to 7.00 
am), when only boilers are activated. During the hours of the day the 
operation is the same as in the winter months. In the summer season 
(mid-June–mid-September), the CHP does not work, and the thermal 
power is entirely produced by the boilers. 

Even the regulation of the water supply temperature follows a sea
sonal schedule. In general, the aim is to keep it as low as possible to limit 
losses, compatibly with health constraints (avoid legionella) and users’ 
demand requirement. Currently the following seasonal values are cho
sen with a rule of thumb method: 95 ◦C in the winter season (Novem
ber–March), from 78 ◦C to 85 ◦C in the mid-season (April–mid-June and 
mid-September–October) and 75 ◦C in summer (mid-June–mid- 
September). Currently a PID (Proportional-Integral-Derivative) 
controller is used as low-level control. It is calibrated to maintain an 
empirically assumed water supply temperature value and the desired 
pressure level in the circuit. In this way the system is regulated in flow 
rate as the return temperature value is also imposed close to a set set- 
point value (around 60–63 ◦C). The limit of flow rate in the circuit is 
determined by the characteristics of the hydraulic pumps. The maximum 
volumetric flow rate is 320 m3 h− 1, but in the current operation 
generally 250 m3 h− 1 is not exceeded. 

Table 2 summarizes the main characteristics of the current control 
strategy of the CHP-DH plant distinguishing the season and high-level 
from low-level control. 

2.2. Model Predictive Control 

Given its ability to merge principles of feedback control and nu
merical optimization, MPC is one of the most used controls to optimally 
manage the energy demand in buildings [34]. MPC is an advanced 
control technique that selects the control actions based on a dynamic 
model of the system and the resolution of an optimization problem. The 
system model shall be capable of capturing dynamic of the system when 
it is subjected to external inputs which can be controlled (or manipu
lated variables) or uncontrolled (or external disturbances) [35]. Then 
the optimization problem has the task of identifying the best sequence of 
control actions to achieve a specific objective, forward in time. In other 
words, MPC follows a “receding horizon” logic: the optimization prob
lem is solved at each timestep moving forward the prediction horizon 
and the optimal control sequence is updated by applying to each time 
interval only the first value of the manipulated variables [34]. 

As mentioned, this work shows the application of an MPC strategy on 
a system consisting of a DH network supplied by a CHP plant. Therefore, 
the model of the system must be able to represent the thermal dynamics Fig. 1. Duration curve for the DH heat load (year 2018).  

Fig. 2. Monthly percentage impact of thermal losses on demand (year 2018).  

Table 1 
Technical data of the thermal power plant.  

Data Value 

CHP engine electric power (MWel) 1.2 
CHP engine thermal power (MWth) 1.3 
Single operating boiler thermal power (MWth) 4.6 
Thermal CHP efficiency (%) 42 
Electrical CHP efficiency (%) 41 
Thermal Boiler efficiency (%) 96.2  
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of the DH network. Regarding the objective of the control, the MPC has 
to minimize the overall energy consumption to guarantee the user’s 
thermal demand satisfaction. The modelled MPC replaces the current 
low-level control (subsection 2.1.3). This means that, the control actions 
are addressed to the output variables of the heat generator (boilers and 
CHP engine): the water supply temperature and the flow rate. 

This Section is divided as follows: in the first subsection (2.2.1) the 
model of the DH network is described. In subsection 2.2.2 the optimi
zation problem is defined and, finally, the last subsection (2.2.3) con
tains the description of the control settings and constraints. 

2.2.1. Dynamic model 
To represent the dynamic behaviour of the DH network a non-linear 

grey box model has been developed. The formulation of the model is 
represented by Equation (1). The formulation is inspired by a previous 
white box version for the same DH network [33]. 

CDH
dTr

dt
= ṁDHcw(Ts − Tr) − Q̇U − Q̇L + fc(Tr − Tr,sp) (1) 

Equation (1) allows to evaluate the temporal evolution of the water 
return temperature (Tr in [◦C]), considering both the thermal inertia of 
the network, represented by the a thermal capacity (CDH in [J K− 1]), the 
power associated with the flow (i.e., the water flow rate, ṁDH, which 
multiplies the temperature difference between the supply and the return 
temperature, Ts, and Tr), the thermal demand required by the connected 
users (Q̇U in [W]) and the thermal losses towards the ground (Q̇L in [W]). 
Furthermore, the last term, containing the corrective factor (fc in [W 
K− 1]) represents the limit to the variation with respect to an imposed set 
point temperature (Tr,sp in [◦C]). The thermal demand (Q̇U) is evaluated 
as the sum of two contributions: the demand for space heating and a base 
load (Q̇B in [W]), as represented by Equation (2). 

Q̇U = KSHctSH(Tt − Te)+ Q̇B (2) 

The demand for space heating is represented by the multiplication of 
a thermal loss factor KSH in [W K− 1], for a control variable that repre
sents the presence of heat demand of users (cSH, 1/0 signal: 1 heating 
systems on / 0 heating systems off) and for the temperature difference 
between the set point imposed by the users’ thermostat (Tt in [◦C]) and 
the external air temperature (Te in [◦C]). The thermal losses are instead 
modelled with a loss coefficient KL (in [W K− 1]) which multiplies the 
difference in temperature between the temperature of the water inside 
the pipes (obtained as the average between the water supply and the 
return temperature) and the ground temperature (assumed equal to the 
temperature of the external air). 

With this formulation, the model can be written as a state space 
model in which the state (the return temperature, Tr) also coincides with 
the output of the model itself. Instead, the inputs are the supply tem
perature (Ts), the water flow rate (ṁDH), the external temperature (Te), 
the set-point profile, both for the air thermostat (Tt) and the return 
temperature (Tr,sp) together with the power request signal for space 
heating (ctSH). 

Those described so far are the physical meanings of the quantities 
involved in the model. However, given the availability of measured data 
of the real CHP-DH plant (year 2018), the numerical values of the pa
rameters (CDH,KSH, Q̇B,KL, fc) were identified through a model training 

Fig. 3. Scheme of the thermal plant connected to the DH network.  

Table 2 
Main characteristics of the CHP-DH plant current control strategy.  

Season High-level control Low-level control 

Winter (November–March)  • CHP switched on 24 
hours a day  

• Boilers integrate CHP  

• Variable flow rate  
• Return 

temperature in the 
60-63 ◦ C range  

• Supply 
temperature of 95 
◦ C 

Mid-season (April–mid- 
June and mid- 
September–October)  

• CHP switched off from 
8.00 pm to 7.00 am  

• From 8.00 pm to 7.00 am 
only boilers are 
activated. In the 
remaining hours boilers 
integrate CHP  

• Variable flow rate  
• Return 

temperature in the 
60-63 ◦ C range  

• Supply 
temperature in the 
78 -85 ◦C range 

Summer (mid-June–mid- 
September)  

• CHP switched off  
• Only boilers activated  

• Variable flow rate  
• Return 

temperature in the 
60-63 ◦ C range  

• Supply 
temperature of 75 
◦ C  
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process. The details on the training result will be shown in subsection 
2.2.3. 

2.2.2. Optimization problem 
The objective of the MPC is to minimize the overall heat demand 

covered by the heat generator, with the aim of reducing the overall fuel 
consumption (natural gas for both the boilers and the CHP engine) and 
keeping the return temperature within the acceptable range of variation. 
Equation (3) represents the MPC problem formulation. 

min
Δu

∑NP − 1

i=0
‖Q(yk+i|k − r(k))‖2

2 +
∑Nu − 1

j=0
‖RΔuk+j|k‖

2
2+‖P(yk+Np |k − r(k))‖2

2

(3) 

Where yk+i|k represent the output predicted i steps ahead, r(k) is the 
reference output over the prediction/control horizon, Δuk+j|k and uk+j|k 

are respectively the predicted input rate and input magnitude, Np is the 
prediction horizon while Nu the control horizon. The matrices Q, R and P 
are used for weighting respectively the predicted output error, input 
increments and final output value (terminal weight). 

Referring to the case study, the predicted outputs (yk+i|k) coincide 
with the total heat demand Q̇ (in [W]) and the return temperature (Tr). 
The first is calculated simply as: 

Q̇ = ṁDHcw(Ts − Tr) (4) 

where cw (in [J kg− 1 K− 1]) is the specific heat of the water. The 
second output Tr is the only one controlled. In fact, the reference output 
(r(k)) is assumed to be constant over the prediction/control horizon 
(return temperature set-point, Tr,sp). The control actions (i.e., controlled 
inputs) act on the output variables of the heat generator, that are, the 
water flow rate (ṁDH) and the water supply temperature (Ts). 

Summarizing therefore, the optimization problem within the MPC 
sets, at each timestep (15 min), the values of ṁDH and Ts to minimize the 
overall thermal demand that the generator must cover (Q̇), while 
maintaining the return temperature close to the imposed set point value. 
The objective pursued by the MPC can also be seen as the minimization 
of the thermal losses towards the ground, which are the term that 
significantly depends on the supply temperature. 

The constraints to the optimization problem are described by the 
following Equations: 

xk|k = x(k) (5)  

xk+i+1|k = Axk+i|k +Buk+i|k (6)  

Δuk+j|k = 0forj ≥ Nu (7)  

Δumin ≤ Δuk+j|k ≤ Δumax (8)  

ymin ≤ yk+i|k ≤ ymax (9) 

in which, Equations (5) and (6) contain the model of the DH network 

in state space form, Equations (7) and (8) represent the boundary con
ditions imposed on the control input (i.e., supply temperature and water 
flow rate) and Equation (9) establishes the boundary conditions imposed 
on the predicted outputs (i.e., the return temperature). 

To sum up, Fig. 4 schematises the structure of the modelled MPC 
control. 

2.2.3. Parameters and settings 
In the previous two subsections, both the system model and the 

formulation of the MPC have been theoretically presented. In this sub
section, it is described how these two aspects are translated in the 
analysed CHP-DH plant. First the training and testing results for the DH 
model are presented. Secondly the numerical details of the settings 
related to the MPC optimization problem are given. Table 3 shows the 
numerical values of the grey box model parameters obtained from the 
training. To highlight the physical meaning of the parameters, Table 3 
also shows the range of variation admitted for each parameter assumed 
by the physical knowledge of the system [33]. 

The performance of the training and validation of the model are 
instead contained in Table 4. In particular, the Root Mean Squared Error 
(RMSE) values related to the return temperature (Tr) and to the overall 
heat demand (Q̇) are presented. The values were calculated for both the 
training data set (data for the first 3 weeks of January 2018) and for two 
different testing periods: a shorter period covering two winter and mid- 
season weeks (22 January/4 February 2018 and 22 March/4 April 2018) 
and the entire available data set (year 2018). As can be seen, the RMSE 
values obtained for Tr in the testing data set does not differ much from 
the value obtained in training: it remains between 1.59 ◦C and 1.76◦ C. 
The model also performs well in predicting the overall heat demand. In 
fact, if the RMSEs obtained for Q̇ is between 0.167 MWth and 
0.231MWth, which corresponds to an error on the overall demand be
tween 2.39 % and 3.22 %. 

The model makes it possible to predict a trend of thermal losses to 
ground (Fig. 5) similar to that shown in Fig. 2, even if the percentage 
values reported in Fig. 5 are on average lower than those reported in 
Fig. 2. However, the error in the forecast of the incidence of losses 
cannot be assessed with certainty, as values reported in Fig. 2 are not 
obtained from direct measurements [32]. 

Fig. 4. Scheme of the MPC control.  

Table 3 
Numerical values of grey box DH model parameters with admitted range of 
variation.  

Parameter Admitted variation range Training result 

CDH(MJ K− 1) from 1257 to 3352 3352 
KSH (kW K− 1) from 100 to 400 282 
Q̇B(kW) from 1000 to 1500 1000 
KL(kW K− 1) from 8 to 8.5 8 
fc(kW K− 1) from 0 to1500 1500  
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As for the settings of the optimization problem, these are described in 
the following points:  

▪ The return temperature is kept close to the value of 63 ◦C (r(k)
which also coincides with Tr,sp in Equation (1)) with an allowed 
range variation between 59◦ C and 68 ◦C.  

▪ Total demand Q̇ is inferiorly bound to the satisfaction of user 
demand. This constraint can be expressed by: 

Q̇ ≥ Q̇U (10)    

▪ The water flow rate ṁDH is maintained between 5 kg s− 1 and 70 
kg s− 1 compatibly with the specifications of the installed 
circulating pumps.  

▪ The supply temperature Ts is bound to different intervals in 
relation to the season of the year. For the winter months 
(November to March) it can vary from 85 ◦C to 95 ◦C if the 
outside temperature is greater than 1 ◦C. Otherwise the allowed 
range is 90–95 ◦C. For the mid-season months (April–May and 
September–October), Ts can vary between 78 ◦C and 95 ◦C, 
while for the summer months (June-August) the permitted 
range is 75–95 ◦C. These values have been chosen compatibly 
with the operating limits of the plant, as already described in 
subsection 2.1.3.  

▪ From the observation of time variation of measured data, a 
maximum rate of change has been set for the decision variables: 
20 kg s− 1 for the water flow rate and 5 ◦C for the supply 
temperature.  

▪ The prediction horizon is set to 1 h (4-steps) and the control 
horizon is set to 1 step. Although it is a high thermal inertia 
system, the choice of a 1-hour prediction horizon was made 
with a view to the accuracy of the MPC. Indeed, with a long 
prediction horizon, the reliability of the forecast can be low, 
and this compromises the control planning ability. Whereas, by 
updating the initial conditions of the MPC at every hour with 
real system measurements, the probability of having important 
deviations between the model prediction and the real plant 
behaviour decreases. 

It is important to point out that the model used to formulate the MPC 
is based only on energy balance (thermal model). It does not model, at 
present, the pressure losses in the pipes of the DH network. In practical 
application, the flowrate adjustment should take this aspect in consid
eration in order to ensure the required pressure levels. 

2.3. Reinforcement Learning 

Reinforcement Learning (RL) has a long history in the artificial in
telligence research field [20], but only in recent years, with the adoption 
of deep neural networks, this framework has been adopted extensively 
in real applications. The common objective in most RL problems is to 
find a policy which maximizes the reward w.r.t a specific goal. 

In this work, a standard RL setting where the agent interacts with the 
environment over a number of discrete time steps is considered. The 
environment can be seen as a Partially Observable Markov Decision 
Process (POMDP) in which the main task of the agent is to find a policy π 
that maximizes the expected sum of future discounted rewards: 

Gt =
∑T

k=t+1
γk− t− 1Rwk (11) 

where γ ∈ [0, 1) is the discount factor and Rwk is the reward at time k, 
given the state st and the actionat ∼ π(|St). The Markov Decision Process 
(MDP) is partially observable, in the case of visual navigation, because 
in every step the agent has no access to the true state St of the envi
ronment, but only to an observation ot of it. 

For all the tasks, the actor-critic framework is used. It divides the 
agent into two components: (i) actor is the one that interacts with the 
environment and learns to perform actions. It collects a series of tra
jectories, composed by observations, actions, and rewards. (ii) Critic has 
the role of evaluating the actor performances. It uses these trajectories to 
learn to estimate the expected sum of the future discounted rewards of 
the actor policy Gt . 

The critic can estimate Gt by computing one of the following two 
functions: the value function: 

vπ(s) = Eπ[Gt|St = s] = Eπ

[
∑∞

k=0
γkRwk+t+1

⃒
⃒
⃒
⃒
⃒
St = s

]

, for all s ∈ S (12)  

or the action-value function: 

qπ(s, a) = Eπ [Gt|St = s, At = a] = Eπ

[
∑∞

k=0
γkRk+t+1

⃒
⃒
⃒
⃒
⃒
St = s,At = a

]

(13) 

which describes the expected return after choosing an action at in 
state St and thereafter following policy π. 

2.3.1. Parameters and settings 
As for the MPC, also the RL is formulated to replace low-level control 

(subsection 2.1.3): the control actions are therefore the water supply 
temperature and the value of the flow in circulation. As for the MPC, the 
pressure levels of the circuit are not taken into account and the flow rate 
regulation is performed by the control only to accomplish the energy 
balances. 

The observation ot is composed of 4 signals, the hour of the day, the 
external air temperature Te, the difference between the return temper
ature estimated by Equation (1) with respect to the set point tempera
ture (Tr − Tr,sp) and the difference between the heat demand estimated 
by Equation (4) and that measured at previous step. The measured heat 
demand at the actual time step can be considered as a good feature to 
predict the heat demand at the next step (15 min) since the best fit rate 
of the difference yk+i|k − yk|k is 89 % and the RMSE is equal to 0.226 MWth 
in the year 2018. As reward function is considered the minimization of 
the overall thermal demand and an Actor-Critic (AC) agent is employed 
for training. The AC agent uses a model-free, online, on-policy rein
forcement learning method, to implement actor-critic algorithms, such 
as A2C and A3C. The observation space is considered continuous, and 
the action space is considered discrete where the supply temperature 
action space ∈ ±[0,0.5, 1, 2,3, 4,5] and the flow rate action space ∈ ±[0,
0.5, 1,1.5, 2, 3,4,⋯,20] for a total of 585 combinations. For the critic 
and actor networks is considered the same deep neural network archi
tecture composed of 8 layers: input layer, fully connected layer, 

Table 4 
RMSE values (grey box DH model): training and testing data set.  

Data set Tr(◦C) Q̇(MWth) 

Training data set (first 3 weeks of January 2018)  1.59  0.219 
Testing (22 January/4 February 2018 and 22 March/4 April 

2018)  
1.75  0.231 

Testing all data (year 2018)  1.54  0.167  

Fig. 5. Monthly percentage impact of thermal losses on demand (grey 
box model). 
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hyperbolic tangent activation layer, fully connected layer, hyperbolic 
tangent activation layer, fully connected layer, rectified linear unit 
layer, output fully connected layer. The size of the fully connected layer 
and hyperbolic tangent is set at 32. 

3. Results and discussion 

In this Section the results of the application of MPC and RL to the 
CHP-DH plant are presented. The first two subsections (3.1 and 3.2) 
describe the expected operation of the system when controlled respec
tively with the MPC and the RL. The observed dynamic of the plant with 
the two controls are compared with the current operation of the plant (i. 
e., real data), which will be considered as the reference case. In both 
cases the application of the control is evaluated in a simulated envi
ronment and the controlled system is represented by the grey box DH 
model presented in subsection 2.2.1. However, both controls are 
applicable to the actual CHP-DH plant as they are characterized by very 
short execution times (i.e., milliseconds). To generalize the analysis, 
subsection 3.3 contains a critical discussion of the advantages and dis
advantages that emerged in the modelling of the two controls for the 
system under study. 

3.1. Application of Model Predictive Control 

The results of the MPC are divided in two parts. The first (subsection 
3.1.1) describes the operational evaluation and the performance ob
tained with reference to the current operation of the CHP-DH plant. In 
the second part (3.1.2), the limitations and observations that emerged 
during control modelling are critically discussed. 

3.1.1. Assessment of the control in operation 
In order to show the results of the application of the MPC to the CHP- 

DH plant, two reference periods were considered: one representative of 
the winter season (from 7th to 21st of January) and one of the mid- 
season (from 18th of March to the 1st of April). A summer period has 
not been evaluated as the control strategy that would evaluate the MPC 
would be similar to the current one, in which the supply temperature is 
already kept close to the minimum limit (75 ◦C). 

Regarding the winter period, Fig. 6 compares the total thermal de
mand covered by the heat generator in presence of the MPC with respect 
to the reference case. It can be noted the potential effectiveness of the 
MPC in reducing the thermal demand, especially in the hours of low heat 
demand. To make the distinction between day and night periods clearer, 
in Fig. 6 the central part of the day (from 7.00 am to 8.00 pm) is high
lighted in light grey. The distinction between the time bands in Fig. 6, as 
for the other figures in Section 3 (Figs. 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 
19, 21, 22, 23, 24), is not actually considered in the optimal control, but 
is used here only to facilitate the representation of the results and make 
the comparison with the current control more direct. 

A lowering of the minimum load is observed with the MPC. This 
advantage is most evident when considering the night hours (from 8.00 
pm to 7.00 am, Fig. 6). The base load, in fact, goes from 1.6 MWth in the 
reference, to 1.36 MWth in the case of MPC, with a reduction of about 15 
%. This lowering is caused by the different regulation strategy that the 

MPC sets in terms of supply temperature and water flow rate. After 8.00 
pm the supply temperature is kept for almost all the time at the mini
mum value allowed by the constraint (85 ◦C, as described subsection 

Fig. 6. Total thermal demand covered by heat generator (CHP engine and 
boilers) in a winter reference period (7th-21st of January) comparison between 
real data and MPC. 

Fig. 7. Water supply temperature in a reference winter period (7th-21st of 
January): comparison between real data and MPC. 

Fig. 8. Water flow rate in a reference winter period (7th-21st of January): 
comparison between real data and MPC. 

Fig. 9. Water return temperature in a reference winter period (7th-21st of 
January): comparison between real data and MPC. 

Fig. 10. Percentages of NG of boilers and CHP engine (7th-21st of January): 
comparison between real data and MPC results (percentages refer to real data). 
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2.2.3), and the water flow rate is more or less similar to the reference 
case (areas not highlighted in the Figs. 7 and 8). This is possible because, 
at night, thermal losses, which depend heavily on water temperatures, 
represent an important contribution in the total heat demand: they are 
almost the 18 % of night heat demand (the share drops to 11 % during 
the day). The reduction of the estimated losses towards the ground at 
night is about 5.2 %, going from 93.8 MWhth to 88.9 MWhth. However, 
MPC effectively lowers the impact of losses even during the day, which 
pass from 94.1 MWhth to 91.6 MWhth. Also in this case, albeit less 
evidently than at night, the MPC tends to lower the supply temperature, 
leaving the flow rate values close to those of the reference case (areas 
highlighted in light grey in Figs. 7 and 8). Indeed, during the day, the 
MPC tries to lower the supply temperature as much as possible, 
following the dynamics of the users’ heat demand. 

As described in Section 2.2, the MPC has also been formulated to 
keep the water return temperature close to an imposed value (Tr,sp in 
Equation (1)). Fig. 9 compares the trend of the water return temperature 
obtained with the MPC with the reference case (i.e., measured data). As 
can be seen, the MPC is able to maintain the required temperature level 
(63 ◦C) more punctually than the actual control. 

To summarize, Table 5 contains an estimate of the main energy 

Fig. 11. Total thermal demand covered by heat generator (CHP engine and 
boilers) in a mid-season reference period (18th March–1st April): comparison 
between real data and MPC. 

Fig. 12. Water supply temperature in a mid-season reference period (18th 
March–1st April): comparison between real data and MPC. 

Fig. 13. Water flow rate in a mid-season reference period (18th March–1st 
April): comparison between real data and MPC. 

Fig. 14. Water return temperature in a mid-season reference period (18th 
March–1st April): comparison between real data and MPC. 

Fig. 15. Percentages of NG of boilers and CHP engine (18th March − 1st April): 
comparison between real data and MPC results (percentages refer to real data). 

Fig. 16. Total thermal demand covered by heat generator (CHP engine and 
boilers) in a reference winter period (7th-21st of January): comparison between 
real data and RL. 

Fig. 17. Water supply temperature in a reference winter period (7th-21st of 
January): comparison between real data and RL. 

Fig. 18. Water flow rate in a reference winter period (7th-21st of January): 
comparison between real data and RL. 
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parameters in the period analyzed. As can be seen, the MPC allows to 
obtain a reduction of 8.2 % of the total heat demand that the CHP engine 
and the boilers must cover, of which about 7 % derives from the 
reduction of the thermal losses towards the ground (7.3 MWhth). In 

general, the thermal losses are reduced by 3.9 % compared to the current 
control: reduction of 2.6 % considering the daily hours and 5.2 % 
considering the night hours. Considering the efficiency of the CHP en
gine and boilers shown in Table 1 and a calorific value for NG equal to 
9.4 kWh Sm− 3, Table 5 also reports the estimation of the fuel savings 
that can be obtained with the MPC. In the period analysed (7th-21st of 
January), it is obtained a potential NG saving of 12,800 Sm3, corre
sponding to a primary energy saving of about 126 MWh and to avoided 
emission of 23.3 tCO2 (values calculated considering a conversion factor 
in primary energy of natural gas of 1.05 [36] and an equivalent emission 
factor of 0.1936 kgCO2/kWh [37]). Going into detail, Fig. 10 shows the 
NG use share of the single technologies involved in satisfying the ther
mal demand. The percentages given in the pie chart are referred to the 
total consumption for the reference case. In this way, there is an addi
tional slice in the case of MPC which quantifies the savings. The 
reduction in NG consumption is due exclusively to the reduction in 
boilers consumption. This is a favorable aspect for the operation of the 
heat generation plant as it leads to an increase in the share of demand 
satisfied by the CHP engine. 

It is interesting to note that, the evaluation of the results shown in 
Table 5 and in Fig. 10 is made only by knowledge of the performance 
curves of the generator. This makes the analysis generalizable also to 
different generation systems as long as the performance curves are 
known. 

The analysis on the winter period confirms the effectiveness of the 
MPC on the CHP-DH management. These observed performances were 
also confirmed by the analysis performed on the mid-season reference 
period (from 18th of March to the 1st of April). Fig. 11 represents the 
comparison between the total thermal demand in the case of MPC and 
the reference case in the chosen period. Also, in this case there is a 
reduction in the basic demand: which goes from 1.40 MWth to 1.37 
MWth. It is confirmed that the tendency of the MPC is to decrease the 
water supply temperature (Fig. 12) as much as possible at night, while 
the flow rate tends to follow the measured trend (Fig. 13). However, it is 
observed the trend of the MPC to mitigate the variation in demand 
which fluctuates in a smaller interval compared to the real data. 
Furthermore, observing the return temperature (Fig. 14), the consider
ations made for the winter period can be repeated. 

Also in the mid-season, the energy assessment allows to evaluate the 
effectiveness of the MPC. The total demand covered by the generator 
decreased by 6.64 %, going from 1385 MWhth to 1293 MWhth, while the 
estimated thermal losses towards the ground decreased by about 3.5 %, 
going from 188.6 MWhth to 182 MWhth (Table 6). Again, the highest 
percentage reduction of the estimated thermal losses occurs at night. A 
reduction of about 4.6 % at night was estimated, the percentage become 
2.8 % in the hours of the day. Even in the case of mid-season, the MPC 

Fig. 19. Water return temperature in a reference winter period (7th-21st of 
January): comparison between real data and RL. 

Fig. 20. Percentages of NG of boilers and CHP engine (7th-21st of January) 
with RL (percentages refer to real data). 

Fig. 21. Total thermal demand covered by heat generator (CHP engine and 
boilers) in a reference mid-season period (18th March − 1st April): comparison 
between real data and RL. 

Fig. 22. Water supply temperature in a reference mid-season period (18th 
March − 1st April): comparison between real data and RL. 

Fig. 23. Water flow rate in a reference mid-season period (18th March − 1st 
April): comparison between real data and RL. 

Fig. 24. Water return temperature in a reference mid-season period (18th 
March − 1st April): comparison between real data and RL. 

Table 5 
Energy estimates and NG consumption (7th–21st of January): comparison be
tween real data and MPC.  

Data Real MPC 

Total thermal demand (MWhth) 1413 1297 
Thermal losses (MWhth) 187.9 180.6 
NG consumption (Sm3) 218,580 205,780  
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allows to achieve a saving of 10,180 Sm3 of NG (Table 6), corresponding 
to a primary energy saving of about 100.5 MWh [36] and to avoid the 
emission of 18.5 tCO2 [37]. Moreover, observing the composition of the 
technologies involved in covering the demand (Fig. 15), the observed 
trends of fuel saving in Fig. 10 are confirmed. As for the winter case the 
saving of NG happens mainly at the expense of the two boilers that 
reduce their hours of operation. This leads once again to an increase in 
the percentage of demand met by the CHP. 

3.1.2. Critical analysis of the control technique 
The results of applying the MPC to the CHP-DH plant showed the 

potential effectiveness of the control in optimizing the energy con
sumption of the plant. However, it is important to highlight that the 
benefits obtained in quantitative terms must be considered as potential 
and not actual performance. Observing the results in terms of the 
objective pursued, it is evident the ability of the MPC to evaluate the 
optimal solution in compliance with the constraints. However, it is not 
possible to simply exclude inaccuracies in the prediction capacity of the 
model during the operation. Such inaccuracies may be due either to an 
inaccurate formulation and/or configuration of the model or to the 
presence of not expected disturbances. Both aspects also clearly emerged 
during the MPC modelling. Indeed, the identification of the model 
configuration for the case study involved a great effort. As can be seen in 
the formulation described in Section 2.2.1 (Equation (1)), it was 
necessary to add a corrective factor to represent the limitation in the 
variation of the return temperature. 

The observation of the comparison of the return temperatures ob
tained with the MPC with the measured data (Figs. 9 and 14) also allows 
to note that the model is not able to capture the instant dynamics of the 
system. The trend of the measured return temperature in fact contains 
high frequency oscillations of which it is difficult to predict the cause. 
These are probably due to unexpected causes (e.g., delays in control 
actions, measurement errors or mechanical systems with delay) that it 
was not possible to frame with a mathematical representation. These 
disturbing contributions are not successfully represented by the model. 

There is also one last aspect that is worth highlighting: the assess
ment of the thermal losses to the ground should be seen in qualitative 
rather than quantitative terms. Indeed, the accuracy of the quantifica
tion of thermal losses towards the ground is not certain. Since the 
reference is not derived from direct measurements, it is not possible to 
precisely quantify the reliability of the model in this sense. This should 
be considered when modelling controls whose formulation requires 
data. In fact, detailed measurements of each physical size of interest are 
not always available. 

3.2. Application of Reinforcement Learning 

Also for RL the presentation of the results is divided into two parts. In 
the first, there is the description of the operating behaviour of the CHP- 
DH plant in comparison to the reference case (3.2.1). In the second 
(3.2.2) the discussion on the limitations that emerged during RL 
modelling is provided. 

3.2.1. Assessment of the control in operation 
As in the case of the MPC, the results for the RL are also evaluated in 

the two representative periods in winter (from 7th to 21st of January) 
and mid-season (from 18th of March to the 1st of April). For the reasons 

given at the beginning of the previous subsection, also for the RL the 
analysis of the results will exclude the summer case. 

Fig. 16 shows the comparison between the total heat demand ob
tained with the RL and the reference case (also in this case the hours of 
the day are highlighted) in the winter period. It can be observed that the 
RL can effectively meet the thermal demand of the users minimising the 
thermal losses. With the RL there is a considerable reduction (about 35 
%) of the base load, which becomes equal to 1.035 MWth. Figs. 17 and 18 
show respectively the supply temperature and flow rate trends estab
lished by the RL in comparison to the reference case. It can be noticed 
that, compared to the MPC (Figs. 7 and 8), the RL tends to suggest 
control strategies that include higher flow rates and as low as possible 
supply temperatures, always compatible with the operational 
constraint. In the MPC the dynamics of the users’ heat demand were 
more followed by the supply temperature trend (Fig. 7), while in the RL 
it is the flow rate that reflects the dynamic changes in the demand 
(Fig. 18). In addition, the RL is more capable than the MPC in avoiding 
the power peak (Fig. 16) occurring between the shift from the night to 
the day. 

By suggesting lower supply temperatures, the RL reduces losses by 
about 6.54 % over the period considered. At night only, the reduction in 
losses is about 7 % from 93.8 MWhth to 87.2 MWhth. During the day it is 
about 6 % (from 94.1 MWhth to 88.4 MWhth). Fig. 19 shows the trend of 
the water return temperature. It can be observed that also with the RL 
the control keeps the return in a range rather close to the imposed set 
point. However, there is a trend in the temperature variation more in 
accordance with the measured data. 

Table 7 shows the energy and fuel consumption assessed for the RL in 
comparison with the reference control. While losses appear to be 
decreasing more than with the MPC, the RL produces a lower reduction 
in demand: around 4.4 %. The overall NG consumption is therefore 
reduced less than the in the case with the MPC. Fig. 20 shows the NG 
demand share of the technologies involved in satisfying demand. This 
was evaluated with the efficiencies of the technologies reported in 
Table 1 and considering a calorific value of 9.4 kWh Sm− 3 for the NG. An 
overall saving of 3 % (6910 Sm3 of NG) is observed, while with the MPC 
it reached 6 % in the same period. However, although the saving seems 
to be low in percentage, the RL allows to save about 68 MWh of primary 
energy [36] and to avoid the emission of 12.6 tCO2 in the period ana
lysed [37]. Furthermore, also in this case, the saving is made only at the 
expense of the boilers, confirming the advantage of control in increasing 
the percentage share of the demand covered by the CHP engine. 

Considering the mid-season period (from 18th of March to the 1st of 
April), the control is less effective than in the winter case is observed. 
Fig. 21 shows the total heat demand in the period considered in relation 
to the measured data. The RL produces a reduced decrease of the base 
load from 1.4 MWth to 1.02 MWth. Although less evident than in winter, 
the tendency of the RL is to adjust the demand more with the flow rate 
(Fig. 23) than with the supply temperature (Fig. 22). In this case, 
however, the control is not able to evaluate solutions with supply tem
perature always close to the lower limit. However, the RL confirms in the 
observed period its ability to reduce thermal losses. The RL allows to 
avoid 6.2 MWhth of thermal losses in the night hours and about 5.4 
MWhth in the hours of the day. Moreover, as shown in Fig. 24, the same 
considerations for the return temperature apply as for the winter case. 

Table 8 shows the values of the total heat demand covered by the 
heat generator, the total thermal losses towards the ground and the total 

Table 6 
Energy estimates and NG consumption (18th March–1st April): comparison 
between real data and MPC.  

Data Real MPC 

Total thermal demand (MWhth) 1385 1293 
Thermal losses (MWhth) 188.6 182 
NG consumption (Sm3) 213,310 203,130  

Table 7 
Energy estimates and NG consumption (7th–21st of January): comparison be
tween real data and RL.  

Data Real RL 

Total thermal demand (MWhth) 1413 1351 
Thermal losses (MWhth) 187.9 175.6 
NG consumption (Sm3) 218,580 211,670  
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consumption of NG in comparison with the measured data. In this case 
the saving is about 5170 Sm3 of NG which correspond to about 51 MWh 
of primary energy [36] and 9.4 tCO2 avoided [37]. Fig. 25 instead shows 
the consumption of NG for the technologies involved. Fig. 25 is referred 
to the case in which the plant is controlled with the RL and, to highlight 
the NG saving, the percentage are referred to the reference case 
(Fig. 15). Although with a lower impact, this case confirms the fuel 
savings at the expense of boilers. 

3.2.2. Critical analysis of the control technique 
The evaluation of the results with the application of the RL to the 

CHP-DH plant also showed the potential of the control to reduce the 
impact of the thermal losses. However, as for the MPC, observations 
should be made on the assessment of the reliability of the results. As 
already mentioned in the methodology (Section 2.3), the RL used in this 
work was formulated with a double target to be pursued: the return 
temperature and the net demand of users (excluding losses). The latter, 
in the absence of measured data, was evaluated with the model of the 
controlled system. This is a first critical point of modelled RL, which 
highlights the difficulty of formulating a purely data-based control when 
some measures are not available. Implementing a purely RL control 
requires in fact a large dataset for training. This dataset should contain 
both breakdowns of measures (as in our case the net demand compared 
to the total covered by the heat generator) and all the possible config
urations in which the plant can be found to operate. Furthermore, it 
would also be very useful to shave operating points where the plant 
violates operational constraint. In RL constraints are usually defined as 
penalties and then included in the reward; it is also a tricky matter to 
adjust the weights of penalties. Therefore, the process of identifying the 
reward function requires information about the right behaviour of the 
plant to be optimized (e.g., tracking of a setpoint, minimization of en
ergy cost) but also what the plants should not pursue (e.g., violation of 
constraints). These data are not only often not available but would 
involve having to operate the plant under intentionally unfavourable 
conditions for a time that is difficult to estimate. 

The difficulty of planning the duration of the time periods required to 
obtain sufficient measurements and/or to set the best function is another 
aspect to consider in the case of RL. In our case, for instance, the 
adjustment was performed using a trial-and-error approach. The 
training process was quite slow and complex. Several hours and several 
trials were needed to set the optimal weights of the reward function, 

with the conclusion that it is not possible to exclude that there are better 
configurations than the one presented in this paper. Consequently, the 
control logic presented in the previous Section (3.2.1), in which it is 
noted that the strategy chosen by the RL tend to prefer the management 
of the flow rate rather than the supply temperature, is strongly affected 
by the RL training solution. It is therefore not obvious to find a physical 
interpretation of this choice preferred by the control. 

3.3. General comparison of the pros and cons of MPC and RL 

The previous Sections show the results obtained from the application 
of the two controls to the CHP-DH plant under study. Both controls have 
been found to be potentially effective in reducing the energy impact of 
the plant compared to its current operation. However, as already dis
cussed, some important differences between MPC and RL have emerged 
during their formulation and application. In this concluding Section, 
based on the results described in Sections 3.1 and 3.2, the key differ
ences between the two controls will be listed. In particular, the critical 
points and advantages will be discussed with the aim of increasing the 
awareness on pros and cons of advanced control techniques. The dis
cussion will be structured by addressing three fundamental aspects: (i) 
main drawback of the controls, (ii) difficulty of mathematical formula
tion and (iii) ability to adapt to system changes. 

(i) Main drawback of MPC and RL. 
In general, both the MPC and the RL have a critical point that rep

resents the main barrier to overcome to ensure the desired performance. 
For the MPC the critical point is the system model, while for the RL it is 
the training process. 

The effectiveness and reliability of the MPC are closely related to the 
accuracy of the forecast model. Two levels of difficulty need to be 
addressed: (i) identifying the right model architecture without 
exceeding complexity and (ii) having enough system-related informa
tion and/or measured data. Furthermore, the model should not only be 
accurate in replicating the known dynamics of the system but should 
also be able to predict possible responses of the system when subjected 
to stresses or inputs other than those known. For complex systems that 
are affected by many factors, even difficult to predict, such as in the 
CHP-DH plant considered, this latter aspect is not always taken for 
granted. In our case, in fact, the main difficulty that was encountered in 
the formulation of the MPC was precisely in defining the model of the 
DH network. Even because the data measured are rarely available in the 
required completeness and detail. 

On the other hand, the RL, which generally does not need system 
knowledge, requires considerable effort to get through the training 
process. For complex systems, such as that seen in this work, the training 
process of the RL is very expensive and could almost certainly lead to 
phases, even long, in which the controlling actions generate high system 
malfunctions (trial and error approach). This freedom to make mistakes 
that must be granted to the control is not always acceptable for energy 
applications as for the case study analysed. For this reason, as in the 
formulation presented in this paper, it seems practically obligatory to 
perform «offline» training a priori and make online only the refinement 
of the solution (e.g., to adapt it to the weather conditions and the loads 
of the network that can change). The latter aspects reduce the inde
pendency of the control from having information on the system. 

(ii) Difficulty of mathematical formulation. 
Beyond the drawback represented by the model (i), the differences in 

terms of mathematical formulation between MPC and RL are consider
able. MPC in fact is one of the most promising and most used control 
techniques, even in the industrial field, due to its effectiveness and ease 
of formulation. The main advantages of the MPC from this point of view 
are:  

• It always allows to evaluate the optimal solutions (this is clear from 
the results for the CHP-DH plant, Tables 5 vs 7 and Table 6 vs 8). 

Table 8 
Energy estimates and NG consumption (18th March–1st April): comparison 
between real data and RL.  

Data Real RL 

Total thermal demand (MWhth) 1385 1338 
Thermal losses (MWhth) 188.6 177 
NG consumption (Sm3) 213,310 208,140  

Fig. 25. Percentages of NG use of boilers and CHP engine (18th March − 1st 
April) with RL (percentages refer to real data). 
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• Its mathematical formulation is quite simple. In fact, given the reli
ability of the model for granted, it is possible to define rather clear 
control target.  

• It allows to easily consider physical constraints to be imposed on the 
control, both soft and hard. 

On the other hand, the aspects that represent advantages for the MPC 
are weaknesses for the RL. In fact, the RL:  

• Does not allow to evaluate the absolute optimal solution.  
• Its mathematical formulation is complex. In general, RL requires 

good computational skills. Even with a trained offline control, as in 
the case presented, many computational difficulties and very long 
times of setting to identify the hyperparameters, to define the func
tion of reward and the deep neural network architecture for the 
actor-critic representation (i.e., how many neurons, how many 
layers, what neuron typology, etc.) are required. 

• With the RL there are no guarantee that hard constraints are satis
fied. This aspect did not clearly emerge from the results we obtained, 
as the identified reward proved to be particularly effective in effec
tively controlling the CHP-DH plant. However, it should be borne 
taken in mind that in RL constraints are usually defined as penalties 
and then included in the reward: in this way, the agent learns to 
avoid such penalties. This does not guarantee, as in the case of the 
MPC, the guarantee of compliance with the constraints, but corre
lates everything with the definition of the reward function. 

(iii) Ability to adapt to system changes. 
The aspect of the adaptability of the MPC and the RL to changes in 

configuration or operating modes of the system has different charac
teristics if we consider this ability as a feature to have online or offline. 
Indeed, it is quite simple to make changes to the MPC structure. 
Therefore, it allows to easily include modifications and new features 
offline. Changes in the structure of the RL are to be avoided as they 
would involve a new training process with all the difficulties attached 
and its onerousness. In general, however, a reformulation of the struc
ture of the RL is possible but requires the whole offline training. On the 

other hand, the MPC has a fixed structure once implemented. The RL 
does not have a fixed structure and has the advantage over the MPC to be 
able to improve during its operation. Therefore, from the continuous 
collection of measured data the RL has the ability to evolve considering 
unexpected changes in the actual operation (ability to adapt online). 

In conclusion, Fig. 26 summarizes the main findings of the performed 
comparison. The objective of the paper is not to suggest one type of 
control rather than the other, but to provide a case study that can be 
taken as a reference for anyone who wants to implement one of these 
techniques to control an energy system. 

4. Conclusions 

This work showed the application of two advanced control tech
niques, namely Model Predictive Control (MPC) and Reinforcement 
Learning (RL) to a case study consisting of a Combined Heat and Power 
plant serving a District Heating network (CHP-DH) located in central 
Italy. 

The work has a twofold objective. Firstly, to evaluate the effective
ness and potential of these control techniques in the CHP-DH plant 
considered. This should be understood as a preliminary investigation to 
evaluate the replacement of the current control technique with a more 
advanced one. The second objective, which derives from the realization 
of the first, consists in presenting a critical analysis of the pros and cons 
encountered during the modelling of the two controls for the CHP-DH 
system on a real case study, with the intention of being able to offer 
food for thought for anyone else who wants to apply these two control 
techniques to large-scale operating systems. 

Based on the knowledge of the CHP-DH plant characteristics and the 
availability of data measured over a whole year, the two controls (MPC 
and RL) were formulated and tested in a simulated environment. In both 
cases, the purpose of the control is to be able to satisfy the demand of the 
users, reducing the energy expenditure for network losses. To do this, 
both the supply temperature and the circulating flow rate have been 
used as control variables. 

The main results and considerations that emerged can be summa
rized in the following points: 

Fig. 26. Key aspects emerged from the comparison of MPC and RL.  
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• Both controls showed their effectiveness in meeting the heat demand 
of the users, reducing the heat losses of the network. In a reference 
winter period, thermal loss reductions of up to 3.9 % were achieved 
for the MPC and up to 6.54 % with the RL. During the reference 
period (2 weeks) with the MPC, avoidance of CO2 emissions up to 
23.3 tCO2 and up to 12.6 tCO2 with the RL were assessed.  

• Although the same objective was achieved, the two controls showed 
different trends in the selection of control actions. The MPC in fact 
showed a reduction in the supply temperature on average less 
evident in the hours of greatest demand. The RL, on the other hand, 
showed more of a propensity to lower the supply temperature and to 
act on the flow rate to chase up increases in demand from users.  

• Both in the MPC modelling and in the RL, critical issues emerged. In 
the first case, the reliability of the results is very linked to the model 
used in the control. If there are not many data available and there are 
disturbances not easily identifiable, the MPC can suggest strategies 
whose impact in reality is different from the estimated one. On the 
other hand, the RL, which is not model based, is potentially more 
adaptable to unexpected variations. However, RL requires a number 
of computational skills for its formulation that cannot be overlooked. 

These are the main considerations that emerged from the application 
of the controls to the case study. What has emerged is that the MPC is 
certainly the control technique to be preferred when the physics of the 
problem is known, the optimal solution is required and the compliance 
with hard constraints is essential. On the other hand, the RL can be 
applied, albeit with a number of difficulties, even when it is not possible 
to have any knowledge of the system. Moreover, this is the control to be 
preferred when it is required a controller able to improve itself through 
data gathering during operation. 
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