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Abstract: The present paper treats a black-box estimation of the three independent parameters of a
reciprocal lossy two-port network whose terminals are supposed to be accessible to an impedance
measurement device. The discussed estimation method is based on the availability of a number of
data pairs made of external load admittances paired to equivalent external admittances affected by
measurement errors. The proposed method is framed as a squared-estimation-error minimization
problem that leads to a system of three nonlinear equations in the three unknown parameters. A key
observation is, however, that a core subsystem of two equations may be turned exactly to a linear
form and hence may be solved in closed form. The purely real-valued case is treated first since it
serves to clarify the optimization problem at hand and the structure of its solution. In the purely
real-valued case, a statistical analysis is carried out as well, which affords the evaluation of the effects
of the measurement errors. The results of the statistical analysis afford quantifying the dependence of
the estimation errors from the number of samples and from the variance of the measurement errors.
Subsequently, the full complex-valued case is treated. Results of numerical simulations complement
and illustrate the theoretical findings. The obtained numerical results confirm the statistical analysis
and that the proposed external identification method is effective.

Keywords: external identification; black-box modeling; minimal squared error; two-port equivalent
network model

1. Introduction

Linear two-port and multiport networks have found widespread application in engi-
neering and in applied sciences to model multivariable interaction phenomena. A recent
reference on multiport networks and on their energy-exchange properties published on
Energies is [1], while a general-purpose textbook that includes multiport elements is [2].

Multiport networks have been used in the modeling of complex mechanical sys-
tems [3], in waveguides modeling and calibration [4] as well as in antennas modeling and
optimization [5], in modeling bioheat transfers in lungs (in particular during thoracic and
open-heart surgery) [6], in the analysis of power delivery in electrical railways systems [7],
in modeling low dropout voltage regulators [8] as well as in modeling and analyzing
multiple grid-connected voltage source converter systems [9], in the modeling of electro-
chemical transport processes through biological membranes [10], as well as in the modeling
and simulation of acoustic systems [11] even by two-port circuit models derived from the
linearized Navier–Stokes equations [12]. In addition, nonlinear multiterminal electronic
devices or portions of electronic circuits may be represented, in the small-signal hypothesis,
as linear multiport networks.

Most black-box modeling techniques of linear interaction phenomena involve two-port
circuits. However, multiport circuit models are of prime importance when a large number of
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variables are involved in an interaction phenomenon. As a specific application to exemplify
the usefulness of multiport identification, consider the electronic chip package/connector
de-embedding problem tackled in [13]. The plastic package of an electronic chip embeds
a number of highly conductive wires whose function is to connect the internal electronic
chip to the external pins. At very high frequencies (in the range of GHz), a number of
parasitic effects show up and, in particular, the connecting wires interact to each other
electromagnetically in such a way that they may no longer be regarded as simple wires.
In [13], the package is modeled as a reciprocal, linear, time-invariant multiport network,
which is supposed to be accessible by n internal electrical ports and n external electrical
ports. The identification of the circuit model, represented through its 2n× 2n admittance
matrix, is carried out by measuring the admittance of the external ports by a vector network
analyzer. Once identified, the model is used to de-embed the internal chip, namely, to
decouple the signals to/from the chip’s pins which become mixed up by the connector. A
further example concerns modeling microvascular networks [14], where two-port models
are used to compute biohydraulic quantities related to fluid circulation in thin blood vessels.
In such an application, hence, neither the modeled phenomenon nor the variables of interest
are of electric type.

Two-port networks turn out to be useful tools that afford analyzing the behavior and
performance of linear networks that may be accessed by two pairs of terminals. Two-
port network models are electrical circuits that embody a mathematical representation of
the relationship occurring between the two independent voltages and two independent
currents at their terminals. There exist six common types of two-port network models,
classified as impedance, admittance, hybrid, and transmission type [15,16].

One of the challenges of using two-port network models is identifying the values of
their independent parameters. There exist different methods to accomplish such a task,
such as short-circuit, open-circuit, and known-load tests [2]. Each method implies applying
known voltages and currents to the terminals and measuring the resulting voltages and
currents. The choice of one specific method depends on the feasibility and accuracy of the
available measurement devices. In the present research work, we deal specifically with the
problem of the external identification of the three independent parameters of a reciprocal,
lossy Y-type two-port network. Lossy networks characterize, among others, transmission
media that entail some form of energy dissipation, such as energy loss due to nonideal
conducting walls [17,18].

A basic assumption behind the present research is that the terminals of the two-port
network are accessible to an impedance-measurement analyzer. Through such device, a
number of test loads may be subjected to measurement of admittance. Next, such known
loads may be connected to one of the ports of the network, and the equivalent admittance
at the other port may be measured. In this way, a dataset may be collected, made of external
load admittance values paired to equivalent external admittance values.

The collected data pairs are supposed to be affected by measurement errors whose
entity depends on the quality of the measurement device and on the competence in the
investigation. Whenever the measurement errors affecting the data available to accomplish
the identification task are not negligible, the classical identification methods may be severely
affected in a negative way. (In dimensions higher than two, such problem is even more
severe, as illustrated, for instance, in [1].) In these instances, alternative identification
methods may, hence, prove viable. A summary of three methodologies to accomplish
identification are summarized in Table 1.

The method utilized to estimate the values of the parameters is based on a squared-
estimation-error minimization procedure. Such formulation leads to a system of three
nonlinear equations in the three (independent) unknown parameters of the Y-type two-port
network model. A subsystem of two equations is then isolated, and it will be shown that
such a subsystem may be turned exactly (i.e., without any approximation) to linear by an
appropriate ansatz and may hence be solved in closed form.
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The first part of the present paper deals with the purely real-valued case that serves
to clarify the problem and the found solution. The relative simplicity of the equations
pertaining to the purely real case affords a statistical analysis to quantify the effects of the
measurement errors on the quality of the solution, under the form of the mean values and
the variances of the deviations of the estimates to the actual values, evaluated to lowest
order of approximation. In the second part of the paper, the full complex-valued case is
treated, although with fewer details compared to the real-valued case since the equations
are similar to the ones found for the purely real case.

Table 1. Advantages and drawbacks of three categories of external identification methods.

Method Advantages Drawbacks

Classical [2] Requires a minimal number of measurements;
requires minimal computational efforts.

Assumes errorless measurements and presents a lack
of resiliency to measurement errors.

Iterative [1] Deals with measurement errors by an iterative
least-squared error approach.

Requires a larger number of measurements (from
dozens to hundreds, depending on the size of the
multiport network) which may be effected through an
inexpensive instrumentation; requires a powerful
computation platform.

Nonclassical, closed
form (proposed)

Deals with measurement errors through a
least-squares-error approach; does not requires
a powerful computation platform.

Requires a larger number of measurements which may
be effected through an inexpensive instrumentation.

The present analysis is of methodological value and does not imply any in-lab ex-
perimentation. Results of numerical simulations are hence displayed and discussed to
complement and illustrate the theoretical findings throughout the paper.

2. Nomenclature Summary

The present paper includes several variables and constants. Table 2 summarizes
the principal symbols used in the following sections and is meant as a guide for readers
throughout the extensive notation used.

Table 2. List of the principal symbols used within this manuscript and their description.

Symbols Description

x, y, z Independent parameters of the two-port network to be identified.
(hk, gk) Dataset pair to conduct identification.
N Number of dataset pairs.
εk, Ek, J Specific and global modeling error.
A, B, C, D, E, F, G, H, K Correlations between data entries to be used in the resolvent system and in the statistical analysis.
M, d Coefficient matrix and vector of the resolvent system.
t Estimated closed-form solution.
Σ2 Variance of the measurement error.
〈∆t〉, Ct Mean and variance of estimation mismatch.
V, L, R, S, P, W Higher-order correlations between data entries to be used in the statistical analysis.

3. Problem Formulation for the Real-Valued Case

In the present work, we shall assume that a two-port system is represented by a 2× 2

impedance matrix Y =

(
Y11 Y12
Y21 Y22

)
. Since the working hypotheses are that the system

being modeled is lossy, reciprocal, and memoryless, we shall assume that the matrix Y
is symmetric, real-valued, and positive definite, namely, that it possesses the structure
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Y :=
(

x y
y z

)
and that the following constraints on the three independent parameters

x, y, z ∈ R hold: {
x > 0,
xz− y2 > 0,

(1)

which inherently imply that z > 0 as well. A diagram of a two-port is shown in Figure 1.

I1

1 Y 2
+

−
V1

+

−
V2

I2

Figure 1. Two-port network diagram. The symbol Y denotes the type of representation; the marks 1
and 2 denote the port number. The diagram also shows the port-1 and port-2 voltage–current pairs.

Upon loading the second port by a resistor of conductance g > 0, the equivalent
conductance h at the first port reads

h = x− y2

z + g
. (2)

Notice that h = xz−y2

z+g + xg
z+g ; therefore, by definition of the conductance g and by

virtue of the constraints (1), it holds that h > 0, namely, the whole bipole behaves as a
passive resistor. Since z + g 6= 0, the above relationship may be rewritten as the following
constraint on the unknown triple (x, y, z) :

(h− x)(z + g) + y2 = 0. (3)

Clearly one single measurement testing is not enough to determine three unknowns,
nor would be three tests, because of inherent measurement errors. We shall henceforth ad-
mit a number N > 3 of independent tests, which provide a set of pairs (hk, gk), with
k = 1, 2, . . . , N. Due to measurement errors, none of such pairs exactly meet the
relationship (3). The discrepancy of the left-hand side to zero will be denoted as mod-
eling error and defined as

εk(x, y, z) := (hk − x)(z + gk) + y2, (4)

where each gk > 0 and each hk > 0. As a global model-to-data mismatch figure, we defined
the index

J(x, y, z) :=
1
2

N

∑
k=1

ε2
k(x, y, z). (5)

Optimal estimation consists in determining the values of the two-port parameters (x, y, z)
that minimize the quadratic error J and that meet the constrains (1).

4. Closed-Form Solution to the Optimization Problem for the Real-Valued Case

The first fundamental observation is that the pairwise modeling error appears as a
polynomial in the three variables x, y, and z. As a consequence, the global mismatch figure
J also takes the form of a polynomial in such three variables. In fact, it takes the expression

J = 1
2 (Nx2z2 + 2Dx2z + Cx2 − 2Nxy2z− 2Dxy2 − 2Exz2 − 4Bxz− 2Ax

+ Ny4 + 2Ey2z + 2By2 + Gz2 + 2Fz + H),
(6)
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where we introduce the following constants that depend only on the dataset
{(h1, g1), (h2, g2), (h3, g3), . . . , (hN , gN)}:{

A := ∑k hkg2
k , B := ∑k hkgk, C := ∑k g2

k , D := ∑k gk,

E := ∑k hk, F := ∑k h2
k gk, G := ∑k h2

k , H := ∑k h2
k g2

k .
(7)

It is interesting to underline that the constants D and E appear to be scaled versions
of the sample mean value of the datasets gk and hk, respectively, and the constants C and
G appear as scaled versions of the variances of the two sets, while the constant B appears
as a correlation coefficient between the data sequences (up to scaling and shifting). Such
observations will become useful in evaluating the positive definiteness of the Hessian
matrix associated with the error function J.

It is also useful to highlight that, since any value gk > 0 and hk > 0, any coefficient
in the list (7) is also strictly positive. Such observation will turn out to be worthy in the
evaluation of the shape of the feasible region.

In order to determine the critical points of the global error, it is necessary to compute
the partial derivatives of the function J with respect to its three variables and to set them
to zero. In order to confirm that such critical points correspond to minima of the criterion
function, it will also be necessary to compute the Hessian matrix of the mismatch function
J and to make sure that it is positive definite. The sought partial derivatives read

∂J
∂x

= −(A + 2Bz− Cx + Dy2 + Ez2 − Nxz2 + Ny2z− 2Dxz), (8)

∂J
∂y

= 2y(Ny2 + B + Ez− Dx− Nxz), (9)

∂J
∂z

= Gz + Nx2z + F− 2Bx− 2Exz + Ey2 + Dx2 − Nxy2. (10)

Some observations are worth highlighting. The first observation is that one trivial
solution arising by setting the partial derivative ∂J

∂y to zero would be y = 0; we shall,
however, rule out such a solution that would imply the absence of interaction between
the two ports, hence making the problem essentially unworthy examining. A second
observation is that the variable y appears always at the power of two; such observation
leads to the conclusion that, within the present framework, it is impossible to determine the
right sign of the parameter y and, hence, that this method always produces two possible
solutions, namely, (x, y, z) and (x,−y, z).

A third observation of interest is that from the equation Ny2 + B+ Ez−Dx−Nxz = 0,
arising from the relation (9), we may directly express the unknown y in terms of the
unknowns (x, z) as

y2 = 1
N (Dx + Nxz− B− Ez). (11)

By replacing such a result back into the first equation of the system, (8), and into
the third Equation (10), we may simplify the identification problem to a two-variable
optimization problem. But there is more to that, since the resulting system of equations
turns out to be linear and may hence be solved in closed form. In fact, the equations ∂J

∂x = 0
and ∂J

∂z = 0 lead to the linear system(
NC− D2 DE− NB
DE− NB NG− E2

)
︸ ︷︷ ︸

M:=

(
x
z

)
︸︷︷︸

t:=

=

(
NA− DB
BE− NF

)
︸ ︷︷ ︸

d:=

, (12)

where we have defined the two-variable 2× 1 unknown array t, the 2× 2 system matrix M,
and the 2× 1 coefficients array d. Notice that the matrix M results to be symmetric.
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The solution of the linear system (12) reads t = M−1d, where the inverse of the
coefficient matrix M takes the form

M−1 =
1
D

(
NG− E2 NB− DE
NB− DE NC− D2

)
, (13)

with D := det(M) = N
(
2BED− GD2 − CE2 + NCG− NB2). Henceforth, the solution in

closed form reads

t =
N
D

(
AGN − AE2 + B2E− BDG− BFN + DEF
ABN − ADE− B2D + BCE− CFN + D2F

)
. (14)

The Hessian matrix of the global modeling error J with respect to the variables (x, z)
reads M

N , hence the solution to the above linear system of equations represents a minimum
of the global error only if the matrix M is positive definite. Positive definiteness of such
Hessian matrix holds only if{

NC− D2 > 0,
(NC− D2)(NG− E2)− (DE− NB)2 > 0.

(15)

We will verify that such constraints are, in fact, always met. The first constraint,
NC > D2, may be recast explicitly as N ∑k g2

k >
(

∑k gk
)2. Upon defining

µg :=
1
N ∑

k
gk, σ2

g :=
1
N ∑

k
(gk − µg)

2, (16)

simple calculations show that NC− D2 = N2σ2
g > 0. Analogously, upon defining

µh :=
1
N ∑

k
hk, σ2

h :=
1
N ∑

k
(hk − µh)

2, Rhg :=
1
N ∑

k
(hk − µh)(gk − µg), (17)

the last one being a correlation coefficient, it turns out that NG − E2 = N2σ2
h and that

(DE− NB)2 = N4R2
gh; therefore,

(NC− D2)(NG− E2)− (DE− NB)2 = N4(σ2
g σ2

h − R2
gh). (18)

Since the value of the correlation coefficient Rgh/(σgσh) is strictly less than 1, the
second constraint is unconditionally met as well.

Notice that the positive definiteness of the matrix M
N implies the invertibility of the

matrix M which, in turn, implies that linear system of Equation (12) certainly admits
a solution.

Figure 2 shows the result of a numerical test. In this test, the actual values of the
parameters are Y11 = 3 Ω−1, Y12 = −1 Ω−1, and Y22 = 0.8 Ω−1, and the values of g are
drawn randomly from a uniform distribution in [0, 5]Ω−1. The measurement error is
herewith assumed to be a random noise with normal distribution. Namely, we shall assume
that each true value gk is affected by an additive normal measurement error, such that the
value that is effectively collected is gk + vk, with vk ∼ N (0, Σ2) and that each true value
hk is affected by an additive normal measurement error, such that the collected value is
hk + wk, where wk ∼ N (0, Σ2). The quantity Σ2 > 0 denotes the variance of the zero-mean
measurement error.



Energies 2023, 16, 6037 7 of 19

Figure 2. Result of a numerical test in the real-valued estimation case. The estimated/actual relation

refers to the function h(g) := x − y2

g+z with (x, y, z) set to the estimated values in the first case
and to the actual values in the second case. Notice that the red line and the blue line are hardly
distinguishable because they are almost perfectly superimposed, which testifies that the developed
estimation method provides a result hardly distinguishable, in practice, from the actual values of the
sought parameters.

The achieved minimal squared error is Jmin ≈ 0.00546 Ω−4.
We further notice that the definiteness constraint xz− y2 > 0 may be rewritten in

terms of the variables (x, z) only, through the relationship (11), as

B + Ez− Dx > 0. (19)

Such inequality, together with the further definiteness constraint x > 0, individuates
the feasible set of acceptable solutions situated in the upper-right quadrant of the plane R2,
as shown in Figure 3. The feasible region is characterized by the axes intercepts x̄ := B

D > 0
and z̄ := − B

E < 0 (since B, D, E > 0, as recalled at the beginning of the present section).
We shall remark that, in particular, whenever the actual value of z is approximately zero
(yet being positive), the feasible solution for x is approximately x̄.

x

z

−B/E

B/D

Figure 3. Shape of the feasible region in the x–z plane in gray color.
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The proposed external identification approach, resulting from the above mathematical
developments, is summarized by the flowchart displayed in Figure 4.

Compute six coefficients
as in Equation (7)

Determine the estimates
of the parameters x and

z as in Equation (14)

Determine the estimates
of the parametery y
as in Equation (11)

Figure 4. Flowchart summary of the proposed external identification approach.

5. Special Case of the Parameter Y11 Known in the Real-Valued Case

A special measurement setting may be exploited to obtain an approximation of the
parameter Y11 of the two-port. In the following, we make a number of assumptions to
formalize such a special case:

• The second port of the two-port network may be closed by a short-circuit, which
corresponds to assuming g = ∞; notice that this is an assumption that does not
necessarily correspond to a real-world case since, at high frequency, a short-circuit is
not necessarily so.

• The equivalent conductance h, in this particular measurement setting, may be mea-
sured with negligible measurement error; even this assumption will, most likely,
appear just as a case study.

Under the above assumptions, the fundamental relationship (2) returns h ≡ x, namely,
the value of the variable x may be measured directly and hence is to be considered, in
principle, as known.

Now, before presenting the resulting closed-form expression of the variable z, it pays
to define a reduced error function that is obtained by plugging the relation (11) into the
error function (6) to obtain

J̄(x, z) := 1
2N [(NG− E2)z2 + (NC− D2)x2 + 2(DE− NB)xz + 2(DB− NA)x + NH − B2]. (20)

If the value of the parameter x is known, the reduced error function is a function of the
variable z only, whose optimal value is obtained by setting 0 = dJ̄

dz

∣∣∣
x=known

, which gives

Ŷ22 =
BE− NF + (BN − DE)x

NG− E2 . (21)

Aside, we deem it quite interesting the observation that the sharpness of the paraboloid
described by the function J̄(x, z) along both axes is determined by the two coefficients
NG − E2 and NC − D2 that are proportional to the sample variance of the data subsets
{h1, h2, . . . , hN} and {g1, g2, . . . , gN}.

Moreover, we notice that if the physical system that is being modeled by a two-port
network allows swapping of the first port with the second port, namely, the first port may
be loaded on a known load and the second port is accessible for conductance measurement,
then the above considerations may be repeated with the assumption that the parameter
Y22 be known. In this way, both parameters Y11 and Y22 may be measured directly and the
remaining parameter Y12, the transfer admittance, may be estimated through a series of
further measurements.
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6. Statistical Analysis for the Real-Valued Case

The present analysis is based on the assumption that the measurements gk are the
realizations of a random variable g and that the measurements hk are the realizations of a
random variable h. We may then define a new error-type random variable

ε = (h− x)(g + z) + y2. (22)

On the basis of such assumption, we shall be able to estimate a number of statistical
characteristics of the modeling error ε and of the deviations of the parameters estimations
to their actual values.

6.1. Statistical Analysis of the Modeling Error ε

It is instrumental to estimate the average value and the variance of the error variable ε.
With regard to the average value, it holds that

〈ε〉 = 〈hg〉+ 〈h〉z− 〈g〉x− xz + y2, (23)

where we make use of the statistical expectation operator 〈·〉.
The actual average values may be estimated through the relevant coefficients (7)

normalized by the integer N, namely, to first order

〈ε〉 ≈ B + Ez− Dx
N

+ y2 − xz. (24)

We already showed in Section 4 that the quantity B+ Ez−Dx equals N(xz− y2) when
the triple (x, y, z) is the one estimated by the devised optimization algorithm; therefore, it
holds that 〈ε〉 = 0.

Likewise, the variance of the error-type random variable may be approximated, to
first order, as

〈ε2〉 − 〈ε〉2 ≈ 2J
N

. (25)

Figure 5 shows the probabilistic distributions of the random variables g, h, and ε and
correspond to the numerical test whose results were illustrated in Figure 2, except that, to
obtain a meaningful statistical result, an enlarged dataset of 10,000 samples was generated.

Figure 5. Statistics pertaining to the numerical test of Figure 2 on an enlarged dataset.

It is immediately visible how the statistical distribution of the random variable ε is
centered at 0 within a good approximation range, as predicted.
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6.2. Statistical Analysis of the Perturbations of the System (12)

In order to evaluate the effect of the measurement errors on the estimation of the param-
eters of the two-port, we shall perform a perturbation analysis on the system (12) written
in short as Mt = d and we shall further conduct a statistical analysis on the perturbations.

The seven coefficients A, B, C, D, E, F, and G that enter the linear system Mt = d
depend entirely on the dataset {(h1, g1), (h2, g2), . . . , (hN , gN)}. Whenever the dataset is
affected by measurement noise, such seven coefficients are subjected to deviations that may
be assumed to be small enough to legitimate a low-order perturbation analysis.

In order to perform a perturbation analysis, we shall assume that the matrix M changes
to M + ∆M and that the vector d changes to d + ∆d. Accordingly, the solution t deviates to
t + ∆t. For first order, we hence obtain that (∆M)t + M∆t = ∆d; therefore,

∆t = M−1∆d−M−1(∆M)t, (26)

where the deviations of the coefficient vector d and of the coefficient matrix M take
the expressions

∆d =

(
N∆A− D∆B− B∆D
B∆E + E∆B− N∆F

)
,

∆M =

(
N∆C− 2D∆D D∆E + E∆D− N∆B

D∆E + E∆D− N∆B N∆G− 2E∆E

)
.

(27)

Notice that the matrix deviation ∆M is symmetric. We remark that, in the above and
following expressions of the present section, the coefficients A, B, C, D, E, F, G, and the
matrix M, as well as the arrays t and d, refer to the errorless case, namely, to the case that
the measurements of the conductances gk and hk are unaffected by measurement errors.
The measurement errors are accounted for by the random variables vk and wk already
introduced at the end of Section 4.

We shall make the following reasonable assumptions on the zero-mean Gaussian
measurement errors of standard deviation Σ:

• The sequence k 7→ vk of random variables is uncorrelated, namely, 〈vk vj〉 = δkjΣ2,
where δ denotes the Kronecker’s delta;

• The sequence k 7→ wk is uncorrelated, namely, 〈wk wj〉 = δkjΣ2;
• The two sequences k 7→ vk and k 7→ wk are statistically independent, hence 〈vk wj〉 = 0,

since they were supposed to be zero-mean.

Notice that both random errors are assumed to have the same variance because both
measurements are supposed to be taken through the same measurement device.

On the basis of such assumption, it is possible to evaluate the deviation of each
coefficient from its errorless value. With regard to the calculations about the deviation
∆A of the coefficient A, we have that A + ∆A = ∑k(hk + wk)(gk + vk)

2 from which, by
expanding the multiplications, we may obtain the expression of the deviation ∆A, and
likewise for the remaining deviations. The obtained results are summarized as follows:

∆A = 2 ∑k hkgkvk + ∑k hkv2
k + ∑k g2

kwk + 2 ∑k gkvkwk + ∑k v2
kwk,

∆B = ∑k hkvk + ∑k gkwk + ∑k vkwk,

∆C = 2 ∑k gkvk + ∑k v2
k , ∆D = ∑k vk, ∆E = ∑k wk,

∆F = ∑k h2
kvk + 2 ∑k hkgkwk + 2 ∑k hkwkvk + ∑k gkw2

k + ∑k w2
kvk,

∆G = 2 ∑k hkwk + ∑k w2
k .

(28)
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Applying the statistical expectation operator 〈·〉 to both sides of the above expressions
yields, at the lowest degree of approximation,

〈∆A〉 = E Σ2,
〈∆B〉 = 〈∆D〉 = 〈∆E〉 = 0,
〈∆C〉 = 〈∆G〉 = N Σ2,
〈∆F〉 = D Σ2,

(29)

thanks to the assumption on the measurement errors being statistically independent
and zero-mean.

From the above results and from the relationships in (27), it turns out that the average
deviation in the array d and in the matrix M take the expressions〈∆d〉 = N Σ2

(
E
−D

)
,

〈∆M〉 = N2Σ2 I2.

(30)

Through these quantities, it is possible to evaluate the average mismatch in the solution
array that reads

〈∆t〉 = M−1〈∆d〉 −M−1〈∆M〉t. (31)

The closed-form expressions of the average deviations of the single parameters, to the
lowest degree of approximation, may hence be computed as(〈∆x〉

〈∆z〉

)
= M−1

(
E− Nx
−D− Nz

)
N Σ2. (32)

Notice that, although the matrix M is certainly positive definite, as shown in Section 4,
it might happen to be close to singularity, in which case the inverse M−1 might amplify the
deviation in the parameters. The larger the norm ‖M−1‖, the larger the amplification of
the deviations.

Notice that the average deviation 〈∆t〉 only depends on the coefficients B, C, D, E, G.
A further observation is that, although it is not surprising that the average deviations 〈∆x〉
and 〈∆z〉 depend linearly on the actual values x and z (given that a first-order analysis is
being carried out), it is interesting to notice that the deviation 〈∆x〉 only depends on the
value of x, while the deviation 〈∆z〉 only depends on the value of z.

Along with the mean value of the mismatch in the estimation of the parameters x and
z, the covariance matrix of such mismatch may be computed, which is defined as

Ct := 〈(∆t− 〈∆t〉)(∆t− 〈∆t〉)>〉 = 〈(∆t)(∆t)>〉 − 〈∆t〉〈∆t〉>. (33)

While the mean value of the mismatch fixes a reference for the estimation errors, the
covariance quantifies the extent of the deviation around such reference.

The value of the entries of the covariance matrix Ct may be evaluated in closed
form provided some assumptions and simplifications are made. In particular, besides the
assumptions on their statistical distributions and mutual uncorrelation, we shall also ignore
all terms in the expressions that are proportional to a power of the measurement errors’
standard deviation, Σp, with p > 2. For instance, we notice from the expression (32) that
〈∆t〉〈∆t〉> ∝ Σ4; therefore, we shall neglect such a term in the computation of the entries of
the matrix Ct. As a consequence, we only need to evaluate the 2× 2 (symmetric) matrix
〈(∆t)(∆t)>〉.

From the expression (26), we obtain that the uncentered component of the sought
covariance matrix takes the expression

〈(∆t)(∆t)>〉 = M−1(〈(∆d)(∆d)> − (∆d)t>(∆M)− (∆M)t(∆d)> + (∆M)t t>(∆M))M−1, (34)
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to come to which we make use repeatedly of the property of the matrix M (and hence of the
matrix ∆M) to be symmetric. In order to facilitate the evaluation of the above expression, it
pays to define a vector of coefficient deviations as

q :=
(
∆A ∆B ∆C ∆D ∆E ∆F ∆G

)>. (35)

Then, the vector-valued quantities ∆d and (∆M)t may be expressed as∆d = Uq,

(∆M)t = Kq,
(36)

where we have introduced the following two matrices that help link the deviations in the
coefficients A, B, C, . . ., G to the deviations ∆d and (∆M)t:

U :=

(
N −D 0 −B 0 0 0
0 E 0 0 B −N 0

)
,

K :=

(
0 −Nz Nx Ez− 2Dx Dz 0 0
0 −Nx 0 Ex Dx− 2Ez 0 Nz

)
.

(37)

Consequently, the expression (34) may be recast more conveniently through the relation

〈(∆t)(∆t)>〉 = M−1(UQU> −UQK> − KQU> + KQK>)M−1, (38)

where we use the 7 × 7 inner covariance matrix Q := 〈qq>〉, to be evaluated, which
describes the dispersion of the random variables A, B, . . ., G around their errorless values.

The covariance matrix Q includes the auto- and cross-correlation values of all coeffi-
cient variations due to measurement errors. In the following, we shall present a detailed
derivation of the expression of one of them and then, directly, the results of such calcula-
tions about every entry of the matrix Q (a total of 28 independent values). As we shall see,
every entry of the covariance matrix Q is proportional to Σ2, where the proportionality
coefficients are combinations of the quantities A, B, C, . . ., G plus some ad hoc new coeffi-
cients to be defined that depend on higher-order powers of the measurement errors and of
their products (which may be read as sorts of higher-order correlation expressions).

We start by examining the detailed derivation of the expression of 〈(∆B)2〉. By defini-
tion, it holds that

〈(∆B)2〉 =〈(∑
k

hkvk + ∑
k

gkwk + ∑
k

vkwk)(∑
k
+jhjvj + ∑

j
gjwj + ∑

j
vjwj)〉

=∑
k

∑
j

gkgj〈wkwj〉+ ∑
k

∑
j

gkhj〈wkvj〉+ ∑
k

∑
j

gk〈wkvjwj〉+

∑
k

∑
j

hkgj〈vkwj〉+ ∑
k

∑
j

hkhj〈vkvj〉+ ∑
k

∑
j

hk〈vkvjwj〉+

∑
k

∑
j

gj〈vkwkwj〉+ ∑
k

∑
j

hj〈vkwkvj〉+ ∑
k

∑
j
〈vkvjwkwj〉

=∑
k

∑
j

gkgjδkjΣ
2 + ∑

k
∑

j
gkhj · 0 + ∑

k
∑

j
gkδkjΣ

2 · 0+

∑
k

∑
j

hkgj · 0 + ∑
k

∑
j

hkhjδkjΣ
2 + ∑

k
∑

j
hk · 0+

∑
k

∑
j

gjδkjΣ
2 · 0 + ∑

k
∑

j
hjδkjΣ

2 · 0〉+ ∑
k

∑
j

δkjΣ
4

=(∑
k

g2
k)Σ

2 + (∑
k

h2
k)Σ

2 +O(Σ4).

(39)



Energies 2023, 16, 6037 13 of 19

In the above equations chain, we make use repeatedly of the statistical properties of
the involved random variables as, for instance, the property that 〈wkvjwj〉 = 〈vj〉〈wkwj〉 =
0 · δjkΣ2 = 0. Also, O denotes a Landau symbol. In addition, we may notice that the sum
∑k g2

k coincides with the coefficient C and the quantity ∑k h2
k coincides with the coefficient

G, as defined in (7).
Gathered together, the seven coefficients in the first row of the matrix Q read, up to

higher-order terms in the variance Σ2:

〈(∆A)2〉 = (4H + V)Σ2,
〈(∆A)(∆B)〉 = (2F + L)Σ2,
〈(∆A)(∆C)〉 = 4AΣ2

〈(∆A)(∆D)〉 = 2DΣ2,
〈(∆A)(∆E)〉 = CΣ2,
〈(∆A)(∆F)〉 = 2(R + S)Σ2,
〈(∆A)(∆G)〉 = 2AΣ2,

(40)

where we made use of the following additional coefficients:

V := ∑
k

g4
k , L := ∑

k
g3

k , R := ∑
k

h3
k gk, S := ∑

k
hkg3

k . (41)

The six independent coefficients in the second row of the matrix Q, up to higher-order
terms in the variance Σ2, take the expressions

〈(∆B)2〉 = (C + G)Σ2,
〈(∆B)(∆C)〉 = 2BΣ2

〈(∆B)(∆D)〉 = EΣ2,
〈(∆B)(∆E)〉 = DΣ2,
〈(∆B)(∆F)〉 = (2A + P)Σ2,
〈(∆B)(∆G)〉 = 2BΣ2,

(42)

where we made use of the additional coefficient P := ∑k h3
k .

The five independent coefficients in the third row of the matrix Q, up to higher-order
terms in the variance Σ2, read 

〈(∆C)2〉 = 4CΣ2

〈(∆C)(∆D)〉 = 2DΣ2,
〈(∆C)(∆E)〉 = 0,
〈(∆C)(∆F)〉 = 2FΣ2,
〈(∆C)(∆G)〉 = 0.

(43)

Continuing with the evaluation of the entries of the matrix Q, the four independent
coefficients in its fourth row read, up to higher-order terms in the variance Σ2:

〈(∆D)2〉 = NΣ2,
〈(∆D)(∆E)〉 = 0,
〈(∆D)(∆F)〉 = GΣ2,
〈(∆D)(∆G)〉 = 0.

(44)
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Likewise, up to higher-order terms in the variance Σ2, the three independent coeffi-
cients in the fifth row of the covariance matrix Q read

〈(∆E)2〉 = NΣ2,
〈(∆E)(∆F)〉 = 2BΣ2,
〈(∆E)(∆G)〉 = 2EΣ2.

(45)

The last three independent coefficients from the sixth and seventh rows of the matrix
Q are expressed, up to higher-order terms in the variance Σ2, as follows:

〈(∆F)2〉 = (4H + W)Σ2,
〈(∆F)(∆G)〉 = 4FΣ2,
〈(∆G)2〉 = 4GΣ2,

(46)

where we have defined the further coefficient W := ∑k h4
k .

By chaining the above relations and operating the indicated matrix calculations, the
sought-after covariance matrix may be obtained. Although such covariance matrix is of
size 2× 2, its entries are too complicated to be expressed in closed form. Nevertheless, we
observe that such covariance matrix may be broken down as

Ct =

(
σ2

x ?
? σ2

z

)
, (47)

where the cross-covariance terms are neglected. We should perhaps remark that, due to
the limited number N of samples and of the simplifications performed, the numerically
estimated covariance matrix Ct might result as only positive semidefinite. The quantities
σ2

x and σ2
z represent the variances of the deviations of the two parameters of the admittance

matrix Y (on the main diagonal).
On the basis of the estimated average deviations and of their variances, the statistical

estimations of the actual (errorless) values of the parameters x and z may be presented as{
x̂ = x + 〈∆x〉 ± σx,
ẑ = z + 〈∆z〉 ± σz,

(48)

where the confidence intervals are assumed to be as large as [−σx, σx] and [−σz, σz].
As a safety-check test, the external identification method summarized in the flowchart

of Figure 4 was applied to a dataset composed of N = 10 randomly generated data-
pairs with Σ = 0 Ω−1, namely, when no measurement errors are present. The actual

admittance matrix was taken as Y =

(
3 1.5

1.5 1

)
Ω−1. The estimation algorithm returns

the two possible solutions Ŷ =

(
3 ±1.5
±1.5 1

)
Ω−1 and the statistical estimation returns

x̂ = 3.00000± 0.00000 Ω−1 and ẑ = 1.00000± 0.00000 Ω−1, with Ct = 0 Ω−2.
As a numerical example, on the basis of the simulation conditions described at the end

of Section 4, the average estimation error reads

〈∆t〉 ≈
(−0.00324
−0.02644

)
Ω−1 (49)
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and the inner covariance matrix reads

Q ≈



0.59597 0.10457 0.14207 0.02006 0.01281 0.42734 0.07104
0.10457 0.02194 0.02006 0.00341 0.00366 0.09561 0.02006
0.14207 0.02006 0.05123 0.00731 0.00000 0.05512 0.00000
0.02006 0.00341 0.00731 0.00128 0.00000 0.00914 0.00000
0.01281 0.00366 0.00000 0.00000 0.00128 0.02006 0.00682
0.42734 0.09561 0.05512 0.00914 0.02006 0.46054 0.11023
0.07104 0.02006 0.00000 0.00000 0.00682 0.11023 0.03654


, (50)

which leads to the covariance of the deviation of the solutions

Ct ≈
(

0.00010 ?
? 0.00239

)
Ω−2. (51)

The results predicted by the statistical analysis are, hence,{
Ŷ11 = 2.99676± 0.00996 Ω−1,
Ŷ22 = 0.77356± 0.04885 Ω−1,

(52)

that, in fact, agree with the results presented in Figure 2.

7. Covering of the Complex-Valued Case

In the most general case, which also covers the frequency-domain representation of a
two-port network, the involved quantities (i.e., the known loads and the parameters of the
two-port circuit model) are complex-valued. Since the two-port network is supposed to be
reciprocal and lossy, its admittance matrix reads

Y :=
(

Y11 Y12
Y12 Y22

)
, (53)

with Y11, Y12, and Y22 being three complex-valued parameters and the constraint <{Y} > 0
must hold, which means that the conductive component of the admittance matrix must be
positive definite (besides being symmetric). The susceptive component of the matrix Y just
needs to be symmetric without any further constraints.

In order to estimate the unknown values of the three complex-valued parameters Y11,
Y12, and Y22, in the same spirit of the real-valued case, N independent tests are supposed
to have been conducted by loading the second port with a series of known impedances of
admittance Y`,k, and by collecting as many equivalent admittance values Yb,k. Such values
are related by

Yb,k ≈ Y11 −
Y2

12
Y22 + Y`,k

. (54)

The approximation is due, once again, to unknown measurement errors. The pairwise
estimation error may be defined, in this case, as

Ek := (Yb,k −Y11)(Y22 + Y`,k) + Y2
12 (55)

on the basis of which a global squared estimation error may be defined as

J :=
1
2 ∑

k
|Ek|2, (56)

where the notation | · | denotes the modulus of a complex number. The best estimation of
the three coefficients arises from the minimization of the global squared estimation error.

In the present complex-domain instance, the minimization of the criterion J may still
be achieved by setting its “derivative” to zero, as long as a notion of derivative with respect
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to a complex-valued variable is defined properly. We define the derivative (or “gradient”
or “del operator”) ∇J with respect to one of its arguments Yab as (see, e.g., [19])

∇Yab J :=
∂J

∂<{Yab}
+ i

∂J
∂={Yab}

, (57)

where i denotes the imaginary unit. Calculations lead to the following expressions of the
complex derivatives 

∇Y11 J = −∑k Y∗`,kEk −Y∗22 ∑k Ek,

∇Y12 J = 2Y∗12 ∑k Ek,

∇Y22 J = ∑k Y?
b,kEk −Y?

11 ∑k Ek,

(58)

to be set to zero, where the superscript ∗ denotes complex conjugation. As for the real-
valued case, we shall discard the trivial solution Y12 = 0 that would imply a null transfer
admittance; hence, the second equation would be ∑k Ek = 0. This condition, however,
implies that the second sum on the right-hand side of the first and of the third relations are
identically zero. Therefore, the system of equations to solve reads

∑k Y∗`,kEk = 0,

∑k Ek = 0,

∑k Y?
b,kEk = 0.

(59)

Interestingly, such expressions appear as sums of errors—weighted by data—set
to zero.

Upon plugging-in the expression of the error Ek = Yb,kY`,k + Yb,kY22 −Y`,kY11 + Y2
12 −

Y11Y22, we obtain the following system of polynomial equations:
A + B Y22 − C Y11 + D∗ (Y2

12 −Y11Y22) = 0,

F + G Y22 − D Y11 + N (Y2
12 −Y11Y22) = 0,

H + K Y22 − B∗ Y11 + G∗ (Y2
12 −Y11Y22) = 0,

(60)

where the constant coefficients of the systems are defined as{
A := ∑k |Y`,k|2Yb,k, B := ∑k Y∗`,kYb,k, C := ∑k |Y`,k|2, D := ∑k Y`,k,
F := ∑k Yb,kY`,k, G := ∑k Yb,k, H := ∑k |Yb,k|2Y`,k, K := ∑k |Yb,k|2.

(61)

The system (60) appears as a set of three nonlinear equations, which may, however, be
rendered in linear form. In fact, from the second equation, one may infer that

Y2
12 = Y11Y22 +

1
N (DY11 − GY22 − F); (62)

henceforth, the first and third equations in (60) may be rewritten as the linear system(
NC− |D|2 GD∗ − NB

NB∗ − DG∗ |G|2 − NK

)
︸ ︷︷ ︸

M:=

(
Y11
Y22

)
︸ ︷︷ ︸

t:=

=

(
NA− FD∗

NH − FG∗

)
︸ ︷︷ ︸

d:=

. (63)

The solution to such system of equations may be written again as t = M−1d, to
determine the optimal values of the parameters Y11 and Y22. In addition, the relationship

Y12 = ±
√

Y11Y22 +
1
N (DY11 − GY22 − F), (64)
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involving complex-valued square-rooting, may be used to determine two (indistinguish-
able, in fact) optimal values of the parameter Y12.

As a numerical result, taking as actual value of the admittance matrix

Y =

(
3.0 + 0.2i −1.0 + 2.0i
−1.0 + 2.0i 0.8 + 1.0i

)
Ω−1 (65)

and setting a value for the standard deviation of the measurement error Σ = 10−2 Ω−1, the
optimal values obtained through the optimization-based estimation method are

Ŷ ≈
(

3.0012 + 0.2176i 0.9821− 2.0057i
0.9821− 2.0057i 0.8127 + 0.9846i

)
Ω−1, (66)

which is, of course, in excellent agreement with the actual value (notice the sign flip in the
off-diagonal entries). Figure 6 shows the statistical distribution of the real and imaginary
part of the dataset enlarged to 10, 000 samples to obtain a meaningful representation (since
the samples are generated randomly by a computer code, the number N of samples may be
inflated at will).

Figure 6. Statistics pertaining to the numerical test on the complex-valued estimation case.

8. Conclusions

The problem of the estimation of the three independent parameters of a reciprocal,
lossy Y-type two-port network was dealt with, under the assumption that its terminals
are accessible to an impedance-measurement analyzer. A number of test loads are first
subjected to measurement of admittance; next, such loads are connected to one of the ports
of the network, and the equivalent admittance seen from the other port is collected.

The data pairs collected during the execution of such procedure are affected by mea-
surement errors; therefore, the optimal parameter estimation method utilized is based
on a squared-estimation-error minimization. Such formulation leads to a system of three
nonlinear equations in the three unknown parameters of the Y-type two-port network
model. A subsystem of two equations is then isolated, which may be turned exactly to
linear, and may be solved in closed form.

The first part of the paper dealt with the purely real-valued case that served to clarify
the problem and its solution. The purely real-valued case also affords a statistical analysis
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that enables an analytic, as well as a numerical, evaluation of the effects of the measurement
errors on the quality of the solution. Such statistical analysis yields, as a result, the mean
values and the variances of the deviations of the estimates to the actual values. The full
complex-valued case was treated in the second part of the paper with fewer details since
the equations are similar to the ones found for the purely-real case.

The results of some numerical experiments, both for the real-valued and for the
complex-valued cases, were displayed and discussed to complement and illustrate the
theoretical findings.

The present research work constitutes the first step in the external characterization
by multiport networks on the basis of a black-box modeling procedure. The full case of a
2n-terminal network will be investigated in forthcoming research endeavors.
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