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A B S T R A C T   

Three-dimensional data has a wide range of applications in medicine. For the particular case of cranial defor
mation in infants, it is becoming a common tool for evaluation. However, there is a need for low-cost solutions 
that provide accurate information even with uncoll aborative infants with ultrafast movement reactions. As 
cranial deformation is often linked to facial abnormalities, facial information is required for comprehensive 
evaluation. 

In this study, the integration of target-based close-range photogrammetry and facial landmark machine 
learning detection is carried out. The resulting tool is automatic and smartphone-based and provides 3D infor
mation of the head and face. This methodology opens a new path for the effective integration of machine 
learning and photogrammetry in medicine and, in particular, for overall head analysis.   

1. Introduction 

Three-dimensional (3D) models have a wide range of applications in 
medicine. In particular, they are becoming a common methodology for 
the evaluation of cranial deformation in infants, a problem that includes 
pathologies such as plagiocephaly or different types of craniosynostosis 
[1,2]. Most methodologies for the eventual creation of 3D models of 
moving infants are costly and not widely implemented in the clinical 
routine, where manual measurements, and even visual evaluation ac
cording to the Argenta’s assessment tool [3], are still common [4–6]. 
Close-range photogrammetry proved to be reliable for the creation of 
trustworthy models, driving experts in the evaluation of cranial de
formations; the information is complete, every kind of morphological 
feature can be inferred and results are not dependent on the expert [7]. 
In combination with abnormalities in the cranial shape, the abnormal 
face shape is also common for some types of deformation and has also to 
be considered for the right medical diagnostics. 

In particular, features such as the position of the eyes [8], with 
hypotelorism problems (eyes closer than normal) or orbital dystopia 
(one eye lower than the other), are important concerns for some types of 
cranial synostosis [9]. Coronal synostosis can also lead to asymmetries in 

other areas of the face, such as the nasal root and chin [10,11]. It is thus 
extremely important to develop easy to use and cost-effective methods 
for such evaluations, as these deformations present many risks like social 
isolation and visual problems, just to mention some [11,12]. 

The 3D data provides an important advantage for the evaluation of 
these problems in comparison with commonly used 2D data [13]. In 
previous works, the authors developed a low-cost tool to measure and 
evaluate cranial deformation in infants called PhotoMeDAS (Spanish 
Patent Number P201930355). PhotoMeDAS is a tool composed of a 
smartphone app and a cloud-based processing system that allows non- 
expert photogrammetric users to obtain head 3D models for infant 
cranial deformation assessment using automatically detected points 
fitted on a coded cap [14]. The methodology uses a smartphone to detect 
automatic markers placed on a coded cap. These data are later used to 
create a 3D model and medical deformation diagnostics. As a target- 
based photogrammetric tool, PhotoMeDAS is able to provide accurate 
results even with awake, moving and uncollaborative infants, in a sit
uation where other techniques, such as image-based photogrammetry or 
structure from motion (SfM), have been proved to fail or require lots of 
manual processing [15,16]. 

Despite its advantages, the main limitation of the tool is that the 
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obtained information is limited to the cranial vault, without considering 
the above-mentioned face deformation features. Towards this end and to 
overcome this limitation, the identification of facial landmarks repre
sents a turnkey for obtaining missing facial data. Another advantage of 
having well-identified facial landmarks is that it allows the registetion of 
the head 3D data to a known coordinate system [17]. The registration 
process is required for evolution monitoring or extraction of cranial 
measurements. In the specific case of face landmarks, the aim is to 
recognise the key points that define specific features of the face like eyes, 
nose, mouth and chin. Therefore, face landmarks detection requires face 
detection as a first step. The face landmarks detection allows solving 
problems like the face orientation, facial expression and biometrical 
measures of the face. Although face detection is commonly trained using 
3D models [18], no studies have been found by the authors that use 
automatic detection landmarks to extract/measure 3D point coordinates 
of these landmarks. 

In this study, a new tool has been developed to add automatically 
detected facial landmarks to the head 3D models to improve the infor
mation contained in the cranial vault 3D model. More in deep, the tool 
combines a target-based photogrammetric pipeline with a machine 
learning algorithm, trained to fulfil facial landmark detection. The 
application, running in real-time on a customer-grade smartphone, 
proved to reach accuracy and reliability thresholds which are between 
1.2 and 6.75 times larger than the ones obtained with the coded markers 
used for the overall 3D head and face measurements. Nevertheless, the 
developed system paves the way for a novel method of 3D data acqui
sition in medical application, proving the effectiveness of the combi
nation between machine learning and photogrammetry. 

2. State of the art in facial landmark detection 

Face detection is the task to identify the position and dimensions of a 
human face from a digital image. Digital image processing techniques 
are used to detect the face by ignoring everything that is not a face, 
which is called background. 

The face detection task can be considered a particular case of object 
detection and/or pattern recognition where the object to be identified, 
or pattern to be recognised is the human face. A recent review con
cerning face detection methods is presented by [19]. Many strategies for 
face detection are implemented during the last years and can be divided 
as follows:  

• Data source to be processed (i.e., images, videos);  
• Features that are analysed, such as a region that describes (punctual, 

defined pixel by pixel; local, defined around a point; and global; 
semantic content: of low level (colour, edges, corners, textures), of 
high level: physical structures of the face (eyes, nose, mouth); 

• Algorithms used for detection: rule-based (based on image process
ing; the features are combined by functions defined ad-hoc: weighted 
sums, thresholds, conditions…), and learned-based (based on auto
matic learning models, that require an a priori training). This last can 
be distinguished between machine learning (learn from predefined 
features) and deep learning (learn directly from the image). 

In the last years, face detection has gained greater attention in fields 
of biometrics [20], pattern recognition [21] and computer vision [22]. 
Despite this operation is already implemented in almost every device of 
everyday life, face detection requires better performance in terms of 
robustness, especially for biometrics or medical applications. Indeed, 
facial occlusion, uneven lighting and shadows, face orientation, back
ground complexity, low image resolution and noise hamper a wanted 
adoption among experts. For these reasons, human facial landmarking is 
gaining increasing attention in medicine for both 2D and 3D compart
ments [23], and the need for automatizing landmark detection has been 
widely discussed in the literature [24]. The advancements in machine 
learning algorithms for computer vision suggest fundamental progress, 

which defines the basis for the development of general methods to 
automate landmark data detection [25]. 

However, for training these learning models, a huge amount of 
labelled data is necessary. In the medical domain, this aspect is a critical 
issue due to the lack of data; moreover, when available, datasets are 
unbalanced and challenging (e.g. tiny features, bioimages complexity 
and so on). To address this problem, Fu et al. [26] propose a method for 
extracting facial anatomical landmarks for the diagnosis of fetal alcohol 
syndrome. Despite the limited training samples available, they propose 
to maintain the feature representations of the source model on the target 
task data and to influence them as a further source of supervisory signals 
for regularizing the target model learning [26]. Rao et al. [27] devel
oped a machine learning approach for orthodontics clinical applications. 
The study is conducted on 418 facial landmark points and 220 landmark 
measures from 22 2D facial images of volunteers. They applied “You 
Only Look Once” (YOLO) network to identify the landmarks [27]. 

As stated before, landmark detection has been explored even in the 
case of 3D outputs. A deep learning approach for the automatic locali
zation of the anatomical landmarks on the distal femur bone in 3D 
medical images is proposed in [28]. The authors adopt the narrow-band 
graph cut optimization to carry out the 3D segmentation of the femur 
surface, considering the results obtained from the neural network. This 
method is useful for determining the position of initial geometric land
marks on the femur surface in the 3D magnetic resonance images. 
Another work on 3D images is proposed by Abu et al. [29]. This paper 
aims at automatically processing landmark detection on 3D facial im
ages for measuring craniofacial anthropometry. The geometry infor
mation useful to identify the facial characteristics have been used to 
develop an automated craniofacial landmark (ACL) on a 3D facial image 
system. The reference model and the acceptable degree of deformation 
has been determined by using a machine learning model to find out the 
optimum solution for all faces. 

Facial landmark detection is also explored with a framework that 
simultaneously deals with three tasks: (i) facial landmark detection, (ii) 
head pose estimation, and (iii) facial deformation analysis. The method 
is also robust to facial occlusion [30]. The authors used a cascade iter
ative procedure augmented with model-based pose estimation. In this 
way, they iteratively predict the facial occlusion, facial landmark loca
tions, head pose angles and facial deformation. Instead, facial landmark 
detection was faced by using a generative adversarial module that 
changes original face images to style-aggregated images [31]. A Style- 
Aggregated Network (SAN) was proposed, that applies a cascade strat
egy to generate the heatmap predictions which can be robust to the large 
variance of image styles. 

3. Materials and methods 

This section is devoted to the description of the face landmark 
detection algorithm developed to be merged with the existing photo
grammetric application. Given an image and the ROI (Region of Interest) 
that localises the object of interest, a shape predictor has to recognise the 
key points of the shape. Finally, a machine learning approach detects 
and selects the best point to be considered for its transformation in 3D 
coordinates. Here following, the detailed procedure and experiments are 
reported. 

3.1. Setup 

The methodology of this study was tested on five dummies simu
lating infant’s heads. For each dummy, 10 models were created. A coded 
cap was placed on each dummy, it was made of elastic material and 
covered with ArUco automatic markers [32]. Three stickers with coded 
markers were also placed, between the eyes and close to the ears (Fig. 1). 
These three stickers were eventually used for the registration of the 3D 
models. AruCo markers were chosen over other options, such as circular 
markers, as they provide four points per marker, allowing for better 
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representation of the head shape with the minimum number of markers. 
In addition, using a lower number of markers makes the production of 
the cap less expensive and allows for better head fitting, as the fabric is 
much more elastic without the markers on the top. Another advantage of 
AruCo is its integration in OpenCV. The cap and stickers were not moved 
during the different acquisitions. The data for the creation of the models 
were acquired using the smartphone application PhotoMeDAS. The 
smartphone used is a Samsung A50, with a resolution limited to 960 ×
720 px. The smartphone app can detect the coded markers as well as the 
facial landmarks. It is also capable of selecting useful images and guiding 
the user during the acquisition. A more detailed explanation of this tool 
(without face detection) can be found in [14]. 

3.2. The data acquisition smartphone app 

A smartphone app was developed to integrate the detection of ArUco 
markers, present on the cap and the face points (Fig. 2). The app 

processes each frame captured by the smartphone and carries out the 
detection of the markers. When a minimum number of markers is 
detected, the image is preselected, otherwise, the image is discarded. 

After that, each preselected image is checked to detect whether it 
corresponds to the face area (this information is obtained by examina
tion of the visible markers). In case the image is considered to include 
the face, face landmark detection is carried out. Firstly, the image is 
rotated to assure it is in the correct position for face detection. This step 
is also carried out using the information given by the markers. If a face is 
detected, a correctness check is carried out: the front sticker must be 
placed between the eyes, otherwise the face landmarks for that image 
are discarded. Finally, the detected points for that image are stored, 
including target points for every image and facial landmarks points for 
images with the detected face. Then the whole head is registered and the 
data is sent to the server for processing. The application developed was 
installed on a smartphone Samsung Galaxy A50, with the operating 
system Android 9 and a RAM of 4 GB. 

Fig. 1. Dummy with coded cap and registration stickers.  

Fig. 2. Smartphone application workflow.  
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3.3. Face landmarks detection algorithm 

The application acquires the streaming video through a smartphone 
camera. Each frame has to be shown on the screen with the marking of 
the detected objects. The time between the frame acquisition and its 
visualisation on the screen must be the minimum possible, to ensure 
good fluidity and minimum time delay. The operation executed for each 
frame of the streaming video can be summarised in the following steps:  

1. Frame acquisition;  
2. Preprocessing of the image before the face detection;  
3. Face detection: localisation of the face through the bounding box;  
4. Preprocessing of the image before the face landmarks detection;  
5. Face landmarks detection: coordinates extraction of the landmarks in 

the bounding box of the face;  
6. Screen visualisation. 

Follows a detailed explanation of the implemented algorithm. First, 
when the application is started, the models for the detection of the face 
and landmarks are loaded. The current frame is captured from the video 
stream and treated as an image (Step 1). 

The face detector input image was reduced by a factor of 4 in both 
dimensions and converted to grayscale. The reasons for scaling are to 
guarantee the face detector a correct processing speed with the smart
phone used for the tests. 

Processing small images is faster but if the images are too small, the 
face detector can fail (Step 2). 

The algorithm used for face detection is Haar cascade, already in
tegrated into OpenCV. In particular, for the frontal detection of the face, 
we use the trained model (“haarcascade frontalface default.xml”). Haar 
feature-based cascade classifier is an object detection method proposed 
by [33]. This is a machine learning-based approach where a model is 
trained on datasets of many face images [25]. A 24x24 size window 
scrolls over the input image. As in a convolutional kernel, the features of 
Haar are extracted. Cascade indicates that features are extracted on 
cascaded stages. Finally, an Adaboost classifier combines the extracted 
features to discriminate face and background. In Algorithm 1, this in
struction is executed by the “detectMultiScale” function where, given as 
an input a grayscale image, returns the coordinates and dimensions of 
the bounding box of detected faces. It has been necessary to set different 
parameters as follow: “scaleFactor” that indicates how much the size of 
the input image is reduced to create the pyramid; this parameter is set to 
1.1. 

Another parameter is the “minNeighbors” which specifies how many 
candidate rectangles must have a face around it to be considered as such; 
the value of this parameter is set to 2. Another parameter set is “min
Size”, which defines the smallest face size that can be detected and has 
been set to (30,30). The output of the face detector is a list of rectangles, 
where the coordinates of the vertices of the rectangles identify the 
window that contains the face. Since this application analyses only a 
face in the frame, among the various possible bounding boxes, the one 
with the largest size is selected and considered the correct one (Step 3). 
The image of the current frame has been processed before putting it in 
input to the face landmarks detector (Step 4). 

Given the region of the face, the following step is face landmarks 
detection. The landmark detector used is Ensemble of Regression Trees 
[34], already implemented in dlib library. 

In particular, the model “shape predictor 68 face landmarks.dat” 
extracts 68 landmarks of each face (as shown in Fig. 3), belonging to the 
following elements of the face:  

• Eye (right and left),  
• Eyebrow (right and left),  
• Nose,  
• Mouth,  
• Jaw. 

The model is trained on iBUG 300-W dataset, which contains images 
of manually labelled faces with the coordinates (x,y) of 68 reference 
points [35]. In the code, the face landmarks detection is executed by the 
“shape predictor” method, which has the image and the list of the 
bounding boxes of each face (in our case, only one bounding box is 
passed to the landmark prediction method) in input. Even if in the 
workflow a preprocessing phase is inserted (for generality) before the 
face landmark detection, this is not really executed in the code. The face 
landmarks detection directly processes the image acquired by the cam
era, without resizing and/or colour transformation. The reduction of the 
image dimension allows a greater speed of processing but a decrease in 
the accuracy of the extracted landmarks (Step 5). 

Finally, the current frame is marked with the bounding box and the 
landmarks of the detected face. The marked frame is displayed on the 
smartphone screen (Step 6). 

An encoding of the developed algorithm for face landmark detection 
is presented in Algorithm 1.  

Algorithm 1 Face landmark detection 

1: for each frame of the stream video do 
2: image ← frame acquisition; 
3: imagea ← preprocessing of the image; 
4: faceboundingbox ← face detection: localisation of the face in the imagea; 
5: imageb ← preprocessing of the image; 
6: face landmarks coordinates ←face landmarks extraction: coordinates detection of the 

face landmarks in the face bounding box on the imageb; 
7: end for  

The code has been developed in Java, to be executed on Android. It uses 
two open-source libraries: i) OpenCV 4.0.1 and ii) dlib 19.16. The dlib 
library is not native to Java but is written in C++. For this, the methods 
that use the functions of the dlib library have been implemented in C++

via the native Java JNI interface. The versions of the libraries may not be 
essential for the correct functioning of the application, but these two 
versions have been tested and guarantee correct operation. The appli
cation was developed in the Android Studio programming environment. 

3.4. The creation of the 3D clouds 

The position of the markers and face landmarks in each image is sent 
to a server for processing. There are no differences in format between 
face landmarks and markers, so no registration or data integration is 

Fig. 3. Representation of the 68 facial landmarks extracted by the algorithm as 
presented for the Multi-PIE/IBUG 300-W dataset. Points used in the study in red 
and points discarded in grey. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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required. The use of targets instead of images drastically reduces the 
data to be sent to the server. This allows for nearly real-time processing 
and avoids taking images of infants in a real case scenario, which fa
cilitates maintaining high data protection standards. 

The 3D point clouds (Fig. 4) are created using ad-hoc software 
combined with MicMac [36]. Self-calibration is carried out during the 
creation of the 3D point cloud. Measurements with photogrammetric 
reproyection errors above 1 pixel are immediately discarded. Different 
calibration approaches were studied in a previous publication by the 
authors [16] from which it was demonstrated that the self-calibration 
approach with a significant number of images was proven to provide 
enough accuracy for evaluation of head deformation while maintaining 
the applicability of the tool for clinical (real) medical conditions. 

The obtained clouds are registered to a known coordinate system 
(Fig. 4) using the registration points given by the three stickers placed 
between the eyes and in the preauricular points. 

The scaling of the cloud is carried out using the known size of the 
markers. Although the markers are small and slight deformations can 
occur, the high number of measurements among coded targets assures 
accurate scaling. The length of two diagonals for each of the 131 
markers on the cap are taking into account and an iterative least-squares 
adjustment is carried out, so measurements with high deformation can 
be discarded. 

3.5. Comparison 

For each dummy, different point clouds were registered using the 
points given by the stickers. For each point, in the cap or face, the co
ordinates were extracted for each point cloud. The variability of these 
coordinates was analysed to obtain the precision of each point. The 
number of times each point was measured is also registered and counted. 

The accuracy of the tool for the 3D reconstruction of the ArUco 
points was known to be better than 2 mm based on tests carried out in 
previous works [14]. The creation of ground truth for facial landmarks 
was discarded due to the difficulty to manually identify the same 
landmarks detected by the algorithm. As a consequence, a study on the 
variability of those facial landmarks was identified as the best approach 
to test the precision in both image and object spaces. 

4. Results 

To evaluate the performance of the implemented application, five 3D 
copies of different faces (dummies) have been considered. The 5 
dummies have been labelled as G, I, J, K, L. On each dummy, the 
application has been executed 10 times. For each time that the appli
cation has been executed, the measurements extracted from each are 
processed to obtain the corresponding 3D points cloud, from which 3D 
models might be eventually delivered. Each set consists of 3D points 
saved on a text file with “PLY” format: each row represents a point and 
contains the three coordinates X, Y, Z and three attributes: R, G, B 
(Fig. 5). 

During the experimental phase, 4 sets of points have been 
considered:  

• Cap points corresponding to 4 vertices of 131 coded markers, 
yielding a total of 524 points.  

• Face points corresponding to 41 of 68 landmarks obtained from the 
face landmarks detection algorithm. All the selected points corre
spond to well-identified points that do not depend on the point of 
view. Therefore, points corresponding to face limit and eyebrows 
were discarded due to Their instability measured with the standard 
deviation (std). 

• Reduced sets were made for:  

– 12 points of the eyes (6 for the right eye and 6 for the left eye);  
– 9 points for nose;  
– 20 points for mouth. 

Additional 12 points are present in the file; corresponding to 4 
vertices of the 3 adhesive markers, placed near the right, left ears and 
base of the nose. These points are used only when registering templates; 
no assessments have been made on these points. It may happen that 
some points in the templates are missing. The causes are many: 1) they 
were not detected in enough “frames” during recording; 2) the conver
gence was bad; or 3) the marker was moved (less likely). Especially for 
the points of the face, it was actually possible to observe that there was a 
lot of variability in the landmarks detected during the measurements. 

The analysis of the variability for each dummy and each set of 3D 
point clouds (cap, face, eyes, right and left eye, nose, mouth) was per
formed. Further considerations were made on the missing points for 
each set of points. The std of each point among the 10 executions was 
calculated for each dummy. Since in some executions there are missing 
points, the std is calculated only between those points effectively 
detected, as long as the point is detected in at least two sets. In partic
ular, for each point, std is determined for each coordinate (X,Y,Z) of the 
point and its module |p|. Std of |p| are calculated as Euclidean norm of 
the three coordinates: X,Y,Z. For this reason, std of |p| is always bigger 
than std of each coordinate (Fig. 6). For each point, it has been evaluated 
the number of executions in which it was detected. To obtain the overall 
assessments of the std in different sets of points (after each execution), 
the arithmetic average between the std of each point belonging to the set 
of interest is made. Only points that are detected in at least two execu
tions are included in this average. This is to exclude the points where the 
std is not assessable. The same arithmetic average is used for overall 
assessments of the std between the 5 dummies in different sets of points. 

It is worth noting that, with respect to Table 1, in which the mea
surements are mediated across the points of each set of each dummy, 
Fig. 6 shows the measurements mediated across each point of each 
dummy. From a more in-depth analysis, it has been observed that the 
points detected on the cap are 100% stable: all points are detected in 
almost all executions. eye point detection is less stable (70%) but still 
more stable than other face points. Besides, from Table 1 (column valid 
points), it can be seen how the eye points are always detected in at least 
two executions for each dummy, all being available for making overall Fig. 4. Registered point cloud and coordinate system.  
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averages. This does not happen for the other points of the face (see 
Fig. 7). The std among the executions in the cap point set is always 
(except one) lower than the std in the face point set, in each dummy and 
each coordinate, a minimum std ranging from 0.4 and 2.4 mm, and an 
overall mean of 1.2 mm. After all, we expected it, as already from the 
acquisitions, greater stability of the points on the markers of the cap was 
observed rather than on the facial landmarks. Globally, it is observed 
that the std on the X coordinate is always greater than the std on the 
other Y and Z coordinates. It is due to the orientation of the camera 
during the acquisition. In our coordinate system, the X-axis follows the 
orthogonal direction of the front face. Since the face points can only be 
detected at a small angle to this X-axis, the geometry (namely the 
parallax angle) is worse and thus variability increases in this direction. 
Cap points are also affected by this problem, but much more slightly as 
the parallax angle at which they can be detected is greater. Conse
quently, they have greater variability in this X-axis direction, 14% and 
33% more than in Y-axis and Z-axis, respectively. 

5. Discussion 

The results obtained during the experimental phase show an 
important potential of automatically detected face landmarks for overall 
head 3D point cloud measurement and extraction. This method is ex
pected to be used for the evaluation of infant’s cranial deformation as 
well as the detection of syndromes and other serious alterations and 

pathologies in which the face configuration and symmetry help doctors 
to diagnose infants. More detailed analysis is expected to be drawn from 
the following figures. 

5.1. Evaluation of the obtained precision 

The precision of 3D point clouds obtained from facial landmarks has 
been compared to cap points, generated from automatically detected 
target-based coded markers (Fig. 6). The precision of the cap points is 
close to 1 mm, as was expected from previous studies [14]. For the face 
points, the precision varies greatly between the different parts (Figs. 8 
and 9). The eyes provide the best results with a precision that yields std 
values around 2 mm, while the mouth and nose have higher variability 
after checking their std (8.1 mm and 5.7 mm, respectively), probably 
due to the presence of outliers and lack of detection of the facial land
marks (Fig. 8). In order to be valuable for most applications, the meth
odology requires a precision similar or below the minimum difference 
noticeable by a layperson. According to some authors, the minimum 
noticeable asymmetry is 2 mm for dental maxillary shift and 4 mm for 
nose deviation [37], the minimum noticeable eye canting is approxi
mately 2 mm [38]. For non-asymmetric problems, such as hypotelorism 
or hypertelorism, authors have defined that a layperson can detect when 
the intercanthal distance is 10% larger than usual [39], which results in 
3 mm for the average adult [40] and above 2 mm for infants [41]. 

According to these thresholds, the methodology capacity to detect 

Fig. 5. Dummies and 3D point cloud for each one. Cap points in black, face landmark points in green and registration points in red. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Standard deviation of |p| across 10 executions of dummies.  

I. Barbero-García et al.                                                                                                                                                                                                                        



Measurement 182 (2021) 109686

7

asymmetries in the eyes is similar to the capacity of a layperson for all 
models. For the nose and mouth, the precision is similar to the those of 
the eyes and to the threshold detectable by a layperson, with the 
exception of model J. 

The high deviations of model J were found to be caused by a 
particular measurement with high error in the x-axis, that includes only 
nose and mouth. The error is caused as the images covering the face have 
a very small paralax angle. A further development of the tool should 
include a methodology to identify and remove this high error 
measurements. 

To accurately measure any deformation or evaluate changes in the 
patients face it would be required a tolerance below 1/3 of the measured 
value, which results in precision below 0.7 mm for the eyes and mouth 
and below 1.3 mm for the nose. The proposed method, albeit encour
aging, presents some shortcomings that are fair to discuss. An important 
part of the error is given by the X-coordinate (0.8 mm), with better 
precision in the Y-coordinate (0.7 mm) and considerably better in the Z- 
axis (0.6 mm). This is explained by the orientation of the model, with the 
face normal matching the X-axis. As the face detection algorithm is very 
dependent on the angle of view, the geometry of the images results in a 
higher error in the X-direction. This fact has to be taken into account for 
future medical diagnostics as the methodology will provide better re
sults for the evaluation of facial asymmetry and worse to evaluate 
deepen areas of the face. 

5.2. Robustness and limitations 

The 3D coordinates of the face points are successfully obtained a 
much lower percentage of times, in comparison to cap points. Cap points 
are registered more than 99% of the times while face points are regis
tered successfully only in 48.6% of the cases (Fig. 7). An important 
difference between dummies is also noticed. The face landmark detec
tion algorithm performs differently for different faces, with models of a 
dummy that have a much lower number of face points (missing most of 
the mouth and nose points). Other limitations, strictly related to the 
landmark detection algorithm, can be summarised as follow: first, it 
does not work with incomplete parts of the face; this means that the 
facial landmark detector is bound to extract 68 landmarks in each 
bounding box (even if it contains half a face). Secondly, the landmark 
detector does not work without face detection first. In this case, the 
landmarks are constrained to be extended over the entire image area. 

5.3. Open discussion and future developments 

Given the above, we can conclude that it can be foreseen to use 
automatic face detection algorithms to create face 3D point clouds, 
envisaging future lines of research. The obtainment of good results is 
hampered by the large variability and reliability in the detection of the 
points and the limitations in the angle of view, which leads to poor 
geometry of the images. The presence of outliers seems to be affecting 
greatly the overall accuracy of the points. Removing the outliers either 
during the real-time photogrammetric data acquisition or during post- 
processing with robust estimators could lead to considerably better re
sults. But this analysis has not been developed yet and is open for future 

Table 1 
Results of std in different sets of points (mm).  

Dummy 
ID 

Set of 
Points 

N. Valid 
Points * 

(%) Null 
Points ** 

Standard Deviation (mm)     

X Y Z |p| 

G Cap 
Face 
Nose 
Eyes 
Right 
Eye 
Left Eye 
Mouth 

524 
40 
8 
12 
6 
6 
20 

0.6 
30.0 
51.1 
15.0 
0.0 
30.0 
29.5 

0.4 
1.0 
0.8 
1.2 
0.8 
1.6 
0.9 

0.3 
0.4 
0.4 
0.4 
0.6 
0.3 
0.4 

0.2 
0.4 
0.4 
0.5 
0.4 
0.6 
0.4 

0.5 
1.1 
1.0 
1.3 
1.1 
1.7 
1.1  

I Cap 
Face 
Nose 
Eyes 
Right 
Eye 
Left Eye 
Mouth 

524 
22 
2 
12 
6 
6 
8 

0.2 
75.6 
85.6 
50.8 
46.7 
55.0 
86.0 

0.4 
1.3 
0.7 
1.6 
0.8 
2.4 
1.1 

0.6 
0.5 
0.3 
0.8 
0.5 
1.0 
0.1 

0.4 
0.6 
0.7 
0.7 
0.7 
0.8 
0.5 

0.9 
1.6 
1.0 
1.9 
1.2 
2.7 
1.2  

J Cap 
Face 
Nose 
Eyes 
Right 
Eye 
Left Eye 
Mouth 

524 
35 
9 
12 
6 
6 
14 

0.9 
56.3 
53.3 
14.2 
13.3 
15.0 
83.0 

1.1 
20.3 
23.2 
1.9 
1.7 
2.2 
34.1 

1.1 
2.4 
2.6 
0.7 
0.5 
0.9 
3.8 

0.7 
3.2 
2.0 
0.5 
0.4 
0.6 
6.3 

1.7 
20.7 
23.5 
2.1 
1.8 
2.4 
34.9  

K Cap 
Face 
Nose 
Eyes 
Right 
Eye 
Left Eye 
Mouth 

524 
41 
9 
12 
6 
6 
20 

0.2 
35.1 
37.8 
16.7 
33.3 
0.0 
45.0 

0.4 
1.4 
1.4 
1.8 
1.7 
1.9 
1.2 

0.3 
0.3 
0.2 
0.3 
0.4 
0.3 
0.3 

0.3 
0.4 
0.4 
0.4 
0.4 
0.4 
0.5 

0.6 
1.5 
1.4 
1.9 
1.8 
2.0 
1.3  

L Cap 
Face 
Nose 
Eyes 
Right 
Eye 
Left Eye 
Mouth 

524 
41 
9 
12 
6 
6 
20 

0.2 
67.6 
71.1 
44.2 
38.3 
50.0 
80.0 

1.6 
1.9 
1.7 
1.7 
1.2 
2.2 
2.1 

1.1 
0.7 
0.5 
0.6 
0.9 
0.4 
0.8 

1.4 
0.9 
0.7 
0.4 
0.6 
0.3 
1.3 

2.4 
2.2 
1.9 
1.9 
1.6 
2.2 
2.6  

Overall 
mean 

Cap 
Face 
Nose 
Eyes 
Right 
Eye 
Left Eye 
Mouth  

0.4 
52.9 
59.8 
28.2 
26.3 
30.0 
64.7 

0.8 
5.2 
5.6 
1.6 
1.2 
2.0 
7.9 

0.7 
0.9 
0.8 
0.6 
0.6 
0.6 
1.1 

0.6 
1.1 
0.8 
0.5 
0.5 
0.5 
1.8 

1.2 
5.4 
5.7 
1.8 
1.4 
2.2 
8.1 

* Number of valid points to calculate std across 10 executions in a point set. Only 
points that are detected in at least two executions are included in this number. 
** Frequency, normalized, as a percentage, of the points of the set not detected 
in the 10 executions. 

Fig. 7. Good points of the face across 10 executions of dummies.  
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experiment discussion. Besides, another improvement would consist of 
assuring a good geometry during the data acquisition by guiding the 
user, so the parallax angle between face imagery is maximized. The use 
of other machine learning algorithms, that provide better precision, 
particularly for the detection of nose and mouth points should also be 
explored in the future. The use of other machine learning algorithms, 
that provide better precision, particularly for the detection of nose and 
mouth points should also be explored in the future. The investigation of 
the scalability of the system and the development of the general 
framework and guidelines for easier serialization will be addressed and 
the training procedure will be also optimized. We aim to scale up the 
proposed approach in a more challenging dataset, e.g., high unbalanced 
setting with a huge amount of heterogeneous data. In fact, as the volume 
of the input increases, the continuous update of the machine learning 
classifier may disclose a challenge due to the problem of the “curse of 
dimensionality” and high in-memory search cost [42]. It is planned to 
optimize the features selection techniques in order to deal with this 
challenge while preserving the interpretability of the model. Addition
ally, it could be useful the design of new classifiers to model the different 
nature of the extracted features while decreasing the generalisation 

error. 
Another aspect is the improvement of the machine learning algo

rithms performance by integrating more complex deep learning archi
tectures combined with a generalisation procedure to test the trained 
networks in other classes. 

The presented computer vision and photogrammetric tool that makes 
use of both natural and artificial marks, has the potential to become a 
useful methodology for the creation of 3D point clouds of the overall 
head that could be used to detect and quantify infants’ abnormalities in 
proportions or symmetry (as soon as better estimations are confirmed for 
the face landmarks). The methodology has important advantages, 
inherited from the previous head modelling tool PhotoMeDAS. The tool 
is designed to work well with moving people (a particular feature of 
infants and children with psychological alterations). Furthermore, 
anybody can carry out the data acquisition and the anonymity of the 
people measured is granted and the requirements for sending the data to 
a server for processing and storage are low. Nevertheless, it is still to be 
tested how changes in facial expressions during the acquisition will 
affect the creation of a comprehensive infant’s head point cloud. 

Fig. 8. Standard deviation of face |p| across 10 executions of dummies. This figure relates to Fig. 6 by focusing on the face points.  

Fig. 9. Box plots summarizing the results of the std reported in Figs. 6 and 8. The box plots report the max and min values, boundaries are set for the first and third 
quartiles, central lines and central dots represent the median and mean, respectively. 
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6. Concluding remarks 

This paper presents a novel approach that integrates machine 
learning facial landmarks and close-range photogrammetry coded tar
gets in real-time during data acquisition to measure head (cranium vault 
plus face) 3D point clouds. 

The precision of the points varies depending on the nature (natural 
and artificial) of the marks and on the part of the face. Without any 
doubt, artificial coded targets yield the best results with a precision of 
around 1 mm in the three axes. As regards the second-best, the right eye 
yields an overall precision of 1.4 mm. The inclusion of the left eye de
grades slightly the results, in a way that eyes provide a precision of 1.8 
mm, which is below the threshold for a layperson detecting the facial 
abnormality. In conclusion, the 3D coordinates of the eye points are able 
to identify facial abnormalities from an aesthetical point of view. On the 
contrary, the points in the nose and mouth present a higher number of 
outliers and a considerable worse precision. However, the nose points 
precision would be enough to improve the recognition of abnormality by 
a layperson in most cases. These results should be confirmed on real 
infants. The largest error is in the direction of the X-axis, due to the 
limitations in the angle of view for the facial landmarks detection al
gorithm. In general, it can be stated that the 3D coordinates of facial 
landmark points were not successfully obtained in an important per
centage of cases (52.9%) and their precision is similar to a layperson 
detection capacity for the eye points and slightly worse for the nose 
points. However, further improvements either in the data acquisition 
stage or in the facial landmarks detection algorithms are required in 
order to increase the reliability of the computer vision and photo
grammetric integration and the precision of the overall methodology. 
The machine learning and close-range photogrammetric methodology 
adaptation presented in this paper is an extension of a previously 
patented automatic tool for the creation of 3D models of infant’s heads. 
The addition of facial landmarks to automatic cranial deformation 
measurement will provide relevant information to precisely quantify 
facial abnormalities and will also improve the evaluation and diagnosis 
of related cranial deformation issues, which are very difficult to measure 
on dynamic infants using conventional devices during consultation. 
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[32] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, M.J. Marín-Jiménez, 
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