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Abstract: Industrial collaborative robots (cobots) are known for their ability to operate in dynamic
environments to perform many different tasks (since they can be easily reprogrammed). Due to their
features, they are largely used in flexible manufacturing processes. Since fault diagnosis methods
are generally applied to systems where the working conditions are bounded, problems arise when
defining condition monitoring architecture, in terms of setting absolute criteria for fault analysis
and interpreting the meanings of detected values since working conditions may vary. The same
cobot can be easily programmed to accomplish more than three or four tasks in a single working day.
The extreme versatility of their use complicates the definition of strategies for detecting abnormal
behavior. This is because any variation in working conditions can result in a different distribution
of the acquired data stream. This phenomenon can be viewed as concept drift (CD). CD is defined
as the change in data distribution that occurs in dynamically changing and nonstationary systems.
Therefore, in this work, we propose an unsupervised anomaly detection (UAD) method that is
capable of operating under CD. This solution aims to identify data changes coming from different
working conditions (the concept drift) or a system degradation (failure) and, at the same time, can
distinguish between the two cases. Additionally, once a concept drift is detected, the model can be
adapted to the new conditions, thereby avoiding misinterpretation of the data. This paper concludes
with a proof of concept (POC) that tests the proposed method on an industrial collaborative robot.

Keywords: anomaly detection; collaborative robotics; fault detection; concept drift adaptation;
machine learning

1. Introduction

Industrial collaborative robots (cobots) are designed to work near humans or cooperate
with them. They can be easily reprogrammed, e.g., via drag-and-drop programming;
they have become widely adopted in smart factories for many tasks, such as assembly,
manipulation, polishing, pick and place, etc. [1]. Due to the widespread and consequent
economic repercussions in the industrial ecosystem, it is crucial to develop an effective
fault detection algorithm that can provide early warnings of imminent faults. In this
way, it can avoid further damage and enable better maintenance planning and logistics.
One possible approach to diagnose malfunctioning in such systems is through Anomaly
Detection (AD). AD refers to the problem of finding patterns in data that do not conform to
expected behaviors [2]. The applications are split into fields such as intrusion and fraud
detection, medical monitoring, machine vision, etc. In the robotics context, data anomalies
may be symptoms of faults, thus AD has been widely studied with the meaning of fault
detection [3,4]. The given AD algorithms are generally applied assuming that working
conditions are bounded, but cobots are generally used in flexible manufacturing where
they perform dynamic tasks. This means that the same cobot can be used in a single
working day for different tasks, executing two, three, or more programs. For this reason,
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the changes in data patterns may refer to actual anomalies as well as behavior changes in
the executed program (e.g., task changes or working environment changes). In this article,
we distinguish two kinds of changes in data patterns:

• Anomalies: Equipment faults or defects where the most common are basically of a
mechanical nature.

• Concept drift [5] (CD): Changes related to the program executed. In dynamically
changing and nonstationary environments, the data distribution can change over
time for many different reasons. In this manuscript, the CD phenomenon has been
associated with the definition of a behavioral change in the robot-executed program
(different speeds, trajectories, payloads, etc.).

Thus, algorithms for AD in such cases have to distinguish between a failure vs. a CD;
in this way, we are able to develop an unsupervised anomaly detection (UAD) system that
can work under a CD. When the change of a data pattern is caused by the task change of
the robot (or external environment), it is identified as CD. When no CD is detected, the
change in the data pattern is identified as an anomaly. Such a system has the following
characteristics:

1. It can detect an anomaly with a model-free approach;
2. It can detect a CD with an unsupervised data-driven approach;
3. Once one of the two phenomena is detected, it reacts appropriately. If an anomaly is

detected, the system will send a warning, otherwise, in the case of CD detection, the
condition monitoring system will adapt to the new working conditions (concept drift
adaptation [6]).

To achieve these purposes, the system uses two models: an anomaly detector and a CD
detector. The scheme of how the two models work is shown in Figure 1.

Stage 1: training stage. During this stage, both models are trained through the data stream.

Stage 2: CD detection stage. This stage is based on a machine learning model called the
CD detector. When a CD is detected, both the anomaly detector and the CD detector
return to the training stage (CD adaptation). If no CD is detected, the anomaly
detection stage begins. Further details will be given in Section 3.1.

Stage 3: Anomaly Detection stage. During this stage, the AD model compares the nominal
data functioning with the real-time data stream, calculating residuals to monitor
cobot conditions. More details will be given in Section 3.2.

The remainder of the paper is organized as follows: Section 2 introduces a literature
overview. In Section 3, we present the methodology used to develop the idea exposed
during the introduction. Section 4 is devoted to presenting the experimental setup and
results. Finally, the paper’s conclusions along with future works are summarized in
Section 5.
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Figure 1. Conceptual scheme of the adaptive anomaly detector. The double arrow indicates the
stage transition while the single arrow indicates the data flow. In particular, from the training stage
to the CD detection stage, the data that flow are the weights of the CD detector model; from the
training stage to the anomaly detection stage, the data that flow are the raw data selected from the
data stream.

2. Related Work and Background

In the context of robotics systems, we can distinguish three approaches to fault detec-
tion [7]: data-driven, model-based, and knowledge-based. The model-based approach [8,9]
relies on an accurate mathematical model that can predict the correct behavior of the system,
which is compared with the observations. Knowledge-based approaches usually relate
recognized behaviors with predefined known faults. For instance, in [10], the authors
recognize the faulty frequencies in the current spectrum of industrial packaging machin-
ery. An overview related to this approach can be found in [11]. The major issue of both
model-based and knowledge-based approaches is the need for prior knowledge of a model
(monitored system in the first case, fault in the second). On the other hand, the data-driven
approach does not need any models. Instead, it requires a large amount of labeled data for
supervised algorithms or relevant computational power for real-time learning in unsuper-
vised algorithms. One possible solution to this problem was proposed by Park et al. [12]
and was reviewed in our previous work [13]. In particular, Park et al. constructed a data
model that can hierarchically analyze the relationships between sensing values and cobot
operation information, analyze data correlations between the sensing data and operation
data to track programmable motions with anomalies, and define the detection criteria of
a programmable motion-fault by statistically analyzing the sensing values with the same
program and motion. Similarly, we propose a data labeling and indexing method to trace
cobot trajectories every time a new program is defined and analyze motion discrepancies
in healthy and unhealthy conditions. However, both these approaches could struggle
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when the motion properties of the robot vary, although the program remains the same (i.e.,
non-deterministic trajectories, unexpected collision with operators, or varying payloads).

Among the works that have used unsupervised data-driven approaches, Cheng
et al. [14] used the Gaussian mixture model to cluster normal and abnormal conditions
from the current signal of a robot manipulator. However, their technique can detect faults
that are already known. In [15], the authors used a Sliding Window–Convolutional Vari-
ational AutoEncoder (SW–CVAE) for the online UAV of an industrial manipulator. The
authors could monitor the state of the machine without any prior knowledge about the
anomaly. Nevertheless, they did not take into account that the manipulator could change
its functioning (CD). Many others have obtained similar results with different approaches.
For example, Khalastchi et al. [3,16] monitored the conditions of autonomous robots using
the Mahalanobis distance [17] and Azzalini et al. [18] proposed a minimally supervised
(where very few nominal observations are required) anomaly detection approach for au-
tonomous robots via a Variational Autoencoder (VAE), which was incrementally trained
online. In [19], the authors compared different AD methods on a collaborative robot. To
the best of our knowledge, no one faced the CD problem in the unsupervised anomaly
detection of robot manipulators; this is the main contribution of this work.

2.1. Probabilistic Encoder

The CD detector was developed using a Neural Network (NN), which is part of a
VAE [20], called a Probabilistic Encoder (PE). In the literature, we can find many works
that use generative models for fault detection or anomaly detection purposes [15,18,21,22].
Typically those works use the value of the reconstruction error of the model to evaluate
the health of the system. We trained our model to a known distribution. The output of the
model should be a value near that distribution, and the distance between such a distribution
and the output is used to evaluate the presence of a CD. The PE maps the input vector
x ∈ Rd into the output vector z ∈ Rl , as shown in Figure 2. The output vector z is a sample
of a posterior distribution pθ(z|x) where θ are the weights of the Encoder. We assume that
the distribution pθ(z|x) is Gaussian and we want it to be as close as possible to a known
distribution (in our case, a standard Gaussian distribution N (0, I)). Kullback–Leibler [23]
(K–L) divergence is a metric of how much one probability distribution is different from the
second; we use it as the loss function:

L(θ) = DKL(pθ(z|x)||N (0, I)).

The latter should be minimized by finding the optimal weights θ using the backpropa-
gation algorithm.

Figure 2. General structure of a probabilistic encoder.
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2.2. Concept Drift

In dynamically changing and nonstationary environments, the data distribution can
change over time, yielding the phenomenon of concept drift. This is a crucial concept
in robotics contexts. Cobots are used in highly dynamic tasks and different industrial
scenarios. Developing a condition monitoring strategy to detect anomalies in cobot data
without considering the concept drift can result in difficulties in consistently identifying
faults in all possible system motions. This is due to motion discrepancies in the various
tasks accomplished (different positions, speeds, loads, etc.). Lane et al. [24] faced a
similar problem in the computer security domain. The authors had to detect anomalous
or suspicious behaviors in the user’s profile. At the same time, they considered that the
behavior characteristic of the nominal user evolves, i.e., the CD. The CD has been faced by
many different authors in different contexts [25]. This paper applies CD to the problem of
anomaly detection for cobots that frequently change tasks or environments.

3. Methodology

The objective of this article is based on the analysis of the cobot’s data stream. Since it
is possible to access data related to the position, speed, torque, current, and many other
measurements from the cobot’s controller, we use multivariate time series data for the CD
detector.

Differently, to address and detect anomalies, it only used torque information because
the authors demonstrated in previous work [8,26] that the torque signal contains strong
faulty features related to the motor and the kinematic chain attached to the shaft.

In the following paragraphs, we describe the CD detector and fault detector in more
detail. Moreover, we will put it all together by proposing a robot operating system (ROS)-
based framework.

3.1. Concept Drift Detector

To capture the nonlinearity and the temporal dependency of the multivariate sensor
variables, we apply the sliding-window technique and a convolutional neural network
(CNN) [27] to the encoder (Figure 2). We call this model the sliding window–probabilistic
encoder (SW–PE). At each time step t, we run an overlapping sliding window with a length
of ω and each sample in this sliding window is an n-dimensional array. Therefore, the
input of the model is an (ω, n)-dimensional matrix. As we mentioned before, our SW–PE
is trained on a fixed distribution N (0, I). During the CD detection stage, the model is
fed by the data stream. Each sliding window corresponds to an output and each output
corresponds to a score, as shown in Figure 3. The score is calculated using the Mahalanobis
distance between the distribution N (0, I) and the output vector of our model z:

dM(N (0, I), z) =
√

zT Iz.

During the training stage, we need to evaluate a threshold score. When an output
exceeds this threshold value, a CD is detected. Additionally, a perfect CD detector is
insensible to faults. Both nominal functioning and nominal functioning with a fault must
satisfy the following condition:

y ≤ CDth,

where y is the set of observed values (CD score) and CDth is the threshold. In an ideal case,
we could define CDth as the maximum value of the observations:

CDth,0 = sup yobs.

As we are dealing with a limited amount of data, uncertainties are unavoidable.
Therefore, we add a bias to the ideal threshold CDth,0:

CDth = CDth,0 + b,
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where b = rCDth, and r is a parameter between 0 and 1, chosen in an empirical way. Finally
combining the last two equations, we obtain:

CDth = CDth,0(1 + r). (1)

Figure 3. Concept drift detector scheme: it takes a temporal sliding window as input and has a score
as the output.

3.2. Anomaly Detector

During the training stage (Figure 1), the detector acquires a sequence of normal
functioning data. In the fault detection stage, these data are compared with the real-time
data stream using residuals:

ri(t) = Ti,re f (t)− Ti,obs(t− D̂),

where Ti,re f is the nominal torque profile, Ti,obs is the real-time torque acquisition, i is an
integer number associated with the respective joint, and D̂ is the estimated delay between
the signals. Ideally, Ti,re f (t) = Ti,obs(t), and ri(t) = 0 if the fault does not appear. However,
the real data contain different disturbances; thus,

Ti,re f (t) = T(t) + n(t) 0 ≤ t ≤ tn

Ti,obs(t) = T(t− D) + n(t) 0 ≤ t ≤ tobs
(2)

where T(t) is the ideal profile, tobs is the time window of the observations, tn is the time
window of nominal data acquisitions, and n(t) is the sum of all disturbances, which
we assume to be white Gaussian distribution. Moreover, to estimate the time delay, we
maximize the cross-correlation of the two signals:

D̂ = argmax
τ

RTi,re f ,Ti,obs(τ),

where

RTi,re f ,Ti,obs(τ) =
Tobs+τ

∑
t=τ

Ti,re f (t)Ti,obs(t− τ). (3)

During the monitoring, we compute the mean value of ri(t) over the observation
period and compare that value with a threshold Fth. If that happens,

|r̄| > Fth
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a fault is detected. The value of the threshold is established by observations as we saw in
the CD detector.

3.3. ROS-Based Condition Monitoring Architecture

As a real industrial cobot was used as a case study in this paper, the authors developed
a ROS package to establish a connection with the cobot controller, program the cobot,
execute trajectories, and perform data acquisition. The entire ROS-based condition mon-
itoring architecture used in this work to acquire and preprocess data during the normal
functioning of cobots was already presented in previous work [13], where the benefits
and limitations in the application of automatic fault detection algorithms in collaborative
robots were reviewed. This paper extends the work by applying an unsupervised machine
learning model (i.e., the PE) to automatically distinguish each time the cobot changes its
task. For the testing part, we developed two different programs that simulated the standard
working functions of a cobot. These experiments were conducted to identify anomalies in
cobot data or variations in the executed program (considered as CDs).

4. Experimental Setup and Results

In order to demonstrate the effectiveness of the proposed method, we provide experi-
mental results using an industrial cobot. Both the CD detector and the anomaly detector were
tested on three different data acquisitions: the first one was a nominal program in which the
models were trained; the second one was a new program executed with different trajectories,
speeds, and payloads; the third one was a nominal program with fault simulation. The next
subsection discusses how the fault was simulated on the nominal data stream. The Omron
TM5-900 cobot was used in this work to obtain the data acquisitions (Figure 4): for each joint,
we acquired positions and torques at 40 Hz. Its specifications are listed in Table 1. The CD
detector was tested with all three datasets. We will go into more detail about this in Section 4.3.
We will discuss the evaluation of the anomaly detector in Section 4.4.

Table 1. Specifications of the collaborative manipulator tm5-900.

Field Data

Reach (mm) 900
Maximum payload (kg) 4

Typical speed (m/s) 1.4
Angle of the joint 1, 6 (degree) +/−270

Angle of the joint 2, 4, 5 (degree) +/−180
Angle of the joint 3 (degree) +/−155

Joint 1

Joint 2

Joint 3
Joint 4

Joint 5

Joint 6

Figure 4. Image of the Omron TM5-900 collaborative robot used for the case study.
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The motion commands can be sent to the cobot using a programmable logic controller
(PLC) or ROS as discussed in our previous work [13]. Providing detailed information on
how to define motion commands using ROS and the trajectory planners library is beyond
the scope of this paper; therefore, detailed information can be found via the GitHub read
me file regarding the usage of our repository [28].

4.1. Fault Simulation

In this work, in order to test the proposed algorithm, we simulated faulty behavior
manipulating real cobot data acquisition. This subsection proposes a brief overview of
mechanical defect modeling for systems driven by electric motors (such as cobots), which
is useful for understanding how the faulty condition was introduced in the data. A cobot,
from a constructional point of view, can be viewed as a system composed of electric
motors and speed reducers (which compose a joint) connected between them, recreating
a complex kinematics chain. Therefore, when we address problems related to a cobot
joint malfunction, we can exploit considerations derived from the electric motor anomaly
detection background. In particular, a defect in the motor or the transmission system
(e.g., a speed reducer) attached to the motor shaft causes load torque oscillations [29].
This anomalous behavior can be modeled as the sum of a constant component (Tconst,
which represents the load of the motor) and a time-varying term, which depends on the
characteristic frequency fc (which represents an order of the rotational frequency of the
rotor fr). The additional time-varying term, which represents a torque oscillation, arises
when the system is working under defects; it is generally modeled through a Fourier series
by neglecting higher-order terms [29]:

Tl(t) = Tconst + Tc cos (ωct) (4)

with Tc being the amplitude of the load torque oscillations and ωc = 2π fc being the term
containing the fault characteristic frequency fc. Respectively, the mechanical equation of an
electric motor under mechanical defects can be written as:

dωr

dt
=

1
J
[Te(t)− Bωr − Tconst − Tc cos (ωct)] (5)

with J being the rotor inertia, Te is the electromagnetic torque, B is the viscous friction,
and ωr is the rotor speed. Based on these considerations, some papers propose facing
joint fault detection in robotics by using torque information. Robotics manipulators (i.e.,
cobots) may fall into fault statuses if involved in long heavy manipulations, leading to
unexpected production stops because the cobot loses its repeatability and accuracy; con-
sequently, the industrial tasks cannot be accomplished. Therefore, monitoring cobot joint
torques in real time may be a valid solution to avoid unpleasant working stop situa-
tions. In this regard, Izagirre et al. [30] proposed performing a joint root cause analysis
through the study of the torque signal. They experienced a homogeneous increment in
the torque when a malfunction in the mechanism of the robot joint arose. Regarding
mechanical defects, the torque value increased in the whole trajectory, not only in spe-
cific movements or positions. This is because mechanical deterioration creates friction
in the joint mechanism affecting the entire movement of the joint. Therefore, when the
robotic system works in healthy conditions, we have (Tl(t) = Tconst), i.e., the motor of the
joint produces a certain electromagnetic torque during normal functioning to execute the
motion request. Differently, when a malfunction arises that produces torque oscillations
(Tl(t) = Tconst + Tc cos (ωct)), the motor compensates the mechanical unbalance through
torque (Te) to accomplish the same task. These theoretical considerations were also experi-
enced in [30,31], where the torque signal was used to perform a cause analysis of faulty
joints. In this regard, in this work, to simulate a mechanical malfunction in a cobot joint,
in real torque data acquisitions, we added a homogeneous random distributed increment
of 10% of the joint torque value. This randomly distributed increment was applied to the
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torque data of the cobot’s first joint. We simulated a mechanical defect in the first joint
since it is one of the most involved in all of the trajectories executed by the cobot. Moreover,
the idea was to prove the effectiveness of the proposed method under a highly dynamic
context (in data with much variability). Therefore, the objective of this paper is to define
an algorithm that can distinguish anomalies related to malfunctions and the CD. In the
first case, it is important to have an algorithm that can isolate and detect the abnormal
behavior by monitoring joint torques, while in the latter, the algorithm should be able to
understand that the system’s working conditions are changed (and the NN has to perform
a new training phase).

4.2. Encoder Structure and Training of the CD Detector

At each time step t, a sliding window of length ω = 151 and an overlap of L = 111
are applied. Each sample is a vector of dimension n = 12 composed of the positions and
torques of each joint (6 positions and 6 torques). Therefore, the input of the encoder is a
12× 151 dimension matrix. The encoder consists of two 2D convolutional layers followed
by a fully-connected layer. The first convolutional layer uses 4 filters and the second uses
16 filters with a length of 3 and stride of 1. After every convolutional layer, we performed
batch normalization and applied a rectified linear unit (ReLU) as nonlinearity. The structure
is summarized in Figure 5.

Figure 5. Encoder CNN structure.

For training and testing, we acquired about 3.7 min of data streams for the current
program (8998 samples) and 1.2 min of data streams for the new program (2998 samples).
Then, we standardized the data to zero mean and unit variances. To train the model, we set
the batch size to 48 and the learning rate to 10−3 in the Adam optimizer.

4.3. CD Detector Evaluation

The SW–PE was trained over three minutes of normal functioning. After the training
stage, the critical part was the choice of the threshold. Considering Equation (1) and setting
parameter r to 7%, we obtained the value of threshold CDth ∼ 6.7. Figure 6 represents the
scores of normal functioning and Figure 7 represents the scores of normal functioning with
faults on Joint 1. As we can see, all of the scores are under the red line (which represents the
threshold) and no false CDs are detected. In Figure 8, we have the score of the new program
from when the CD occurred. This time, the CD is detected in 12 out of 67 timesteps. This
is reasonable because every temporal window is ∼ 3.8 s of the motion, and although the
overall program has changed, it still contains movements that have the same features as in
the previous program. For our purpose, it is enough that the CD is detected at least once.
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Figure 6. CD scores of the current program without an anomaly.
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Figure 8. CD score of the new program.
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4.4. Fault Detector Evaluation

To evaluate the fault detector, we considered the torque signal of joint 1. First, we
settle the parameters of the time windowing of Equation (2):

tn = 25 s

tobs = 5 s.

The acquisitions of nominal and observation data are shown in Figure 9.

0 5 10 15 20 25

Time [s]

-600

-400

-200

0

200

400

T
o

rq
u

e
  
[m

 N
m

]

Joint 1-Torque Profile

0 1 2 3 4 5

Time [s]

-400

-200

0

200

T
o

rq
u

e
 [

m
 N

m
]

Joint 1-Torque Profile

Figure 9. Torque profile of Joint 1: the blue plot represents the nominal data and the red plot
represents the observation data.

Using Equation (3), we find the estimated time delay D̂ and then we associate the
observation with the corresponding part of the nominal graph, as shown in Figure 10.

Finally, we calculate the residuals and evaluate the threshold. In the absence of fault,
the residuals will have the form of white noise with zero means. When the fault occurs, we
notice a bias that we could detect by using a threshold, as seen in Section 4.4. In Figure 11,
we present the plot of residuals under health conditions and when the fault occurs. The
red line represents the mean and the blue band represents the healthy zone. The latter is
delimited by the threshold Fth. As shown in the figure, when the fault occurs, the red line
moves out from the healthy zone. Therefore, we can clearly distinguish between when the
cobot is working under nominal conditions (the nominal program) and when the cobot
is executing a different program (CD) (and a new training phase is required). Moreover,
we can identify anomalies in data acquisition that can be related to a mechanical defect in
the system. In particular, in these experiments, a mechanical defect in the first joint was
simulated by recreating its effect on the torque signal.
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Figure 10. Comparison between the nominal data and the observation after synchronization.

Figure 11. Residual plot under health and fault conditions. The red line represents the mean and the
green band represents the healthy zone.
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5. Conclusions

In this work, we examined the main problem of UAD in industrial cobots, which is
their extreme versatility that results in unpredictable changes in the data stream acquired
from the controller. We named this phenomenon ’concept drift’ and proposed an anomaly
detection algorithm that can work under a CD and dynamically adapt every time the
working conditions change. The approach can clearly distinguish between anomalies and
CD in a robot-executed program. In our previous work, we built the entire architecture
to acquire data streams using ROS and by executing cobot motions. This paper focused
on analyzing data coming from the real system through UAD. In particular, this paper
extends previous results by applying an unsupervised machine learning model (i.e., the
PE) to automatically distinguish between the cobot‘s normal functioning, when a different
program is executed, and when there are data anomalies related to possible mechanical
defects. The experimental results obtained are encouraging and will motivate further
research in this direction. Further investigations are needed to obtain a robust and reliable
model that tests the proposed solution in different industrial applications. We used two
different models—one for CD detection and the other for anomaly detection. A future
step will be to build a unique model with the same capabilities as the two proposed in this
paper, in order to address the computational power limitation, which is one of the main
drawbacks of our technique.
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25. Žliobaitė, I.; Pechenizkiy, M.; Gama, J. An overview of concept drift applications. In Big Data Analysis: New Algorithms for a New

Society; Springer: Cham, Switzerland, 2016; pp. 91–114.
26. Bonci, A.; Indri, M.; Kermenov, R.; Longhi, S.; Nabissi, G. Comparison of PMSMs Motor Current Signature Analysis and Motor

Torque Analysis Under Transient Conditions. In Proceedings of the 2021 IEEE 19th International Conference on Industrial
Informatics (INDIN), Palma de Mallorca, Spain, 21–23 July 2021; IEEE: New York, NY, USA, 2021; pp. 1–6.

27. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
28. Nabissi, G. Omron TM Robots—ROS. 2022. Available online: https://github.com/GiakNab/Omron_TM_robots-ROS (accessed

on 20 February 2023).
29. Blodt, M.; Chabert, M.; Regnier, J.; Faucher, J. Mechanical load fault detection in induction motors by stator current time-frequency

analysis. IEEE Trans. Ind. Appl. 2006, 42, 1454–1463. [CrossRef]
30. Izagirre, U.; Andonegui, I.; Egea, A.; Zurutuza, U. A methodology and experimental implementation for industrial robot health

assessment via torque signature analysis. Appl. Sci. 2020, 10, 7883. [CrossRef]
31. Bittencourt, A.C.; Saarinen, K.; Sander-Tavallaey, S.; Gunnarsson, S.; Norrlöf, M. A data-driven approach to diagnostics of

repetitive processes in the distribution domain–applications to gearbox diagnostics in industrial robots and rotating machines.
Mechatronics 2014, 24, 1032–1041. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/70.897780
http://dx.doi.org/10.1016/j.procir.2021.03.041
http://dx.doi.org/10.1109/ACCESS.2021.3114505
http://dx.doi.org/10.3390/app13010143
http://dx.doi.org/10.1109/ACCESS.2020.2977892
http://dx.doi.org/10.1109/LRA.2021.3062597
https://www.techrxiv.org/articles/preprint/An_Experimental_Comparison_of_Anomaly_Detection_Methods_for_Collaborative_Robot_Manipulators/19006643
https://www.techrxiv.org/articles/preprint/An_Experimental_Comparison_of_Anomaly_Detection_Methods_for_Collaborative_Robot_Manipulators/19006643
http://dx.doi.org/10.1109/TMECH.2017.2759301
http://dx.doi.org/10.1109/JAS.2019.1911393
http://dx.doi.org/10.1214/aoms/1177729694
https://github.com/GiakNab/Omron_TM_robots-ROS
http://dx.doi.org/10.1109/TIA.2006.882631
http://dx.doi.org/10.3390/app10217883
http://dx.doi.org/10.1016/j.mechatronics.2014.01.013

	Introduction
	Related Work and Background
	Probabilistic Encoder
	Concept Drift

	Methodology
	Concept Drift Detector
	Anomaly Detector
	ROS-Based Condition Monitoring Architecture

	Experimental Setup and Results
	Fault Simulation
	Encoder Structure and Training of the CD Detector
	CD Detector Evaluation
	Fault Detector Evaluation

	Conclusions
	References

